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Abstract
We present a novel approach to constraining the evolution of active contours used in image analysis.
The proposed approach constrains the final curve obtained at convergence of curve evolution to be
related to the initial curve from which evolution begins through an element of a desired Lie group of
plane transformations. Constraining curve evolution in such a way is important in numerous tracking
applications where the contour being tracked in a certain frame is known to be related to the contour in the
previous frame through a geometric transformation such as translation, rotation, or affine transformation,
for example. It is also of importance in segmentation applications where the region to be segmented is
known up to a geometric transformation. Our approach is based on suitably modifying the Euler-Lagrange
descent equations by using the correspondence between Lie groups of plane actions and their Lie algebras
of infinitesimal generators, and thereby ensures that curve evolution takes place on an orbit of the chosen
transformation group while remaining a descent equation of the original functional. The main advantage
of our approach is that it does not necessitate any knowledge of nor any modification to the original
curve functional and is extremely straightforward to implement. Our approach therefore stands in sharp
contrast to other approaches where the curve functional is modified by the addition of geometric penalty

terms. We illustrate our algorithm on numerous real and synthetic examples.
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I. INTRODUCTION

This paper addresses the problem of curve evolution, with applications to tracking and seg-
mentation in image sequences [11], [12], [13], [19]. Curve evolution equations are usually obtained
as Euler-Lagrange descent equations of a curve functional E : v — E(v) € R tailored to a par-
ticular application [2]. Starting from an initial curve -y, a curve evolution equation prescribes
the construction of a one-parameter family (y;)icr+ of curves (with ;=0 = 7o) such that the
curve Yo = limy_,o ¢ Obtained at convergence is a local minimum of the curve functional. In
many applications of interest such as tracking, there may be a priori knowledge concerning the
geometric relation between vy and 7y.; In particular, this a priori knowledge could dictate that
70 and 5 be related, up to reparametrization, by an arbitrary transformation 7' : R? — R?
in a certain family of transformations. For example, it may be known a priori that vy and
Yoo Should be related by a translation, or by a Euclidean transformation. Due to image noise
and clutter, however, and depending on the particular curve functional from which the curve
evolution equation is derived, the curve 7., obtained at convergence of the evolution may not
have the desired geometric relation to the initial curve ~p.

Deformation of shape in a more generalized framework can be accomplished via region infor-
mation. Active shape models are used to recognize shape deformations given the shape model
and in the estimation of shape deformations using a point distribution model [6]. Region based
approaches for tracking shapes in color images are given in [7]. Segmentation and tracking
applications are also demonstrated applying nonlinear shape statistics using available training
data [8].

The question is then how to suitably modify the curve evolution equation so that the resulting
equations remain descent equations of the original curve functional while simultaneously ensuring
that the curve obtained at convergence has the desired geometric relation to the initial curve.
A solution to this problem has been proposed in [1], whereby the curve functional is extended
by the addition of penalty terms which try to bias the minimum of the functional towards a
curve with the desired geometric properties. In other words, the original curve functional £ is
changed to E + AE,, with E,, : v — Ep(y) penalizing deviations of -y from the desired geometry.
While such penalty terms can be easily defined for simply parametrized shapes such as circles
and ellipses, it is not clear how to define them for arbitrary planar shapes. Thus, this approach
is feasible only in very restricted cases. Furthermore, even in these cases, it is not clear how the
penalty terms should be weighted in comparison to the original energy functional, that is, how
the coefficient A should be chosen.

We propose a novel and straightforward solution to the problem of geometrically constraining

curve evolution in the case where the geometric relation between 7y and 7y is given by elements



of a finite-dimensional Lie group [16] of plane transformations’. This is the case with most

applications of curve evolution, with the Lie groups of interest being the group of translations,
the group of rotations, the group of Euclidean transformations, as well as the group of affine
transformations. This allows us to use the correspondence between Lie groups and their Lie
algebras in order to reduce the original problem to one of basic linear algebra. The main
advantage of our approach is that it does not necessitate any knowledge of or modification to
the original curve functional from which the original curve evolution equations were obtained.
Rather, only the curve evolution equation is modified, in a very straightforward way, all the
while ensuring both that the initial and final curves are related as desired, and that the modified
curve evolution equation remains a descent equation on the original curve functional. Such a
technique has already been proposed for tracking the long time behaviour of dynamical systems
which are known to obey certain symmetries [14]. A related idea also appears in [4], [5], where
3-D structures are tracked by using the Lie algebra of the Special Euclidean group in R* and
the Adjoint representation of the group to transform the model between video frames. The
theory presented in Sections II and III, in conjunction with the results shown in Section IV,

demonstrate the efficacy of the proposed curve evolution approach.

II. CURVE EVOLUTION EQUATIONS AND LIE TRANSFORMATION GROUPS
A. Basic curve evolution equations

Consider a smooth functional E : ' — R, where I' is the family of smooth closed plane curves
v:1— R% s+ v(s), Iis a compact interval of R, and s is the arc parameter (not necessarily
arc length). We restrict ourselves to functionals of the form

Y s B(y) = / L(s,7(),5(5),5(s), ... )ds, 1)

I

where L is a smooth function, and ¥ (resp. ¥, ... ) denotes the first (resp. second, ... )
derivative of v with respect to s. This is the general form of the curve functionals most used in
image processing applications [10]. We are interested in finding the curve (or those curves) in I'
which (locally) minimizes E. To perform this minimization, -y is embedded in a family (vy;)scr+

of curves, and this family is constructed so as to satisfy the evolution equation

v SE
-t - = > 2
7 5y (v), t>0 (2)
Yelt=o = 7o,

1t is important to note that the problem we are addressing in this paper is radically different from the prob-
lem of defining group-invariant flows [9], [15], i.e. flows which commute with elements of particular groups of

transformation.



where 7y is the initial curve, and where %—5(%) is the functional derivative of E with respect to
v at v [2]. ‘(55—5(%) is a vector tangent to the space I' at the point ¢ € T, i.e. an element of the
tangent space T, (I"). An element of the tangent space T,(I") to " at a particular curve y € T is
given by a smooth vector field along v, that is, by a mapping X : I — R?, s+ X (y(s)). Thus,
for each value of the arc parameter s € I of y, X (y(s)) is a vector in R?. This allows us to define
an inner product < .,. >, on T,(I') as follows:

<XY >, = /1< X (4(s)), Y (v(s)) >ge ds, VX,V € T,(T)

where < .,. >ge is the Euclidean inner product on R?. The tangent vector %—5(%) is defined as

the unique element of T, (I') which satisfies the relation

d SE. . dvy,
LBy = <22y,

It follows from equations (2) and (3) that

d 0F dv
—F = — —
dt [IYt] < 6’)’ (’Yt)’ dt >’Yt
oF 0F
= <) <
< 5y (72, 5y (vt) >5, <0

by the positive-definiteness of the inner product. As a result the mapping ¢ — E(7;) is mono-
tonically decreasing. Equation (2) is thus a descent equation, and the family () cr+ of curves
a minimizing family for the functional E. The goal of constructing such a family is to compute
the curve vo, = limy_, o ¥4, which, if it exists, is a critical point, and hopefully a local minimum,
of E.

In image processing applications of curve evolution, a closed plane curve is usually represented
by an N—tuple (§1,ps,...,Pn) of points p; € R?, yielding a polygonal approximation to the
desired curve. The space I'y of such N—tuples can then be identified with the finite-dimensional

vector space R?Y | and the curve evolution equation (2) in T is replaced with an evolution equation

iIIPNI
dp; L .
Pty = RGO t20, i=1,..,N @)
ﬁ;’lt:o = ﬁ'i,Oa

where the functions F’, are obtained by spatial discretization of the expression for %—5 in (2).

Here again, the N—tuple (Fy ((7;()) 1), Fo((8;(£)))1), - -, Fv ((F(£))).,)) is a vector tangent

to Iy ~ RV at the point (7 (t),7a2(t),...,pn(t)) of R*V, which associates to 7(t) € R? the
vector F’,((ﬁj(t));v:l) € R?. Not surprisingly, the space T, (I'y) of all vectors tangent to 'y
at the point v € T'y can be identified with R?Y as well. Let then X = (%1, %2,...,Zn),Y =
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(F1,52,---,in) € Ty(Tn) ~ RN (with 7;,%; € R? for all i = 1,...,N); the inner product
<.,.>on T,(I'y) is defined as follows:

N
<X, Y > = Z<§fi,§;' >R2
=1

The evolution equation (4) is further discretized temporally as well, yielding the following

discrete evolution equation:

pi((k +1)At)

Pi(kAL) + AtF (9 (kAL)Y,), keN, i=1,...,N (5)
Dilk=0 = Pio,
where At is the temporal discretization step.

B. Group actions, orbits, and infinitesimal generators

Let G be a (finite-dimensional) Lie group of transformations acting on R?. We refer the
interested reader to [16], [17], [18] for a detailed introduction to the theory of Lie groups. Assume
G acts on R? via a smooth map G x R? — R?,(g,p) +— g - 5 such that e- 9 = p for all p € R?,
where e is the identity element of G, and g1 - (g2 - p) = (g192) - § for all g1,92 € G, € R?. The
action of G on R? induces an action of G on I given by the smooth map G xT' — T, (g,7) — g7,
where the curve g - is defined by g-v: I — R%, s+ (g-(s)). The orbit of v under the action
of G is the subset G -y of I defined as:

G-vy={g-v€T|geG}.

The meaning of the orbit G - v is clear: It is the set of all plane curves obtained by applying all
the transformations in G to the curve 7.

Let now h :] —¢, e[— G,t — h(t) be a smooth curve in G (with € > 0 arbitrary) with h(0) = e.
Let ¢ = %h:oh(t); x is an element of the tangent space T,(G) of G at e. The smooth curve h
in G induces a smooth curve h -7y :] —¢,e[— G -~y,t — h(t) - in the orbit G -~y of . The vector
X (z) € T,(T) defined by the vector field s — %|,—o[h(t) - 7(s)] on 7 is thus an element of the
tangent space T, (G - ) of the orbit G -y at . Since G-y C T, T,(G - ) is a vector subspace
of T,(I'), and since G is finite-dimensional, T’,(G - 7) is finite-dimensional as well. Thus, to
each z € T,(G) there corresponds a unique vector X (z) € T, (G - v) C Ty(I'). Furthermore, the
mapping X : z — X (z) is linear, and for each Y € T',(G - 7y), there exists a z € T,(G) such that
Y = X(z). Therefore, the tangent space to G -y at -y is given by:

T,(G-v) ={X(z) e T,(T)|z € T.(G)}



C. Curve evolution on orbits of Lie transformation groups

Assume we are given curve evolution equation (2) corresponding to the minimization of the
functional £ and assume we know a priori that the initial curve vy € T' and the final curve
Yoo € I' should be related, up to reparametrization, via a transformation in G; that is, there
exists ¢ € G and a monotonically increasing diffeomorphism ¢ : I — I (called a reparametrization
of I) such that v, © ¢ = g - 79. The question is how to incorporate this a priori information in
the evolution equation (2) without assuming any knowledge of the functional E; in other words,
we wish to suitably modify equation (2) such that the following two requirements are met:

1. ¢t = FE oy should be a decreasing function of £, that is, the resulting evolution equation
should remain a descent equation on the functional F, and

2. v and 7y should be related, up to reparametrization, by a transformation of the Lie group
G.

Note that the first requirement guarantees that the modified evolution equation still minimizes
the functional £ and thus continues to solve the original problem for which the functional E
was intended. The second requirement is that v lie in the union (J, G- (70 0 ¢) of orbits, where
the union is taken over all reparametrizations ¢ of I. Note in particular that if v, € G-y, then
the second requirement is met.

Our approach hinges on the following proposition:

Proposition 1: If vy € G -7 for all t € RT then % €T, (G-v) for all t € R. Conversely, if
T is finite dimensional, then % €T, (G ) for all t € R implies v, € G -7 for all ¢ € RT.
Proof: See Appendix.

Remark 1: The importance of Proposition 1 lies in the fact that it converts the original difficult
problem of verifying whether or not a curve lies in the orbit of another curve into a family of
tractable problems, each consisting of verifying whether a given vector lies in a certain vector
space.

Remark 2: To use the full force of proposition 1, we shall assume henceforth that I' is finite-
dimensional. This restricts in no way the practical applications of the results that follows, since,
as was noted following equation (4), in all implementations of curve evolution equations, the
space of curves can be identified with R?V for some positive integer N, and hence is finite-
dimensional. For simplicity of notation however, we shall use the notation of equation (2).

Consider the tangent space T, (T') to I at the curve ;. Recall that the tangent space T, (G-7;)
is a finite-dimensional vector subspace of T,,(I'), for all t € Rt. Let w,, : T, (T') — T0,, (G - 1)
be the projection operator defined with respect to the inner product < .,. >,,. We have the
following result:

Proposition 2: Let E : T' — R be a smooth functional. Let (;); be a one-parameter family of



smooth closed plane curves satisfying the evolution equation

d")’t . oF
pra _M(W(’Yt))a (6)
’Yt|t:0 = 70-

Then

1. Yoo € G+ 0, and

2. t = E oy is a decreasing function of t.

Proof: We have th(%_g(’)’t)) € T,,(G - ) for all ¢ € RT, and hence % € T,,(G - ) for all
t € RT; the fact that v, € G - 7o thus follows from Proposition 1. To show that ¢t — E o, is a

decreasing function of ¢, we write:

dEoy) oF dy
dt - 57 (’Yt)7 dt >’)’t
0E 0E
= < W(’Yt)a —M(W(’Yt)) >
0E 0E
= —< E(%ﬁ)aﬂ-’h(ﬂ(’ﬁ)) >y
Since the projection 7,, is defined with respect to the inner product < .,. >,, on T, (T'), we
have
<X — 7r’7t (X)’Tr’)’t (Y) >’)’t = O’ VX’Y € T’Y: (F)7
that is,
<X, (Y)>,, = <m,(X),m,(Y)>,, VX, YeT, ().

We thus obtain,
B~ < G hm () >, <0

and hence t — FE o, is a decreasing function of ¢. O

The evolution equation (6) fulfills both of the requirements we had imposed on constraining
curve evolution via transformation groups. The tangent space T, (G - y) to the orbit G -y at 7y
is the vector space spanned by the infinitesimal generators of the group action of G at . By
virtue of Proposition 2 therefore, projecting the velocity vector of a curve onto the Lie algebra
of infinitesimal generators of a group action yields an evolution which minimizes the desired
functional while taking place on the desired orbit. In Section III, we compute 7, for some of
the Lie groups we shall consider.

It is important to note that constraining ; to evolve on the orbit G -~y of 79 under the action

of the Lie group G is equivalent to estimating a one-parameter family (g;);er+ C G such that
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Yt = gt - Yo for all t. Indeed, expressing E oy as E o (g - ), the gradient descent equation for

g can be written:
dg _ §(Eo(gt-7)) _ _ < oF (gt - v0)

dt gt B &y’ Oge >
This is a descent equation in the Lie group G itself, and not in the space of all plane curves.
As @ is finite-dimensional, and is typically small-dimensional, it can be locally parametrized by
a small number of parameters; the descent equation in G then corresponds to estimating these

few parameters which define the transformation g, relating vy and .

III. LIE GROUPS OF PLANE TRANSFORMATIONS

We consider a (discretized) curve -y to be an N—tuple (p1, Pa, - .., pn) of points p; = (x;,y;) €
R?; an element of the tangent space to I' at v is then given by an N—tuple (¥y,%,...,7N)
of vectors #; € R?. We also assume given a one-parameter family (7¢)i>0 of curves evolving
according to equation (4). This has the advantage of illustrating very concretely the computation
of the projection operator .. Recall that the tangent space T, (I") is endowed with the following

inner product:

N
<X,Y > = ) <6, >re,
i=1
where X = (01,75,...,9n),Y = (Wi, wo,...,wn) are elements of T, (I'). In what follows, all

projection operators 7, are computed with respect to this inner product.

A. The group of plane translations

The most basic non-trivial group of transformations of the plane is the group of plane trans-

lations. This group is isomorphic to (R?,+), and an element (a,b) of it acts on R? by
(a,b) : (‘Tay) = ("I"+aay+b)'

In this section, we describe how to constrain active contour evolution equations so that the
evolving contour remain on the orbit, under the group of plane translations, of the initial contour.
Let then G ~ R? be this group. Let 7 — (a(7),b(7)) be a one-parameter family of G with
(a(0),5(0)) the identity element (0,0). Then

d[(a(T)’bg;—)) : (:c,y)] |7':0 _ d(;—(;-)l‘rZO(laO) + %

The tangent space T,,(G-v) of G-~y at v = (§1,P2, - - - , Pn) is thus two-dimensional, and spanned

|T:0(O7 1)'

by the vectors



Let X = (¥,%2,...,Yn) € T, (') be a vector tangent to I' at -y; the projection operator
7y, Ty, (I) = T,,(G - ) associated to G is given by X — m,,(X) = oA + B, where

t

ay, B € R are such that
N
<A+ BB — X, A+ BB — X >= ||(ay, 8) — 5
=1

is minimized. The necessary conditions

0 - _
oy ZH (a, Be) — il|> = EZH(%,@) - @il =
i=1

for a minimum easily yield

(a, Be) = Z ¥;

Thus, in order to constrain evolution equation (4) to evolution on the orbit of -y under the

group of plane translations, equation (4) should be replaced with
{ Bet) = ¥ i B(0)), t20, i=1,...,N
15'i|t:0 = ﬁi,()a
and, correspondingly, equation (5) with
{ ik + DAY = Fi(kAY) + §E T (@ (kA)Y,), keN, i=1,...,N
Pilk=0 = Pi0,
B. The group of plane rotations

In this section, we describe how to constrain active contour evolution equations so that the
evolving contour remain on the orbit, under the group of plane rotations, of the initial contour.
The group G of plane rotations is isomorphic to the circle S = R/277Z, and an element § € G
acts on R? by

0-(z,y) = (xcosd —ysinb, zsinh + ycosb).

Let 7 — 0(7) be a one-parameter family of G with 8(0) the identity element 0. Then

L R P TR

The tangent space T,,(G - v) of G -y at v = (P1,P2,...,pn) (with p; = (z;,y;)) is thus one-

dimensional, and spanned by the vector

C = ((-y1,21), (—y2,22),...,(—yn,znN))

8



Let X = (¥4,%2,...,0n) € T,,(I') be a vector tangent to I' at -y, with 7; = (vgl),vze)) for
i = 1,...,N; the projection operator =, : T, (I') = T, (G - ;) associated to G is given by
X = 7y, (X) = wC, where w; € R is such that

N
<wC = X,wC— X >= Y |lwy(~yi,z:) — il
=1

is minimized. The necessary conditions for a minimum easily yield
N 2 1
Zi:l(mivz( ) - W’z( ))
~ .
Yo (@ +y7)

To constrain evolution equation (2) to evolution on the orbit of vy under the group of plane

Wy =

rotations therefore, equation (4) should be replaced with

. N (2) _ (1) .
Pe(t) = DI ) (g (8), 24(t)), £20, i=1,...,N

p:i|t:0 :ﬁi,o,

and, correspondingly, equation (5) with

N @)y )
Bi((k +1)At) = Fi(kAt) + ApZQUBU )y (1), 2,(t), keN, i=1,...,N

Dilk=0 = Di,0,
where F((5;(1)),) = (v{V,0{?) for 1 =1,...,N.

C. The group of FEuclidean plane transformations

In this section, we describe how to constrain active contour evolution equations so that the
evolving contour remain on the orbit, under the group of plane Fuclidean transformations, of
the initial contour. The group G of Euclidean plane transformations is the semi-direct product
of the group of plane rotations and the group of plane translations, and an element (a,b,6) € G

acts on R? by
(a,0,0) - (z,y) = (xcos@ —ysinh + a,zsinb + y cos § + b).

It follows from the above that the tangent space T, (G - y) of G -y at v = (p1,p2,...,Pn) (with

Pi = (i, y;)) is three-dimensional, and spanned by the vectors

A= ((1,0),(1,0),...,(1,0))
B =((0,1),(0,1),...,(0,1))
C= ((_ylﬁl‘l)a (—yz,mz), ) (_yN,fEN))
Let X = (¢4,v2,...,0n) € T,,(I') be a vector tangent to I' at y;, with 7; = (fugl),vZ@)) for

i = 1,...,N; the projection operator m,, : T,, (') = T,,(G - ;) associated to G is given by

9



X = 1, (X) = ayA + BB + wiC, where a4, B¢, w; € R are such that

N
<A+ BB +wC — X, A+ BB+ wiC — X >=Y " |[(a; — wiyi, B + wii) — Til|”
i=1
is minimized. An easy calculation shows that oy, 3, w; are given by:

-1

1
Qi 1 0 _%Ziyi %Zi"%()
2
Be | = 0 1 N 2 i %Zi’”p
2 1
wr A Tiv A Tiw o Lila?+u)) * Lol -yl
With F’l((ﬁj(t))f/:l) in equations (4) and (5) being written as F’l((ﬁ](t))évzl) = (vl(l),vl@)) for
l=1,...,N, and with oy, B¢, w; given as above, constraining evolution equation (4) to evolution

on the orbit of v¢ under the group of Euclidean plane transformations is performed by replacing

equation (4) with

{ Pit) = (o — wini(t), B + wemi(t)), >0, i=1,...,N
Dilt=0 = Pi,0
and, correspondingly, equation (5) with
{ Fi((k + 1)At) = §i(kAL) + At(ey — wiyi(kt), B +wizi(kt)), k€N, i=1,...,N
Dilk=0 = Di,o-
D. The group of affine plane transformations

In this section, we describe how to constrain active contour evolution equations so that the
evolving contour remain on the orbit, under the group of affine plane transformations, of the
initial contour. The group G of affine plane transformations is the semi-direct product of the
group GL(2,R) of invertible two-by-two real matrices and of R?, and an element (a, b,c, d, e, f) €
G (where ad — bc # 0) acts on R? by

(a,b,c,d,e,f) (way) = (aw+by+e,c:1:+dy+f)

The tangent space T,(G - y) of G - v at v = (P, P2,...,Pn) (with p; = (x;,v;)) is thus six-

dimensional, and spanned by the vectors

A =((1,0),(1,0),...,(1,0))
B =((0,1),(0,1),...,(0,1))

) Ur = ((21,0), (22,0), ..., (zn,0))
Us = ((y1,0), (y2,0),---, (yn,0))
Vi =((0,21), (0, 22),...,(0,zn))

(V2= ((0,91),(0,92),---,(0,yn))



for

Let X = (¥4,%2,...,0n) € T,,(I') be a vector tangent to I' at -y, with 7; = (v, () ())

i = 1,...,N; the projection operator m,, : T, (I') — (G ) associated to G is glven by
X =7m,(X)=0A+ BB+ ag )Ul + a§2)U2 + ﬂ,gl)Vl + ﬁt VQ, where at,ﬁt,at ,ﬁtl), ,5(2
are such that

N

3 e + Vs + aPys, B+ BV + B ys) — T2
=1

is minimized. An easy calculation shows that oy, G, agl),ﬁgl),ag),ﬁ?) are given by solving the

overdetermined systems

1 =1 oy v%l)
g
1 To Y2 1) vél)
Olt - ?
(2) ...
e
1 znv yn ' vy
and
1 =y "’%2)
1 ﬂt (2)
T2 Y2 (1) . Vo
A =
t(2) . -2-
1 zny yn vg\,)
With F’l((ﬁj(t));\’:l) in Equations (4) and (5) being written as F’l((ﬁ}(t))jvzl) = (y, (a ), 2 )) for
l=1,...,N, and with oy, G, agl) , ﬂ§1), ong) , ﬂ?) given by solving the above linear overdetermined

systems, constraining evolution equation (4) to evolution on the orbit of 7y under the group of

affine plane transformations is performed by replacing equation (4) with
dp; 2 .
{ Pt) = (o + of Vi () + o vi(1), B + BV zs(t) + BPw() >0, i=1,...,N
Pilt=0 = Pi0,
and equation (5) with the corresponding temporally discretized equation, as illustrated in the

previous cases.

IV. EXPERIMENTAL RESULTS

In our implementation of curve evolution on orbits of Lie transformation groups, we adopt

the curve functional

Y By / l3($) 12 + v]3(s) 12} ds + / Lear((s))ds, (7)

which is of the same form as the functional in equation (1) (with I = [0,1]) and is similar to

the functional proposed in [10]. Whereas the first integral on the right-hand side of equation (7)

11



represents the internal energy of the active contour due to stretching and bending, the second
integral represents the image-dependent (i.e. external) energy of the snake, and the Lagrangian
Lyt is defined as the distance of the active contour from the local gradient maxima of the image
function. The positive coefficients p and v control the elasticity and stiffness, respectively, of
the active contour. It should be noted that using the Lie group approach, the active contour
becomes less sensitive to the standard active contour parameters that represent stretching and
bending. Although these "smoothness” terms are still retained, the final contour determined by
the transformation is not sensitive to minor variations in the parameters. As such, the contours
evolved by Lie groups of transformation are more robust to parameter selection.
The Euler-Lagrange descent equation corresponding to the functional (7) is given by

dyt . 4

() = wn(s) = v () = VEeaw(n(s)), ®)
where 7(*) denotes the fourth derivative of v with respect to the arc parameter s. Spatial and
temporal discretizations of equation (8) yield a representation of the curve 7y as a finite ordered

set of points (p;)Y, in R?, and yield an evolution equation of the form

i ="+, (9

where the superscript denotes the iteration index (see equation (5)). Assuming a temporal
discretization step of At, the initial curve -, is thus represented by the ordered set of points
(;5'1(-0)), while the curve yxa¢, corresponding to iteration k of the evolution, is represented by the

ordered set (ﬁgk) )-

A. Synthetic results

We first demonstrate the basic concept of active contour evolution on Lie group orbits through
a set of synthetic images. The synthetic experiments are followed by experiments on real image
sequences. We adopt the discretized version (equation (9)) of curve evolution equation (8) as our
benchmark, and we shall call it unconstrained curve evolution. In all experiments, the energy
functional parameters y and v are assigned values 0.01 and 0, respectively. In all the images
shown, a red thin contour represents either the initial curve (yp) or the intermediate curves
(vkat, k = 0,1,...) (shown every 50 iterations, i.e. for k& = 0,50,100,...), while a thick green
contour represents the contour at convergence (7). The stopping criterion we have used is
as follows: Curve evolution stops whenever there is less than one pixel maximum displacement
between the current and the previous contours at all contour points.

Fig. 1(a) is constructed from the binary image of a dark ellipse (the target) on a uniform
white background by the addition of zero-mean white Gaussian noise of normalized variance .01.

The thin red contour represents the initial position of the snake (yp). Clearly, the initial contour
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o and the target ellipse differ only by a translation; hence, constraining the snake ; to evolve
on the orbit of 9 under the group of translations should yield a contour ., at convergence that
coincides with the target ellipse. The result of this constrained evolution is as expected and is
shown in Fig. 1(b). Note that convergence is achieved even if the initial axes are different in
length. Consider now Fig. 1(c); the underlying image is similar to that in Fig. 1(b), but the
initial contour -y is now defined so as to be unrelated to the target ellipse by a mere translation.
Thus, constraining the snake 7; to evolve on the orbit of 4y under the group of translations
would not yield a contour v, at convergence that coincides with the target ellipse. However, vy
being an ellipse as well, constraining the snake y; to evolve on the orbit of 7y under the group
of affine transformation allows 7., to coincide with the target ellipse. This is shown in Fig.
1(d). Note that in Figs. 1(b) (resp. 1(d)) the intermediate contours (7;) are all related to the
initial contour -y by a translation (resp. affine transformation), consistent with evolution on a

transformation group orbit.

In Figs. 1(e) and 1(f), the target ellipse is itself randomly deformed while preserving its rough
elliptic shape. Fig. 1(e) shows the result of unconstrained snake evolution, yielding a contour
Yoo at convergence that has a very irregular shape. Constraining snake evolution to lie on the
orbit of 7y under the affine group, however, yields an elliptic contour 7y, at convergence, as can
be seen in Fig. 1(f). Clearly, constraining contour evolution to take place on a transformation

group orbit has a regularizing effect on the contour.

Figs. 2(a) shows the result of snake evolution on the orbit of vy under the affine group, as in
Fig. 1(f) and with a similar underlying image, but with different initial contour ~y. Fig. 2(b), on
the other hand, shows the result of snake evolution on the orbit of vy under the Euclidean group.
In both cases, the contour 7., at convergence captures the target noisy ellipse while retaining
its elliptic shape. In Figs. 2(c) and 2(d) the underlying image is constructed just as in Fig. 1
except that the target is now a dark rectangle which has been randomly distorted. Fig. 2(c)
shows the result of constrained snake evolution on the affine group orbit of an initial contour vy
which is itself a rectangle larger than the target rectangle. As can be seen in that same figure,
the rectangular shape of the target noisy rectangle is perfectly captured by the contour 7.
at convergence. Unconstrained snake evolution on a similar image and starting from a similar
initial contour -y yields a contour -, at convergence which is not rectangular anymore, as can

be seen in Fig. 2(d).

To further demonstrate the regularizing effect of contour evolution on transformation group
orbits, we have used video frames from a table tennis sequence. The frame to frame coherence
that is required for tracking is maintained through our proposed algorithm, as is shown in Fig.

2(e): Here, the contour 7, at convergence is constrained to lie on the orbit of the initial contour
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7o under the affine group. Unconstrained contour evolution (from the same initial contour as in
Fig. 2(e)), on the other hand, yields the result in Fig. 2(f); there, the contour at convergence is
distorted, and the distortion worsens as we progress through the sequence. We shall clarify this

further when we discuss the tracking examples below.

B. Tracking results

We use three different sequences from three different application areas to demonstrate the
usefulness of constraining snake evolution to transformation group orbits. In each of these
sequences, tracking is done over 25 frames, and in each frame (except frame zero), the initial
contour from which snake evolution starts is the contour at convergence of snake evolution of
the preceding frame.

The first tracking application is that of tracking a white blood cell in vivo. Fig. 3 shows the
results of tracking using affine group constrained snake evolution, while Fig. 4 shows the results
of tracking using unconstrained snake evolution. Not only does our proposed algorithm allow the
shape to be captured properly, but the detection of the shape is consistent with the direction of
flow within the blood vessel as well. The result of tracking using unconstrained snake evolution
violates the known circular shape of the leukocyte and yields boundary localization error. Figs.
3(a) and 4(a) show the initial contours in frame 0, while Figs. 3(b)-(h) and 4(b)-(h) depict the
tracking results in frames 1, 3, 5, 10, 15, 20, and 25, respectively.

For the table tennis sequence, in which a paddle is tracked, the results of affine group con-
strained snake evolution and unconstrained snake evolution are shown in Figs. 5 and 6, re-
spectively. Figs. 5(a) and 5(b) depict the initial contours in frame 0, while Figs. 5(b)-(g)
and 6(b)-(g) show the tracking results in frames 1, 5, 10, 15, 20, and 25, respectively. Fig.
6(g) clearly shows that a simple snake with no additional constraint clearly loses the paddle
shape while tracking. The errors in capturing the shape in previous frames are compounded
and ultimately force the active contour to drift away from the true boundary. For our proposed
algorithm, with the special choice of the affine group, shape fidelity is maintained for the entire
25 frames under observation.

The final image sequence gives an example of tracking of a tank under difficult imaging
conditions from infrared video. Figs. 7 and 8 show the results of affine group constrained snake
evolution and unconstrained snake evolution, respectively. As in previous examples, Figs. 7(a)
and 8(a) show the initial snake in frame 0, while Figs. 7(b)-(g) and 8(b)-(g) show the results
of tracking in frames 1, 5, 10, 15, 20, and 25. Note that the unconstrained snake responds to
spurious details and unreliable image clutter; the constrained snake, on the other hand, preserves

its hexagonal shape throughout tracking, providing a target boundary that could be utilized for
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automatic target recognition.

For the three tracking examples, we provide numerical data to substantiate the validation of
active contour evolution on the affine group orbit. Using manually segmented boundaries, we
have computed the segmentation error for each frame for both the unconstrained active contour
evolution and the evolution on the affine group orbit. A segmentation error of 0% means exact
agreement with the “ground truth”. Over-segmentation (under-segmentation) occurs when the
detected segment is bigger (smaller) than the segment in the ground truth. The segmentation
error is expressed as a percentage of excess or less number of pixels with respect to the size of

the ground truth segment.

Frame Number

Sequence 15t 3rd 5th 10t | 15th | 20th | 25th

Blood Cell Affine +7.31 | -0.78 | -1.89 | -1.29 | -3.43 -2.1 -1.51
Unconstrained | -10.22 | +1.32 | -8.02 | -7.33 | -4.75 | -1.99 -1.7
Table Tennis | Affine +0.43 - +1.28 | +1.93 | +0.21 | 4+0.94 | +1.18
Unconstrained | -2.32 - -2.85 | -1.50 | -4.39 | -2.83 | -1.08

Tank Affine -2.31 - -6.74 | -5.12 | -3.83 | -7.37 | -12.31
Unconstrained | +5.37 - +3.2 | +4.2 | +1.7 | +1.24 | -0.46

TABLE 1

SEGMENTATION ERROR BETWEEN ACTIVE CONTOUR AT CONVERGENCE AND THE GROUND TRUTH.

POSITIVE AND NEGATIVE QUANTITIES REPRESENT OVER AND UNDER SEGMENTATION, RESPECTIVELY.

V. CONCLUSION

In this paper, we have presented a novel approach to constrain curve evolution equations to
orbits of particular Lie groups of transformation. Such constraints are important in numerous
applications of curve evolution where the preservation of certain geometric properties of curves
is desired. The approach we have presented makes use of the relation between the group action
and the infinitesimal generators of this action. In this way, the original problem of maintaining
certain geometrical properties of the curve during its evolution is translated into a straightfor-
ward linear algebraic problem. The main advantage of the approach we have presented is that
only the curve evolution equation is modified, in a very straightforward way, and no knowledge
of or modification to the curve functional from which the curve evolution equation was derived,
is assumed. The synthetic image segmentation results demonstrate the shape-preserving noise-
resilient properties of the active contour moving on the orbits of Lie groups of transformation.

Extending the results to tracking objects in a video sequence, we find that the novel active
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contour implementation is effective in tracking objects that move and distort according to Lie
groups of transformation. Thus, for tracking the same object in a video sequence, the assump-
tions of evolution on orbits of Lie groups of transformation are well motivated and powerful. In
contrast, using the traditional active contour evolution equations leads to detection of objects

of arbitrary shape, which may lead to errors during tracking.

VI. APPENDIX

In this section, we provide a proof of Proposition 1. Assume then that v € G - vy for all
t € RT. Then % €T, (G- ) for all t € RT as well. ; € G - o implies there exists g € G such
that 7 = g -0, and hence G-y = G-(g9-v) = (G-g) -y = G -7, by virtue of the associativity
of the group action and the fact that G is a group. Thus %’ € T,,(G-v) =Ty, (G -7) and the
statement is proved. Conversely, and assuming I" is finite-dimensional, assume % €Ty, (G-v)
for all t € Rt. Identifying I' with R?V for some positive integer N, +; can be considered as
a point in R?N .| Assuming the Lie group G has dimension n and that it acts regularly at -+,
T,(G - v) is an n—dimensional vector subspace of R?V for all v € R?V in a small neighborhood
of v, yielding a field v — T, (G - ) of n—dimensional subspaces in a neighborhood of ~,, for
all t € RT. Since these subspaces are spanned by the infinitesimal generators of the Lie group
action, and since these infinitesimal generators form a Lie algebra of vector fields, the field
v+ T,(G - y) is completely integrable by virtue of Frobenius’ theorem [18]. It is then possible
to find local coordinates (z1,z2,...,ZoN) in R?VN in a neighborhood of «; for which the orbit
G - 7y in that neighborhood is given by z,4+1 = const,zp 12 = const,...xony = const. It then
follows from dditt €T, (G- v), for all t € RT, that 14 € G - for ¢ > 0 small enough. By piecing

together local coordinate charts, we deduce the result for ¢t € Rt. O
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(e) (f)
Fig. 1. Capturing an ellipse: (a) initial contour; (b) evolution on translation group orbit; (c) initial
contour; (d) evolution on affine group orbit; (e) unconstrained evolution for capturing noisy ellipse;

(f) evolution on affine group orbit for capturing noisy ellipse.
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Fig. 2. (a) evolution on affine group orbit for capturing noisy ellipse; (b) evolution on Euclidean group
orbit for capturing noisy ellipse; (c) evolution on affine group orbit for capturing noisy rectangle;
(d) unconstrained evolution for capturing noisy rectangle; (e) evolution on affine group orbit for

capturing paddle; (f) unconstrained evolution for capturing paddle.
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(e) (f) (h)
Fig. 3. Results of in vivo cell tracking by constrained snake evolution on affine group orbit: (a) initial

contour in frame 0; (b) frame 1; (c) frame 3; (d) frame 5; (e) frame 10; (f) frame 15; (g) frame 20;
(h) frame 25.

(g)

Fig. 4. Results of in vivo cell tracking by unconstrained snake evolution: (a) initial contour in frame 0;
(b) frame 1; (c) frame 3; (d) frame 5; (e) frame 10; (f) frame 15; (g) frame 20; (h) frame 25.
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Fig. 5. Results of tracking paddle by constrained snake evolution on affine group orbit: (a) initial contour
in frame 0; (b) frame 1; (c) frame 5; (d) frame 10; (e) frame 15; (f) frame 20; (g) frame 25.

Fig. 6. Results of tracking paddle by unconstrained snake evolution: (a) initial contour in frame 0; (b)
frame 1; (c) frame 5; (d) frame 10; (e) frame 15; (f) frame 20; (g) frame 25.
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() (f) (8)
Fig. 7. Results of tracking tank in clutter by constrained snake evolution on affine group orbit: (a) initial

contour in frame 0; (b) frame 0; (¢) frame 5; (d) frame 10; (e) frame 15; (f) frame 20; (g) frame 25.

(e) (f) (&)

Fig. 8. Results of tracking tank in clutter by unconstrained snake evolution: (a) initial contour in frame
0; (b) frame 0; (c) frame 5; (d) frame 10; (e) frame 15; (f) frame 20; (g) frame 25.



