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Abstract—Today, engineering interdomain traffic in large transit ASs is
a difficult task due the opacity of BGP and the interactions between the
BGP decision process and IGP routing. In this paper we propose Tweak-it,
a tool that, based on the steady-state view of BGP routing inside the AS
and the traffic demands of the AS, computes the BGP updates to be sent to
the ingress routers of a transit AS to traffic engineer its interdomain traffic
over time.

Tweak-it is based on two components: 1) a scalable BGP simulator
(CBGP) that computes the steady-state behavior of BGP routing and 2) a
multiple-objectives evolutionary heuristic that can deal with multiple con-
flicting objectives as they can occur in real networks. Tweak-it takes the
intradomain configuration (IGP weights and topology), BGP messages re-
ceived from peers, BGP routing policies, and traffic demands. By keeping
the state of the routing inside the AS up-to-date and based on the traffic de-
mands, the heuristics computes how to engineer the traffic of the AS while
trying to minimize the number of BGP tweakings required.

Keywords— traffic management, interdomain traffic engineering, BGP,
multiple-objectives evolutionary optimization.

I. INTRODUCTION

Most of the current effort in traffic engineering has been spent
on intradomain aspects [1], [2]. Even though techniques exist
to optimize the IGP weights so as to optimize the intradomain
routing inside large providers’ networks [2], most providers to-
day still rely on manual tuning to appropriately set their IGP
weights. At the interdomain level, the current state-of-the-art
has not gone beyond general guidelines for interdomain traf-
fic engineering [3]. Recent efforts at the interdomain level
still concern computing the state of the BGP routes inside an
autonomous system (AS) [4] and checking that BGP is prop-
erly configured inside an AS [5]. Operational practices include
changing routing policies and the BGP attributes of the routes
manually without a thorough understanding of such changes on
the flow of the traffic. These practices sometimes lead to routers
misconfigurations [6] and the associated unexpected routing
problems.

Interdomain traffic engineering in transit providers is a non-
trivial task [3]. As transit providers typically carry large
amounts of traffic, one of the important traffic engineering ob-
jectives they want to consider is to minimize the time IP pack-
ets travel across their network. The idea of minimizing the time
packets travel inside the AS is sometimes called hot-potato rout-
ing [7]. Hot-potato routing consists in choosing the exit point
in the network that is closest to the ingress point where the IP
packet was received, for instance in terms of the IGP cost. At the
same time, transit ISPs also want to prevent high loads on their
links, so as to minimize delay due to the transit in their network,
to minimize the cost of their peerings, etc. With uneven traf-
fic distribution between ingress-egress pairs and changing traf-

fic demands [8], interdomain traffic engineering may require us-
ing different exit points than those driven by hot-potato routing
practices. Interdomain traffic engineering for transit ASs thus
consists in practice in dealing with several potentially conflict-
ing objectives.

One of the current issues to properly evaluate interdomain
traffic engineering is to reproduce the state of the BGP routing
inside a large network [4]. As a limited fraction of the prefixes
carry the vast majority of the interdomain traffic [9], [10], [11]
and these popular prefixes have stable BGP routes [11], repro-
ducing in minutest details the routing inside the AS is not nec-
essary for traffic engineering purposes [4]. Furthermore, BGP
routes impacted by IGP routing instabilities or instable BGP
routes should preferably not be considered when doing interdo-
main traffic engineering. To prevent traffic engineering to act on
unstable routes, one could think of maintaining per-route statis-
tics and only allow the tweaking to be performed on routes that
did not change for the last couple of hours.

In this paper, we propose Tweak-it, a tool that combines a
multiple-objectives evolutionary heuristic with a BGP simulator
to compute how to tweak the BGP routing inside a transit AS
so as to engineer the distribution of the interdomain traffic. As
practical traffic engineering objectives can be conflicting, there
is no single optimal solution, but rather a front of Pareto-optimal
solutions. This motivates our choice of our heuristic, a multiple-
objective evolutionary algorithm that allows to go beyond the
limitations of traditional optimization approaches that have dif-
ficulties to sample a Pareto-optimal front in a single run [12]. To
efficiently compute the state of the routing inside a large transit
AS, we developed CBGP, an open source BGP simulator that
computes the steady-state solution found by BGP routing [13].
All the code used in this paper is open source and freely avail-
able at [14]. Synthetic traffic, configuration files and simulation
outputs for different versions of the tool can be also found at
[14].

The remainder of this paper is structured as follows. Sec-
tion II first explains the complexity of BGP-based traffic engi-
neering in transit ASs. Section III presents the related work.
Section IV presents the architecture of Tweak-it. Section V
presents simulation results on the GEANT network. Section VI
then concludes and discusses the further work.

II. BGP-BASED TRAFFIC ENGINEERING BY TRANSIT ASS

To explain the complexity of BGP-based traffic engineering,
let us consider the example of Figure 1 (left diagram). In this
figure, we show a transit AS that wants to tweak its traffic to-
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Fig. 1.
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wards prefix p. This prefix can be reached through AS D and
AS E. The transit AS has three ingress routers. Ingress ¢1 has
a BGP peering with AS A and AS B, ingress 2 with AS B,
and ingress ¢3 with AS C. The best BGP route chosen by each
ingress router to reach prefix p is shown on Figure 1 (left di-
agram). Assuming that the AS path lengths of the two routes
received by the ingress routers from egresses el and e2 are the
same, and that a full mesh of iBGP sessions is used between the
BGP routers of the transit AS, then each ingress chooses as its
best BGP route the one whose IGP cost to reach the exit point is
smallest. Ingress router ¢1 thus reaches p through el (IGP cost
= 10), ingress 72 through 71 and el (IGP cost = 20), and ingress
13 through e2 (IGP cost = 35).

Now suppose that the transit AS wants to relieve egress el
from the traffic sent by AS A towards prefix p. To do that, ¢1
chooses as its best BGP route towards p the one it learned from
egress e2. This BGP route through egress e2 crosses router t1
and exits the AS at e2. If ingress i1 changes its best route to
reach prefix p through egress e2, this does not ensure that its
traffic sent towards prefix p will exit through egress e2. In-
deed, router t1 on the shortest IGP path towards e2 has as best
BGP route to reach p the one learned through egress el having a
smaller IGP cost (20) than the one learned through e2. Tweak-
ing BGP routes inside an ingress router does not guarantee that
the exit point indicated in the chosen BGP route will actually
be used by the traffic towards the destination prefix. To prevent
routers on the path towards the new exit point to forward the
traffic over another path than the one ¢1 expects, one can ensure
that all routers on the path chosen by ¢1 forward traffic towards
p over the same path as the one of 71.

Once it is guaranteed that all routers on the shortest IGP path
between itself and e2 forward traffic towards p over the same
path, one issue remains. Although all routers on the shortest IGP
path between 71 and e2 forward their traffic towards p through
exit point €2, other routers of the AS can have their traffic to-
wards p deflected by the routers on the shortest IGP path be-
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Example of interdomain traffic engineering: best BGP routes chosen by ingress routers (left) and "dependent routes” for the considered BGP tweaking

tween 71 and e2. The right diagram on Figure 1 shows how the
traffic from all routers of our transit AS might be deflected due
to the tweaking of 71 towards p and the resolution of the de-
flection problem on the path between ¢1 and e2. On the right
diagram of Figure 1, we see that 73, el and e2 are not affected
by the tweaking. I2 on the other hand might naively think that
its traffic exits at el. I2’s traffic will actually be deflected by
11 on the path between ¢2 and el. All routers whose shortest
IGP path to reach the exit point of their best BGP route crosses
the shortest IGP path between ¢1 and e2 will have their traffic
exiting the AS at e2. All these routers must therefore choose as
their best route the one announced by e2 to ensure that they will
announce to their external peers the route whose path is actually
followed by the IP packets. In the remainder of this paper, we
call dependent routes all the routes that must be changed in the
AS in addition to the one of the tweaked ingress. This simple
example illustrates that BGP-based traffic engineering requires
great care and that doing it manually could lead to serious for-
warding problems if one does not check for consistency in the
paths chosen by the different routers of the AS.

In the preceding section, we did not define precisely what we
meant by a tweaking. What we call in this paper a tweaking is
an <i,p, e> triple corresponding to ingress ¢ forcing its traffic
towards prefix p to exit the AS at egress e. A tweaking is an
abstract term connected to traffic engineering whose practical
implementation will differ depending on the technical solution.
We choose to rely on this particular definition of a tweaking
mostly because it is the finest interdomain traffic engineering
change one can do with BGP inside an AS. For instance, one
could choose to work on coarser tweakings as the <ingress POP,
prefix, egress POP> triple. In situations where the routing con-
figuration inside the AS is more complex (BGP route reflectors,
IGP hierarchies), checking the consistency of routing will be
more involved that in the example provided of this section.

For what concerns the actual implementation of tweakings,
two main techniques can be envisioned. The first has already
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been explained before. It is purely BGP-based and requires
changing the best BGP route of the tweaked ingress as well as
the dependent routes. For this solution to work, all BGP routers
must know the IGP path from each ingress towards each egress
point to ensure that no forwarding loop occurs and that routing is
consistent inside the AS. Many large transit providers have full
IP networks and hence would rely on purely BGP-based traffic
engineering.

Another way to implement the tweaking is through a tunnel
(IP [15] or MPLS [16]) that would be established between the
tweaked ingress and the new exit point. The advantage of a
tunnel-based solution is that other routers of the AS do not have
to change their best route to ensure consistency of the forward-
ing paths as only the traffic received by the tweaked ingress will
be concerned (not the one of other ingress routers). In addi-
tion, tunnels will not have to be established on a per-prefix fash-
ion, but only on a per-<ingress,egress> pair basis. We do not
consider tunnel-based solutions in this paper due to space lim-
itations. However, the simulations presented in section V have
also been performed for the tunnel-based solution and can be
found in [14].

III. RELATED WORK

As explained in [3], the state of interdomain traffic engineer-
ing is primitive. Few tools exist to predict the best route cho-
sen by BGP to reach an external destination in large ISP net-
works [13], [4] due to the opacity and complexity of BGP and
its interactions with the IGP routing. [13], [4] that constitute
the state-of-the-art in BGP route prediction do not deal with the
transients of the BGP routing. By transients of the BGP routing,
we mean the dynamics of the BGP state machine. Few stud-
ies have been devoted to evaluating the feasibility and practical
challenges of engineering the interdomain traffic by tweaking
BGP [17], [18], [19], [3], [20]. [17] dealt with the problem of
the optimal and off-line selection of the border routers for the
advertisement of network prefixes so as to minimize the IGP
cost of the traffic across a transit’s network while maintaining
the egress bandwidth constraints at the border routers. [18] pro-
posed a random search algorithm to deal with the problem of
finding the right value of the parameters for the configuration of
large-scale networks. [19] tackled the problem of modifying the
local-pref attribute of the BGP routes in an off-line man-
ner (once every day) to balance (or minimize a cost function)
the outbound traffic among several BGP neighbors of a stub AS.
Finally, [20] studied the problem of designing BGP-based inter-
domain traffic engineering techniques to engineer the outbound
traffic of stub ASs. [20] showed that dynamically engineering
the outgoing traffic of stub ASs over timescales of a few minutes
could be done with a limited number of iBGP update messages.

In essence, Tweak-it is very similar in purpose to the intel-
ligent route reflectors of [21] or the RCP platform in a single
AS of [22], where the objective is to engineer the traffic of an
AS while limiting as much as possible the burden in terms of the
BGP messages required. To our knowledge, this paper is the first
to propose a tool that allows to engineer the interdomain traffic
of transit ASs by dealing with the real BGP routes received by
a transit AS and the dynamics of the traffic demand over time.
Most papers in the literature either assume that BGP routing is

static or that the traffic demand does not change with time.

IV. TWEAK-IT

The main component of Tweak-it is a Perl script whose func-
tion is to keep an up-to-date state of the routing inside the transit
AS, and based on this routing information to compute how to
tweak the BGP routes inside the AS. The main external compo-
nent of Tweak-it is CBGP [13], a scalable BGP simulator aimed
at reproducing the steady-state policy routing made by BGP. By
steady-state routing, we mean the solution at which BGP is due
to converge independently from the dynamics of the BGP proto-
col state machine at each router. The steady-state solution found
by BGP routing as computed by CBGP corresponds to the cur-
rent state-of-the-art in BGP route prediction [4].

Figure 2 sketches the architecture of Tweak-it. The central
component ("main script” in Figure 2) is the Perl script that man-
ages the different inputs, communicates with CBGP and com-
putes the tweaking of the BGP routes. The Perl script receives
as input the BGP routing tables (RIB) and BGP updates received
from the external peers of the AS, as well as the traffic statistics
from all ingress routers. The script also needs the internal topol-
ogy, IGP weights, and BGP routing policies enforced by each
BGP router of the AS. With this information, the script builds
the CBGP configuration file it will inject into CBGP ("initial-
ization" in Figure 2). Then, the RIBs of the border routers hav-
ing peerings with other ASs are injected into CBGP to populate
the BGP routing tables of all BGP routers inside the AS. This
finishes the "initialization phase" of the script.

The goal of the second part of the main script ("main loop"
in Figure 2) is to compute the tweakings needed for the traffic
engineering using the multiple-objectives evolutionary heuristic
described in section I'V-B. In this main loop, the Perl script first
injects into CBGP all required changes for the routing to be up-
to-date, then retrieves the state of the BGP routing from each
router of the AS. Once the script has all the routing information
it needs, it runs the multiple-objectives evolutionary heuristic
described in section IV-B. Only the BGP routes towards popu-
lar destination prefixes are maintained in CBGP, typically a few
hundreds or thousands, instead of the 140,000 routes present in
current BGP routing tables. [9], [10], [11] have shown that most
of the traffic in the Internet is sent to a limited fraction of the
destination prefixes. [11] has also shown that BGP routes for
popular destinations are stable.

A. CBGP simulator design overview

In order to model how BGP chooses its best route to reach
a destination and to compute for each router in a domain the
next-hop that would have been selected by BGP to reach each
destination prefix, we have designed and implemented a new
kind of BGP simulator. This simulator models the complete de-
cision and filtering processes of BGP without reproducing the
time-consuming packet exchanges that occur between simulated
routers in packet-level simulators such as SSFNet [23] or J-Sim
[24]. The purpose of the simulator that we have designed is to
compute the BGP routes that routers know once the BGP rout-
ing has converged [25]. If the order in which the BGP messages
are transmitted matters to determine the solution to which BGP
would converge [26], then there is no guarantee that CBGP will
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Fig. 2. Interaction between components of Tweak-it.

find the same solution as the actual BGP would. The aim of
CBGP is however not to reproduce the routing plane of real net-
works but to provide a scalable way to compute the solution
found by BGP routing in large networks.

To do this, CBGP accurately reproduces how BGP works.
CBGP reproduces the propagation of UPDATE and WITH-
DRAW messages between routers; how these messages are fil-
tered on input before being stored in adjacent routing informa-
tion bases (Adj-RIB-ins); it reproduces the BGP decision pro-
cess [27] that selects for each destination prefix a single route
among the routes available in the Adj-RIB-ins; it stores the se-
lected routes in a local routing information base (Loc-RIB); the
routes present in the Loc-RIB are then subjected to the output
filters and stored in the adjacent routing information bases (Adj-
RIB-outs) before being propagated to other BGP routers in the
simulation.

The simulator uses a network wide CISCO-like configuration
file. This configuration file describes the network topology as
a graph of nodes and edges. A node in the graph represents
a router identified by a unique IP address (typically a router’s
loopback address) and an edge represents a link. Each link pos-
sesses its own IGP cost. The configuration file also describes the
BGP routers. For each BGP router, the configuration file speci-
fies the domain to which it belongs, identified by its AS number,
the sessions it has with neighboring routers and the policies that
the router will apply on routes received from- and exported to its
neighbors [28], [29]. The routexr-1id of the router is its IP ad-
dress. The configuration file also specifies which prefixes each
router originates. Finally, the configuration file describes static
routing information that might be required by certain routers to
establish sessions with their neighbors.

This configuration file is the input data required to run the
simulation. Once the simulator parses this configuration file, its
first operation is to build an efficient representation of the net-
work in memory. That is, it creates a graph with all the nodes
and links specified in the configuration file in a manner that
makes possible a fast retrieval of whatever node (router) or edge
(link). For each router, it creates a routing table that will contain

the static routes, the IGP routes and the best BGP routes. Then,
the simulator populates the routing table of each router with the
static routes described in the configuration file and IGP routes
computed thanks to the knowledge of the IGP costs of all the
links. The simulator also creates for each BGP router a local
routing information base (Loc-RIB) and a pair of adjacent RIBs
(Adj-RIB-in and Adj-RIB-out) for each of its neighbors, one to
store the routes received from the neighbor, the other to store the
routes advertised to the neighbor. Finally, the simulator builds
for each router a representation of all its filters that it can access
in an efficient manner.

The second operation that the simulator begins when the sim-
ulation setup is terminated, is the propagation of route adver-
tisements. The simulator starts with an arbitrary BGP router,
looks up the prefixes it must advertise, builds the corresponding
UPDATE messages and sends them to the router’s neighbors ac-
cording to the output filters. For each sent message, the simu-
lator looks up in the router’s routing table to find the link along
which the message must be forwarded to reach the next hop.
The message is forwarded on a hop-by-hop basis until it reaches
its final destination. The generated BGP messages are pushed in
a single global linear first-in first-out queue that keeps the mes-
sage ordering. In the real world, BGP messages are exchanged
over TCP connections. In this simulator, we assume that there is
no packet loss. The simulator does this for all the BGP routers.

Another way to insert routes into the simulation is by feeding
real BGP messages in the widely used MRT format [30]. These
messages are "sent" to a simulated BGP router by the way of a
virtual peer. A virtual peer is not a router that exists in the sim-
ulation, but it is the representation of an external router. When
a MRT message is fed to a BGP router, it appears to come from
a peer. It is thus filtered and, if accepted, inserted as-is in the
Adj-RIB-in that corresponds to the virtual peer. Eventually, the
message is taken into account during the decision process. This
feature makes possible the simulation of a real ISP by building a
topology with only the ISP’s routers, by collecting the real BGP
messages received from the ISP’s neighbors and by inserting
them into the simulation. The simulator can thus react to exter-
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nal route changes and predict the new choices that are made by
BGP in the ISP’s network.
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Fig. 3. A single BGP router in a CBGP simulation.

Once all the prefixes have been advertised, the simulation
starts. The simulator pops the first message from the queue,
and wakes up the router corresponding to the current hop of the
message. If this router is not the final destination of the mes-
sage, the router looks up in its routing table along which link the
message should be forwarded. Otherwise, the router processes
the BGP message. If the BGP message is a WITHDRAW, the
router removes from the corresponding Adj-RIB-in the route to-
wards the withdrawn prefix, and runs the decision process. If
the BGP message is an UPDATE, the router checks if the route
it contains is accepted by its input filters. If so, the route is stored
in the Adj-RIB-in and the decision process is run for the prefix
of the route. The decision process retrieves from the Adj-RIB-
ins all the reachable routes for the considered prefix, compares
them according to its rules and selects a single best route for
this prefix. The simulator does this until the message queue is
empty, which means that the simulation has converged.

When the simulation has converged, the simulator provides
convenient ways to analyze the results. A first possibility is to
have a look at a single or all the routers’s routing tables, Loc-
RIBs or Adj-RIBs. Another possibility is to trace the route fol-
lowed by packets that travel from one router to another router.
The simulator provides the sequence of IP addresses of the
routers that have been used to reach the destination router.

B. Multiple-objectives evolutionary heuristic

The task of the evolutionary algorithm is to find out which
tweakings to use to engineer the interdomain traffic of the AS.
The heuristic can deal with any set of objectives that can be com-
puted based on the amount of traffic for each <ingress,prefix>
pair. Any function that can be computed can be used as an ob-
jective of the algorithm. The core of the heuristic is a multiple-
objectives evolutionary algorithm [31]. This heuristic relies on
a population of individuals. Each individual is a potential solu-
tion, i.e. a set of tweakings to be applied on the BGP routers of
the AS to engineer the traffic for a particular time interval.

For each time interval, the algorithm uses the latest state of
the BGP routes known by ingress routers as well as the traffic
statistics from the previous time interval to compute the tweak-
ings be applied during the next time interval. This state of the
BGP routes is obtained by querying the CBGP simulator. The
current implementation of our Perl script does not send the iBGP
messages to perform the tweaking as it has no BGP session with
real routers. However, our solution can be used in practice to

send iBGP messages to the BGP routers of an AS to engineer its
interdomain traffic. Our solution could be run either on a route
reflector [32] that would also centralize the traffic statistics, or
on a stand-alone BGP router having iBGP sessions with all the
BGP routers of the AS (or only with the route reflector of each
POP in the case of a hierarchy of route reflectors).

We do not describe the core of the evolutionary optimization
for lack of space but refer to [33] for a detailed description. For a
given time interval, the algorithm consists of a loop where each
iteration adds to each individual (a set of BGP tweakings) of
the population a randomly chosen tweaking among the possible
ones. The heuristic is an evolutionary algorithm where compe-
tition among the individuals of the population (the set of indi-
viduals) drives which set of tweakings will be chosen so as to
sample the trade-off between the traffic engineering objectives.
Evolutionary algorithms have been extensively used to sample
Pareto-optimal fronts in a single run [12], where traditional op-
timization methods often fail.

The algorithm accepts from one iteration to another the solu-
tions that are non-dominated in terms of the traffic engineering
objectives. A solution in a set of solutions is said non-dominated
if no other solution of the considered set is better in all objectives
at the same time. By keeping only the non-dominated solutions,
the search spends its time on trying to find better solutions in
terms of all objectives at the same time. This ensures that at each
time interval, the algorithm selects one non-dominated solution
among the possible trade-offs between the traffic engineering
objectives.

First, before searching for good tweakings, the routing and
traffic statistics must be kept up-to-date. Before starting the op-
timization, the script checks that both the IGP routing (physi-
cal links, links IGP weights, routers reachability) and the BGP
routing (next hop reachability, best route choice by each ingress
router) are up-to-date by interacting with CBGP, and loads the
traffic statistics concerning the traffic sent by each ingress point
towards each destination prefix collected during the last time in-
terval.

The evolutionary optimization then starts with a loop that it-
erates as many times as the maximum number of tweakings we
allow to be applied during the next time interval. The purpose
of this loop is to guide the local search in selecting an addi-
tional random tweaking for any individual. Making the number
of the tweakings a dimension of the search increases the pres-
sure to find as early as possible the tweakings that improve the
most the objectives in terms of the traffic. If the population is
unable to find improvement at some iteration, the population is
re-initialized with the last non-dominated set of solutions found.

During every iteration of its loop, the evolutionary algorithm
performs the following steps. The first step consists of a random
local search that applies to the individuals a random tweaking
(i.e. <ingress,prefix> pair) among the possible ones. As the
number of possible tweakings grows with the number of consid-
ered prefixes times the number of ingresses, allowing to try them
all makes the size of the search space very large while for prac-
tical purposes only those having a large amount of traffic are of
interest. The Perl script takes as parameter this percentage of the
total traffic that the user wants to consider in the optimization.

The number of destination prefixes having been reduced, the
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algorithm sorts the <ingress,prefix> pairs by decreasing byte
count and further reduces the search space by considering only
the largest pairs. Tweaking pairs having too small an amount
of traffic is worthless for traffic engineering purposes. The main
script takes this number of pairs as parameter. Even after remov-
ing most of the irrelevant prefixes and <ingress,prefix> pairs,
there are still a lot of possible <ingress,prefix> pairs. We used
500 pairs in the simulations provided in [14].

It should be noted that any <ingress,prefix> pair cannot be
tried for a given individual. As an individual may already con-
tain tweakings, the algorithm checks before trying a new tweak-
ing that its <ingress,prefix> pair is not already part of the con-
sidered individual, as this would contradict a previously chosen
tweaking.

Then, the algorithm tries to apply the tweaking by computing
the new values of the traffic objectives for every reachable exit
point. For each reachable exit point, it applies the tweaking and
checks whether this new individual is non-dominated, in which
case the individual is placed in the set of accepted solutions for
this iteration. Since the purpose of any multiple-objectives op-
timization search algorithm is to sample the trade-off between
the objectives, it is necessary to allow any non-dominated indi-
vidual to be accepted as a potential solution. It will be up to the
selection procedure (see below) to decide how to sample the set
of non-dominated solutions found during the current iteration.

The last step within an iteration of the evolutionary algorithm
is to select among the accepted individuals, those that will con-
stitute the population for the next generation. This step is crucial
for the multiple-objectives evolutionary optimization to work,
as among non-dominated solutions, one must choose those that
will be selected to make the population during the next gen-
eration and in which proportion of the total population. Since
non-dominated solutions form a front that samples the trade-
off between the two traffic objectives, the aim of the selection
procedure is to pick the individuals of the next population ac-
cording to how the non-dominated solutions sample this front.
The idea is that the more points are concentrated in some area
of the front, the smaller the effort should be placed on further
sampling this area. This is the logic behind crowding-based se-
lection schemes, which we do not further describe but refer to
[31].

Finally, after the maximal number of iterations allowed, the
algorithm must choose among the individuals forming the non-
dominated front during the last iteration, the solution that will
actually be implemented in the network during the next time in-
terval. As these non-dominated solutions form a non-dominated
front, the choice of the solution to apply is quite arbitrary. In
our simulations of [14] for instance, we chose the solution hav-
ing the smallest IGP cost on the non-dominated front. Any other
solution will do, the choice depending on the relative importance
given to the different traffic engineering objectives.

V. SIMULATIONS

In this section, we illustrate the use of Tweak-it in the context
of the GEANT network. We rely on the GEANT network topol-
ogy available on DANTE’s website at http: //www.dante.
net. GEANT is a multi-gigabit pan-European data communi-
cations network, reserved specifically for research and education

use. The GEANT network is operated by DANTE. GEANT has
interconnections to two general Internet peers, which we call AS
X and AS Y. GEANT has peerings with AS X at four different
points and at two different points with AS Y, one GEANT egress
router having both a peering with AS X and AS Y.

The scenario of our simulations consists in synthetic traffic
to be received at each ingress point of the GEANT network to-
wards destination prefixes reachable through the general Inter-
net peers of the network. We used the IGP topology of GEANT,
as well as the BGP data received from its two general Internet
peers. We chose in this BGP data a continuous one month pe-
riod starting at 9:41 AM on February 8, 2004. This one month
of BGP updates contains 35,563,511 BGP messages, about 823
eBGP messages per minute on average. We used a time gran-
ularity of one hour, i.e. for every hour we injected the BGP
messages into CBGP, loaded the traffic demand of the previous
hour, and ran the algorithm described in section IV-B.

As we did not dispose of the GEANT traffic at the time of
the writing of this paper, we generated artificial traffic as could
be seen in a transit network. We randomly selected 1000 des-
tination prefixes to be considered as the most popular destina-
tions for the GEANT network, and generated traffic from each
ingress router of GEANT towards each of the 1000 destination
prefixes according to a Weibull distribution of shape 0.15 [34].
The choice of a Weibull distribution is motivated by the obser-
vation that most of the traffic in the Internet is exchanged with
a limited fraction of the reachable prefixes [9], [10], [11]. This
distribution captures quite well this property while still a sig-
nificant percentage of the mass of the distribution lies in the
non-tail part of the distribution. After having generated the total
traffic to be sent from each ingress towards the destination pre-
fixes, we simulated a periodic evolution of the traffic for each
<ingress,prefix> pair over the one month period. For the sake
of simplicity, we sampled a sinusoidal signal with a period cor-
responding to one day and with a time granularity of one hour.
The coefficients were normalized as to sum to one, and the total
traffic for the <ingress,prefix> pair was multiplied by the nor-
malizing coefficients. This provided a regularly-varying traffic
for each pair. Then, to reflect the fact that an ingress point of
a transit AS can in practice be located anywhere in the world,
we added a random phase (between 0 and 23 hours) to the sinu-
soidal signal to shift the busy hours period differently for each
ingress point. Although the generated traffic might not reflect
the dynamics of the traffic seen by a transit AS, the main prop-
erties of interdomain traffic are reproduced by this synthetic traf-
fic. Both the Perl script used to generate the synthetic traffic as
well as the files containing the produced traffic during our sim-
ulations are freely available at [14].

In this section, the heuristic optimizes the way traffic is bal-
anced over the external peerings of the AS while minimizing the
IGP cost for the whole traffic!, in as few tweakings as possible.

Simulation results for one version of the algorithm are shown
on Figure 4. Four different flavors of the algorithm are provided
in [14] as well as the corresponding simulation results similar to

'Minimize v(i,p) traf (i, p) X IGP_cost(i,e) where traf(i,p) repre-
sents the amount of traffic received by ingress router ¢ having as destination

external prefix p and IGP_cost(i, e) represents the IGP cost for ingress ¢ to
reach egress router e
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Fig. 4. Evolution of traffic per external peering.

those presented in this section. For these simulations, we lim-
ited the number of allowed tweakings found by the evolutionary
algorithm to 50, for each time interval. Figure 4 shows for each
external peering (randomly assigned an identifier between 0 and
5), the evolution of the percentage of the total traffic during each
time interval over a time period of one week. Each graph of
Figure 4 displays the evolution of the traffic percentage if the
choice of the best egress point is left to the BGP decision pro-
cess ("default BGP") with the traffic percentage when tweakings

are made by the evolutionary algorithm ("best solution"). Each
graph also shows the ideal traffic balance per peering of one
sixth of the total traffic ("perfect balance").

The first thing that appears on Figure 4 is the periodic evo-
lution of the traffic percentage for each peering. This traffic
variability is created by the periodic traffic per destination pre-
fix coupled with the random phase per ingress router. Second,
even after applying tweakings, peering 5 (bottom right on Fig-
ure 4) is not well balanced. The reason is that both peerings 1
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and 5 are attached to the same egress router. As tweakings have
been defined in terms of the egress router, not the external peer-
ing, tweakings can act on the total traffic sent to egress routers.
To improve the balance among egress routers the algorithm de-
creases the share of peering 1 without being able to increase the
share of peering 5. If peering 1 and 5 were on different routers
or if tweakings were defined in terms of external peerings, then
all peerings would have been evenly balanced. Even with the
previous issue, the improvement in balance provided by Tweak-
it is significant while the cost in terms of tweakings is limited,
of about 40 per hour [14].

VI. CONCLUSION AND FURTHER WORK

In this paper we proposed Tieak-it, an open source tool for
interdomain traffic engineering in large ISP networks. Tweak-it
consists of a multiple-objectives evolutionary heuristic coupled
with an efficient BGP simulator. Tweak-it takes the intradomain
configuration (IGP weights and topology), BGP routes received
from peers, BGP routing policies, and traffic demand.

We described the architecture of Tiveak-it, namely the interac-
tion of an evolutionary heuristic and our efficient BGP simulator.
We applied the tool on the GEANT network to show that Tweak-
it can be useful to find out how to tweak the BGP inside a transit
AS to engineer the distribution of the traffic inside its network.
The genericity of the evolutionary algorithm as well as the scal-
ability of the CBGP simulator make of Tiveak-it a elegant way
to investigate interdomain traffic engineering problems.

The current version of our solution replays the real BGP up-
dates received from peers, as well as synthetic traffic traces gen-
erated by our means. By the time of the writing of this paper, we
have already implemented a module that imports the IGP rout-
ing messages (for ISIS) and recomputes the IGP weights and
topology consistently with the IGP routing information in the
same manner as for the BGP updates.

We are currently collaborating with a large commercial transit
provider and extending our tool to tackle operational problems
for this provider’s network. We will apply the tool to scenarios
with larger transit ISP topologies and different traffic engineer-
ing objectives. The tool will be integrated in the TOTEM traffic
engineering toolbox (http://totem.info.ucl.ac.be).
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