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Abstract  A Wireless sensor network (WSN) is a collection of tiny sensor nodes that are deployed to monitor the 
environment. These sensor nodes have limited capabilities, especially the energy reserve and processing ability. So, 
the routing protocols design for this kind of networks is a crucial challenge. Because these routing protocols should 
be simple, energy-efficient, and robust to deal with a very large number of nodes, they should also be self-
configurable to node failures and changes of the network topology dynamically. The most proposed routing 
techniques organize the network in clusters where the sensing area is divided into many sub-areas. This paper 
presents a new algorithm for clustering in WSN based on the node residual energy compared to the network one and 
allowing a better partitioning of the network area which enhance the data distortion at the sink by using the best data 
coding rate at the cluster head. The simulation results show that this algorithm allows network stability extension 
compared to the most known clustering algorithm. 
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1. Introduction 
A Wireless Sensor Network (WSN) is a collection of 

tiny and lightweight sensor nodes deployed in large 
numbers to monitor the surrounding conditions [1]. They 
have diverse application domains: environmental survey, 
smart home, medical monitoring, agriculture etc. 

Since they have small size, the available energy at each 
sensor nodes is considered as the major constraint. Hence 
energy consumption is the important criteria for designing 
of this kind of networks [2,3]. Some of the early works on 
WSNs have discussed the benefits of WSNs in detail 
[4,5,6]. As main advantages of WSNs over the 
conventional networks deployed for the same purpose we 
can cite greater coverage, accuracy, reliability and all of 
the above at a possibly lower cost. 

Clustering is the process of partitioning a network into 
groups of sensor nodes called clusters. Each cluster 
consists of nodes member and one or more number of 
cluster heads (CH) [7]. The CH gathers all data from their 
cluster members. The collected information is routed to 
the Base Station (BS). Generally, the BS is a fixed node, 
which is capable to transmit and receive the data within 
the entire network [8]. The number of cluster head 
selection depends on the number of sensor nodes and the 
network topology. Selecting more than one CH for cluster 

containing more number of nodes in the network can 
control the energy consumption efficiency [6,9]. 

Even if clusters formation and maintenance inducts 
additional cost due to the control messages needed for this 
purpose, still cluster-based WSNs have taken much 
attention of the researchers due to their better performance. 
Distributed, dynamic and randomized clustering schemes 
are interesting due to their simplicity, feasibility, and 
effectiveness in providing energy-efficient utilization, load 
balancing and scalability simultaneously [10]. 

And then many research projects in the last few years 
have explored hierarchical clustering in WSN from 
different perspectives. A variety of protocols have been 
proposed for prolonging the life of WSN and for routing 
the correct data to the BS. Each protocol has advantages 
and disadvantages. Some of the hierarchical protocols are 
LEACH (Low-Energy Adaptive Clustering Hierarchy) 
[11,12], PEGASIS (Power-Efficient Gathering in Sensor 
Information Systems) [13], TEEN (Threshold sensitive 
Energy Efficient sensor Network protocol) [14,15], 
SEP(Stable Election Protocol for clustered heterogeneous 
wireless sensor networks) [16], DEEC(Distributed Energy 
Efficient Clustering algorithm for heterogeneous wireless 
sensor networks) [17] and APTEEN(Adaptive Periodic 
Threshold-sensitive Energy Efficient sensor network 
protocol) [18]. 

In this paper we present a new technique for network 
clustering in order to extend the network lifetime and to 
enhance the data correlation. The main object is to 
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equitably distribute the cluster heads among the network 
nodes. The remainder of the paper is arranged as follows. 
Section-2 provides the background about cluster-based 
routing protocol for WSNs. The details of the proposed 
technique have been discussed in section-3. Simulation 
parameters and results have been given in section-4. 
Based upon the simulation results, conclusions have been 
drawn and some recommendations for future work have 
been proposed in section-5. 

2. Related Work 
Because of many WSN applications require only an 

aggregate value to be reported to the observer, sensors in 
different regions of the monitored field can collaborate to 
aggregate their data and provide more accurate reports 
about their local regions. For example, in a habitat 
monitoring application [19], the average reported 
humidity values might be sufficient for the observer. In 
military fields where chemical activity or radiation is 
measured, the maximum value may be required to alert the 
troops. By reason of the large part of the WSN energy is 
consumed in wireless communication, several 
communication protocols have been proposed to realize 
power-efficient communication. Clustering technique is 
the main schemes used to route information in WSNs. In 
addition to improving the fidelity of the reported 
measurements, data aggregation reduces the 
communication overhead in the network, leading to 
significant energy savings. In order to support data 
aggregation through efficient network organization, nodes 
can be partitioned into a number of small groups called 
clusters. 

Figure 1 gives the cluster organization. When an event 
occurs, each node in its vicinity sends its reading (the 
collected data) to their cluster head that performs data 
aggregation and sends it to the sink. Because of data 
correlation decreases when the sensor is far from the event, 
the collected data at the sink may be altered as has been 
explained above. 

 

Figure 1. Event detection at the cluster head 

LEACH [11,12] is one of the most popular and among 
the first hierarchical routing algorithms for sensor 
networks. It is a self-organizing, adaptive clustering 
protocol that uses randomization to distribute the energy 
load evenly among the sensors in the network. In LEACH, 
the nodes organize themselves into local clusters. Each 

cluster has one node acting as the local base station called 
cluster-head. This cluster-head is the intermediate point 
for its cluster to the sink. Because of cluster-heads make 
long-range transmission; the cluster-head role is energy 
high cost. In order to not drain the battery of a single node, 
LEACH includes randomized rotation of the high-energy 
cluster-head position such that it rotates among the various 
sensors. In addition, LEACH performs local data fusion to 
reduce the amount of data that being sent from the clusters 
to the base station, further reducing energy dissipation and 
enhancing system lifetime. At any given transmission 
round (or period of time), sensors elect themselves to be 
local cluster-heads with a certain probability. The decision 
about whether to be a cluster-head is made independently 
of the other nodes in the network. Hence no extra 
negotiation is required to determine the cluster-heads. 
When a node decides to be cluster-head, it broadcasts its 
status to the other sensors in the network. Based on the 
received broadcasted status signal strength, the network 
nodes estimate the communication energy needed to 
communicate with each cluster-head. And then, each 
sensor node determines to which cluster it wants to belong 
by choosing the cluster-head that requires the minimum 
communication energy. 

Once all the nodes are organized into clusters, each 
cluster-head establishes a TDMA schedule for the nodes 
in its cluster. This scheduling allows nodes to switch off 
their radio interfaces at all times except during its transmit 
time, which allows to minimize the energy dissipated in 
the individual sensors. Once the cluster-head has all the 
data from the nodes in its cluster, the cluster-head node 
aggregates the data, by removing redundancy, and then 
transmits the compressed data to the sink. 

SEP [16] is a proposed scheme for heterogeneous 
wireless sensor networks, which is composed of two types 
of nodes according to the initial energy. The advanced 
nodes are equipped with more energy than the normal 
nodes at the beginning. This technique prolongs the 
stability period, which is defined as the time until the first 
node failure. DEEC [17] is a distributed clustering scheme 
for heterogeneous wireless sensor networks. In DEEC the 
CHs are elected by a probability based on the ratio 
between residual energy of each node and the average 
energy of the network. The epochs of being cluster-heads 
for nodes are different according to their initial and 
residual energy. The nodes with high initial and residual 
energy will have more chances to be the cluster-heads 
than the nodes with low energy. 

To satisfy that the gathered data at the sink were 
accurate, the operation of data aggregation must be done 
properly. The key is that the cluster members will be 
selected to give the best data fusion. Thus, the spatial 
correlation among the sensor observations can be 
exploited to drastically enhance the overall network 
performance. The spatial correlation can be expressed as 
follow; to achieve acceptable coverage, WSN applications 
require spatially dense sensor deployment. Consequently, 
numerous sensors collect information about the same 
event in the field. Due to high nodes density, sensors that 
are close than others collect the same data that means that 
the data correlation is important. This correlation increases 
with decreasing inter-node separation distance [19]. 

In [20] the authors gave a formula to calculate the 
distortion observed between the real collected data and the 
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received one at the sink. This distortion depends on the 
reporting nodes number, the correlation between the 
reading of the reporting nodes, the correlation between 
those data and the event source. 

Based on the distortion, Chen et al. [21] proposed a 
method to dynamically adapt the data reliability at the sink. 
The key idea is to enhance the data aggregation by varying 
the number of nodes that report data to the sink and/or the 
data reporting frequency to achieve the desired data 
reliability at the sink. Thus, the BS send to the CHs the 
adequate nodes number and the data reporting frequency 
that will be used in the intra-cluster when the CH collects 
data from its neighbouring nodes. 

3. A Low Energy Time Based Energy- 
Efficient Clustering Technique for 
Routing in Wireless Sensor Networks 

Zytoune et al. [22] have presented a clustering 
technique based on the network nodes residual energy to 
allow the network lifetime extension. Each node decides 
to be CH based on its residual energy and the average 
network nodes remaining energy. Our contribution 
consists in performing the network energy consumption 
by judiciously selecting the network clusters. The 
competition to become cluster-head is based on the 
residual energy related to the estimated network residual 
one. Because the CH makes a data aggregation to reduce 
the number of packets that would be transmitted toward 
the BS, an optimal choice of the CH and the cluster 
members is that this CH performs data compression, and 
the compressed data must be reliable. 

High data correlation received at the CH allows it to 
perform high data compression without loosing in 
reliability. In dense network, the observed data presents a 
high similitude. This similitude can be measured through 
correlation. Some data correlation models were proposed. 
A model frequently encountered in practice is the 
Gaussian random field [23,24]. This model has the nice 
property that the dependence in data at different nodes is 
fully expressed by the covariance matrix. Thus, we 
assume in this work a jointly Gaussian model for the 
spatial data X measured at nodes, with an N-dimensional 
multivariate normal distribution GN (µ, K) (eq.1): 
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Where K is the covariance matrix (positive definite), 
and µ is the mean vector. The diagonal elements of K are 
the variances Kij=σi

2. The rest of Kij depend on the 
distance between the corresponding nodes. Then, for any 
index combination I= {i1, . . . , ik}∈{1, . . . , N}, k≤N, W = 
(Xi1, . . . , Xik) is k-dimensional normal distributed. Its 
covariance matrix is the submatrix K[I] selected from K, 
with rows and columns corresponding to {i1, . . . , ik}. 
Since we assume that data at all nodes is quantized with 
the same quantization step, and differential entropy differs 
from entropy by a constant for uniformly quantized 
variables, we use differential entropy instead of entropy. 
The entropy of a k-dimensional multivariate normal 
distribution Gk(µ, K) is: 

 1( ( , )) log(2 . ) .det( )
2

k
kh G K e Kµ π=  (2) 

As for two correlated random data source Xi and Xj, let 
H(Xi) and H(Xj) be the entropies of Xi and Xj . Then Xi 
and Xj can code their data using H(Xi) and H(Xj) as their 
coding rate. If they can communicate with each other, they 
can jointly code their data using a coding rate H(Xi, Xj). 
In [28], it has been proved that even Xi and Xj cannot 
communicate with each other, they can still jointly code 
their data using a coding rate H(Xi, Xj). The prerequisite 
is their coding rates are equal to their conditional entropies 
H(Xi|Xj) and H(Xj|Xi). 

Above conclusion can be extended to multidimensional 
conditions. As for a data source set X = (X0, X1, X2,..., 
Xn), if the sources know the correlation structure, then the 
sources can use a joint coding rate H(X0, X1, X2,..., Xn) 
to code their data even they do not communicate with each 
other. Assume the sources in set X are arranged according 
to their distances to X0, then the coding rates are assigned 
as follows [23] (eq. 3): 
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For a cluster, let X0 be the cluster head and (X0, X1, 
X2,..., Xn) are the members that are listed according to 
their distances to X0. The coding rates can be assigned 
according to equation. 

The correlation function is assumed to be non-negative 
and decreases monotonically with the distance. We use the 
power exponential model since the physical event 
information is modelled to have an exponential 
autocorrelation function [24]. In this work we use the 
model given in (eq. 4): 
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Many literature works that discusses the data 
aggregation were presented. Hua and Yum [25] presented 
a data aggregated maximum lifetime routing scheme for 
wireless sensor networks. They address the problem of 
jointly optimizing data aggregation and routing so that the 
network lifetime can be maximized. The earlier cited work 
[20] expresses the data distortion observed at the sink. 
This distortion is given by equation (5): 
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Where σS
2 represents the signal variance, σN

2 is the 
noise variance, N is the number of nodes that transmit the 
sensed data to the sink and ρij is the correlation coefficient 
between the data collected by nodes i and j. 

In this work, we propose to exploit the cluster 
members’ data to enhance the data aggregation that will 
be done in the CH. As presented in equations (5) the data 
correlation between the detection at two nodes decreases 
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as the distance between nodes augments. Thus, it is 
important that the cluster radius must be fixed to hold the 
data correlation between the nodes members and the CH. 
In the following, we exploit this idea to ensure data 
collection accuracy by developing a new clustering 
scheme. 

Figure 2 represents the data distortion observed at the 
cluster head for different nodes network densities when 
the cluster radius changes. The network nodes are 
uniformly located in the network area that is assumed to 
be a square area of 100m*100m, the correlation model is 
supposed that α=0.1, the variance σS

2=1 and σN
2=0.1. As 

depicted, the distortion increases when the cluster radius 
augments. Then to ensure a best data collection at the 
cluster head, the cluster radius must be under a threshold 
that is defined based on the accepted distortion at the sink. 

 

Figure 2. Data distortion vs. network nodes density 

For this work we assume that all the network nodes are 
synchronized and immobile. To ensure nodes 
synchronization, some techniques suitable for WSN were 
proposed in the literature (e.g. [26,27]). We assume also 
that the cluster-head node is able to adjust its transmission 
radius. 

Let note En(r) the residual energy of the node n at the 
round r, ( )E r  denotes the average energy of the network 
at round r and TCH denotes the time interval for cluster-
head competition. 

The proposed algorithm is a self-organizing, dynamic 
clustering method that divides dynamically, the network 
on a number of a priori fixed clusters based on the 
acceptable data distortion at the CH and then the sink. 

In this work, we use two-level heterogeneous networks, 
in which there are two types of sensor nodes; the advanced 
nodes and normal nodes. Lets note E0 the initial energy of 
the normal nodes, and f the fraction of the advanced nodes, 
which own a times more energy than the normal ones. 
Thus there are fN advanced nodes equipped with initial 
energy of (1 + a) E0, and (1- f) N normal nodes equipped 
with initial energy of E0. We can compute the total initial 
energy of the networks which is given by: 

 0 0(1 ) (1 )totalE N f E Nf a E= − + +  (6) 

The node n becomes cluster-head for tn rounds. In 
homogenous networks, to guarantee that there are average 
poptN cluster-heads every round, LEACH let each node n 
becomes a cluster-head once every tn =1/popt rounds. The 
network nodes will have different residual energy when 
the network evolves. If the rotating epoch tn is the same 
for all the nodes as proposed in LEACH, the energy will 
be not well distributed and the low-energy nodes will die 
more quickly than the high-energy nodes. DEEC protocol, 

choose different tn based on the residual energy En(r) of 
node n at round r. 

The real value of the average energy of the network at 
the round r is given by (7): 
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To compute 
__
E (r) by Equation (7), each node should 

have the knowledge of the total energy of all nodes in the 
network every round. It is obvious that exchanging 
messages to compute this value is energy expensive. So 
we process with an estimation of this value 

An estimation of this parameter is given by Equation 
(8): 
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If we note the total energy dissipated in the network 
during a round by Eround, then: 

 Etotal
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k is the number of clusters, EDA is the data aggregation 
cost which is expended in the cluster-heads, dtoBS is the 
average distance between the cluster-head and the base 
station, and dtoCH is the average distance between the 
cluster members and the cluster-head. If the nodes are 
uniformly distributed in a square M*M area, from [5,29] 
we can give (11): 
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Our goal is to form clusters with the same area. So, 
each cluster has a radius RCH. This radius is determined 
by the total distortion accepted in the CH. 

And then, the number of clusters is calculated by the 
following equation (12): 

 2
*
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The operation of the proposed protocol is broken up 
into rounds where each round consists of a set-up phase 
and steady-state phase. In the following sub-sections we 
will detail each of these phases. 

Set-up phase 
In the beginning of each epoch, each node n uses the 

equation (13): 

 __
( )

i
i CH

E
t T

E r
=  (13) 

To calculate the instant when the node broadcasts its 
candidacy for cluster-head role on a radius RCH. Each 
node in this radius receives this message and belongs to 
this cluster. Thus, the cluster-heads are uniformly 
distributed on the network area. Once the nodes decide to 
which cluster belong, they inform the cluster-head 
transmitting a join-request message to it, using CSMA/CA 
MAC protocol. A header, the node ID and the cluster-head 
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ID, forms this message that is a short one. This message 
size grants to reduce the time channel access and the 
transmission energy cost. 

Steady-State Phase 
Once the clusters are established, the nodes transmit 

their data messages towards the cluster-head. When the 
cluster-head receives all the nodes data, it performs its 
fusion, to form a new message that sent to the base station. 

4. Simulation Results 
To assess the performance of the proposed algorithm, 

we run some simulations using Matlab. Our proposition is 
compared to DEEC protocol [17]. The used parameter 
values in our work are given in the following Table 1. 

Table 1. Simulation parameter values 

Description Symbol Value 

Network dimension M*M 100m*100m 

Network nodes number N 100 

Data packet length L 4000bits 

Control packet length Lctr 200bits 

DEEC protocol optimal 
probability Popt 0.1 

Advanced nodes percentage f 20 

Fraction of advanced nodes 
energy to normal nodes a 3 

Figure 3 represents the network lifetime for the 
proposed protocol compared to DEEC. In this Figure we 
give the network lifetime until 1%, 10%, 20%, 50% and 
70% of network nodes have their energy depleted. As we 
can see, except the first node dies, the proposed protocol 
(LETC) permits to extend the network lifetime for extra 
transmission rounds compared to DEEC. For the lifetime 
defined until the first node has its energy consumed, 
LETC outperforms DEEC for a determined Cluster Head 
radius. 

Figure 4 gives the number of nodes still alive for every 
transmission rounds, the Cluster radius for LETC is at 
60m. As depicted, LETC permits to extend to network 
time usage compared to DEEC. This extension is given in 
Figure 5 where the network lifetime extension percentage 
is presented for each node dead, which means that the 
proposed technique allows the network lifetime extension 
until the major network nodes are dead. 

 

Figure 3. Network lifetime with α=0.1 

 

Figure 4. Network lifetime with RCH=60m and alpha=0.1 

As depicted in Figure 4, the proposed technique 
exploits the nodes energies equitably since the network 
nodes die randomly better than DEEC where the nodes 
with additional energy are the last dyeing nodes. 

 

Figure 5. Relative Network lifetime extension. 

5. Conclusions 
In this paper, we have proposed a distributed clustering 

based routing protocol for WSNs. We have interested in 
performing the cluster-heads distribution over the network 
area. So, the network is equitably partitioned and then the 
sink-collected data are more accurate. Through the 
simulation, we demonstrate that the proposed algorithm 
allows a network lifetime extension compared to the most 
known clustering algorithms in this area. As future work, 
we will reconsider the dynamic selection of cluster surface 
based on the observed distortion at the cluster head. 
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