
Playing Games for Security: An Efficient Exact Algorithm
for Solving Bayesian Stackelberg Games

Praveen Paruchuri
Intelligent Automation Inc.,

Rockville, MD
pparuchuri@i-a-i.com

Jonathan P. Pearce,
Janusz Marecki, Milind

Tambe, Fernando
Ordonez

Univ. of Southern California,
Los Angeles, CA

{jppearce,marecki,tambe,fordon}@usc.edu

Sarit Kraus
Bar-Ilan University,

Ramat-Gan 52900, Israel
sarit@cs.biu.ac.il

ABSTRACT
In a class of games known as Stackelberg games, one agent (the
leader) must commit to a strategy that can be observed by the other
agent (the follower or adversary) before the adversary chooses its
own strategy. We consider Bayesian Stackelberg games, in which
the leader is uncertain about the types of adversary it may face.
Such games are important in security domains, where, for exam-
ple, a security agent (leader) must commit to a strategy of patrolling
certain areas, and a robber (follower) has a chance to observe this
strategy over time before choosing its own strategy of where to at-
tack. This paper presents an efficient exact algorithm for finding the
optimal strategy for the leader to commit to in these games. This
algorithm, DOBSS, is based on a novel and compact mixed-integer
linear programming formulation. Compared to the most efficient
algorithm known previously for this problem, DOBSS is not only
faster, but also leads to higher quality solutions, and does not suf-
fer from problems of infeasibility that were faced by this previous
algorithm. Note that DOBSS is at the heart of the ARMOR system
that is currently being tested for security scheduling at the Los An-
geles International Airport.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence: Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms
Security, Design, Theory

Keywords
Security of Agent Systems, Game Theory, Bayesian and Stackel-
berg Games

1. INTRODUCTION
In some multiagent settings, one agent must commit to a strategy

before the other agents choose their own strategies. These scenar-
ios are known as Stackelberg games [6, 12]. In a Stackelberg game,
a leader commits to a strategy first, and then a follower selfishly op-

Cite as: Playing Games for Security: An Efficient Exact Algorithm
for Solving Bayesian Stackelberg Games, Praveen Paruchuri, Jonathan P.
Pearce, Janusz Marecki, Milind Tambe, Fernando Ordonez, Sarit Kraus,
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May,
12-16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

timizes its own reward, considering the action chosen by the leader.
Stackelberg games are commonly used to model attacker-defender
scenarios in security domains [2], as well as in patrolling [12], and
could potentially be used in many other situations such as network
routing [10], pricing in transportation systems [4], setting up secu-
rity checkpoints and other adversarial domains. For example con-
sider a domain in which a single security agent is responsible for
patrolling a region, searching for a robber. Since the security agent
(the leader) cannot be in all areas of the region at once, it must in-
stead choose some strategy of patrolling various areas within the
region, one at a time. This strategy could be a mixed strategy in
order to be unpredictable to the robber (follower). The robber, after
observing the pattern of patrols over time, can then choose its own
strategy of choosing a location to rob.

Although the follower in a Stackelberg game is allowed to ob-
serve the leader’s strategy before choosing its own strategy, there
is often an advantage for the leader over the case where both play-
ers must choose their moves simultaneously. To see the advantage
of being the leader in a Stackelberg game, consider a simple game
with the payoff table as shown in Table 1, adapted from [5]. The
leader is the row player and the follower is the column player.

c d
a 2,1 4,0
b 1,0 3,2

Table 1: Payoff table for example normal form game.

The only pure-strategy Nash equilibrium for this game is when
the leader plays a and the follower plays c which gives the leader a
payoff of 2; in fact, for the leader, playing b is strictly dominated.
However, in the simultaneous game if the leader can commit to
playing b before the follower chooses its strategy, then the leader
will obtain a payoff of 3, since the follower would then play d to
ensure a higher payoff for itself. If the leader commits to a uniform
mixed strategy of playing a and b with equal (0.5) probability, then
the follower will play d, leading to a payoff for the leader of 3.5.

This paper focuses on the problem of determining the optimal
strategy for a leader to commit to in a Bayesian Stackelberg game,
i.e. a Stackelberg game where the leader may face one of multiple
follower types. Such a Bayesian Stackelberg game may arise in a
security domain because for example, when patrolling a region, a
security robot may only have uncertain knowledge about different
robber types it may face. Unfortunately, this problem of choos-
ing an optimal strategy for the leader to commit to in a Bayesian
Stackelberg game is NP-hard [5]. This result explains the compu-

tational difficulties encountered in solving such games. In particu-
lar, methods for finding optimal strategies for non-Bayesian games
can be applied to Bayesian Stackelberg games[5] by converting the
Bayesian game into a normal-form game by the Harsanyi trans-
formation [7]. However, by transforming the game, the compact
structure of the Bayesian game is lost. In addition, methods such
as the one outlined in [5] require running a set of multiple linear
programs. If on the other hand, we wish to compute the highest-
reward Nash equilibrium, new methods such as MIP-Nash, using
mixed-integer linear programs (MILPs) [15] may be used, since the
highest-reward Bayes-Nash equilibrium is equivalent to the corre-
sponding Nash equilibrium in the transformed game. However, as
stated above the compactness in structure of the Bayesian game is
lost and the procedure is NP-hard. In addition, since the Nash equi-
librium assumes a simultaneous choice of strategies, the advantages
of being the leader are not considered. Finally, more recently, an
approximation technique named ASAP for solving the Bayesian
Stackelberg games has been developed in [12]. However, as we ob-
serve from our computational experiments, ASAP encounters dif-
ficulties in finding feasible solutions since it has to solve a problem
with many more integer variables, particularly as we scale up prob-
lem instances. Thus, finding more efficient and compact techniques
for choosing the optimal strategies for the Bayesian Stackelberg
games is an important open issue.

In this paper we focus on such Bayesian Stackelberg games. In
particular, we introduce an efficient exact method for finding the
optimal leader strategy in such games, known as DOBSS (Decom-
posed Optimal Bayesian Stackelberg Solver). This method has
three key advantages. First, the method allows for a Bayesian
game to be expressed compactly without requiring conversion to
a normal-form game via the Harsanyi transformation. Second, the
method requires only one mixed-integer linear program (MILP) to
be solved, rather than a set of linear programs as in [5], thus leading
to a further performance improvement. Third, it directly searches
for an optimal leader strategy, rather than a Nash (or Bayes-Nash)
equilibrium, thus allowing it to find high-reward non-equilibrium
strategies (thus exploiting the advantage of being the leader). In
addition to introducing DOBSS, additional contributions in this pa-
per include proofs of its correctness and a detailed experimental
comparison with competing methods and its analysis. Furthermore,
DOBSS is at the heart of the ARMOR [13] system that is currently
being tested for security scheduling at the Los Angeles Interna-
tional Airport, which has been described in popular scientific mag-
azines and news media such as [11].

2. PROBLEM DEFINITION AND RELATED
WORK

A Bayesian game contains a set of N agents, and each agent n
must be one of a given set of types θn. The Bayesian Stackelberg
games we consider in this paper have two agents, the leader and
the follower. θ1 is the set of possible types for the leader and θ2
is the set of possible types for the follower. For the security games
of interest in this paper, we assume that there is only one leader
type (e.g. only one robot enforcing security), although there are
multiple follower types (e.g. multiple robber types). Therefore,
while θ1 contains only one element, there is no such restriction on
θ2. However, the leader does not know the follower’s type. For
each agent (leader or follower) n, there is a set of strategies σn and
a utility function un : θ1 × θ2 × σ1 × σ2 → <. Our goal is to
find the optimal mixed strategy for the leader to commit to; given
that the follower may know this mixed strategy when choosing its
strategy.

A Bayesian game can be transformed into a normal-form game
using the Harsanyi transformation [7]. Once this is done, existing
linear-program(LP)-based methods for finding optimal strategies
[5] or the MIP-Nash technique for finding the best Nash equilib-
rium [15], for normal-form games can be used to find a strategy in
the transformed game; this strategy from the transformed game can
then be used back in the original Bayesian game.

Given that the Harsanyi transformation is a standard concept
in game theory, we describe its key properties when applying to
Bayesian Stackelberg games briefly without detailing the actual
transformation. Using the Harsanyi technique involves introduc-
ing a chance node, that determines the follower’s type, thus trans-
forming the leader’s incomplete information regarding the follower
into imperfect information [3]. The resulting normal-form game
matrix generated by the transformation contains the same set of
possible actions for the leader as in the original game. However,
the set of possible actions for the follower is the cross product of
each follower type’s set of possible actions. In other words, using
the Harsanyi transformation on the Bayesian Stackelberg games we
consider results in a normal-form game with the same number of
rows as there are leader actions; however the number of columns
has increased exponentially, since every combination of actions
taken by each follower type is considered as one possible action
for the follower in the transformed game.

Fortunately, one key advantage of the DOBSS approach is that
it operates directly on the compact Bayesian representation, with-
out requiring the Harsanyi transformation. In particular, DOBSS
obtains a decomposition scheme by exploiting the property that the
followers are independent of each other. Since the problem is NP-
hard, we would not anticipate a simple decomposition. Instead, the
key in the DOBSS decomposition scheme is the observation that
evaluating the leader strategy against a Harsanyi-transformed game
matrix is equivalent to evaluating against each of the game matrices
for the individual follower types. This decomposition is analogous
to ASAP [12], which can also operate directly on the untransformed
Bayesian game to find a high-quality strategy for the leader. How-
ever as revealed by our detailed experimental analysis in this paper,
ASAP generates infeasible solutions as the problem sizes increase
and does not guarantee an optimal solution due to controlled ran-
domization. In addition, our experiments show that ASAP is slower
than DOBSS as the number of follower types increases.

DOBSS’s other main competitor is the multiple LPs method in-
troduced by [5] to compute optimal leader strategies for non-Bayesian
games. However, this method faces an exponential explosion when
applied to domains of interest in this paper. Furthermore, it is un-
likely to be decomposable into a small number of games given that
the problem being attacked is NP-hard; DOBSS has the advantage
of decomposition, but must work with mixed-integer linear pro-
grams (MILPs) rather than LPs. Finally, DOBSS requires solution
of only one optimization problem, rather than a series of problems
as in the LP method of [5]. Finally, the sequence form [8, 9] pro-
vides an alternative compact representation to normal form repre-
sentation, and has been shown in games like Poker to provide sig-
nificant speedups in finding equilibrium solutions over approaches
based on normal form representations. However, this representa-
tion cannot be directly used in our Stackelberg games. In partic-
ular, our game assumes that an adversary knows not the specific
strategy (e.g. patrolling plan) that an agent will follow, but rather
only the agent’s mixed strategy. Representing such a commitment
to a mixed strategy in a sequence form representation is difficult; it
would need to represent all possible mixed strategies in advance.
Furthermore, [8, 9] have not focused on computing optimal re-
sponse in stackelberg games, but rather in only finding equilibria.

3. DOBSS APPROACH
As mentioned earlier, one major advantage of the DOBSS ap-

proach is that it operates directly on the compact Bayesian repre-
sentation. In particular, it exploits the independence of the different
follower types to obtain a decomposition scheme. In order to ex-
plain the DOBSS approach, in the following subsections, we first
define the problem in its most intuitive form as a mixed-integer
quadratic program (MIQP), and then show how this problem can
be decomposed and then finally show its conversion into an MILP.
The model we propose explicitly represents the actions by agent
and adversary in the problem solved by the agent, which includes
optimality conditions for the adversary’s actions. For a detailed dis-
cussion of MILPs, please see one of many references on the topic,
such as [16].

Note that for a single follower type, we simply take the mixed
strategy for the leader that gives the highest payoff when the fol-
lower plays a reward-maximizing strategy. We need only to con-
sider the reward-maximizing pure strategies of the followers, since
for a given fixed strategy x of the leader, each follower type faces
a problem with fixed linear rewards. If a mixed strategy is optimal
for the follower, then so are all the pure strategies in the support of
that mixed strategy.

3.1 Mixed-Integer Quadratic Program
We begin with the case of a single follower. Let the leader be

the row player and the follower the column player. We denote by x
the leader’s policy, which consists of a vector of the leader’s pure
strategies. The value xi is the proportion of times in which pure
strategy i is used in the policy. Similarly, q denotes the vector of
strategies of the follower. We also denoteX andQ the index sets of
the leader and follower’s pure strategies, respectively. The payoff
matrices R and C are defined such that Rij is the reward of the
leader and Cij is the reward of the follower when the leader takes
pure strategy i and the follower takes pure strategy j.

We first fix the policy of the leader to some policy x. We formu-
late the optimization problem the follower solves to find its optimal
response to x as the following linear program:

maxq

∑
j∈Q

∑
i∈X

Cijxi qj

s.t.
∑

j∈Q qj = 1

qj ≥ 0.

(1)

The objective function maximizes the follower’s expected reward
given x, while the constraints make feasible any mixed strategy q
for the follower. It is straightforward that it is optimal to set qj = 1
for a j which has a maximal value of

∑
i∈X Cijxi. This is also

evident from the dual problem, given by

mina a

s.t. a ≥
∑
i∈X

Cijxi j ∈ Q, (2)

which by LP duality has the same optimal solution value. Linear
programming optimality conditions characterize the optimal solu-
tions to the follower’s problem. These conditions are: primal fea-
sibility constraints in (1), dual feasibility constraints in (2), and
complementary slackness

qj

(
a−

∑
i∈X

Cijxi

)
= 0 j ∈ Q.

These conditions show that the follower’s maximum reward value,
a, is the value obtained for every pure strategy with qj > 0, i.e.
in the support of the optimal mixed strategy. Therefore each of

these pure strategies is optimal. These conditions will be used in
the leader’s optimization problem to characterize the optimal fol-
lower’s response. The leader seeks the solution x that maximizes
its own payoff, given that the follower uses an optimal response
q(x). Therefore the leader solves the following problem:

maxx

∑
i∈X

∑
j∈Q

Rijq(x)j xi

s.t.
∑

i∈X xi = 1
xi ∈ [0 . . . 1].

(3)

Problem (3) maximizes the leader’s reward with follower’s best re-
sponse, denoted by vector q(x) for every leader strategy x. We
complete this problem by including the characterization of q(x)
through linear programming optimality conditions. To simplify
writing the complementary slackness condition, we consider only
the pure optimal strategies for the follower, which exist always. In
fact we note above that given any optimal mixed strategy q(x) all
pure strategies in its support are also optimal. This allows us to rep-
resent the optimal pure strategies using binary variables and helps
to linearize the complementary slackness conditions. The leader’s
problem then becomes:

maxx,q,a

∑
i∈X

∑
j∈Q

Rijxiqj

s.t.
∑

i∈X xi = 1∑
j∈Q qj = 1

0 ≤ (a−
∑

i∈X Cijxi) ≤ (1− qj)M
xi ∈ [0 . . . 1]
qj ∈ {0, 1}
a ∈ < .

(4)

Here, M is some large constant and a is the follower’s maximum
reward value as defined in Problem (2). Constraints with free in-
dices mean they are repeated for all values of the index. For exam-
ple, the next to last constraint means qj ∈ {0, 1} for all j ∈ Q.
The first and fourth constraints enforce a feasible mixed policy for
the leader, and the second and fifth constraints enforce a feasible
pure strategy for the follower. The third constraint enforces dual
feasibility of the follower’s problem (leftmost inequality) and the
complementary slackness constraint for an optimal pure strategy
q for the follower (rightmost inequality). In fact, since only one
pure strategy can be selected by the follower, say qh = 1, this last
constraint enforces that a =

∑
i∈X Cihxi imposing no additional

constraint for all other pure strategies which have qj = 0.
We conclude this subsection noting that Problem (4) is an inte-

ger program with a non-convex quadratic objective. This model
is similar to the one in [5]; however that work solves a different
agent problem for each possible value of the adversary’s actions,
thus eliminating the quadratic objective at the cost of solving mul-
tiple problems. There are two challenges in problem (4) if we were
to apply it to Harsanyi transformed game given multiple follower
types: the potential large number of joint actions of the adversaries
and the nonlinear objective function. We show below how this
formulation can be decomposed to handle multiple follower types
without requiring the Harsanyi transformation. We then explain
how to linearize the objective function using a change of variable.

3.2 Decomposed MIQP
The MIQP developed in the previous section handles only one

follower. To extend this Stackelberg model to handle multiple fol-
lower types we follow a Bayesian approach and assume that there is
an a priori probability pl that a follower of type l will appear, with
L denoting the set of follower types. We adapt the notation defined

in the previous section to reason about multiple follower types. We
denote by x the vector of strategies of the leader and ql the vector
of strategies of follower l ∈ L. We also denote by X and Q the in-
dex sets of leader and follower l’s pure strategies, respectively. We
also index the payoff matrices of the leader and each of the follower
types l by the matrices Rl and Cl. Using this modified notation,
we characterize the optimal solution of follower l’s problem given
the leader’s policy x, with the LP optimality conditions:∑

j∈Q

ql
j = 1

al −
∑
i∈X

Cl
ijxi ≥ 0

ql
j(a

l −
∑
i∈X

Cl
ijxi) = 0

ql
j ≥ 0

Again, considering only optimal pure strategies for follower l’s
problem we can linearize the complementarity constraint above.
We incorporate these constraints on the leader’s problem that se-
lects the optimal policy. Therefore, given a priori probabilities pl,
with l ∈ L of facing each follower type, the leader solves the fol-
lowing problem:

maxx,q,a

∑
i∈X

∑
l∈L

∑
j∈Q

plRl
ijxiq

l
j

s.t.
∑

i xi = 1∑
j∈Q q

l
j = 1

0 ≤ (al −
∑

i∈X Cl
ijxi) ≤ (1− ql

j)M
xi ∈ [0 . . . 1]
ql

j ∈ {0, 1}
a ∈ <

(5)

Notice that Problem (5) is a decomposed MIQP in the sense that
it does not utilize a full-blown Harsanyi transformation; in partic-
ular, it essentially solves multiple smaller problems using individ-
ual adversaries’ payoffs (hence payoffs indexed by l) rather than a
single, large, Harsanyi-transformed payoff matrix formed from the
cross-product of actions of each follower type.

However, does this decomposition cause any suboptimality? The
answer is no. We now show that Problem (5) above is equivalent
to Problem (4) with the payoff matrix from the Harsanyi transfor-
mation for a Bayesian Stackelberg game (i.e. problem without de-
composition). By equivalent we mean that optimal solution values
are the same and that an optimal solution to (5) leads to an optimal
solution to (4) and vice-versa.

The Harsanyi transformation determines the follower’s type ac-
cording to a given a priori probabilities pl. For the leader it is as if
there is a single follower type, whose action set is the cross product
of the actions of every follower type. Each action ĵ of the follower
in the Harsanyi transformed game corresponds to a vector of ac-
tions (j1, ...j|L|) in the decomposed game, one action for each fol-
lower type. We can refer to these corresponding actions by the pure
strategies that take them. For example, consider a pure strategy q in
the Harsanyi game which has qj = 1 and qh = 0 for all h 6= j and
one pure strategy ql for each opponent type l which has ql

jl
= 1

and ql
h = 0 for all h 6= jl. We say that a Harsanyi pure strategy

corresponds to a vector of decomposed pure strategies when their
respective actions correspond to each other. The rewards related
to these actions have to be weighted by the probabilities of occur-
rence of each follower. Thus, the reward matrices for the Harsanyi
transformation are constructed from the individual reward matrices

as follows, as in [7]:

Rij =
∑
l∈L

plRl
ij and Cij =

∑
l∈L

plCl
ij . (6)

PROPOSITION 1. Problem (5) for a Bayesian game with multi-
ple follower types is equivalent to Problem (4) on the payoff matri-
ces given by the Harsanyi transformation (6).

Proof: To show the equivalence we show that a feasible solution
to (5) leads to a feasible solution to (4) of same objective value or
better and vice-versa. This implies the equality in optimal objective
value and the correspondence between optimal solutions.

Consider x, ql, al with l ∈ L a feasible solution to Problem (5).
We now construct a feasible solution to (4). From its second con-
straint and integrality of q we have that for every l there is exactly
one jl such that ql

jl
= 1. Let j be the Harsanyi action that corre-

sponds to (j1, . . . , j|L|) and let q be its pure strategy (i.e. q is a
strategy in the transformed game where qj = 1, and qh = 0 for all
other h 6= j). We now show that the objective of (5) equals that of
(4) exploiting these corresponding actions. In particular:∑

i∈X

∑
l∈L

plxi

∑
h∈Q

Rl
ihq

l
h =

∑
i∈X

xi

∑
l∈L

plRl
ijl

=
∑
i∈X

xiRij =
∑
i∈X

∑
h∈Q

xiRihqh

So now we just have to show that x, q, and a =
∑

l∈L p
lal

is feasible for Problem (4). Constraints 1, 2, 4, and 5 in (4) are
easily satisfied by the proposed solution. Constraint 3 in (5) means
that

∑
i∈X xiC

l
ijl
≥
∑

i∈X xiC
l
ih, for every h ∈ Q and l ∈ L,

leading to∑
i∈X

xiCij =
∑
l∈L

pl
∑
i∈X

xiC
l
ijl
≥
∑
l∈L

pl
∑
i∈X

xiC
l
ihl

=
∑
i∈X

xiCih′ ,

for any pure strategy h1, . . . , h|L| for each of the followers and h′

its corresponding pure strategy in the Harsanyi game. We conclude
this part by showing that∑

i∈X

xiCij =
∑
l∈L

pl
∑
i∈X

xiC
l
ijl

=
∑
l∈L

plal = a .

Now we start with (x, q, a) feasible for (4). This means that
qj = 1 for some pure action j. Let (j1, . . . , j|L|) be the cor-
responding actions for each follower l. We show that x, ql with
ql

jl
= 1 and ql

h = 0 for h 6= jl, and al =
∑

i∈X xiC
l
ijl

with l ∈ L
is feasible for (5). By construction this solution satisfies constraints
1, 2, 4, 5 and has a matching objective function. We now show that
constraint 3 holds by showing that

∑
i∈X xiC

l
ijl
≥
∑

i∈X xiC
l
ih

for all h ∈ Q and l ∈ L. Let us assume it does not. That is, there
is an l̂ ∈ L and ĥ ∈ Q such that

∑
i∈X xiC

l̂
ij

l̂
<
∑

i∈X xiC
l̂
iĥ

.

Then by multiplying by pl̂ and adding
∑

l 6=l̂ p
l∑

i∈X xiC
l
ijl

to
both sides of the inequality we obtain

∑
i∈X

xiCij <
∑
i∈X

xi

∑
l 6=l̂

plCl
ijl

+ pl̂C l̂
iĥ

 .

The right hand side equals
∑

i∈X xiCih for the pure strategy h
that corresponds to (j1, . . . , ĥ, . . . , j|L|), which is a contradiction
since constraint 3 of (4) implies that

∑
i∈X xiCij ≥

∑
i∈X xiCih

for all h. �

3.3 Arriving at DOBSS: Decomposed MILP
We now address the final hurdle for the DOBSS algorithm: elim-

inating non-linearity of the objective function in the MIQP to gen-
erate a MILP. We can linearize the quadratic programming problem
5 through the change of variables zl

ij = xiq
l
j , obtaining the follow-

ing problem

maxq,z,a

∑
i∈X

∑
l∈L

∑
j∈Q p

lRl
ijz

l
ij

s.t.
∑

i∈X

∑
j∈Q z

l
ij = 1∑

j∈Q z
l
ij ≤ 1

ql
j ≤

∑
i∈X zl

ij ≤ 1∑
j∈Q q

l
j = 1

0 ≤ (al −
∑

i∈X Cl
ij(
∑

h∈Q z
l
ih)) ≤ (1− ql

j)M∑
j∈Q z

l
ij =

∑
j∈Q z

1
ij

zl
ij ∈ [0 . . . 1]

ql
j ∈ {0, 1}
a ∈ <

(7)

PROPOSITION 2. Problems (5) and (7) are equivalent.

Proof: Consider x, ql, al with l ∈ L a feasible solution of (5).
We will show that ql, al, zl

ij = xiq
l
j is a feasible solution of (7)

of same objective function value. The equivalence of the objective
functions, and constraints 4, 7 and 8 of (7) are satisfied by con-
struction. The fact that

∑
j∈Q z

l
ij = xi as

∑
j∈Q q

l
j = 1 explains

constraints 1, 2, 5 and 6 of (7). Constraint 3 of (7) is satisfied be-
cause

∑
i∈X zl

ij = ql
j .

Lets now consider ql, zl, al feasible for (7). We will show that
ql, al and xi =

∑
j∈Q z

1
ij are feasible for (5) with the same ob-

jective value. In fact all constraints of (5) are readily satisfied by
construction. To see that the objectives match, notice for each l one
ql

j must equal 1 and the rest equal 0. Let us say that ql
jl

= 1, then
the third constraint in (7) implies that

∑
i∈X zl

ijl
= 1. This condi-

tion and the first constraint in (7) give that zl
ij = 0 for all i ∈ X

and all j 6= jl. In particular this implies that

xi =
∑
j∈Q

z1
ij = z1

ij1 = zl
ijl
,

the last equality from constraint 6 of (7). Therefore xiq
l
j = zl

ijl
ql

j =

zl
ij . This last equality is because both are 0 when j 6= jl (and
ql

j = 1 when j = jl). This shows that the transformation preserves
the objective function value, completing the proof. �

We can therefore solve this equivalent linear integer program
with efficient integer programming packages which can handle prob-
lems with thousands of integer variables. We implemented the de-
composed MILP and the results are shown in the next section.

We now provide a brief intuition into the computational savings
provided by our approach. To have a fair comparison, we ana-
lyze the complexity of DOBSS with the competing exact solution
approach, namely the Multiple-LPs method by [5]. The DOBSS
method achieves an exponential reduction in the problem that must
be solved over the multiple-LPs approach due to the following rea-
sons: The multiple-LPs method solves an LP over the exponentially
blown harsanyi transformed matrix for each joint strategy of the ad-
versaries (also exponential in number). In contrast, DOBSS solves
a problem that has one integer variable per strategy for every ad-
versary. In the proposition below we explicitly compare the work
necessary in these two methods.

PROPOSITION 3. The DOBSS procedure exponentially reduces
the problem over the Multiple-LPs approach in the number of ad-
versary types.

Proof Sketch: Let X be the number of agent actions, Q the
number of adversary actions and L the number of adversary types.
The DOBSS procedure solves a MILP with XQL continuous vari-
ables, QL binary variables, and 4QL+2XL+2L constraints. The
size of this MILP then is O(XQL) and the number of feasible inte-
ger solutions isQL, due to constraint 4 in (7). Solving this problem
with a judicious branch and bound procedure will lead in the worst
case to a tree with O(QL) nodes each requiring the solution of an
LP of size O(XQL). Here the size of an LP is the number of
variables + number of constraints.

On the other hand the multiple-LPs method needs the Harsanyi
transformation. This transformation leads to a game where the
agent can take X actions and the joint adversary can take QL ac-
tions. This method then solves exactlyQL different LPs, each with
X variables andQL constraints, i.e. each LP is of sizeO(X+QL).

In summary the total work for DOBSS in the worst case is
O(QLXQL), given by the number of problems times the size of
LPs solved, while the work of the Multiple-LPs method is exactly
O(QL(X + QL)). This means that there is an O(QL) reduction
in the work done by DOBSS. We note that the branch-and-bound
procedure seldom explores the entire tree as it uses the bounding
procedures to discard sections of the tree which are provably non
optimal. The multiple-LPs method on the other hand must solve all
QL problems. �

4. EXPERIMENTS

4.1 Experimental Domain
For our experiments, we chose the domain presented in [12],

since: (i) it is motivated by patrolling and security applications,
which have also motivated this work; (ii) it allows a head-to-head
comparison with the ASAP algorithm from [12] which is tested
within this domain and shown to be most efficient among its com-
petitors. However, we provide a much more detailed experimental
analysis, e.g. experimenting with domain settings that double or
triple the number of agent actions.

In particular, [12] focuses on a patrolling domain with robots
(such as UAVs [1] or security robots [14]) that must patrol a set of
routes at different times. The goal is to come up with a randomized
patrolling policy, so that adversaries (e.g. robbers) cannot safely do
damage knowing that they will be safe from the patrolling robot. A
simplified version of the domain is then presented as a stackelberg
game consisting of two players: the security agent (i.e. the pa-
trolling robot or the leader) and the robber (the follower) in a world
consisting of m houses, 1 . . .m. The security agent’s set of pure
strategies consists of possible routes of d houses to patrol (in some
order). The security agent can choose a mixed strategy so that the
robber will be unsure of exactly where the security agent may pa-
trol, but the robber will know the mixed strategy the security agent
has chosen. For example, the robber can observe over time how
often the security agent patrols each area. With this knowledge,
the robber must choose a single house to rob, although the robber
generally takes a long time to rob a house. If the house chosen by
the robber is not on the security agent’s route, then the robber suc-
cessfully robs the house. Otherwise, if it is on the security agent’s
route, then the earlier the house is on the route, the easier it is for
the security agent to catch the robber before he finishes robbing it.

The payoffs are modeled with the following variables:
• vy,x: value of the goods in house y to the security agent.

• vy,q : value of the goods in house y to the robber.

• cx: reward to the security agent of catching the robber.

• cq : cost to the robber of getting caught.

• py : probability that the security agent can catch the robber at the yth
house in the patrol (py < py′ ⇐⇒ y′ < y).

The security agent’s set of possible pure strategies (patrol routes)
is denoted by X and includes all d-tuples i =< w1, w2, ..., wd >.
Each of w1 . . . wd may take values 1 through m (different houses),
however, no two elements of the d-tuple are allowed to be equal
(the agent is not allowed to return to the same house). The robber’s
set of possible pure strategies (houses to rob) is denoted by Q and
includes all integers j = 1 . . .m. The payoffs (security agent,
robber) for pure strategies i, j are:
• −vy,x, vy,q , for j = l /∈ i.

• pycx +(1−py)(−vy,x),−pycq +(1−py)(vy,q), for j = y ∈ i.

With this structure it is possible to model many different types
of robbers who have differing motivations; for example, one robber
may have a lower cost of getting caught than another, or may value
the goods in the various houses differently. To simulate differing
types of robbers, a random distribution of varying size was added
to the values in the base case described in [12]. All games are nor-
malized so that, for each robber type, the minimum and maximum
payoffs to the security agent and robber are 0 and 1, respectively.

4.2 Experimental Results
We performed three sets of experiments all using CPLEX 8.1

solver on a Dell Dimension 8200 machine, Linux Red Hat 7.3 op-
erating system, Pentium 4, 2.40 GHz processor and 1GB RDRAM
memory. The first set of experiments compare the runtimes of the
following four methods: DOBSS method introduced in this paper
for finding the optimal solution, ASAP procedure that provides best
policies with limited randomization [12], the multiple-LPs method
presented in [5] that provides optimal policies and the MIP-Nash
procedure [15] for finding the best Bayes-Nash equilibrium. The
multiple-LPs and the MIP-Nash procedures require a normal-form
game as input, and so the Harsanyi transformation is required as an
initial step. We do not record this preprocessing time here thus giv-
ing those other methods an advantage. For this set of experiments,
we created games in worlds of two to seven houses with patrols
consisting of two houses, constructing payoff tables as described
in the previous subsection. We further divided the runtime analy-
sis experiments into two sets: one set of graphs showing runtime
results from two, three and fours houses for all the four methods
mentioned above and the second set analyzing runtimes of DOBSS
and ASAP for five to seven houses since the other two methods
were found to be quite slow in these scenarios.

The first set of runtime graphs in Figure 1 shows the runtime
results for all the four methods for two, three and four houses. Each
runtime value in the graph(s) corresponds to an average over twenty
randomly generated scenarios. The x-axis shows the number of
follower types the leader faces starting from 1 to 14 adversary types
and the y-axis of the graph shows the runtime in seconds on log-
scale ranging from .01 to 10000 seconds. The choice of .01 to
10000 is for convenience of representation of log scale(with base
10). All the experiments that were not concluded in 30 minutes
(1800 seconds) were cut off.

From the runtime graphs we conclude that the DOBSS and ASAP
methods outperform the multiple-LPs and MIP-Nash methods with
respect to runtime. We modeled a maximum of fourteen adver-
sary types for all our domains. For the domain with two houses,
while the MIP-Nash and multiple-LPs method needed about 1000s
for solving the problem with fourteen adversary types, both the
DOBSS and ASAP provided solutions in less than 0.1s. Note that

Figure 1: Runtimes(plotted on log scale): DOBSS, ASAP, MIP-
Nash and multiple-LP methods

DOBSS provided the optimal solution while ASAP provided the
best possible solution with randomization constraints. These ran-
domization constraints also sometimes cause ASAP to incorrectly
claim solutions to be infeasible, the details of which are presented
later on in this section. The runtime for ASAP in all our results is
taken as either the time needed to generate an optimal solution or
to determine that no feasible solution exists.

The first graph in Figure 1 shows the trends for all these four
methods for the domain with two houses. While the runtimes of
DOBSS and ASAP show linear increase in runtimes, the other two
show an exponential trend. The runtimes of DOBSS and ASAP
are themselves exponential since they show a linear increase when
plotted on a log-scale graph. Furthermore, they have an exponential
speedup over the other two procedures as seen in the graph.

The second graph in Figure 1 presents results for the domain
having three houses. Both the MIP-Nash and multiple-LPs could
solve this problem only till seven adversary types within the cutoff
time of 1800s whereas DOBSS and ASAP could solve the problem
for all the fourteen adversary types modeled under 10s. (The cutoff
of 1800s is also the reason MIP-Nash and multiple-LPs appear to

have a constant run-time beyond seven adversary types.) Similar
trends can be observed in the third graph with a domain of four
houses where MIP-Nash and multiple-LPs could solve only till 5
adversary types whereas DOBSS and ASAP could solve till four-
teen adversary types within 400s for DOBSS and 500s for ASAP.
From this set of three graphs, we conclude that DOBSS and ASAP
outperform the other two procedures, by an exponential margin as
predicted in our proof earlier.

Between the two fastest methods, i.e DOBSS and ASAP, DOBSS
runs faster than ASAP in general. To verify this trend we present a
speedup graph in Figure 2 for larger problems i.e., for domains
having five, six and seven houses. The x-axis shows the num-
ber of adversary types the agent faces and the y-axis represents
the speedup obtained by DOBSS over ASAP in percent i.e 100 ·
runtime(ASAP − DOBSS)/DOBSS. For example, for the
domain with 5 houses and 5 adversary types, the plot shows a
speedup of about 95% while for 6 and 7 houses it shows speedups
of about 70% and 55% respectively. This implies that if DOBSS
needs 100s to solve the problem and has a speedup of 70%, ASAP
would need 170s to solve the same problem. All these speedups
were calculated as an average of the scenarios (out of the 20 mod-
eled for each instance) that generated optimal solutions (or were de-
clared infeasible for ASAP) within the cutoff time of 1800s. Note
that we present results only until 12, 9 and 8 adversary types for 5,
6 and 7 houses respectively, since almost all the 20 instances cross
the cutoff times beyond these many adversary types.

From the graph we obtain that DOBSS has a faster algorithm
runtime than ASAP in all the cases since there is always a positive
speedup. Furthermore, we can notice that the speedups obtained
were highest when the number of adversary types are between 2 to
5 and the speedups taper off thereafter. One reason for this trend
is as follows: As the number of adversary types increase, the per-
cent of infeasible solutions generated by ASAP increases(as seen
in table 3). While DOBSS spends most of its time searching for the
optimal solution even if it finds a good solution early-on, ASAP just
needs to determine feasibility of the problem whenever it outputs
infeasible solutions, hence bringing down the averaged speedups as
the number of infeasible solution instances increase — obviously,
ASAP is mistakenly determining solutions to be infeasible. (Infea-
sibility does not completely explain the trend however, and further
analysis remains an issue for future work.) Calculating the average
speedups over all the adversary scenarios for five, six and seven
houses we find that DOBSS has a 62% average speedup over the
ASAP method i.e if DOBSS takes 100s, ASAP would need 162s on
an average. This quantity becomes significant considering the fol-
lowing issues: (a) ASAP procedure generates infeasible solutions
significant number of times while DOBSS is always feasible. (b)
DOBSS provides the optimal solution whereas ASAP provides the
best solution with limited randomization whenever feasible. The
next two sets of results focus on the two issues just presented.

We now introduce our second set of experimental results in Fig-
ure 3 to highlight the infeasibility issue. The infeasibility of ASAP
is a new result and a significant one given that ASAP is the clos-
est competitor of DOBSS in terms of efficiency — while previ-
ous work had just presented the ASAP method, it is our large-
scale experiments that have systematically uncovered the issue of
infeasibility. In this experiment, the same settings as described
above were used. The number of houses was varied between two
to seven(columns in the table) and the number of adversary types
was varied between one to fourteen(rows in the table). For each
fixed number of houses and follower types, twenty scenarios were
randomly generated. We ran the ASAP procedure and presented
the number of infeasible solutions obtained, as a percentage of all

Figure 2: DOBSS vs ASAP

the scenarios tested for each of the fixed number of houses and ad-
versary types. For example, with the 8th adversary type(row num-
bered 8) and 4 houses(column numbered 4) scenario, ASAP gen-
erates 15% infeasible solutions. Note that for the values marked
with a star the percentage presented in the table represents an up-
per bound on the number of infeasible scenarios. In these starred
scenarios the ASAP procedure ran out of time in many instances.
When ASAP ran out of time, it either indicated infeasibility, in
which case it was classified as infeasible solution making it an up-
per bound (since there might be feasible solution when sufficient
time is provided); or it indicated that there was a feasible solution
even though it has not found the optimal yet, in which case it was
obviously not marked as infeasible. We make the following conclu-
sions about ASAP from the table in Figure 3: (a) In general, given a
fixed number of houses, as the number of adversary types increase
(i.e from 1 to 14) the percentage of infeasible solutions increase(as
we go down the columns). (b) Given a fixed number of adversary
types, as the number of houses increase, the percentage of infeasi-
ble solutions increase(as we go across the rows). Although there
are exceptions to both the conclusions, the general trend is that
as the problem size increases (due to increase in either houses or
adversary types or both) ASAP tends to generate more infeasible
solutions thus making it unsuitable for bigger problems. From the
table we obtain that more than 12.5% of the solutions are infeasible
for the five house problem when averaged over all the adversary
scenarios. This number increases to as high as 18% and 20% on an
average for the six and seven house problems. If we perform simi-
lar calculations over the last five adversary scenarios i.e., when the
number of adversary types are varied from 10 to 14, we obtain 16%,
29% and 25% respectively for the five, six and seven house scenar-
ios. This shows that the ASAP produces more infeasible solutions
as the problem size increases. Furthermore, there is no procedure
to determine if ASAP will generate a infeasible solution until run-
time, thus making the ASAP approach impractical.

Our third set of experiments compared the solution quality pro-
vided by all the four methods. Both DOBSS and Multiple-LPs
procedure provide the optimal solution and hence are considered
equivalent. In Figure 4, we provide a table that shows the quality
loss averaged over 20 instances, expressed as a percent loss from
the optimal solution(provided by DOBSS), for the ASAP and the
MIP-Nash procedures. The averaged results are then presented for
all the houses and adversary scenarios as in table 3. The percent
loss of quality is defined as 100.quality(DOBSS−x)/DOBSS,
where x is the solution quality of ASAP or MIP-Nash. Each cell
(corresponding to a fixed number of houses and columns) contains
two numbers. The first number represents the percent of quality
loss for ASAP, and the second represents the same for the MIP-
Nash procedure. The ’na’ in the table indicates that the algorithm
was unable to provide any solution in the cutoff time of 1800s while

Figure 3: Percent of infeasible solutions for ASAP. Rows
represent # of adversary types(1-14), columns represent # of
houses(2-7).

Figure 4: Quality results for ASAP & MIP-Nash. Rows
represent # of adversary types(1-14), columns represent # of
houses(2-4).

ASAP generated a solution(feasible or infeasible) in all instances.
The quality of infeasible solutions was taken as zero.

As described earlier, rows numbered from 1 to 14 represent the
number of adversary types and columns numbered from 2 to 4 rep-
resent the number of houses. For example, for 3 houses and 6 ad-
versary types scenario, the quality loss tuple shown in the table is
< 10.1, 0 >. This means that ASAP has a quality loss of 10.1%
while MIP-Nash has 0% quality loss. A quality loss of 10.1%
would mean that if DOBSS provided a solution of quality 100 units,
the solution quality of ASAP would be 89.9 units. From the table
we obtain the following: (a) The quality loss for ASAP is very
low for two houses case and increases in general as the number of
houses and adversary types increase. The average quality loss was
0.5% over all adversary scenarios for the two house case and in-
creases to 9.1% and 13.3% respectively for three and four houses
case. (b) The equilibrium solution provided by the MIP-Nash pro-
cedure is also the optimal leader strategy for 2 and 3 houses case;
hence the quality loss of 0. The solution quality of the equilibrium
is lower than the optimum solution for the four houses case by al-
most 8% when averaged over all the available data.

From the three sets of experimental results we conclude the fol-
lowing: DOBSS and ASAP are significantly faster than the other
procedures with DOBSS being the fastest method. Furthermore,
DOBSS provides a feasible exact solution always while ASAP is a
heuristic that has low solution quality and also generates infeasible
solutions significant number of times. Hence, the need for devel-
opment of DOBSS, an efficient and exact procedure for solving the
Bayesian Stackelberg games.

5. CONCLUSIONS
This paper presents a new exact method called DOBSS for find-

ing the optimal strategy for the leader in a Bayesian Stackelberg
game. In these games, one agent (the leader) must commit to a
possibly mixed strategy that can be observed by other agents (the
followers) before they choose their own strategies. Such games,
in which the leader is uncertain about the types of adversary it
may face, are extremely valuable in modeling domains involving
security, including patrolling, setting up checkpoints, network rout-
ing, transportation systems and others; and thus solution techniques
such as DOBSS for efficiently solving such games are crucial. The
contributions of this paper include the DOBSS algorithm, as well
as detailed proofs of correctness of DOBSS, and also importantly,
a thorough experimental analysis of performance of DOBSS and
its competitors that was previously missing. DOBSS is orders of
magnitude faster than the previously published exact method [5].
Compared to the previously published heuristic method [12], it is
not only faster, but it avoids the significant problems of infeasi-
bility faced by that method. DOBSS thus represents a significant
advance in the state of the art in addressing security domains and
is at the heart of the ARMOR system that is currently being tested
for security scheduling at the Los Angeles International Airport.

Acknowledgements: This research is supported by the United States
Department of Homeland Security through Center for Risk and Eco-
nomic Analysis of Terrorism Events (CREATE). Sarit Kraus is also af-
filiated with UMIACS.

6. REFERENCES
[1] R. W. Beard and T. W. McLain. Multiple UAV cooperative search

under collision avoidance and limited range communication
constraints. In IEEE CDC, 2003.

[2] G. Brown, M. Carlyle, J. Salmeron, and K. Wood. Defending critical
infrastructure. Interfaces, 36(6):530–544, 2006.

[3] J. Brynielsson and S. Arnborg. Bayesian games for threat prediction
and situation analysis. In FUSION, 2004.

[4] J. Cardinal, M. Labbe, S. Langerman, and B. Palop. Pricing of
geometric transportation networks. In 17th Canadian Conference on
Computational Geometry, 2005.

[5] V. Conitzer and T. Sandholm. Computing the optimal strategy to
commit to. In EC, 2006.

[6] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[7] J. C. Harsanyi and R. Selten. A generalized Nash solution for

two-person bargaining games with incomplete information.
Management Science, 18(5):80–106, 1972.

[8] D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms for
finding randomized strategies in game trees. In 26th ACM
Symposium on Theory of Computing, 1994.

[9] D. Koller and A. Pfeffer. Representations and solutions for
game-theoretic problems. AI, 94(1-2):167–215, 1997.

[10] Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving network optima
using stackelberg routing strategies. In IEEE/ACM Transactions on
Networking, 1997.

[11] A. Murr. Random checks. In Newsweek National News.
http://www.newsweek.com/id/43401, 28 Sept. 2007.

[12] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus. An
efficient heuristic approach for security against multiple adversaries.
In AAMAS, 2007.

[13] J. Pita, M. Jain, J. Marecki, F. Ordonez, C. Portway, M. Tambe,
C. Western, P. Paruchuri, and S. Kraus. Deployed armor protection:
The application of a game theoretic model for security at the los
angeles internation airport. In AAMAS Industry Track, 2008.

[14] S. Ruan, C. Meirina, F. Yu, K. R. Pattipati, and R. L. Popp. Patrolling
in a stochastic environment. In 10th Intl. Command and Control
Research and Tech. Symp., 2005.

[15] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer
programming methods for finding nash equilibria. In AAAI, 2005.

[16] L. A. Wolsey. Integer Programming. John Wiley, 1998.

