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1 Introduction

The Hartman-Grobman and Poincaré-Bendixon Theorems are two of the
most powerful tools used in dynamical systems. The Hartman-Grobman
theorem allows us to represent the local phase portrait about certain types
of equilibria in a nonlinear system by a similar, simpler linear system that we
can find by computing the system’s Jacobian matrix at the equilibrium point.
The Poincaré-Bendixon theorem gives us a way to find periodic solutions on
2D surfaces. One way in which we can use this theorem is by finding an
annulus-shaped region (2D donut shape) such that the vectors on both edges
point into the region.

This document is a guide to the proofs of these two powerful theorems.
These proofs are not generally covered in dynamical systems courses at the
undergraduate level. Many such courses do not require previous knowledge
of topics such as mathematical analysis and topology. This guide is intended
to be a self-contained explanation of the proofs of these theorems in the sense
that it should be comprehensible to those who have a basic understanding
of set theory, calculus, linear algebra and differential equations and who are
currently studying dynamical systems.
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2 The Hartman-Grobman Theorem

2.1 Why does linearization at fixed points tell us about
behavior around the fixed point?

If we have a n-dimensional linear system of differential equations (~̇x =
Ax) with a single fixed point at the origin we can observe several types
of behaviors, such as saddle points, spirals, cycles, stars and nodes, which
are well-understood. We classify these cases based on the eigenvalues of
the matrix A used to classify the system. With a nonlinear system the
behavior of the system is more difficult to analyze. Fortunately, we are
not left completely in the dark. We can find the Jacobian matrix, or “total
derivative”, J, corresponding to the system and evaluate it at a fixed point to
obtain a linear system with a characteristic coefficient matrix. The Hartman-
Grobman theorem tells us that, at least in a neighborhood of the fixed point,
if J’s eigenvalues all have nonzero real part then we can get a qualitative
idea of the behavior of solutions in the nonlinear system. Such qualitative
characteristics we can glean include whether solution trajectories approach or
move away from the equilibrium point over time, and whether the solutions
spiral or if the equilibrium point acts as a node.

2.2 Definitions

Definition 2.1 Homeomorphism
A function h : X → Y is a homeomorphism between X and Y if it is a

continuous bijection (1-1 and onto function) with a continuous inverse (de-
noted h−1). The existence of homeomorphisms tell us that X and Y have
analogous structures. This is because h and h−1, when applied to the en-
tire space (X or Y, respectively), may be thought of as continuously pushing
the points around such that each point retains all of its original neighbors.
Topologists sometimes explain this concept as stretching and bending without
tearing.

Definition 2.2 Topological Conjugacy
Given two maps, f : X → X and g : Y → Y , the map h : X → Y

is a topological semi-conjugacy if it is continuous, onto and h ◦ f = g ◦ h,
where ◦ denotes function composition (sometimes written h(f(~x)) = g(h(~x))
where ~x is a point in X. Furthermore, h is a topological conjugacy if it is a

2



homeomorphism between X and Y (i.e. h is also 1-1 and has a continuous
inverse). We then say that X and Y are homeomorphic.

Definition 2.3 Hyperbolic Fixed Point
A hyperbolic fixed point for a system of differential equations a point at

which the eigenvalues of the Jacobian for the system evaluated at that point
all have nonzero real part.

Definition 2.4 Cauchy Sequence
For the purposes of this document I will provide a non-technical definition.

A Cauchy sequence of functions is a series of functions xk = x1, x2... such
that the functions become more and more similar as k →∞.

Definition 2.5 flow
Let ~̇x = F (~x) be a system of differential equations and ~x0 be an initial con-

dition for F (~x). Provided that the solutions to the differential equation exist
and are unique (the conditions of which are given in the existence and unique-
ness theorem. See, for example, Strogatz (1995), pg. 149), then φ(t; ~x0), the
flow of F (~x), gives the spatial solution of F (~x) given the initial condition
over time. An important result of flows is that changing initial conditions
in phase space will change flows in a continuous fashion because we have a
continuous vector field in Rn.

Definition 2.6 orbit/trajectory
The set of all points in a flow φ(t; ~x0) for the set of differential equations

~̇x = F (~x) is called the “orbit” or “trajectory” of F (~x) with initial condition
~x0. We write the orbit as φ(~x0). When we consider only t ≥ 0, we say we
consider the “forward orbit” or “forward trajectory.”

2.3 Theorem and Proof

Theorem 2.7 The Hartman-Grobman Theorem
Let ~x ε Rn. Consider the nonlinear system ~̇x = f(~x) with the flow φt and

the linear system ~̇x = A~x, where A is the Jacobian Df(~x∗) of f and ~x∗ is
a hyperbolic fixed point. Assume that we have appropriately translated ~x∗ to
origin, i.e. ~x∗ = ~0.

Let f be C1 on some E ⊂ Rn with ~0 ε E. Let I0 ⊂ R, U ⊂ Rn and V ⊂ Rn

such that U, V and I0 each contain the origin. Then ∃ a homeomorphism
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H : U → V such that, ∀ initial points ~x0 ε U and all t ε I0,

H ◦ φt(~x0) = eAtH(~x0)

Thus the flow of the nonlinear system is homeomorphic to the flow, eAt, of
the linear system given by the fundamental theorem for linear systems.

Proof
This theorem essentially states that the nonlinear system ~̇x = f(~x) is

locally homeomorphic the linear system ~̇x = A~x. For the proof, we begin by
writing A as the matrix (

P 0
0 Q

)
where P and Q are partitions or “sub-matrices” of A such that the real part
of the eigenvalues of P are negative and the real part of the eigenvalues of
Q have positive real part. Finding such a matrix A may require finding a
new basis for our linear system using techniques of linear algebra. For more
information see section 1.8 on Jordan forms of matrices in Perko (1991).

Consider the solution ~x(t, ~x0) ε Rn given by

~x(t, ~x0) = φt(~x) =

(
~y(t, ~y0, ~z0)
~z(t, ~y0, ~z0)

)
with ~x0 ε Rn given by

~x0 =

(
~y0

~z0

)
and ~y0 ε E

S (the stable subspace of A), ~z0 ε E
U (the unstable subspace of

A). The stable and unstable subspaces of A are given by the spans of the
negative and positive eigenvectors of A, respectively. Let

Ỹ (~y0, ~z0) =~y(1, ~y0, ~z0)− eP~y0,

Z̃(~y0, ~z0) =~z(1, ~y0, ~z0)− eQ~z0.

Ỹ and Z̃ are functions of the trajectory with initial condition ~x0 evaluated
at t = 1. Then if ~x0 = ~0, it follows that ~y0 = ~z0 = ~0 so we have Ỹ(~0) =
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Z̃(~0) = 0 and thus DỸ(~0) = DZ̃(~0) = ~0 since ~x0 is located at the fixed point
~0. Since f is C1 on E, Ỹ and Z̃ are also C1 on E. Since we know that the DỸ
and DZ̃ are zero at the origin and Ỹ and Z̃ are continuously differentiable,
we can define a region about the origin such that |~y0|2 + |~z0|2 ≤ s2

0 for some
sufficiently small s0 ε R, where the norms of DỸ and DZ̃ are each smaller
than some real number a:

||DỸ (~y0, ~z0)|| ≤ a

||DZ̃(~y0, ~z0)|| ≤ a.

We now use the mean value theorem: Let Y and Z be smooth functions
such that if |~y0|2 + |~y0|2 ≥ s2

0, then Y = Z = 0, whereas if |~y0|2 + |~y0|2 ≤ ( s0
2

)2,

Y =Ỹ and Z =Z̃. Then the mean value theorem yields

|Y | ≤ a
√
|~y0|2 + |~z0|2 ≤ a(|~y0|+ |~z0|),

|Z| ≤ a
√
|~y0|2 + |~z0|2 ≤ a(|~y0|+ |~z0|).

Let B = eP and C = eQ. Given proper normalization (see Hartman (1964))
we have b = ||B|| < 1 and c = ||C−1|| < 1. We now prove that there is a
homeomorphism H from U to V such that H ◦ T = L ◦H by the method of
successive approximations. Define the transformations L, T and H as follows:

L(~y, ~z) =

(
B~y
C~z

)
= eA~x, (2.1)

T (~y, ~z) =

(
B~y + Y (~y.~z)
C~z + Z(~y, ~z)

)
, (2.2)

H(~x) =

(
Φ(~y, ~z)
Ψ(~y, ~z)

)
. (2.3)

From (2.1)-(2.3) and our desired relation H ◦ T = L ◦H, we have that

BΦ = Φ(B~y + Y (~y, ~z), C~z + Z(~y, ~z))

CΨ = Ψ(B~y + Y (~y, ~z), C~z + Z(~y, ~z))

Successive approximations for (2.3) are given recursively by

Ψ0 = ~z, (2.4)

Ψk+1 = C−1Ψk(B~y + Y (~y, ~z), C~z + Z(~y, ~z)), k ε N0. (2.5)

5



This means that we can get closer and closer to the function Φ by following
the recursion relation defined by (2.4)-(2.5). By induction it follows that all
of the Ψk are continuous because the flow φt is continuous and therefore it
follows that Ψ0 is continuous. C−1 is continuous so Ψ1 is continuous, and
by induction Ψk is continuous ∀ k ε N0. It also follows that Ψk(~y, ~z) = ~z for
|~y|+ |~z| ≥ 2s0, [Perko,1991].

It can be shown by induction [Perko,1991] that

|Ψj(~y, ~z)−Ψj−1(~y, ~z)| ≤Mrj(|~y|+ |~z|)σ

Where j = 1, 2, ... and r = c[2max(a, b, c)]σ, c < 1, and σ ε (0, 1) such that
r < 1. This yields the result that Ψk(~y, ~z) is a Cauchy sequence of continuous
functions. These functions converge uniformally as k → ∞, and we can call
the limiting function Ψ(~y, ~z). It As for the Ψk, it is true that Ψ(~y, ~z) = ~z for
|~y|+ |~z| ≥ 2s0.

The case is similar for BΦ = Φ(B~y + Y (~y, ~z), C~z + Z(~y, ~z)), which can
be written as B−1Φ(~y, ~z) = Φ(B−1~y + Y1(~y, ~z), C−1~z + Z1(~y, ~z)), where T−1

defines Y1 and Z1 as follows

T−1(~y, ~z) =

(
B−1~y + Y1(~y, ~z)
C−1~z + Z1(~y, ~z)

)
.

Then we can solve for Φ in a manner excatly as we solved for Ψ above using
Φ0 = ~y. Once we have carried out the calculations to find Ψ and Φ we obtain
the homeomorphism H : Rn → Rn given by

H =

(
Φ
Ψ

)
(2.6)

3 The Poincaré-Bendixon Theorem

3.1 How do we know if we have a periodic orbit?

Often when analyzing a two-dimensional dynamical system we can clas-
sify the behavior at all of the equilibrium points, but it is still unclear what
happens in between them. Numerically solving a system and plotting solu-
tions in the phase plane may make us suspect the existence of closed orbits in
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a particular region. The Poincaré-Bendixon Theorem tells us that if we can
show that an orbit with an initial condition in a region is contained in that
region for all future time then there must be a closed orbit or a fixed point
in the region. Since fixed points are relatively easy to find by simultaneously
solving the differential equations that make up the system, we should know
whether a fixed point is in the region, and thus whether a closed orbit is in
the region. Strogatz shows a useful technique in which one can construct a
“trapping region” for trajectories and then use the Poincaré-Bendixon The-
orem to show the existence of closed orbits (see Figure 1below).

Figure 1: Trapping region

3.2 Definitions

Definition 3.1 metric, metric space
Given a set M and a function d, the ordered pair (M,d) is a metric space

and d is a metric provided that ∀ x,y,z ε M the following are true:
a) d(x, y) = d(y, x),
b) 0 ≤ d(x, y) <∞,
c) d(x, y) = 0 if and only if x = y, and
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d) d(x, z) ≤ d(x, y) + d(y, z).
The metric d provides us with a concept of distance between any two points
in the set M. For this theorem we work in the set R2, in which the most
common metric to use for two points (x1,y1) and (x2,y2) is the euclidian
distance d = ((x2 − x1)

2 + (y2 − y1)
2)1/2.

Definition 3.2 bounded set
Let (M,d) be a metric space. Let B(α,C) = {x ε Rn | ‖x − α‖ ≤ C}

(i.e. B is a ball of radius C centered at α). M is bounded if and only if ∃ a
real-valued constant C such that M ⊂ B(0, C).

Definition 3.3 positively invariant set
Let φ(t; ~x0) be the flow for the set of differential equations ~̇x = F (~x)

defined on Rn. If, for S ⊂ Rn and φ(t; ~x0) ε S for any point ~x0 ε S, t ≥
0, then S is positively invariant. In other words, if the forward orbits of all
initial conditions in S are subsets of S, then S is positively invariant.

Definition 3.4 ω-limit point, ω-limit set
Let φ(t; ~x0) be the flow for the set of differential equations ~̇x = F (~x)

defined on Rn with initial condition ~x0. ~z is called an ω-limit point of ~x0 if ∃
an infinite sequence of times t0, t1, ..., tn, tn+1, ... such that φ(tn; ~x0) converges
to ~z. The ω-limit set of ~x0, denoted ω(~x0), is the set of all ω-limit points of
~x0.

3.3 Theorem and Proof

Theorem 3.5 The Poincaré-Bendixon Theorem
Let ~̇x = F (~x) be a system of differential equations defined on R2.

We assume:
i) F (~x) is defined ∀ ~x ε R2, and
ii) A forward orbit φ(~q) = {φ(t; ~x0) | t ≥ 0}, with initial condition
~x(t0) = ~x0 at t = t0, is bounded.

Then either:
a) ω(~x0) contains a fixed point, or,
b) ω(~x0) is a periodic orbit.
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Proof
First we define some points that we use in the proof and examine their

important properties. Let ~x0 be an initial value of the flow φ(~x0) in a closed,
bounded, and positively invariant subset of R2. We know that φ(~x0) is
bounded and the forward orbit is defined for the infinite set of times t ≥
0, so the orbit must pass increasingly close to at least one point infinitely
many times and thus ω(~x0) is nonempty.

If we let ~q be a point in ω(~x0), then φ(~q) is a subset of ω(~x0) due to the
continuity of flows. Then ω(q) is bounded since φ(~q) is bounded. Let ~z be a
point in ω(~q). We know that ~z is nonempty since φ(~q) is bounded and thus
ω(~q) is nonempty.

Figure 2: The orbit begining at x0 may cross S as shown. Notice that the
intersections between S and the orbit occur closer to ~z as time passes. Here
~z is on the interior of Γ. The next intersection would occur between ~xn+1

and ~z.

We can construct a line segment S through ~x such that all of the orbits
that intersect S pass through S (are one one side of S immediately before
being in S and are on the other side of S immediately afterwards). This
condition implies that no trajectory that intersects S is tangent to S, and
hence, since our vector field’s flow is continuous, all of the orbits crossing S
must do so in the same direction. This can be done because we can make S
sufficiently small such that the continuity of the vector field ensures that all
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Figure 3: Another example of an orbit begining at x0 crossing S over time.
The intersections between S and the orbit still occur closer to ~z as time
passes, but ~z is outside the region enclosed by Γ

trajectories crossing S do so in the same direction.
Since φ(~x0) and φ(~q) both come near ~z infinitely many times, they must

repeatedly intersect S. Thus there is a sequence of times ti = t1, t2, ..., tn, ...
such that ~xn = φ(tn, ~x0) is a point at which φ(~x0) intersects S.

We can define the section of S between ~xn and ~xn+1 as S ′n. We can also
define {φ(t; ~q) | tn ≤ t ≤ tn+1} to be the piece of φ(~x0) between the same
points ~xn and ~xn+1. It is then possible to construct a closed curve, Γ, by
taking the union S ′n and {φ(t; ~q) | tn ≤ t ≤ tn+1}.

The trajectory at φ(tn+1, ~x0) must either enter the interior or the exterior
of of Γ. We then know that all of the trajectories along S ′n also enter the
interior of Γ. Likewise if the trajectory at φ(tn+1, ~x0) enters the exterior of
Γ, then all other trajectories crossing with initial points on S ′n also enter
the exterior of Γ. Thus, because of flow continuity, if φ(tn+1, ~x0) enters the
interior of Γ, then φ(~x0) is in the interior of Γ ∀ t > tn. Hence the intersections
of φ(~x0) with S ′n occur monotonically along S ′n, occurring closer to ~z along
S ′n as t increases. Thus the intersections converge to the single point ~z.

Similarly for ~q, there is a sequence of time si = s0, s1, ..., sn, ... with sk ≤
sk+1∀ k = 1, 2, 3... such that φ(sn, ~q) intersects S ′n and accumulates on ~z. The
points φ(sn, ~q) are in the intersection of ω(~x0) and S since φ(~q) is a subset of

10



ω(~x0). This intersection is the single point ~z, thus the points φ(sn, ~q) are all
the same.

Thus we have a series of times at which φ(~q) intersects S. This may mean
that φ(~q) always intersects S and thus ~z is a fixed point, or φ(~q) intersects S
at an infinite number of discrete times and thus φ(~q) is a periodic orbit. In
the later case ω~x0 contains a periodic orbit. In the former case, ~z = ω(~x0)
by flow continuity.

4 Conclusions and Future Work

The Hartman-Grobman and Poincaré-Bendixon theorems provide us with
powerful methods by which we can better understand nonlinear dynamical
systems. Despite the theorems’ intuitive appeal, the proofs of these theo-
rems can be subtle. Personally I had much more success with the Poincaré-
Bendixon theorem’s proof because my learning style is very visual. However,
I struggled with the Hartman-Grobman theorem, and feel as though I only
made minor progress in making it more understandable than Perko’s rep-
resentation, which was the primary presentation of the proof upon which I
was attempting to improve. I feel as if I made some progress in understand-
ing the foundational concepts involved in the proof, but much more could
be done given more time. I understand the intent of the proof and what it
attempts to show, but I have come across many problems in understanding
the analysis. It is, however, useful to point out the problems so that they
may be fixed. For example, there are obvious missing steps implementation
of the mean value theorem.

Both of these proofs currently rely heavily on abstract thinking. Since the
Poincaré-Bendixon proof is set in 2D space and involves concepts that can be
visualized, I think that the proof would benefit from a more thorough visual
interpretation to compliment the abstract concepts. Some particular demon-
strations could use diagrams and animation to show how the intersections
of the orbit and S converge upon z, how the bounded orbit must come close
to at least one point infinitely many times, and how the continuity of the
flow ensures that φ(~q) is bounded because ω(~x0) is bounded. I believe that
this would be the most productive avenue of future work on this proof, and
would help more types of learners to understand and appreciate the proof.
This kind of approach may make pure mathematics more accessible to people
for whom the abstract analysis doesn’t come as easily.
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As for the Hartman-Grobman proof, I have struggled to come up with an
organizational structure to the proof that would be more helpful to students
(myself included), with little avail. However, I do believe that the way to
make this proof easier to understand lies, at least in part, in restructuring
it. Since this proof relies upon many other proofs, it would be helpful to
compile them and present a well-structured document. Such a document
would be interesting because it would involve many concepts from analysis
and topology, but, rather than having the goal of teaching such subjects, the
aim would be to understand a theorem that is commonly used in applied
dynamical systems work. This document may include a section on Jordan
canonical forms and matrix calculus as well is the ideaas from analysis and
topology (successive approximations, norms, etc.).
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The Poincaré-Bendixon theorem is also presented and its proof is similar to
the one in this document.

C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos
CRC Press, Inc., Boca Raton, 1995.

Robinson’s text is very detailed and requires more knowledge of topology
and analysis than the others. However, it is, for the most part, self con-
tained and the definitions of most topological and analytical concepts can be
found within the book. The proof given for the Hartman-Grobman theorem
is more complicated than Perko’s text. However, the text gives proofs of
the global theorem, the local theorem, and the theorem as applied to flows.
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