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Cardiac Motion Recovery via Active Trajectory
Field Models
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Abstract—Cardiovascular researchers are constantly develop-
ing new and innovative medical imaging technologies, striving to
improve the understanding, diagnosis, and treatment of cardiovas-
cular dysfunction. Combining these sophisticated imaging methods
with advancements in image understanding via computational in-
telligence will continue to advance the frontier of cardiovascular
medicine. Recently, researchers have turned to a new class of tissue
motion imaging techniques, including displacement encoding with
stimulated echoes (DENSE) in cardiac magnetic resonance (cMR)
imaging, to directly quantify cardiac displacement and produce ac-
curate spatiotemporal measurements of myocardial strain, twist,
and torsion. The associated analysis of DENSE ¢cMR and other
tissue motion imagery, however, represents a major bottleneck in
the study of intramyocardial mechanics. In the computational in-
telligence area of deformable models, this paper develops an au-
tomated motion recovery technique termed active trajectory field
models (ATFMs) geared toward these new motion imaging proto-
cols, offering quantitative physiological measurements without the
pains of manual analyses. This novel generative deformable model
exploits both image information and prior knowledge of cardiac
motion, utilizing a point distribution model derived from a training
set of myocardial trajectory fields to automatically recover cardiac
motion from a noisy image sequence. The effectiveness of the ATFM
method is demonstrated by quantifying myocardial motion in
2-D short-axis murine DENSE cMR image sequences both before
and after myocardial infarction, producing results comparable to
existing semiautomatic analysis methods.

Index Terms—Active models, cardiac MRI, computational in-
telligence, deformable models, displacement encoding with stim-
ulated echoes (DENSE), image analysis, left ventricular function,
myocardial tagging.

I. INTRODUCTION

imaging technology within the suite of medical imag-
ing modalities, providing vital physiological insights that aid in
the understanding, diagnosis, and treatment of cardiovascular
dysfunction. Each imaging technology affords an opportunity

M ODERN cardiovascular science boasts a rich array of
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to develop associated image analysis software, which strives
to automatically quantify cardiac parameters and produce re-
sults comparable to existing manual methods while alleviating
researchers and clinicians from tedious, time-consuming, and
highly variable manual data analyses. As new and more sophis-
ticated imaging techniques are under constant development, au-
tomated cardiovascular image analysis will remain an important
and vigorous area of research in computational intelligence for
many years to come.

One of the most important cardiovascular imaging modalities
today is, of course, cardiac magnetic resonance (cMR) imaging.
cMR techniques already offer a wealth of cardiac measurements,
including ejection fraction, myocardial mass, myocardial wall
thickening, and cardiac perfusion. A promising addition to the
cMR toolbox is found in the study of intramyocardial function,
which attempts to quantify tissue motion throughout the cardiac
muscle and produce accurate spatiotemporal measurements of
myocardial strain, twist, and torsion. Consequently, many cMR
researchers have turned to quantitative tissue tracking tech-
niques, such as myocardial tagging [1]-[3], velocity-encoded
phase contrast imaging [4], [5], harmonic phase (HARP) anal-
ysis [6], and the more recent displacement encoding with stim-
ulated echoes (DENSE) [7]-[10], to potentially advance our
current understanding of basic cardiovascular science.

Of particular interest is cine DENSE cMR, which offers direct
measurement of tissue displacement at a high spatial resolution
throughout the course of the cardiac cycle [10]. A recent cine
DENSE cMR protocol for murine imaging by Zhong et al.
[11] achieves spatial and temporal resolutions of 0.2 x 0.2 x
1 mm?® and 6.9 ms, respectively, in a scan time of 6-8 min per
slice. Even higher resolutions are possible with this imaging
technique, albeit at the cost of increased scan time.

DENSE cMR presents a clear opportunity in computational
intelligence for the development of novel automated analysis
software, as extracting meaningful tissue motion from acquired
imagery remains a complex task requiring significant manual in-
teraction [10]. Though existing medical image analysis methods
were considered [12]-[14] in the context of DENSE cMR, it was
deemed necessary to develop an application-specific algorithm
capable of the automatic recovery of meaningful left ventricular
motion from acquired DENSE cMR image sequences.

In this paper, we consider the automated analysis of acquired
tissue motion imagery via a novel generative deformable model-
ing technique we term active trajectory field models (ATFMs).
ATFMs are, within a class of methods, known in the compu-
tational intelligence community as deformable models, which
include active contours [12], active shape models (ASMs)/active
appearance models (AAMs) [13], [14], active surfaces [15], and
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splines [16]. The ATFM method introduced here exploits both
image information and prior knowledge of the cardiac motion
we wish to recover, using a training set of myocardial trajectory
fields to automatically recover tissue motion from a noisy image
sequence. This technique is able to eliminate our dependence on
finite-element approximations of complex biomechanical mod-
els by instead deriving a myocardial motion model directly from
real-world training data.

As with ASMs/AAMs, the ATFM technique relies on our
ability to represent a motion trajectory field as a discrete set of
spatiotemporal points. After choosing points in the same man-
ner from every trajectory field within a training set of fields,
we can examine the statistics of these labeled point positions
and develop a point distribution model describing how the spa-
tiotemporal locations vary. We are then able to move about in
this model space by varying a small number of parameters as-
sociated with the modes of variation within the training data.
To automatically recover motion from a noisy image sequence,
we must choose parameter values that best fit model to noisy
imagery.

The development of the ATFM motion recovery technique
is wrought with challenges, including the preliminary semi-
automatic analysis of a training set of complex spatiotempo-
ral trajectory fields, the characterization of variability within
the training set, and a solution to a combinatorial optimization
problem of searching for the trajectory field of best fit to a noisy
image sequence. As DENSE cMR resolutions are well suited
for studies that use imaging of transgenic mice to elucidate the
roles of individual genes in contractile function, we focus our
efforts on left ventricular motion recovery within 2-D short-axis
murine cine DENSE cMR imagery, discussed in detail in the
next section. Though we concentrate on the analysis of this sin-
gle imaging technique, the ATFM method can be adapted to 2-D
human DENSE cMR imagery (differing primarily in scale and
resolution), other displacement data such as myocardial tagging
(differing primarily in resolution), as well as 3-D DENSE cMR
motion recovery (requiring an extension to 3-D space and 3-D
displacements).

In the next section, we present necessary background infor-
mation including an in-depth discussion of a state-of-the-art
DENSE cMR analysis, as well as an introduction to deformable
models and their application to cardiac segmentation problems.
We then develop the proposed ATFM method in detail, including

(d) (e)

Single-frame murine DENSE cMR analysis. (a) Short-axis anatomical diagram. (b) Magnitude image. (c¢) Horizontal encoded phase image. (d) Phase-

a novel preliminary semiautomatic training set analysis, model
definition, and the final automated motion field recovery. We
demonstrate the effectiveness of the ATFM method by quanti-
fying myocardial motion in 2-D short-axis murine DENSE cMR
image sequences both before and after myocardial infarction.

II. BACKGROUND

This section presents two topics essential to the proposed
research: a discussion on the typical cine DENSE cMR image
analysis method and a short review of deformable models for
cardiac segmentation.

A. Typical Cine DENSE cMR Analysis

A typical MR acquisition consists of a complex valued
dataset, and conventionally researchers and clinicians discard all
phase information and make use of the magnitude information
only. DENSE cMR, however, exploits this phase space by di-
rectly encoding tissue displacement into the phase-reconstructed
images [7]. DENSE cMR first uses a spatial magnetic field
gradient to impart a location-dependent phase shift to the MR
signal at the initial cardiac configuration. A similar gradient is
applied at subsequent cardiac configurations such that, if no dis-
placement occurred, the initial imparted phase shift would be
removed. Any residual phase shift remaining after application
of the second gradient pulse directly reflects tissue displacement
that occurred during the time between the two gradient pulses.
A more detailed discussion of the cine DENSE cMR acquisition
method, beyond the scope of this paper, can be found in [8].

Fig. 1 illustrates a typical single-frame DENSE ¢cMR acqui-
sition and analysis. We acquire complex DENSE cMR imagery
consisting of magnitude [Fig. 1(b)] and phase [Fig. 1(c)] infor-
mation, where phase is directly proportional to displacement in
a single direction. In this example, phase is encoded in the hor-
izontal direction. A similar procedure produces phase imagery
encoded in the vertical direction (not shown).

Let us now briefly consider the typical transformation of a
2-D+time DENSE cMR image acquisition into meaningful
tissue motion, as described by Spottiswoode er al. [10]. As
MR phase is inherently bounded between —7 and m, large dis-
placements produce wrapping artifacts, visible at the 3 o’clock
position in Fig. 1(c). This wrapping effect is corrected by a
2-D phase unwrapping technique described in [17], known as
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Typical murine DENSE cMR trajectory field.

Fig. 2.

quality-guided path following. This technique unwraps the
phase image one pixel at a time along a 2-D path guided by
the phase quality image, proportional to the variance of the par-
tial derivatives of the locally unwrapped phase within a small
neighborhood around each pixel. Fig. 1(d) illustrates unwrapped
phase values within the myocardial region of interest, where
dark pixels represent movement to the left and bright pixels
represent movement to the right.

After unwrapping the vertically encoded phase image (not
shown) via a similar procedure, the associated horizontal and
vertical displacements are combined to obtain the displacement
field illustrated in Fig. 1(e). This field consists of noisy vectors
with heads located at pixel centers and tails located at the pixel
points of origin. A series of these single-frame displacement
fields measured over the course of the cardiac cycle is con-
catenated to recover a meaningful myocardial trajectory field,
as illustrated in Fig. 2. This generally involves spatial filter-
ing, linear interpolation to determine frame-to-frame motion,
measurement of coarse trajectories using these frame-to-frame
vectors, and temporal smoothing of the coarse trajectories via
Fourier basis functions.

To gain more insight into myocardial function, strain can be
directly calculated from the recovered trajectory fields according
to the method described in [18]. Consider a single trajectory
[0(t), yo(t)] and its nearest neighbor [x1(t), y; (¢)] defined by
the Euclidean distance between spatial origins. We define the
distance between these points at an arbitrary time ¢ as

r1(t) —xo(t
dz(t) = { 1{f) = o )].
() — yo(t)
A 2-D deformation gradient tensor F'(t), of size [2 x 2], maps

vectors from the original configuration dx(0) to the current
configuration dx(t) and is defined as

dx(t) = F(t)dx(0). (2)

ey

Given a trajectory with at least two neighbors, F(t) can
be determined via a least-squares technique. The associated
Lagrangian strain tensor S(t) of size [2 x 2] is given as

s =

where [ is the identity matrix. This 2-D Cartesian strain tensor
is typically decomposed into its radial and circumferential com-
ponents, pointing toward the myocardial center and along the
circumference of the myocardium, respectively. Fig. 3 illustrates
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Fig. 3. End-systolic (left) radial and (right) circumferential strain.

typical end-systolic (full cardiac contraction) strain fields. Note
that the average end-systolic radial strain of approximately 0.35
and average end-systolic circumferential strain of approximately
—0.15 are in good agreement with previous measurements of
strain in the mouse heart [9], [19].

Though this state-of-the-art analysis method provides reveal-
ing myocardial trajectory fields, it does suffer from several dis-
tinct disadvantages. It first requires a significant amount of user
input, as the left ventricle must be manually delineated on at least
one frame, and the phase unwrapping algorithm performance is
improved when the left ventricle is delineated on all frames. In
our laboratory, manual myocardial segmentation within a typ-
ical murine DENSE cMR acquisition of 30 frames may take
5-10 min. Performing this segmentation on multiple datasets
quickly becomes monotonous and time-consuming. Manual
segmentation is especially problematic early in the cardiac cycle,
as blood encoded with the DENSE cMR pulse sequence remains
in the blood pool, virtually eliminating myocardial contrast. Ad-
ditionally, little effort is directed toward noise compensation
among the displacement vectors beyond some spatial filtering
and an individual temporal fit to each trajectory. There is a
clear opportunity for a more automated solution via advances in
computational intelligence.

B. Deformable Models for Cardiac Segmentation

One of the most successful classes of medical image segmen-
tation methods, termed deformable models, attempts to exploit
both image information and prior knowledge of the anatomical
structure to be delineated. Here, we will consider some of the
most relevant prior research on deformable models for myocar-
dial segmentation.

The popularization of deformable models for image segmen-
tation is commonly attributed to the introduction of active con-
tours by Kass et al. [12]. An active contour captures a desired
image feature by minimizing a corresponding energy functional,
typically the weighted sum of an image-based external energy,
attracting the contour to features of interest, and a contour-
based internal energy, ensuring a smooth segmentation solution.
While active contours have been utilized for cardiac segmenta-
tion by a number of researchers [20]-[22], this method does not
allow for the inclusion of any known size, shape, or appearance
information.

Cootes et al. [13] introduced a technique termed ASMs that
integrates an expected feature shape into the deformable model
framework. An ASM measures the variability of a set of training
shapes via principal component analysis (PCA) and constrains
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the segmentation solution to this shape space. Given the proper
training set, the corresponding model is able to encapsulate
all shape variability within a small subset of principal compo-
nent weighting parameters. The ASM technique has been used
successfully to delineate a number of different anatomical
shapes including the myocardium [13], [23], but the location
of anatomical features with ASM is driven by often spurious
low-level image features.

To improve their segmentation results, Cootes et al. [14]
introduced an extension to the ASM technique termed AAMs.
This technique considers not only the expected object shape,
but also the expected pattern of intensity or color in and around
the object termed the object appearance. AAMs belong to a
subclass of deformable models termed generative deformable
models, as we can generate a synthetic image corresponding to
any shape and appearance within the model space. Segmentation
via this method proceeds via analysis-by-synthesis, finding the
set of model parameters that minimizes the difference between
noisy imagery and model-derived synthetic imagery. AAM tech-
niques have shown significant promise in the segmentations of
a wide range of cardiac imagery [24]-[27].

Unfortunately, the aforementioned algorithms are ill-suited
to the analysis of cardiac displacement imagery such as
DENSE cMR. Myocardial edge contrast is nonexistent early
in the cardiac cycle, causing purely edge-based segmentation
methods such as active contours and ASMs to fail or require
significant correction. AAMs show more promise as they could
consider the entire myocardial muscle appearance rather than
just the myocardial borders; however, we would still require
the complex displacement analysis methods discussed in the
previous section to recover meaningful myocardial motion
from the segmentation solution.

We therefore endeavor to create a novel motion recovery
method geared specifically to tissue motion imagery. Of
particular interest is the concept of a generative deformable
model, as it is a relatively simple matter to generate ideal
DENSE cMR phase imagery from a given trajectory field. We
hypothesize that it is possible to characterize the variability
of a set of training trajectory fields and then recover cardiac
motion via an analysis-by-synthesis technique that minimizes
the difference between ideal phase imagery and a noisy DENSE
c¢MR sequence. The ATFM approach described in this paper ac-
complishes this goal, developing a novel generative deformable
model to recover cardiac motion in tissue motion imagery that
exploits known intramyocardial spatiotemporal variability.

III. METHODS

This section presents an in-depth description of the proposed
ATFM technique toward the goal of automated motion recovery
from tissue displacement imagery. The ATFM method defines
a point distribution model characterizing the variability of
spatiotemporal myocardial landmarks within a training set
of discrete trajectory fields and then automatically recovers
motion from a noisy image sequence by finding the best fit of
model to imagery.

The development of this method is not a trivial task, as we
must consider the preliminary semiautomatic analysis of a
training set of DENSE cMR image sequences, a characteriza-
tion of variation within recovered trajectory field training set,
and a solution to the combinatorial optimization problem of
searching a noisy image sequence for the trajectory field of
best fit. As mentioned previously, though we focus our efforts
on murine DENSE cMR imagery, the ATFM method can be
adapted to human data, other tissue motion imaging techniques,
as well as 3-D motion recovery.

A. Training Set Analysis

The current state-of-the-art DENSE cMR motion recovery
method discussed in Section II-A does not lend itself to the con-
struction of our cardiac point distribution model, as each heart
in the training set is sampled at a unique set of spatiotemporal
locations. To address this concern, as well as improve noise
compensation within the acquired datasets, we introduce a
novel semiautomatic DENSE cMR analysis method. This
method defines a smooth and continuous myocardial trajectory
field via two spatiotemporal splines, given phase-unwrapped
image sequences and expertly delineated myocardial contours.
Note that this novel semiautomatic training set analysis is only
a stepping stone toward the fully automated ATFM solution
discussed in subsequent sections.

Consider deformation in a single direction. Let {z,,n €
[1,...,N]} represent the finite set of N irregularly spaced
spatiotemporal deformations at the Cartesian coordinates
(Zn,yn) € Q and temporal locations ¢, € [0,...,1] (varying
from the start to the end of the cardiac cycle, respectively).
We define the function f(x,y,t) as the unique solution that
minimizes

1
Esplinc (.f) =M /0 |://Q( 439; + szy + fiy)dx dy:| dt

1
+ Ao / / [ / fftdt} da dy )
Q 0

]\T
+ (1 —)\.1 —)\.Q)Z Hz'n, _f(x'n,aynvtn)H

n=1

where (A1,22) € [0,...,1] define the relative weight between
energy terms and fy4 is the second derivative of f(x,y,t) in
the direction d. We apply an additional boundary constraint
to our solution that forces trajectories to begin and end at their
respective spatial origins by requiring zero-valued deformations
at these temporal locations.

The first energy term in (4) is derived from a 2-D thin-plate
spline [16], [28], the 2-D analog of the 1-D cubic spline. This
term quantifies the spatial bending energy at each temporal
location in the function f(z,y,t), ensuring a spatially smooth
deformation field. The second energy term is derived from
a 1-D cubic spline [16]. This term quantifies the temporal
curvature of our solution, i.e., the sum of squared acceleration
across time within the spatial region of interest, ensuring a
temporally smooth deformation field when minimized. Our
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Fig. 4. Typical spatiotemporal spline fitting. (Top row) Original displacement
fields. (Bottom row) Corresponding spline fields.
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Fig. 5. End-systolic (left) radial and (right) circumferential strain using the
spatiotemporal spline method.

energy functional also includes an L2-norm data constraint,
forcing the solution toward the least-squares approximation of
the input deformations. Minimizing the weighted sum of these
three energy terms produces a spatially and temporally smooth
solution that closely matches the input deformation data. We
note that although (4) could be formulated in the L1-norm sense,
the range and variability of noise present in the displacement
data has lent itself to an L2-norm minimization scheme.

To ensure we do not oversmooth and lose local tissue motion
features, our choice of A; and Ao is governed by the cross-
validation technique described in [29]. We divide our entire
training set of displacement fields into estimation data and vali-
dation data, choosing D random displacements from each field
as the validation data. We then search the parameter space for
the spatiotemporal splines derived from the estimation data that
best fit the validation data.

Fig. 4 illustrates a typical spatiotemporal spline fit. The top
row shows the original displacement fields and the bottom row
shows the corresponding spline deformation fields. We can ad-
ditionally calculate strain fields by discretizing this continuous
trajectory field and using the method described in Section II-A,
as illustrated in Fig. 5.

B. Model Definition

With a training set of continuous spatiotemporal trajectory
fields in hand, we may now consider the construction of a tra-
jectory field model for subsequent motion recovery [30]. This

20 1 20

2% 4 2%

Fig. 6. Alignment of training data to reference coordinate system. (a) Expert
segmentation at rest. (b) Corresponding trajectory field. (c) Aligned resting
segmentation. (d) Aligned trajectory field.

is a three-step process, wherein we align the training data to a
single reference coordinate system, discretize each continuous
trajectory field at the same set of myocardial landmarks and car-
diac phases, and define a point distribution model that measures
the variability among these discrete trajectory fields via PCA.

Let us first consider training data alignment. The center of
each resting heart within the training set lies at a different spatial
location within its respective image acquisition space. Addition-
ally, each resting heart has a different orientation with respect to
this center. Finally, two hearts that differ in size may still exhibit
the same motion characteristics. To more accurately character-
ize motion variability within the training set, we eliminate these
differences in cardiac position, orientation, and scale by align-
ing each resting heart to a single reference coordinate system.
We refer to the resulting aligned trajectory field as normalized.

As it is difficult to manually delineate the myocardium in
DENSE cMR imagery early in the cardiac cycle, we define the
resting heart by projecting expert drawn contours and features
[right ventricle insertion points; see Fig. 1(a)] from the frame of
greatest myocardial contrast back to their resting positions via
the spatiotemporal spline definition. Alignment of this resting
configuration is achieved via a Procrustes analysis [13], [31],
with respect to a reference myocardium centered at the spatial
origin with right ventricle insertion points aligned to the verti-
cal axis and unity epicardial radius. Fig. 6 illustrates a typical
alignment, transforming a resting configuration and motion field
[Fig. 6(a) and (b)] to the reference coordinate system [Fig. 6(c)
and (d)]. To aid visualization, the right ventricle insertion points
are marked as squares.
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Fig. 7. Trajectory field discretization. (a) Sampling template. (b) Normalized
myocardial borders. (c) Discretized myocardial definition. (d) Corresponding
trajectory field.

After alignment, the next challenge in model construction is
the spatial and temporal discretization of each trajectory field
within the training set using an identical set of myocardial
landmarks. To elaborate, if trajectory #10 in the first training
field corresponds to the anterior right ventricle insertion
point, trajectory #10 in all training fields must correspond to
the same anterior right ventricle insertion point. We achieve
this trajectory matching by mapping a sampling template
to the aligned resting myocardial definition and recovering
the discrete trajectories associated with each of these spatial
origins. Fig. 7 illustrates this procedure, using a sampling tem-
plate [Fig. 7(a)] to sample the normalized resting myocardial
definition [Fig. 7(b)], and produce a discrete set of resting
spatial locations [Fig. 7(c)] and a corresponding trajectory
field [Fig. 7(d)]. Temporal discretization is achieved by
sampling each training trajectory field at a known set of cardiac
phases.

Given the set of normalized discrete training trajectory
fields, we are able to characterize the data variability via
PCA. Let X, ;1 = [xijk, ¥ijx] represent the x—y position of the
ith trajectory at the jth cardiac phase of the kth normalized
trajectory field, where i € [1,...,Ni], j € [1,...,Nj], and
k € [1,..., Nk]. We vectorize the kth trajectory field as

phase 1
O = [ X115, X2 1 kse oo XNiLkse--
&)
phase j phase N j
T
.. -Xl,j,k7 e ,XNq'/’j"k’ . 7X1.Nj.k7 e aXNi.Nj,k]

of size [(2NiNj) x 1]. The average normalized trajectory
field is defined as

B 1 Nk
@:m;ék (6)

and the sample distribution covariance matrix is defined by

1 Nk - -
Cov = ;;1 (B, — B)(D), — @) (7)

The eigenvectors P of the covariance matrix define the
modes of variation within the training set and the corresponding
eigenvalues describe the relative significance of each mode. The
percentage of variation accounted for by each eigenvector is
defined as the corresponding eigenvalue divided by the sum of all
eigenvalues.

We can recover any normalized trajectory field within the
training set by a linear combination of the average normalized
trajectory field with the modes of variation. Moreover, we can
approximate any normalized trajectory field within the training
data by alinear combination of the average normalized trajectory
field with the most significant eigenvectors, termed principal
components, as in

M, ~ M + Pb, 8)

where P is a subset of the modes of variation P and Z;k is a set
of weighting coefficients corresponding to the kth trajectory
field. In practice, we define an amount of variation we wish
to approximate (e.g., 95% variation) and use the principal
components that account for this level of variation.

These principal components of variation, combined with
a rotation, translation, and scale to transform the normalized
trajectory fields back to the image space of a new DENSE cMR
sequence, define our trajectory field model. We are able to
achieve any trajectory field within the search space by varying
a small number of parameters, i.e., the principal component
weights, orientation, translation, and scale.

C. ATFM Motion Recovery

Given the aforementioned model space definition, we are
able to attempt the automatic recovery of cardiac motion from a
newly acquired DENSE cMR sequence. In this section, we will
first consider the search criterion that defines the best match
between trajectory field and noisy imagery. We then discuss
our method of attack to solve the combinatorial optimization
problem of locating the best match within the model search
space.

We measure the correspondence between a given trajectory
field and a noisy image sequence via an analysis-by-synthesis
technique. Given any myocardial trajectory field, one can
synthesize a set of “ideal” DENSE cMR values that represent
the noise-free DENSE cMR data that would have produced the
trajectory field in question. This is accomplished by measuring
displacement from the spatial origin for each trajectory at
each phase of the cardiac cycle, and scaling according to the
DENSE cMR encoding parameter. Let U = {[x,, (¢), y, (t)],
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n € [1,...,N]} represent a set of N temporally continuous
trajectories. The ideal DENSE cMR value corresponding to
each trajectory at some time ¢ are defined as

() = ke[za(t) — 24 (0)]
1Y) = kelyn (8) = ya (0)]

where {17 ()} and {I¥(t)} are the z-direction and y-direction
ideal values, respectively, and k. is the DENSE cMR encoding
parameter.

Let I”(x,y,t) and IY(x,y,t) represent the discrete noisy
DENSE cMR image sequence encoded in the x-direction and
y-direction, respectively, where (z,y) € 2 and ¢ takes on k €
[1,..., Nk] unique values within the range [0, . . . , 1]. We define
the distance D(-) € [0, oo]of a given trajectory field ¥ to a noisy
DENSE cMR sequence in the L2-norm sense as

C))

NE N

D) =33 (I wn (t), ya (1), t] — 12 [t2])?
k=1n=1 (10)
Nk N .
ST W (1) (), 1] — Y [t])?

k=1n=1

To determine the trajectory field of highest similarity to a
given noisy DENSE cMR image sequence, we must traverse the
combinatorial optimization space of the trajectory field model
to locate the field of minimum distance defined by (10). A
direct search of the model space for the globally minimum
distance is computationally prohibitive. We therefore search the
model space via simulated annealing [32], analogous to the
metallurgical annealing process wherein hot metal is slowly
cooled to form a perfect crystalline structure with minimum
free energy. In simulated annealing, we slowly “cool” our model
search to locate the point within the model space of minimum
energy, where “coolness” reflects the decreasing probability of
moving to an inferior solution in terms of an energy measure
that quantifies solution quality.

Let U, represent the current trajectory field state of our
model search, with some distance to the noisy DENSE cMR
imagery D(¥;). We perturb the model parameters associated
with this trajectory field, obtaining a new trajectory field Wy
with corresponding distance D(¥5), and consider changing
the state of our system to this new trajectory field. If we
accepted only good moves, i.e., when D(¥y) < D(¥y), we
would quickly find a local minimum within our search space,
but would become trapped in this local minimum and unable
to discover the global minimum. In simulated annealing, we
utilize a more sophisticated acceptance condition, i.e., changes
in the model state are accepted if

1
1+ exp[(D(Vy) — D(¥,))/T] <

U(0,1) an
where T is the current system temperature and U(0,1) is a
uniformly distributed random variable between 0 and 1. At high
temperatures, all changes have an equal probability of being
accepted. As the temperature is lowered, moves that increase
the system energy have a lower probability of acceptance, until

the algorithm reduces to the greedy method at 7' = 0, accepting
only those moves that reduce the system energy.

We begin the annealing process at some initial temperature
T} (in which every possible change to the system state is equally
probable) and follow a geometric annealing schedule of reduc-
ing the temperature by some constant 7 (T}, ; = 771}) at each
temperature until a final temperature 7§, ,; is reached. At each
temperature, we test No candidate points within the model
space. When 75,1 is achieved, the algorithm is essentially a
greedy one, for which achieving a local minimum is guaranteed.
To provide a small reduction in the search space dimensionality,
we define the orientation, position, and scaling of the normal-
ized trajectory field model to the DENSE cMR image space
via a small number of user-defined myocardial landmarks. The
computational complexity of this annealing algorithm scales
linearly according to the number of principal components used,
the number of candidate point tested at each temperature, and
the number of temperatures evaluated.

IV. RESULTS

To demonstrate the effectiveness of the ATFM technique
for tissue motion recovery within displacement imagery, we
attempted to quantify myocardial motion in 2-D short-axis
murine DENSE cMR imagery. We considered a dataset
containing two distinct murine conditions: healthy mice and
mice seven days after induction of an experimental heart attack.
The former condition consisted of 13 healthy mice imaged with
a standard 2-D cine DENSE cMR protocol, obtaining between
20 and 27 short-axis midplane images of the cardiac cycle per
mouse. The latter condition consisted of six unhealthy mice
with an induced myocardial infarction in the anterolateral wall,
again imaged with a standard 2-D cine DENSE cMR protocol,
obtaining between 17 and 21 short-axis midplane images of the
cardiac cycle per mouse. For each image sequence, a trained
technician delineated the endocardial and epicardial borders on
every frame and labeled the right ventricle insertion points on
the last sequence frame.

In this section, we present our findings. We first illustrate
the failings of traditional segmentation methods toward the
goal of automated cardiac motion recovery. We then present a
physiological comparison of DENSE cMR analysis techniques,
evaluating agreement between the traditional semiautomatic
DENSE cMR analysis described in Section II-A and the novel
ATFM technique presented within this paper.

A. Motion Analysis via Traditional Automated Segmentation

Semiautomatic DENSE cMR analysis can be broken into
two distinct steps: 1) the manual delineation of myocardial
borders within the magnitude imagery throughout the cardiac
cycle by a trained technician and 2) tissue motion recovery
via phase analysis as described in Section II-A or III-A. This
natural division implies a plausible alternative for automated
tissue motion recovery, i.e., the delineation of endocardial and
epicardial borders via a traditional automated segmentation
technique followed by DENSE cMR phase analysis. Many
researchers have had significant success with deformable
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Fig. 8. Example active contour segmentation. (a) Early in the cardiac cycle.
(b) Late in the cardiac cycle.

models for cMR segmentation [20], [22]-[25], and thus, we
chose to examine such an alternative.

To evaluate the effectiveness of such a system, we considered
myocardial segmentation via the classical active contour
segmentation technique described in [12]. The active contour
was driven by a negative gradient magnitude external force,
derived from DENSE cMR magnitude imagery. Endocardial
and epicardial borders were separately initialized on each frame
of a given image sequence as circles particularly close to the
correct myocardial locations. After segmentation, we applied
the traditional DENSE cMR phase analysis method described in
Section II-A to recover tissue motion.

This traditional segmentation technique was unable to
accurately define myocardial borders on every image frame of
any healthy DENSE cMR image sequence, which rendered the
subsequent trajectory fields meaningless. Across the dataset,
endocardial and epicardial active contour segmentation had
root mean square errors of 0.87 and 0.38 mm, respectively,
exceedingly large as compared to the average myocardial wall
thickness of ~2 mm.

Fig. 8 illustrates two typical segmentation problems. Fig. 8(a)
shows an attempted segmentation early in the cardiac cycle,
which fails due to a lack of myocardial contrast. Fig. 8(b) shows
an attempted segmentation at the end of the cardiac cycle, which
fails as the epicardial border is drawn to the higher edge strength
of the endocardial border. These failures lead us to conclude
that a more comprehensive tissue motion analysis solution is
required.

B. ATFM Motion Recovery Analysis

Let us now consider the evaluation of the novel automated
ATFM motion recovery technique. As we desire to automat-
ically reproduce physiologically meaningful measurements of
cardiac motion similar to traditional semiautomatic techniques,
we compare strain values measured by both the automated
ATFM technique and a traditional semiautomatic DENSE cMR
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Fig.9. Typical six-segment strain analysis. (a) Anatomical diagram. (b) Radial
strain. (c) Circumferential segmental strain.

analysis. We will quantify agreement between the two methods
via correlation and a Bland—Altman analysis [33].

The preliminary analysis of the ATFM training data
utilized the same manually delineated myocardial borders and
myocardial features of interest as the traditional DENSE cMR
analysis. ATFM analysis was performed via a leave-one-out
cross-validation study, attempting motion recovery on each
noisy DENSE cMR image sequence within the dataset using
the remaining trajectory fields as training data. Parameters used
for a given motion recovery technique remained consistent
across the entire dataset.

Spatiotemporal strain was calculated at many points within
the myocardium, as described in Section II-A. For comparison
across motion recovery methods, we divide the left ventricle into
six segments, as standardized in [34] and illustrated in Fig. 9(a).
We quantify and plot the average radial and circumferential
strain in each segment throughout the cardiac cycle, as illustrated
in Fig. 9(b) and (c), respectively.

As a quantitative comparison, we sample ten evenly spaced
cardiac phases throughout the cardiac cycle for each left
ventricular segment, resulting in 60 data points per heart. The
two methods show good correlation, as illustrated in Fig. 10(a)
and (b). The average correlation value of radial strain is 0.83
(p < 0.001) and the average correlation value of circumferential
strain is 0.86 (p < 0.001). A Bland—Altman analysis of the data,
shown in Fig. 10(c) and (d), reveals further similarity between
the two methods. We measure an average difference of —0.02
in radial strain (95% confidence interval of —0.16 to 0.11) and
an average difference of <0.01 in circumferential strain (95%
confidence interval of —0.05 to 0.07) between the two methods.
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V. CONCLUSION

The medical image analysis field continues to benefit from
the advent of new and exciting medical imaging techniques.
One class of techniques, tissue motion imaging such as DENSE
cMR, boasts the ability to quantify tissue motion throughout
the cardiac muscle and produce accurate spatiotemporal
measurements of myocardial strain, twist, and torsion. Though
current manual and semiautomatic analysis methods can
generate remarkable trajectory fields, researchers and clinicians
would benefit from a fully automated analysis software
package.

As an advance in computational intelligence in biomedicine,
this paper has presented a novel generative deformable modeling
technique, termed ATFM, for the automated analysis of acquired
tissue motion imagery. The development of this technique was
a complex task, requiring a novel preliminary semiautomatic
DENSE cMR analysis technique, the alignment and subsequent
variability characterization of a complex set of spatiotemporal
trajectory fields, and the solution of a combinatorial optimiza-
tion problem to find the trajectory field of best fit to a given
noisy image sequence.

We validated the ATFM method by quantifying myocardial
motion in 2-D short-axis murine DENSE cMR image sequences
both before and after myocardial infarction, producing results
comparable to existing semiautomatic analysis methods.
Though we focused our efforts on left ventricular motion
recovery within 2-D short-axis murine cine DENSE cMR
imagery, the ATFM method can be adapted to human data,
other tissue motion imaging techniques, as well as 3-D motion
recovery.
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