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PREFACE

This text is a second generation descendent of our text, Digital Signal Processing, which
was published in 1975. At that time, the technical field of digital signal processing was
in its infancy, but certain basic principles had emerged and could be organized into
a coherent presentation. Although courses existed at a few schools, they were almost
exclusively at the graduate level. The original text was designed for such courses.

By 1985, the pace of research and integrated circuit technology made it clear
that digital signal processing would realize the potential that had been evident in the
1970s. The burgeoning importance of DSP clearly justified a revision and updating of the
original text. However, in organizing that revision, it was clear that so many changes had
occurred that it was most appropriate to develop a new textbook, strongly based on our
original text, while keeping the original text in print. We titled the new book Discrete-
Time Signal Processing to emphasize that most of the theory and design techniques
discussed in the text apply to discrete-time systems in general.

By the time Discrete-Time Signal Processing was published in 1989, the basic
principles of DSP were commonly taught at the undergraduate level, sometimes even
as part of a first course on linear systems, or at a somewhat more advanced level in
third-year, fourth-year, or beginning graduate subjects. Therefore, it was appropriate to
expand considerably the treatment of such topics as linear systems, sampling, multirate
signal processing, applications, and spectral analysis. In addition, more examples were
included to emphasize and illustrate important concepts. We also removed and con-
densed some topics that time had shown were not fundamental to the understanding of
discrete-time signal processing. Consistent with the importance that we placed on well
constructed examples and homework problems, the new text contained more than 400
problems.

In the decade or so since Discrete-Time Signal Processing was published, some
important new concepts have been developed, the capability of digital integrated cir-
cuits has grown exponentially, and an increasing number of applications have emerged.
However, the underlying basics and fundamentals remain largely the same albeit with
a refinement of emphasis, understanding and pedagogy. Consequently when we looked
at what was needed to keep Discrete-Time Signal Processing up-to-date as a textbook
emphasizing the fundamentals of DSP, we found that the changes needed were far less
drastic than before. In planning this current revision we were guided by the princi-
ple that the main objective of a fundamental textbook is to uncover a subject rather
than to cover it. Consequently, our goal in this current revision is to make the sub-
ject of discrete-time signal processing even more accessible to students and practicing
engineers, without compromising on coverage of what we consider to be the essential
concepts that define the field. Toward this end we have considerably expanded our cov-
erage of multi-rate signal processing due to its importance in oversampled A-to-D and
D-to-A conversion and digital filter implementation. We have added a discussion of the
cosine transform, which plays a central role in data compression standards. We have
also removed some material that we judged to be of lesser importance in the present
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context, or more appropriate for advanced textbooks and upper level graduate courses.
Many of the concepts that were removed from the text (such as basic results on the
cepstrum) have reappeared in some of the new homework problems.

A major part of our emphasis in this revision has been directed toward the home-
work problems and examples. We have significantly increased the number of examples
which are important in illustrating and understanding the basic concepts, and we have
increased the number of homework problems. Furthermore, the homework problems
have been reorganized according to their level of difficulty and sophistication, and an-
swers are provided to a selected set of problems. The instructor’s manual available from
the publisher contains updated solutions for all of the problems in the book. These so-
lutions were prepared by Li Lee and Maya Said of MIT and Jordan Rosenthal and
Greg Slabaugh of Georgia Tech. This manual also contains some suggested exam prob-
lems based on our courses at MIT, Georgia Tech and the University of Massachusetts
Dartmouth.

As in the earlier texts, it is assumed that the reader has a background of advanced
calculus, along with a good understanding of the elements of complex numbers and vari-
ables. In this edition, we have refrained from the use of complex contour integration
in order to make the discussion accessible to a wider audience. An exposure to linear
system theory for continuous-time signals, including Laplace and Fourier transforms,
as taught in most undergraduate electrical and mechanical engineering curricula is still
a basic prerequisite. With this background, the book is self-contained. In particular, no
prior experience with discrete-time signals, z-transforms, discrete Fourier transforms,
and the like is assumed. In later sections of some chapters, some topics such as quanti-
zation noise are included that assume a basic background in stochastic signals. A brief
review of the background for these sections is included in Chapter 2 and in Appendix A.

It has become common in many signal processing courses to include exercises to be
done on a computer, and many of the homework problems in this book are easily turned
into problems to be solved with the aid of a computer. As in the first edition, we have
purposely avoided providing special software to implement algorithms described in this
book, for a variety of reasons. Foremost among them is that there are a variety of in-
expensive signal processing software packages readily available for demonstrating and
implementing signal processing on any of the popular personal computers and work-
stations. These packages are well documented and have excellent technical support,
and many of them have excellent user interfaces that make them easily accessible to
students. Furthermore, they are in a constant state of evolution, which strongly suggests
that available software for classroom use should be constantly reviewed and updated.
We share the enthusiasm of many for MATLAB, which an increasing number of stu-
dents are learning at early stages of their education. However, we continue to prefer a
presentation that utilizes the power of computational tools such as MATLAB to create
examples and illustrations of the theory and fundamentals for use in the text, but does
not let issues of programming syntax and functionality of the software environment
detract from the emphasis on the concepts and the way that they are used. We firmly
believe that there is enormous value in hands-on experience. Indeed, software tools
such as MATLAB allow students to implement sophisticated signal processing systems
on their own personal computers, and we feel that there is great benefit to this once
the student is confident of the fundamentals and is capable of sorting out programming
mistakes from conceptual errors. For this reason, the instructor’s manual contains a sec-
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tion of suggestions for assignments in the inexpensive texts Computer-Based Exercises
for Signal Processing Using Matlab 5 by McClellan, et al., and Computer Explorations
in Signals and Systems Using Matlab by Buck, Daniel and Singer, both of which are
also available from Prentice-Hall, Inc. These suggestions link projects in these com-
puter exercise books to specific sections, examples and problems in this textbook. This
will allow instructors to design computer assignments which are related to the material
and examples they have covered in class, and to link these computer assignments to
traditional analytic homework problems to reinforce the concepts demonstrated there.
The material in this book is organized in a way that provides considerable flexi-
bility in its use at both the undergraduate and graduate level. A typical one-semester
undergraduate elective might cover in depth Chapter 2, Sections 2.0-2.9; Chapter 3;
Chapter 4, Sections 4.0-4.6; Chapter 5, Sections 5.0-5.3; Chapter 6, Sections 6.0-6.5;
Chapter 7, Sections 7.0-7.3 and a brief overview of Sections 7.4-7.5. If students have
studied discrete-time signals and systems in a general signals and systems course, it
would be possible to move more quickly through the material of Chapters 2, 3, and 4,
thus freeing time for covering Chapter 8. A first-year graduate course could augment
the above topics with the remaining topics in Chapter 5, a discussion of multirate signal
processing (Section 4.7) an exposure to some of the quantization issues introduced in
Section 4.8 and perhaps an introduction to noise shaping in A/D and D/A converters as
discussed in Section 4.9. A first-year graduate course should also include exposure to
some of the quantization issues addressed in Sections 6.6-6.9, to a discussion of optimal
FIR filters as incorporated in Sections 7.4 and 7.5, and a thorough treatment of the
discrete Fourier transform (Chapter 8) and its computation using the FFT (Chapter 9).
The discussion of the DFT can be effectively augmented with many of the examples in
Chapter 10. In a two-semester graduate course, the entire text together with a number
of additional advanced topics can be covered.

In Chapter 2, we introduce the basic class of discrete-time signals and systems and
define basic system properties such as linearity, time invariance, stability, and causality.
The primary focus of the book is on linear time-invariant systems because of the rich
set of tools available for designing and analyzing this class of systems. In particular, in
Chapter 2 we develop the time-domain representation of linear time-invariant systems
through the convolution sum and introduce the class of linear time-invariant systems
represented by linear constant-coefficient difference equations. In Chapter 6, we de-
velop this class of systems in considerably more detail. Also in Chapter 2 we introduce
the frequency-domain representation of signals and systems through the Fourier trans-
form. The primary focus in Chapter 2 is on the representation of sequences in terms
of the Fourier transform, i.e., as a linear combination of complex exponentials, and the
development of the basic properties of the Fourier transform.

In Chapter 3, we develop the z-transform as a generalization of the Fourier trans-
form. This chapter focuses on developing the basic theorems and properties of the
z-transform and the development of the partial fraction expansion method for the in-
verse transform operation. In Chapter 5, the results developed in Chapters 3 and 4 are
used extensively in a detailed discussion of the representation and analysis of linear
time-invariant systems.

In Chapter 4, we carry out a detailed discussion of the relationship between
continuous-time and discrete-time signals when the discrete-time signals are obtained
through periodic sampling of continuous-time signals. This includes a development of
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the Nyquist sampling theorem. In addition, we discuss upsampling and downsampling
of discrete-time signals, as used, for example, in multirate signal processing systems
and for sampling rate conversion. The chapter concludes with a discussion of some of
the practical issues encountered in conversion from continuous time to discrete time
including prefiltering to avoid aliasing, modeling the effects of amplitude quantization
when the discrete-time signals are represented digitally, and the use of oversampling in
simplifying the A-to-D and D-to-A conversion processes.

In Chapter 5 we apply the concepts developed in the previous chapters to a de-
tailed study of the properties of linear time-invariant systems. We define the class of
ideal, frequency-selective filters and develop the system function and pole-zero rep-
resentation for systems described by linear constant-coefficient difference equations,
a class of systems whose implementation is considered in detail in Chapter 6. Also in
Chapter 5, we define and discuss group delay, phase response and phase distortion,
and the relationships between the magnitude response and the phase response of sys-
tems, including a discussion of minimum-phase, allpass, and generalized linear phase
systems.

In Chapter 6, we focus specifically on systems described by linear constant-
coefficient difference equations and develop their representation in terms of block
diagrams and linear signal flow graphs. Much of this chapter is concerned with develop-
ing a variety of the important system structures and comparing some of their properties.
The importance of this discussion and the variety of filter structures relate to the fact
that in a practical implementation of a discrete-time system, the effects of coefficient
inaccuracies and arithmetic error can be very dependent on the specific structure used.
While these basic issues are similar whether the technology used for implementation
is digital or discrete-time analog, we illustrate them in this chapter in the context of a
digital implementation through a discussion of the effects of coefficient quantization
and arithmetic roundoff noise for digital filters.

While Chapter 6 is concerned with the representation and implementation of
linear constant-coefficient difference equations, Chapter 7 is a discussion of the proce-
dures for obtaining the coefficients of this class of difference equations to approximate
a desired system response. The design techniques separate into those used for infinite
impulse response (IIR) filters and those used for finite impulse response (FIR) filters.

In continuous-time linear system theory, the Fourier transform is primarily an an-
alytical tool for representing signals and systems. In contrast, in the discrete-time case,
many signal processing systems and algorithms involve the explicit computation of the
Fourier transform. While the Fourier transform itself cannot be computed, a sampled
version of it, the discrete Fourier transform (DFT), can be computed, and for finite-
length signals the DFT is a complete Fourier representation of the signal. In Chapter 8,
the discrete Fourier transform is introduced and its properties and relationship to the
discrete-time Fourier transform are developed in detail. In this chapter we also provide
an introduction to the discrete cosine transform which is playing an increasingly impor-
tant role in many applications including audio and video compression. In Chapter 9,
the rich and important variety of algorithms for computing or generating the discrete
Fourier transform is introduced and discussed, including the Goertzel algorithm, the
fast Fourier transform (FFT) algorithms, and the chirp transform.

With the background developed in the earlier chapters and particularly Chapters 2,
3,5, and 8, we focus in Chapter 10 on Fourier analysis of signals using the discrete Fourier
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Preface XXiii

transform. Without a careful understanding of the issues involved and the relationship
between the DFT and the Fourier transform, using the DFT for practical signal analysis
can often lead to confusions and misinterpretations. We address a number of these
issues in Chapter 10. We also consider in some detail the Fourier analysis of signals with
time-varying characteristics by means of the time-dependent Fourier transform.

In Chapter 11, we introduce the discrete Hilbert transform. This transform arises
in a variety of practical applications, including inverse filtering, complex representations
for real bandpass signals, single-sideband modulation techniques, and many others.

With this edition we thank and welcome Professor John Buck. John has been a
long time contributor to this book through his teaching of the subject while a student at
MIT and more recently as a member of the faculty at the University of Massachusetts
Dartmouth. In this edition he has taken the major responsibility for a total reworking
and reorganization of the homework problems and many of the examples in the book.
His insight and dedication to the task are obvious in the final result.

Alan V. Oppenheim
Ronald W. Schafer
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INTRODUCTION

Signal processing has a long and rich history. It is a technology that spans an immense set
of disciplines including entertainment, communications, space exploration, medicine,
and archaeology, just to name a few. Sophisticated signal processing algorithms and
hardware are prevalent in a wide range of systems, from highly specialized military
systems through industrial applications to low-cost, high-volume consumer electron-
ics. Although we routinely take for granted the performance of home entertainment
systems such as television and high-fidelity audio, these systems have always relied
heavily on state-of-the-art signal processing. This is even more true today with the
emergence of advanced television and multimedia entertainment and information sys-
tems. Furthermore, as communication systems become increasingly wireless, mobile,
and multifunctional, the importance of sophisticated signal processing in these systems
continues to grow. Overall, as we look to the future, it is clear that the role of signal
processing in our society is accelerating, driven in part by the convergence of communi-
cations, computers and signal processing in both the consumer arena and in advanced
industrial and government applications.

The field of signal processing has always benefited from a close coupling between
theory, applications, and technologies for implementing signal processing systems. The
growing number of applications and demand for increasingly sophisticated algorithms
goes hand-in-hand with the rapid pace of device technology for implementing signal
processing systems. By some estimates the processing capability of signal processing
microprocessors is likely to increase by a factor of 200 or more over the next ten years.
It seems clear that in many ways the importance and role of signal processing is accel-
erating and expanding.

Signal processing is concerned with the representation, transformation, and ma-
nipulation of signals and the information they contain. For example, we may wish to
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separate two or more signals that have somehow been combined, or we may want to en-
hance some signal component or some parameter of a signal model. In communications
systems, it is generally necessary to do pre-processing such as modulation, signal condi-
tioning, and compression prior to transmission over a channel and then to post process
at the receiver. Prior to the 1960s, the technology for signal processing was almost ex-
clusively continuous-time analog technology.! The rapid evolution of digital computers
and microprocessors together with some important theoretical developments such as
the fast Fourier transform algorithm (FFT) caused a major shift to digital technolo-
gies, giving rise to the field of digital signal processing. A fundamental aspect of digital
signal processing is that it is based on processing sequences of samples. This discrete-
time nature of digital signal processing technology is also characteristic of other signal
processing technologies such as surface acoustic wave (SAW) devices, charge-coupled
devices (CCDs), charge transport devices (CTDs), and switched-capacitor technologies.
In digital signal processing, signals are represented by sequences of finite-precision num-
bers, and processing is implemented using digital computation. The more general term
discrete-time signal processing includes digital signal processing as a special case, but also
includes the possibility that sequences of samples (sampled data) are processed with
other discrete-time technologies. Often the distinction between the terms discrete-time
signal processing and digital signal processing is of minor importance, since both are
concerned with discrete-time signals. While there are many examples in which signals
to be processed are inherently sequences, most applications involve the use of discrete-
time technology for processing continuous-time signals. In this case, a continuous-time
signal is converted into a sequence of samples, i.e., a discrete-time signal. After discrete-
time processing, the output sequence is converted back to a continuous-time signal.
Real-time operation is often desirable for such systems, meaning that the discrete-time
system is implemented so that samples of the output are computed at the same rate at
which the continuous-time signal is sampled. Discrete-time processing of continuous-
time signals in real time is commonplace in communication systems, radar and sonar,
speech and video coding and enhancement, and biomedical engineering to name just
a few. The compact disc player is a somewhat different example in which a processed
form of the input is stored (on the compact disc) and final processing is carried out in
real time when the output is desired. The compact disc recording and playback system
relies on many of the signal processing concepts which we discuss in this book.

Much of traditional signal processing involves processing one signal to obtain
another signal. Another important class of signal processing problems is signal interpre-
tation. In such problems the objective of the processing is not to obtain an output signal
but to obtain a characterization of the input signal. For example, in a speech recognition
or understanding system, the objective is to interpret the input signal or extract informa-
tion from it. Typically, such a system will apply digital preprocessing (filtering, parameter
estimation, etc.) followed by a pattern recognition system to produce a symbolic repre-
sentation such as a phonemic transcription of the speech. This symbolic output can in
turn be the input to a symbolic processing system, such as a rule-based expert system, to

In a general context, we typically refer to the independent variable as “time” even though in specific
contexts the independent variable may take on any of a broad range of possible dimensions. Consequently.
continuous time and discrete time should be thought of as generic terms referring to a continuous independent
variable and a discrete independent variable, respectively.
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provide the final signal interpretation. Still another and relatively new category of signal
processing involves the symbolic manipulation of signal processing expressions. This
type of processing is particularly useful in signal processing workstations and for the
computer-aided design of signal processing systems. In this class of processing, signals
and systems are represented and manipulated as abstract data objects. Object-oriented
programming languages provide a convenient environment for manipulating signals,
systems, and signal processing expressions without explicitly evaluating the data se-
quences and provide the basis for this class of processing. The sophistication of systems
designed to do signal expression processing is directly influenced by the incorporation
of fundamental signal processing concepts, theorems, and properties such as those that
form the basis for this book. For example, a signal processing environment that incor-
porates the property that convolution in the time domain corresponds to multiplication
in the frequency domain can explore a variety of rearrangements of filtering structures,
including those involving the direct use of the discrete Fourier transform and the fast
Fourier transform algorithm. Similarly, environments that incorporate the relationship
between sampling rate and aliasing can make effective use of decimation and interpola-
tion strategies for filter implementation. Similar ideas are currently being explored for
implementing signal processing in network environments. In this type of environment,
data can potentially be tagged with a high-level description of the processing to be
done and the details of the implementation can be based dynamically on the resources
available on the network.

The development of object-oriented environments for computer-aided system
design and for signal processing on dynamically changing networks is still in its very
early stages and any detailed discussion of it is beyond the scope of this text. However, it
is important to recognize that the basic concepts that are the subject of this book should
not be viewed as just theoretical in nature; they are likely to become an explicit integral
part of computer-aided signal processing environments, workstations, and networks.

Many of the concepts and design techniques discussed in this text are now incorpo-
rated into the structure of sophisticated software systems such as Matlab. In many cases
where discrete-time signals are acquired and stored in computers, these tools allow ex-
tremely sophisticated signal processing operations to be formed from basic functions. In
such cases, it is not generally necessary to know the details of the underlying algorithm
that implements the computation of an operation like the FFT, but it is essential to
understand what is computed and how it should be interpreted. In other words, a good
understanding of the concepts considered in this text is essential for intelligent use of
the signal processing software tools that are now widely available.

Signal processing problems are not confined, of course, to one-dimensional signals.-
Although there are some fundamental differences in the theories for one-dimensional
and multidimensional signal processing, much of the material that we discuss in this text
has a direct counterpart in multidimensional systems. The theory of muitidimensional
digital signal processing is presented in detail in Dudgeon and Mersereau (1984), Lim
(1989), and Braceweil (1986).> Many image processing applications require the use of
two-dimensional signal processing techniques. This is the case in such areas as video
coding, medical imaging, enhancement and analysis of aerial photographs, analysis

2 Authors names and dates are used throughout the text to refer to books and papers listed in the
Bibliography at the end of the book.
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of satellite weather photos, and enhancement of video transmissions from lunar and
deep-space probes. Applications of multidimensional digital signal processing to image
processing are discussed in Andrews and Hunt (1977), Macovski (1983), Pratt (1991),
Castleman (1996), Jain (1989), and Chellappa et al. (1998). Seismic data analysis as
required in oil exploration, earthquake measurement, and nuclear test monitoring also
utilizes multidimensional signal processing techniques. Seismic applications are dis-
cussed in Robinson and Treitel (1980) and Robinson and Durrani (1985).

Multidimensional signal processing is only one of many advanced and specialized
topics that build on the fundamentals covered in this text. Spectral analysis based on
the use of the discrete Fourier transform and the use of signal modeling is another
particularly rich and important aspect of signal processing. We introduce many facets
of this topic, focusing on the basic concepts and techniques relating to the use of the
discrete Fourier transform. In addition to these techniques, a variety of spectral analysis
methods rely in one way or another on specific signal models. For example, a class of
high-resolution spectral analysis methods referred to as maximum entropy methods
(MEM spectral analysis) is based on representing the signal to be analyzed as the
response of a discrete-time linear time-invariant filter to either an impulse or to white
noise. Spectral analysis is achieved by estimating the parameters (e.g., the difference
equation coefficients) of the system and then evaluating the magnitude squared of the
frequency response of the model filter. A thorough and detailed treatment of the issues
and techniques of this approach to signal modeling and spectral analysis builds directly
from the fundamentals in this text. Detailed discussions can be found in the texts by Kay
(1988), Marple (1987), and Hayes (1996). Signal modeling also plays an important role
in data compression and coding, and again the fundamentals of difference equations
provide the basis for understanding many of these techniques. For example, one class
of signal coding techniques, referred to as linear predictive coding (LPC), exploits the
notion that if a signal is the response of a certain class of discrete-time filters, the
signal value at any time index is a linear function of (and thus linearly predictable
from) previous values. Consequently, efficient signal representations can be obtained
by estimating these prediction parameters and using them along with the prediction
error to represent the signal. The signal can then be regenerated when needed from the
model parameters. This class of signal coding techniques has been particularly effective
in speech coding and is described in considerable detail in Jayant and Noll (1984),
Markel and Gray (1976), Rabiner and Schafer (1978), and Deller et al. (1993).

Another advanced topic of considerable importance is adaptive signal processing.
Adaptive systems represent a particular class of time-varying and, in some sense, non-
linear systems with broad application and with established and effective techniques for
their design and analysis. Again, many of these techniques build from the fundamen-
tals of discrete-time signal processing covered in this text. Details of adaptive signal
processing are given by Haykin (1996), and Widrow and Stearns (1985).

These represent only a few of the many advanced topics that extend from the topics
covered in this text. Others include advanced and specialized filter design procedures,
a variety of specialized algorithms for evaluation of the Fourier transform, specialized
filter structures, and various advanced multirate signal processing techniques including
filter banks and wavelet transforms.

It is often said that the purpose of a fundamental textbook should be to uncover
rather than cover a subject, and in choosing the topics and depth of coverage in this book
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we have been guided by this philosophy. The preceding brief discussion of advanced
topics and the Bibliography at the end of the book should be strongly suggestive of the
rich variety of directions that these fundamentals begin to uncover.

HISTORICAL PERSPECTIVE

Discrete-time signal processing has advanced in uneven steps over a long period of
time. Looking back at the development of the field provides a valuable perspective on
fundamentals that will remain central to the field long into the future. Since the inven-
tion of calculus in the 17th century, scientists and engineers have developed models to
represent physical phenomena in terms of functions of continuous variables and differ-
ential equations. Numerical techniques have been used to solve these equations when
analytical solutions are not possible. Indeed, Newton used finite-difference methods
that are special cases of some of the discrete-time systems that we present in this text.
Mathematicians of the 18th century, such as Euler, Bernoulli, and Lagrange, developed
methods for numerical integration and interpolation of functions of a continuous vari-
able. Interesting historical research by Heideman, Johnson, and Burrus (1984) showed
that Gauss discovered the fundamental principle of the fast Fourier transform (dis-
cussed in Chapter 9) as early as 1805—even before the publication of Fourier’s treatise
on harmonic series representation of functions.

Until the early 1950s, signal processing as we have defined it was typically done
with analog systems that were implemented with electronic circuits or even with me-
chanical devices. Even though digital computers were becoming available in business
environments and in scientific laboratories, they were expensive and had relatively lim-
ited capabilities. About that time, the need for more sophisticated signal processing in
some application areas created considerable interest in discrete-time signal processing.
One of the first uses of digital computers in digital signal processing was in oil prospect-
ing, where seismic data could be recorded on magnetic tape for later processing. This
type of signal processing could not generally be done in real time; minutes or even
hours of computer time were often required to process only seconds of data. Even so,
the flexibility of the digital computer and the potential payoffs made this alternative
extremely inviting.

Also in the 1950s, the use of digital computers in signal processing arose in a
different way. Because of the flexibility of digital computers, it was often useful to sim-
ulate a signal processing system on a digital computer before implementing it in analog
hardware. In this way, a new signal processing algorithm or system could be studied
in a flexible experimental environment before committing economic and engineering
resources to constructing it. Typical examples of such simulations were the vocoder
simulations carried out at Lincoln Laboratory and Bell Laboratories. In the implemen-
tation of an analog channel vocoder, for example, the filter characteristics affected the
perceived quality of the coded speech signal in ways that were difficult to quantify ob-
jectively. Through computer simulations, these filter characteristics could be adjusted
and the perceived quality of a speech coding system evaluated prior to construction of
the analog equipment.

In all of these examples of signal processing using digital computers, the computer
offered tremendous advantages in flexibility. However, the processing could not be done
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in real time. Consequently, a prevalent attitude was that the digital computer was being
used to approximate, or simulate, an analog signal processing system. In keeping with
that style, early work on digital filtering was very much concerned with ways in which a
filter could be programmed on a digital computer so that with analog-to-digital conver-
sion of the signal, followed by digital filtering, followed by digital-to-analog conversion,
the overall system approximated a good analog filter. The notion that digital systems
might, in fact, be practical for the actual real-time implementation of signal processing
in speech communication, radar processing, or any of a variety of other applications
seemed at the most optimistic times to be highly speculative. Speed, cost, and size were,
of course, three of the important factors in favor of the use of analog components.

As signals were being processed on digital computers, researchers had a natural
tendency to experiment with increasingly sophisticated signal processing algorithms.
Some of these algorithms grew out of the flexibility of the digital computer and had no
apparent practicalimplementation in analog equipment. Thus, many of these algorithms
were treated as interesting, but somewhat impractical, ideas. The development of such
signal processing algorithms made the notion of all-digital implementation of signal
processing systems even more tempting. Active work began on the investigation of
digital vocoders, digital spectrum analyzers, and other all-digital systems, with the hope
that eventually such systems would become practical.

The evolution of a new point of view toward discrete-time signal processing was
further accelerated by the disclosure by Cooley and Tukey (1965) of an efficient al-
gorithm for computation of Fourier transforms. This class of algorithms has come to
be known as the fast Fourier transform, or FFT. The FFT was significant for several
reasons. Many signal processing algorithms that had been developed on digital com-
puters required processing times several orders of magnitude greater than real time.
Often this was because spectrum analysis was an important component of the signal
processing and no efficient means were available for implementing it. The fast Fourier
transform algorithm reduced the computation time of the Fourier transform by orders
of magnitude, permitting the implementation of increasingly sophisticated signal pro-
cessing algorithms with processing times that allowed interactive experimentation with
the system. Furthermore, with the realization that the fast Fourier transform algorithms
might, in fact, be implementable in special-purpose digital hardware, many signal pro-
cessing algorithms that previously had appeared to be impractical began to appear to
have practical implementations.

Another important implication of the fast Fourier transform algorithm was that
it was an inherently discrete-time concept. It was directed toward the computation of
the Fourier transform of a discrete-time signal or sequence and involved a set of prop-
erties and mathematics that was exact in the discrete-time domain—it was not simply
an approximation to a continuous-time Fourier transform. This had the effect of stim-
ulating a reformulation of many signal processing concepts and algorithms in terms of
discrete-time mathematics, and these techniques then formed an exact set of relation-
ships in the discrete-time domain. Following this shift away from the notion that signal
processing on a digital computer was merely an approximation to analog signal pro-
cessing techniques, there emerged a strong interest in discrete-time signal processing
as an important field of investigation in its own right.

Another major development in the history of discrete-time signal processing
occurred in the field of microelectronics. The invention and subsequent proliferation of
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the microprocessor paved the way for low-cost implementations of discrete-time signal
processing systems. Although the first microprocessors were too slow to implement
most discrete-time systems in real time, by the mid-1980s integrated circuit technology
had advanced to a level that permitted the implementation of very fast fixed-point and
floating-point microcomputers with architectures specially designed for implementing
discrete-time signal processing algorithms. With this technology came, for the first time,
the possibility of widespread application of discrete-time signal processing techniques.

FUTURE PROMISE

Microelectronics engineers continue to strive for increased circuit densities and pro-
duction yields, and as a result, the complexity and sophistication of microelectronic
systems are continually increasing. Indeed, complexity and capability of DSP chips
have grown exponentially since the early 1980s and show no sign of slowing down. As
wafer-scale integration techniques become highly developed, very complex discrete-
time signal processing systems will be implemented with low cost, miniature size, and
low power consumption. Consequently, the importance of discrete-time signal pro-
cessing will almost certainly continue to increase and the future development of the
field is likely to be even more dramatic than the course of development that we have
just described. Discrete-time signal processing techniques are already promoting rev-
olutionary advances in some fields of application. A notable example is in the area of
telecommunications, where discrete-time signal processing techniques, microelectronic
technology, and fiber optic transmission combine to change the nature of communica-
tion systems in truly revolutionary ways. A similar impact can be expected in many
other areas of technology.

While discrete-time signal processing is a dynamic, rapidly growing field, its funda-
mentals are well formulated. Our goal in this book is to provide a coherent treatment of
the theory of discrete-time linear systems, filtering, sampling, and discrete-time Fourier
analysis. The topics presented should provide the reader with the knowledge necessary
for an appreciation of the wide scope of applications for discrete-time signal process-
ing and a foundation for contributing to future developments in this exciting field of
technology.

Al salll dusiall a3
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DISCRETE-TIME SIGNALS
AND SYSTEMS

2.0 INTRODUCTION

The term signal is generally applied to something that conveys information. Signals
generally convey information about the state or behavior of a physical system, and
often, signals are synthesized for the purpose of communicating information between
humans or between humans and machines. Although signals can be represented in many
ways, in all cases the information is contained in some pattern of variations. Signals are
represented mathematically as functions of one or more independent variables. For
example, a speech signal is represented mathematically as a function of time, and a
photographic image is represented-as a brightness function of two spatial variables. A
common convention—and one that usually will be followed in this book—is to refer
to the independent variable of the mathematical representation of a signal as time,
although in specific examples the independent variable may in fact not represent time.

The independent variable in the mathematical representation of a signal may be
either continuous or discrete. Continuous-time signals are defined along a continuum
of times and thus are represented by a continuous independent variable. Continuous-
time signals are often referred to as analog signals. Discrete-time signals are defined at
discrete times, and thus, the independent variable has discrete values; i.e., discrete-time
signals are represented as sequences of numbers. Signals such as speech or images may
have either a continuous- or a discrete-variable representation, and if certain conditions
hold, these representations are entirely equivalent. Besides the independent variables
being either continuous or discrete, the signal amplitude may be either continuous or
discrete. Digital signals are those for which both time and amplitude are discrete.

Signal-processing systems may be classified along the same lines as signals. That
is, continuous-time systems are systems for which both the input and the output are
8
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continuous-time signals, and discrete-time systems are those for which both the input
and the output are discrete-time signals. Similarly, a digital system is a system for which
both the input and the output are digital signals. Digital signal processing, then, deals
with the transformation of signals that are discrete in both amplitude and time. The
principal focus in this book is on discrete-time (rather than digital) signals and systems.
However, the theory of discrete-time signals and systems is also exceedingly useful for
digital signals and systems, particularly if the signal amplitudes are finely quantized. The
effects of signal amplitude quantization are considered in Sections 4.8, 6.7-6.9, and 9.7.

Discrete-time signals may arise by sampling a continuous-time signal, or they may
be generated directly by some discrete-time process. Whatever the origin of the discrete-
time signals, discrete-time signal-processing systems have many attractive features. They
can be realized with great flexibility with a variety of technologies, such as charge
transport devices, surface acoustic wave devices, general-purpose digital computers, or
high-speed microprocessors. Complete signal-processing systems can be implemented
using VLSI techniques. Discrete-time systems can be used to simulate analog systems
or, more importantly, to realize signal transformations that cannot be implemented
with continuous-time hardware. Thus, discrete-time representations of signals are often
desirable when sophisticated and flexible signal processing is required.

In this chapter, we consider the fundamental concepts of discrete-time signals and
signal-processing systems for one-dimensional signals. We emphasize the class of linear
time-invariant discrete-time systems. Many of the properties and results that we derive
in this and subsequent chapters will be similar to properties and results for linear time-
invariant continuous-time systems, as presented in a variety of texts. (See, for example,
Oppenheim and Willsky, 1997.) In fact, it is possible to approach the discussion of
discrete-time systems by treating sequences as analog signals that are impulse trains. This
approach, if implemented carefully, can lead to correct results and has formed the basis
for much of the classical discussion of sampled data systems. (See, for example, Phillips
and Nagle, 1995.) However, not all sequences arise from sampling a continuous-time
signal, and many discrete-time systems are not simply approximations to corresponding
analog systems. Furthermore, there are important and fundamental differences between
discrete- and continuous-time systems. Therefore, rather than attempt to force results
from continuous-time system theory into a discrete-time framework, we will derive
parallel results starting within a framework and with notation that is suitable to discrete-
time systems. Discrete-time signals will be related to continuous-time signals only when
it is necessary and useful to do so.

2.1 DISCRETE-TIME SIGNALS: SEQUENCES

Discrete-time signals are represented mathematically as sequences of numbers. A se-

quence of numbers x, in which the nth number in the sequence is denoted x[n],! is
formally written as

x = {x[n]}, —00 < n < 00, (2.1)

where #n is an integer. In a practical setting, such sequences can often arise from periodic

1A sequence is simply a function whose domain is the set of integers. Note that we use [ ] to enclose

the independent variable of such functions, and we use () to enclose the independent variable of continuous-
variable functions.
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sampling of an analog signal. In this case, the numeric value of the nth number in the
sequence is equal to the value of the analog signal, x,(¢), at time 1T} i.e.,

x[n] = x,(nT), —00 < B < X. (2.2)

The quantity 7T is called the sampling period, and its reciprocal is the sampling fre-
quency. Although sequences do not always arise from sampling analog waveforms, it is
convenient to refer to x[n] as the “nth sample” of the sequence. Also, although, strictly
speaking, x[n] denotes the nth number in the sequence, the notation of Eq. (2.1) is often
unnecessarily cumbersome, and it is convenient and unambiguous to refer to “the se-
quence x[n]” when we mean the entire sequence, just as we referred to the “analog signal
x,(¢).” Discrete-time signals (i.e., sequences) are often depicted graphically as shown in
Figure 2.1. Although the abscissa is drawn as a continuous line, it is important to recog-
nize that x[n] is defined only for integer values of #. It is not correct to think of x[n] as
being zero for # is not an integer; x[n] is simply undefined for noninteger values of n.

x[-1] ¢*1%

x[-2] x [1;1 2l x[n]

TT”” “Ir.zsmon
2345 [13

98-76-54-3-2-101

Figure 2.1 Graphical representation of
a discrete-time signal.

As an example, Figure 2.2(a) shows a segment of a speech signal corresponding to
acoustic pressure variation as a function of time, and Figure 2.2(b) presents a sequence

256 samples |
(b)

Figure 2.2 (a) Segment of a continuous-time speech signal. {b) Sequence of samples
obtained from part (a) with T = 125 us.
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of samples of the speech signal. Although the original speech signal is defined at all
values of time ¢, the sequence contains information about the signal only at discrete
instants. From the sampling theorem, discussed in Chapter 4, the original signal can be
reconstructed as accurately as desired from a corresponding sequence of samples if the
samples are taken frequently enough.

2.1.1 Basic Sequences and Sequence Operations

In the analysis of discrete-time signal-processing systems, sequences are manipulated
in several basic ways. The product and sum of two sequences x[n] and y[n] are defined
as the sample-by-sample product and sum, respectively. Multiplication of a sequence
x[n] by a number « is defined as multiplication of each sample value by a. A sequence
y[n] is said to be a delayed or shifted version of a sequence x[n] if

y[n] = x[n — no], (2.3)
where ng is an integer.

In discussing the theory of discrete-time signals and systems, several basic se-
quences are of particular importance. These sequences are shown in Figure 2.3 and are
discussed next.

The unit sample sequence (Figure 2.3a) is defined as the sequence

5ln] = {‘f nEo Y

Aswe will see, the unit sample sequence plays the same role for discrete-time signals and
systems that the unit impulse function (Dirac delta function) does for continuous-time
signals and systems. For convenience, the unit sample sequence is often referred toas a
discrete-time impulse or simply as an impulse. It is important to note that a discrete-time
impulse does not suffer from the mathematical complications of the continuous-time
impulse; its definition is simple and precise.

As we will see in the discussion of linear systems, one of the important aspects
of the impulse sequence is that an arbitrary sequence can be represented as a sum of
scaled, delayed impulses. For example, the sequence p[n] in Figure 2.4 can be expressed
as

pln] = a_aé[n + 3]+ a18[n — 1] + a28[n — 2] + az8[n - 7). (2.5)
More generally, any sequence can be expressed as

o0

x[n] = Y x[k]s[n ~ k). (2.6)

k=—00

We will make specific use of Eq. (2.6) in discussing the representation of discrete-time
linear systems.
The unit step sequence (Figure 2.3b) is given by

1, n>0,
uln] = {0, n<O 2.7)
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Unit sample

Unit step

Real exponential

IIIITTTL

0o n
(c)
Sinusoidal
, .I]IT rl
Figure 2.3 Some basic sequences.
The sequences shown play important
roles in the analysis and representation
(@) of discrete-time signals and systems.

Figure 2.4 Example of a sequence to
be represented as a sum of scaled,
delayed impulses.

The unit step is related to the impulse by

uln] = > S[k]; (2.8)

k=—00

that is, the value of the unit step sequence at (time) index » is equal to the accumulated
sum of the value at index r and all previous values of the impulse sequence. An alterna-
tive representation of the unit step in terms of the impulse is obtained by interpreting
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the unit step in Figure 2.3(b) in terms of a sum of delayed impulses as in Eq. (2.6). In
this case, the nonzero values are all unity, so

uln]) =8[n]+d8n—-1]1+8rn—-2]1+--- (2.9a)

or
uln] = i 8[n — k. (2.9b)
k=0

Conversely, the impulse sequence can be expressed as the first backward difference of
the unit step sequence, i.e.,

8[n] = u[n] — u[n —1]. (2.10)

Exponential sequences are extremely important in representing and analyzing lin-
ear time-invariant discrete-time systems. The general form of an exponential sequence
is

x[n] = Ac". | (2.11)

If Aand o are real numbers, then the sequence is real. If 0 < @ < 1 and Ais positive,
then the sequence values are positive and decrease with increasing #, as in Figure 2.3(c).
For —1 < a < 0, the sequence values alternate in sign, but again decrease in magnitude
with increasing 7. If [«| > 1, then the sequence grows in magnitude as n increases.

Example 2.1 Combining Basic Sequences

We often combine basic sequences to form simple representations of other sequences.
If we want an exponential sequence that is zero for n < 0, we can write this as the
somewhat cumbersome expression

Aa”, n>0,
x[n] = {O, n<o. (2.12)

A much simpler expression is x[n] = Ac"u[n].
Sinusoidal sequences are also very important. A sinusoidal sequence has the gen-
eral form
x[n] = A cos(won + ¢), for all n, (2.13)

with A and ¢ real constants, and is illustrated in Figure 2.3(d).

The exponential sequence Aa” with complex « has real and imaginary parts that
are exponentially weighted sinusoids. Specifically, if @ = |a|e/®® and A = | Ale/?, the
sequence Aa” can be expressed in any of the following ways:

x[n] = Aa” = |Ale/?|a|"e/O"
= | A| |a|"e/ @ont?) (2.14)

= |A||a|” cos(won + ¢) + jl Al la|” sin(wen + ¢).
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The sequence oscillates with an exponentially growing envelope if |¢| > 1 or with an
exponentially decaying envelope if |¢] < 1. (As a simple example, consider the case
W=7 )

When || = 1, the sequence is referred to as a complex exponential sequence and
has the form

x[n] = lAlej(“’O"+¢) = |A| cos(won + ¢) + jlA|sin(won + ¢); (2.15)

that is, the real and imaginary parts of e/“9" vary sinusoidally with n. By analogy with the
continuous-time case, the quantity wy is called the frequency of the complex sinusoid or
complex exponential, and ¢ is called the phase. However, note that n is a dimensionless
integer. Thus, the dimension of w( must be radians. If we wish to maintain a closer
analogy with the continuous-time case, we can specify the units of w¢ to be radians per
sample and the units of n to be samples.

The fact that nis always aninteger in Eq. (2.15) leads to some important differences
between the properties of discrete-time and continuous-time complex exponential se-
quences and sinusoidal sequences. An important difference between continuous-time
and discrete-time complex sinusoids is seen when we consider a frequency (wo + 2).
In this case,

x[n] = Ael(wot+lm)n

— Aelwongi2an — Aglwon (2_16)

More generally, we can easily see that complex exponential sequences with frequencies
(wo + 27r), where r is an integer, are indistinguishable from one another. An identical
statement holds for sinusoidal sequences. Specifically, it is easily verified that

x[n] = A cos[(wg + 2ntr)n + @]

(2.17)
= A cos(won + ¢).

The implications of this property for sequences obtained by sampling sinusoids and
other signals will be discussed in Chapter 4. For now, we simply conclude that, when
discussing complex exponential signals of the form x[n] = Ae/“" or real sinusoidal
signals of the form x[n] = A cos(won + ¢), we need only consider frequencies in an
interval of length 27, such as —r < wp < 7w or 0 < wg < 27.

Another important difference between continuous-time and discrete-time com-
plex exponentials and sinusoids concerns their periodicity. In the continuous-time case,
a sinusoidal signal and a complex exponential signal are both periodic, with the period
equal to 2rr divided by the frequency. In the discrete-time case, a periodic sequence is
a sequence for which

x[n] = x[n+ N], for all (2.18)

where the period N is necessarily an integer. If this condition for periodicity is tested
for the discrete-time sinusoid, then

A cos(won + ¢) = A cos(won + woN + @), (2.19)
which requires that
woN = 2rk, (2.20)

where k is an integer. A similar statement holds for the complex exponential sequence

Al salll dusiall a3
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Cel®m; that is, periodicity with period N requires that
efwo(fH-N) — eiwon, (2_21)

which is true only for wg N = 27k, as in Eq. (2.20). Consequently, complex exponential
and sinusoidal sequences are not necessarily periodic in n with period (27 /wo) and,
depending on the value of @, may not be periodic at all.

Example 2.2 Periodic and Aperiodic Discrete-Time
Sinusoids

Consider the signal xi[n] = cos(n/4). This signal has a period of N = 8. To show
this, note that x[n + 8] = cos(w(n + 8)/4) = cos(7n/4 + 2n) = cos(zn/4) = x[n],
satisfying the definition of a discrete-time periodic signal. Contrary to our intuition
from continuous-time sinusoids, increasing the frequency of a discrete-time sinusoid
does not necessarily decrease the period of the signal. Consider the discrete-time
sinusoid x;[n] = cos(3n/8), which has a higher frequency than x[#]. However, x;[n]
is not periodic with period 8, since x;[n+ 8] = cos(3n(n+ 8)/8) = cos(37n/8+3n) =
—x;[n]. Using an argument analogous to the one for x; [n], we can show that x;[n] has
a period of N = 16. Thus, increasing the frequency from wg = 27/8 to w9 = 37/8
also increases the period of the signal. This occurs because discrete-time signals are
defined only for integer indices 7.

_ The integer restriction on n causes some sinusoidal signals not to be periodic
at all. For example, there is no integer N such that the signal x3[n] = cos(n) satisfies
the condition x3[n + N | = x3[#] for all n. These and other properties of discrete-time
sinusoids that run counter to their continuous-time counterparts are caused by the
limitation of the time index » to integers for discrete-time signals and systems.

When we combine the condition of Eq. (2.20) with our previous observation that
wo and (wo + 27r) are indistinguishable frequencies, it becomes clear that there are
N distinguishable frequencies for which the corresponding sequences are periodic with
period N. One set of frequencies is wx = 27k/N, k=0, 1, ..., N — 1. These properties
of complex exponential and sinusoidal sequences are basic to both the theory and the
design of computational algorithms for discrete-time Fourier analysis, and they will be
discussed in more detail in Chapters 8 and 9.

Related to the preceding discussion is the fact that the interpretation of high
and low frequencies is somewhat different for continuous-time and discrete-time sinu-
soidal and complex exponential signals. For a continuous-time sinusoidal signal x(¢) =
A cos(Qof +¢), as Qg increases, x(¢) oscillates more and more rapidly. For the discrete-
time sinusoidal signal x[n] = A cos(won + ¢), as w¢ increases from wo = 0 toward
wo = 7, x[n] oscillates more and more rapidly. However, as @ increases from wg = 7
to wg = 2m, the oscillations become slower. This is illustrated in Figure 2.5. In fact, be-
cause of the periodicity in @ of sinusoidal and complex exponential sequences, w¢ = 27
is indistinguishable from w¢ = 0, and, more generally, frequencies around wy = 27 are
indistinguishable from frequencies around wo = 0. As a consequence, for sinusoidal
and complex exponential signals, values of @ in the vicinity of w¢ = 2wk for any integer
value of k are typically referred to as low frequencies (relatively slow oscillations), while
values of wy in the vicinity of wo = (7 + 27 k) for any integer value of k are typically
referred to as high frequencies (relatively rapid oscillations).
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w0=00rw0=2‘n'

(a)

wy =8 or wy=157/8

(b)

wq =74 orwy="T7m/4

()

(TTHHHES

from zero toward = (parts a—d), the
sequence oscillates more rapidly. As wq
increases from = to 2 (parts d-a), the

0 n Figure 2.5 COS wqn for several
different values of wg. AS wq increases
{d) oscillations become slower.

2.2 DISCRETE-TIME SYSTEMS

A discrete-time system is defined mathematically as a transformation or operator that
maps an input sequence with values x[z] into an output sequence with values y[n]. This
can be denoted as

ylnl = Tix[n]} (2.22)
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Figure 2.6 Representation of a
discrete-time system, i.e., a
transformation that maps an input
— T[] p—> sequence x[n] into a unique output
x[n] yInl  sequence y[n].

and is indicated pictorially in Figure 2.6. Equation (2.22) represents a rule or formula
for computing the output sequence values from the input sequence values. It should
be emphasized that the value of the output sequence at each value of the index » may
depend on x[n] for all values of n. The following examples illustrate some simple and
useful systems.

Example 2.3 The Ildeal Delay System
The ideal delay system is defined by the equation
yln] = x[n — n4l, —00 < H < 00, (2.23)

where n, is a fixed positive integer called the delay of the system. In words, the ideal
delay system simply shifts the input sequence to the right by ns samples to form the
output. If, in Eq. (2.23), n, is a fixed negative integer, then the system would shift the
input to the left by iz, samples, corresponding to a time advance.

In Example 2.3, only one sample of the input sequence is involved in detérmining
a certain output sample. In the following example, this is not the case,

Example 2.4 Moving Average

The general moving-average system is defined by the equation
M;

1
yinl M+ M, +1 L x[n ]
=—M;

1
= m{x[n+M1]+x[n+M1—1]+---+x[n] (224)

+x[n—1]+--- 4+ x[n — M,]}.

1l

x[k]

l k

SERRRY

Figure 2.7 Sequence values involved in computing a causal moving average.

This system computes the nth sample of the output sequence as the average of (M1 +
M, + 1) samples of the input sequence around the nth sample. Figure 2.7 shows an

Al salll dusiall a3



Al sl dnsmpall &30l
EE-COMMITTEE

18 ' Discrete-Time

caynl2YL gy sall
al g ¥ gl

input sequence plotted as a function of a dummy index k and the samples involved in
the computation of the output sample y[n] forn =7, M; = 0,and M, = 5. The output
sample y[7] is equal to one-sixth of the sum of all the samples between the vertical
dotted lines. To compute y[8], both dotted lines would move one sample to the right.

Classes of systems are defined by placing constraints on the properties of the
transformation 7 {-}. Doing so often leads to very general mathematical representations,
as we will see. Of particular importance are the system constraints and properties,
discussed in Sections 2.2.1-2.2.5.

2.2.1 Memoryless Systems
A system is referred to as memoryless if the output y[n] at every value of n depends
only on the input x[n] at the same value of n.

Example 2.5 A Memoryless System

An example of a memoryless system is a system for which x[n] and y[n] are related by
y[n] = (x[n])?, for each value of n. (2.25)

The system in Example 2.3 is not memoryless unless n; = 0; in particular, this system
is referred to as having “memory” whether ny is positive (a time delay) or negative
(a time advance). The system in Example 2.4 is not memoryless unless M1 = M, = 0.

2.2.2 Linear Systems

The class of linear systems is defined by the principle of superposition. If y;[n] and y,[n]
are the responses of a system when x;[n] and x;[n] are the respective inputs, then the
system is linear if and only if

T{x1[n] + x2[n]} = T{x[n]} + T{x2[n]} = y1[n] + y2[n] (2.26a)
d
" T{ax[n]} = aT{x[n]} = ay[n], (2.26b)

where a is an arbitrary constant. The first property is called the additivity property, and
the second is called the homogeneity or scaling property. These two properties can be
combined into the principle of superposition, stated as

T{axi[n] + bxz[n]} = aT{x1[n}} + bT{xz2[n]} (2.27)

for arbitrary constants a and b. This equation can be generalized to the superposition
of many inputs. Specifically, if

x[n] = axn], (2.28a)
k
then the output of a linear system will be
y[n] = Zakyk[n], (2.28b)
k

where y;[n] is the system response to the input x;[n].

By using the definition of the principle of superposition, we can easily show that
the systems of Examples 2.3 and 2.4 are linear systems. (See Problem 2.23.) An example
of a nonlinear system is the system in Example 2.5.



Al sl dnsmpall &30l
EE-COMMITTEE

Sec. 2.2 Discrete-Time Systems

caynl2YL gy sall
al g ¥ gl

Example 2.6 The Accumulator System

The system defined by the input—output equation

n

il =) xK] 229)

k=—o

is called the accumulator system, since the output at time # is just the sum of the present
and all previous input samples. The accumulator system is a linear system. In order to
prove this, we must show that it satisfies the superposition principle for all inputs, not
just any specific set of inputs. We begin by defining two arbitrary inputs x1[n] and xz[n]

and their corresponding outputs
n

yilrl =Y xlk], (2.30)
k=—o0

yalnl = > xa[k]. (2.31)
k=—00

When the input is x3[n] = ax;[n] + bxy[n], the superposition principle requires the
output y3[n] = ay1[r] + byz[r] for all possible choices of a and b. We can show this by
starting from Eq. (2.29): ‘

n

y3[n] = kZ x3[k], 23

— ki (ax1[k] + bxz[K]), (2.33)

=a i x[k] +b i PALs (2.34)
k=00 —

= ayi[n] + by2[n]. (2.35)

Thus, the accumulator system of Eq. (2.29) satisfies the superposition principle for all
inputs and is therefore linear.

In general, it may be simpler to prove that a system is not linear (if it is not) than
to prove that it is linear (if it is). We simply must find an input or set of inputs for which
the system does not satisfy the conditions of linearity.

Example 2.7 A Nonlinear System

Consider the system defined by
wln] = loggg (Jx[n]l). (236)

This system is not linear. In order to prove this, we only need to find one
counterexample—that is, one set of inputs and outputs which demonstrates that the sys-
tem violates the superposition principle, Eq. (2.27). The inputs x; [#] = 1and xz[n] = 10
are a counterexample. The output for the first signal is w [n] = 0, while for the second,
wy[n] = 1. The scaling property of linear systems requires that, since x3[n] = 10x; [n],
if the system is linear, it must be true that w;[n] = 10w [n]. Since this is not so for
Eq. (2.36) for this set of inputs and outputs, the system is not linear.



20 Discrete-Time ———
sgma ¥ iyl

2.2.3 Time-Invariant Systems

A time-invariant system (often referred to equivalently as a shift-invariant system) is
a system for which a time shift or delay of the input sequence causes a corresponding
shift in the output sequence. Specifically, suppose that a system transforms the input
sequence with values x[n] into the output sequence with values y[n]. Then the system is
said to be time invariant if, for all ng, the input sequence with values x;[n] = x[n — ng)

produces the output sequence with values y[n] = y[n — ng].

Asin the case of linearity, proving that a system is time invariant requires a general
proof making no specific assumptions about the input signals. All of the systems in
Examples 2.3-2.7 are time invariant. The style of proof for time invariance is illustrated

in Examples 2.8 and 2.9.

Example 2.8 The Accumulator as a Time-Iinvariant System

Consider the accumulator from Example 2.6. We define x;[n] = x[n — ng]. To show
time invariance, we solve for both y[r—ry] and y1[n] and compare them to see whether

they are equal. First,

yin—nol= 3 x[K]
k=—00
Next, we find
nlrl = Y ulk
k=—00
= Z x[k — np].
k=—00

Substituting the change of variables k| = k — np into the summation gives

n—ny

yilrl= ) xki] = yin - nol.

kl =00

Thus, the accumulator is a time-invariant system.

The following example illustrates a system that is not time invariant.

Exampie 2.9 The Compressor System
The system defined by the relation

yin] = x[Mn], —00 < N < 00,

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

with M a positive integer, is called a compressor. Specifically, it discards (M — 1)
samples out of M, i.e,, it creates the output sequence by selecting every Mth sample.
This system is not time invariant. We can show that it is not by considering the response
y1[n] to the input x;[r] = x[r — no]. In order for the system to be time invariant, the
output of the system when the input is x;[#] must be equal to y[n — ny]. The output
y1[n] that results from the input x;[n] can be directly computed from Eq. (2.41) to be

yi[n] = x1[Mn] = x[ Mn — ny].

(2.42)
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Delaying the output y[n] by ngp samples yields
yln — ol = x[M(n — ny)]. 243)

Comparing these two outputs, we see that y[n — ng] is not equal to y1[n] for all M and
ng, and therefore, the system is not time invariant.

It is also possible to prove that a system is not time invariant by finding a single
counterexample that violates the time-invariance property. For instance, a counterex-
ample for the compressor is the case when M = 2, x[n] = §[n], and x;1[n] = 8[n — 1]
For this choice of inputs and M, y[n] = §[n], but y;[n] = 0; thus, it is clear that
y1[n] # y[n — 1] for this system. ‘

2.2.4 Causality

A system s causal if, for every choice of ny, the output sequence value at the indexn = ny
depends only on the input sequence values for n < ng. This implies that if x1[n] = x;[n]
for n < ny, then y1[n] = y,{n] for n < ny. That is, the system is nonanticipative. The
system of Example 2.3 is causal for n; > 0 and is noncausal for ny < 0. The system of
Example 2.4 is causal if —M; > 0 and M, > 0; otherwise it is noncausal. The system of
Example 2.5 is causal, as is the accumulator of Example 2.6 and the nonlinear system
in Example 2.7. However, the system of Example 2.9 is noncausal if M > 1, since
¥{1] = x[M]. Another noncausal system is given in the following example.

Example 2.10 The Forward and Backward Difference
Systems

Consider the forward difference system defined by the relationship
yln] = x[n + 1] — x[n]. (2.44)

This system is not causal, since the current value of the output depends on a future
value of the input. The violation of causality can be demonstrated by considering the
two inputs x1[n] = 8[n — 1] and x;[n] = 0 and their corresponding outputs y;[n] =
8[n] — 8[n — 1] and y;[n] = 0. Note that x1[n] = x;[n] for n < 0, so the definition of
causality requires that y1[n] = y;[n] for n < 0, which is clearly not the case for n = 0.
Thus, by this counterexample, we have shown that the system is not causal.

The backward difference system, defined as

y[n] = x[n] — x[n - 1], (2.45)

has an output that depends only on the present and past values of the input. Because
there is no way for the output at a specific time y[#ny] to incorporate values of the input
for n > ng, the system is causal.

2.2.5 Stability

A system is stable in the bounded-input, bounded-output (BIBO) sense if and only if
every bounded input sequence produces a bounded output sequence. The input x{r] is
bounded if there exists a fixed positive finite value B, such that

|x[n]| = By < o0, for all n. (2.46)
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Stability requires that, for every bounded input, there exist a fixed positive finite value
B, such that

ly[n]l < By < o0, for all n. (2.47)

It is important to emphasize that the properties we have defined in this section are
properties of systems, not of the inputs to a system. That is, we may be able to find
inputs for which the properties hold, but the existence of the property for some inputs
does not mean that the system has the property. For the system to have the property, it
must hold for all inputs. For example, an unstable system may have some bounded inputs
for which the output is bounded, but for the system to have the property of stability, it
must be true that for all bounded inputs, the output is bounded. If we can find just one
input for which the system property does not hold, then we have shown that the system
does not have that property. The following example illustrates the testing of stability
for several of the systems that we have defined.

Example 2.11 Testing for Stability or Instability

The system of Example 2.5 is stable. To see this, assume that the input x[n] is bounded
such that |x[n]| < B, for all n. Then |y[#]| = |x[#]|> < B2. Thus, we can choose
B, = B? and prove that y[n] is bounded.

Likewise, we can see that the system defined in Example 2.7 is unstable, since
y[n] = log,g(|x[n]|) = —oo for any values of the time index n at which x[n] = 0, even
though the output will be bounded for any input samples that are not equal to zero.

The accumulator, as defined in Example 2.6 by Eq. (2.29), is also not stable. For
example, consider the case when x[n] = u[n], which is clearly bounded by B, = 1. For
this input, the output of the accumulator is

n

y[n] = S ulk] (2.48)
k=—00
0, n <0,
= { (n+1), n=0. (2.49)

There is no finite choice for By such that (n+ 1) < B, < oc for all n; thus, the system
is unstable.

Using similar arguments, it can be shown that the systems in Examples 2.3, 2.4,
2.9 and 2.10 are all stable.

2.3 LINEAR TIME-INVARIANT SYSTEMS

A particularly important class of systems consists of those that are linear and time invari-
ant. These two properties in combination lead to especially convenient representations
for such systems. Most important, this class of systems has significant signal-processing
applications. The class of linear systems is defined by the principle of superposition in
Eq. (2.27). If the linearity property is combined with the representation of a general
sequence as a linear combination of delayed impulses as in Eq. (2.6), it follows that a
linear system can be completely characterized by its impulse response. Specifically, let
hi{n] be the response of the system to 4[n — k], an impulse occurring at n = k. Then,
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from Eq. (2.6),

y[n] = T{ Z x[k]é[n — k]} . (2.50)
k=—o0
From the principle of superposition in Eq. (2.27), we can write
yinl= Y x[KT@En—kl} = D x[Kln]. (2.51)
k=—oc k=—00

According to Eq. (2.51), the system response to any input can be expressed in terms of
the responses of the system to the sequences 8[n — k. If only linearity is imposed, A[#]
will depend on both n and &, in which case the computational usefulness of Eq. (2.51)
is limited. We obtain a more useful result if we impose the additional constraint of time
invariance.
The property of time invariance implies that if hA[#n] is the response to §[#], then
the response to 8[n — k] is h[n — k]. With this additional constraint, Eq. (2.51) becomes
o0
ylnl= Y x[klh[n — K. (2.52)
k=—00
As a consequence of Eq. (2.52), a linear time-invariant system (which we will sometimes
abbreviate as LTT) is completely characterized by its impulse response #[n] in the sense
that, given h[n], it is possible to use Eq. (2.52) to compute the output y[n] due to any
input x[n].
Equation (2.52) is commonly called the convolution sum. If y[n] is a sequence
whose values are related to the values of two sequences A[n] and x[z] as in Eq. (2.52),
we say that y[n] is the convolution of x[n] with A[n] and represent this by the notation

y[n] = x[n] * h[n]. (2.53)

The operation of discrete-time convolution takes two sequences x[n] and Ah[n] and
produces a third sequence y[n]. Equation (2.52) expresses each sample of the output
sequence in terms all of the samples of the input and impulse response sequences.

The derivation of Eq. (2.52) suggests the interpretation that the input sample
at n = k, represented as x[k]§[n — k], is transformed by the system into an output
sequence x[k]h[n — k], for —oo < n < oo, and that, for each k, these sequences are
superimposed to form the overall output sequence. This interpretation is illustrated
in Figure 2.8, which shows an impulse response, a simple input sequence having three
nonzero samples, the individual outputs due to each sample, and the composite output
due to all the samples in the input sequence. Specifically, x[n] can be decomposed as
the sum of the three sequences x[—2]8[n + 2], x[0]8[r], and x[3]8[r — 3] representing
the three nonzero values in the sequence x[n]. The sequences x[—-2]h[n + 2], x[0]A[n],
and x[3]h[n — 3] are the system responses to x[—2]8[n + 2], x[0]8[n], and x[3]8[r — 3],
respectively. The response to x[#n] is then the sum of these three individual responses.

Although the convolution-sum expression is analogous to the convolution integral
of continuous-time linear system theory, the convolution sum should not be thought of
as an approximation to the convolution integral. The convolution integral plays mainly a
theoretical role in continuous-time linear system theory; we will see that the convolution
sum, in addition to its theoretical importance, often serves as an explicit realization of a
discrete-time linear system. Thus, it is important to gain some insight into the properties
of the convolution sum in actual calculations.
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1
h[n]
0 n
x_p[n] = x[-2]8[n + 2] y_z[n] = x[-2]h[n + 2]

xo[n] = x[0]8[n] yo[n] = x[0]A[n]
0 n
%3] = x[3)8[n - 3] yaln] = x[31hn - 3]
3 3
0 n 0 n
x[n] = x_3[n] + xg[n] + x3[n] y[nl =y _[n] + yoln] + y3(n]

Figure 2.8 Representation of the output of a linear time-invariant system as the
superposition of responses to individual samples of the input.
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The preceding interpretation of Eq. (2.52) emphasizes that the convolution sum
is a direct result of linearity and time invariance. However, a slightly different way of
looking at Eq. (2.52) leads to a particularly useful computational interpretation. When
viewed as a formula for computing a single value of the output sequence, Eq. (2.52)
dictates that y[n] (i.e., the nth value of the output) is obtained by multiplying the input
sequence {expressed as a function of k) by the sequence whose values are h[n — k],
—00 < k < oo, and then, for any fixed value of n, summing all the values of the products
x[k)h[n— k], with k a counting index in the summation process. Therefore, the operation
of convolving two sequences involves doing the computation for all values of n, thus
generating the complete output sequence y[n], —o0 < n < oo. The key to carrying out
the computations of Eq. {2.52) to obtain y[x] is understanding how to form the sequence
h[n — k], —o0 < k < oo, for all values of n that are of interest. To this end, it is useful to
note that

' hln — k] = h[—(k — n)]. (2.54)
The interpretation of Eq. (2.54) is best done with an example.

Example 2.12 Computation of the Convolution Sum

Suppose h[k] is the sec[uénce shown in Figure 2.9(a) and we wish to find Aln — k] =
h[—(k — n)]. Define hi[k] to be h{—k], which is shown in Figure 2.9(b). Next, define

hlk]
— oo o T I [ I T ! -
23 0 6 k
(a)
h[=K] = k[0 k]
ot I N I | B
6 0 3 k

et 1] |

n-6 0 n n+3 k
(©)
Figure 2.9 Forming the sequence /1[n — k]. (a) The sequence A[k] as a function

of k. (b) The sequence h[—k] as a function of k. (c) The sequence h[n — k] =
h[—(k — m)] as a function of k for n = 4.
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hy[k] to be hi[k], delayed, by nsamples on the k axis, i.e., h2[k] = hi[k—n]. Figure 2.9(c)
shows the sequence that results from delaying the sequence in Figure 2.9(b) by n
samples. Using the relationship between A;[k] and A[k], we can show that A;[k] =
hi1lk — n] = h[—(k — n)] = h[n — k], and thus, the bottom figure is the desired signal.
To summarize, to compute h[n — k] from k[k], we first reverse A[k] in time about k = 0
and then delay the time-reversed signal by n samples.

From Example 2.3, it should be clear that, in general, the sequence h[n — k],
—o00 < k < oc, is obtained by

1. reflecting h[k] about the origin to obtain A[—k];
2. shifting the origin of the reflected sequence to k = n.

To implement discrete-time convolution, the two sequences x[k] and h[n — k] are mul-
tiplied together for —co < k£ < o0, and the products are summed to compute the
output sample y[#n]. To obtain another output sample, the origin of the sequence h[—k]
is shifted to the new sample position, and the process is repeated. This computational
procedure applies whether the computations are carried out numerically on sampled
data or analytically with sequences for which the sample values have simple formulas.
The following example illustrates discrete-time convolution for the latter case.

Example 2.13 Analytical Evaluation of the Convolution Sum
Consider a system with impulse response
h{n] = u[n] — u[n — N]

_J1L, 0<zn=<N-1,
~ 10, otherwise.

The input is
x[n] = a"uln].

To find the output at a particular index n, we must form the sums over all &k of the
product x[k)h[n — k]. In this case, we can find formulas for y[n] for different sets of
values of n. For example, Figure 2.10(a) shows the sequences x[k] and h[n — k], plotted
for n a negative integer. Clearly, all negative values of n give a similar picture; i.e., the
nonzero portions of the sequences x[k] and A[n — k] do not overlap, so

yin] =0, n<0.

Figure 2.10(b) illustrates the two sequences when 0 < nand n — N+1 < 0. These two
conditions can be combined into the single condition 0 < n < N — 1. By considering
Figure 2.10(b), we see that, since

x[k)h[n — k] = a*,

it follows that

n
y[n] = Eak, for0<n<N-1, (2.55)
k=0
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n-(N-1)
(©
y[~]
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Flgure 2.10 Sequence involved in computing a discrete convolution. (a)—(c) The

sequences x[k] and h[n — k] as a function of k for different values of n. (Only

nonzero samples are shown.) (d) Corresponding output sequence as a function
~of n.

The limits on the sum are determined directly from Figure 2.10(b). Equation (2.55)
shows that y[n] is the sum of n + 1 terms of a geometric series in which the ratio of
terms is 4. This sum can be expressed in closed form using the general formula

Yak=Z———, MNzN. (2.56)
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Applying this formula to Eq. (2.55), we obtain

1 — gntl
Finally, Figure 2.10(c) shows the two sequences when0 <n— N+1lor N—1 < n. As

before,
x[k]h[n—k]:ak, n—N+1<k<n,

but now the lower limit on the sum is n — N + 1, as seen in Figure 2.10(c). Thus,
n
y[n] = Z a¥, forN—1<n. (2.58)
k=n—N+1
Using Eq. (2.56), we obtain
at— N+l _ gn+l

y[n]= 1—a '

or

l1—-a

yin] = a™ N+ (ﬂ) . (2.59)

Thus, because of the piecewise-exponential nature of both the input and the unit
sample response, we have been able to obtain the following closed-form expression
for y[n] as a function of the index n:

0, n<0,
1_an+l
Minl =8 T3 0<n=<N-1, (2.60)
_ N
at—N+1 (1—‘1), N-1<n.
1-a

This sequence is shown in Figure 2.10(d).

Example 2.13 illustrates how the convolution sum can be computed analytically
when the input and the impulse response are given by simple formulas. In such cases,
the sums may have a compact form that may be derived using the formula for the sum of
a geometric series or other “closed-form” formulas.? When no simple form is available,
the convolution sum can still be evaluated numerically using the technique illustrated
in Example 2.13 whenever the sums are finite, which will be the case if either the input
sequence or the impulse response is of finite length, i.e., has a finite number of nonzero
samples.

2.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

Since all linear time-invariant systems are described by the convolution sum of
Eq. (2.52), the properties of this class of systems are defined by the properties of discrete-
time convolution. Therefore, the impulse response is a complete characterization of the
properties of a specific linear time-invariant system.

2Such results are discussed, for example, in Grossman (1992).
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Some general properties of the class of linear time-invariant systems can be found
by considering properties of the convolution operation. For example, the convolution

operation is commutative;
x[n] * h[n] = h[n] * x[n]. (2.61)

This can be shown by applying a substitution of variables to Eq. (2.52). Specifically, with
m=n-—=k,

y[n] = i‘ x[n—mlhlm] = Y h[mlx[n— m] = hin] x x[n], (2.62)

so the roles of x[n] and A[r] in the summation are interchanged. That is, the order of
the sequences in a convolution is unimportant, and hence, the system output is the
same if the roles of the input and impulse response are reversed. Accordingly, a linear
time-invariant system with input x[r] and impulse response #[n] will have the same
output as a linear time-invariant system with input 4[n] and impulse response x[n]. The
convolution operation also distributes over addition; i.¢.,

- x[n] * (h1[n] + h2[n]) = x[n] * h1[n] + x[n] * Aa[n].

This follows in a straightforward way from Eq. (2.52) and is a direct result of the hnearlty
and commutativity of convolution.

In a cascade connection of systems, the output of the first system is the input to
the second, the output of the second is the input to the third, etc. The output of the last
system is the overall output. Two linear time-invariant systems in cascade correspond
to a linear time-invariant system with an impulse response that is the convolution of
the impulse responses of the two systems. This is illustrated in Figure 2.11. In the upper
block diagram, the output of the first system will be ki [n] if x[n] = §[n]. Thus, the output
of the second system (and, by definition, the impulse response of the overall system)
will be

h[n] = hy[n] * hz[n]. (2.63)

As a consequence of the commutative property of convolution, the impulse response
of a cascade combination of linear time-invariant systems is independent of the order
in which they are cascaded. This result is summarized in Figure 2.11, where the three
systems all have the same impulse response.

3 h;[n] > hy[n] P—>
x[n] yln]
x—->[n] hy[n] >| hy[n] y[>n ]

Figure 2.11 Three linear time-invariant
e—md Fi1[1] * hy[n] systems with identical impulse
x[n] y[n] responses.
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e
x[n] y[n]
> Ip[n]
(a)
=1 Iyln] +hyn] — Figure 2.12 (a) Parallel combination
x[n] 1 y[n] e i o i
of linear time-irtvariant systems. (b) An
(b} equivalent system.

In a parallel connection, the systems have the same input, and their outputs are
summed to produce an overall output. It follows from the distributive property of convo-
lution that the connection of two linear time-invariant systems in parallel is equivalent to
a single system whose impulse response is the sum of the individual impulse responses;
ie.,

h[n] = hy[n] + hy[n]. (2.64)
This is depicted in Figure 2.12. ’

The constraints of linearity and time invariance define a class of systems with
very special properties. Stability and causality represent additional properties, and it is
often important to know whether a linear time-invariant system is stable and whether
it is causal. Recall from Section 2.2.5 that a stable system is a system for which every
bounded input produces a bounded output. Linear time-invariant systems are stable if

and only if the impulse response is absolutely summable, i.e., if
o0

S= Y IK[k] < oo. (2.65)

k=—00

This can be shown as follows. From Eq. (2.62),

0 o
il = | D Alkxln~ K| < 3 (#[K]|1x[n — A1 (2.66)
k=—o00 k=—00
If x[n] is bounded, so that
|x[n]l < Bx,
then substituting B, for |x[rn — k]| can only strengthen the inequality. Hence,
o0
ly[n]l < By ) |[K]I. (2.67)
k=—00

Thus, y[n] is bounded if Eq. (2.65) holds; in other words, Eq. (2.65) is a sufficient
condition for stability. To show that it is also a necessary condition, we must show that if
S = 00, then a bounded input can be found that will cause an unbounded output. Such
an input is the sequence with values

h*[—n]
x[n] = { 1A[—n]’ hin] #0, (2.68)

0, h[n] =0,




gl pallinsiall i3l
EE-COMMITTEE

Sec.2.4 Properties of Linear Time-Invariant Systems

caynl2YL gy sall
al g ¥ gl

where h*[n] is the complex conjugate of h[n]. The sequence x[n] is clearly bounded by
unity. However, the value of the output at n = O is

o0

|hlk]?
y[0]=k;oox[—k]h[k] Z T = S. (2.69)

Therefore, if S = oo, it is possible for a bounded input sequence to produce an un-
bounded output sequence.

The class of causal systems was defined in Section 2.2.4 as those systems for which
the output y[ny] depends only on the input samples x[z], for n < ng. It follows from
Eq. (2.52) or Eq. (2.62) that this definition implies the condition

Mn]=0, n<O, (2.70)

for causality of linear time-invariant systems. (See Problem 2.62.) For this reason, it is
sometimes convenient to refer to a sequence that is zero for n < 0 as a causal sequence,
meaning that it could be the impulse response of a causal system.

To illustrate how the properties of linear time-invariant systems are reflected in
the impulse response, let us consider again some of the systems defined in Examples 2.3—
2.10. First note that only the systems of Examples 2.3, 2.4, 2.6, and 2.10 are linear and
time invariant. Although the impulse response of nonlinear or time-varying systems
can be found, it is generally of limited interest, since the convolution-sum formula and
Egs. (2.65) and (2.70), expressing stability and causality, do not apply to such systems.

First, let us find the impulse responses of the systems in Examples 2.3, 2.4, 2.6, and
2.10. We can do this by simply computing the response of each system to §[n], using the
defining relationship for the system. The resulting impulse responses are as follows:

Ideal Delay (Example 2.3)
h[n] = é[n — n4), n, a positive fixed integer. (2.71)
Moving Average ( Example 2.4)

1
R e v ZMIS["— d

) 272)
J——— -Mi<n=<M,
={ M+ M+ 1 1=n=00

0, otherwise.

Accumuldtor (Example 2.6)

n

hln] = > 5[]

k=—00

1, n=0,
10, n<0,

= u[n].
- Forward Dtﬁerence (Example 2.10)
h[n] = 8[n + 1] — §[n]. : ' (2.74)

(2.73)
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Backward Difference (Example 2.10)
h[n] = 8[n] — 8[n —1]. (2.75)

Given the impulse responses of these basic systems [Egs. (2.71)~(2.75)], we can
test the stability of each one by computing the sum

S= > |h[n].
n=—00
For the ideal delay, moving-average, forward difference, and backward difference ex-
amples, it is clear that § < oo, since the impulse response has only a finite number of
nonzero samples. Such systems are called finite-duration impulse response (FIR) sys-
tems. Clearly, FIR systems will always be stable, as long as each of the impulse response
values is finite in magnitude. The accumulator, however, is unstable because

[s,¢]
§= uln]=oc0.
n=0
In Section 2.2.5, we also demonstrated the instability of the accumulator by giving an
example of a bounded input (the unit step) for which the output is unbounded.

The impulse response of the accumulator is infinite in duration. This is an example
of the class of systems referred to as infinite-duration impulse response (IIR) systems.
An example of an IIR system that is stable is a system whose impulse response is
h[n] = a™u[n] with |a| < 1. In this case,

o0
S=_lal" (2.76)
n=0
If |a| < 1, the formula for the sum of the terms of an infinite geometric series gives
1
S = . 277
T—qa] <% 2.77)

If, on the other hand, |a| > 1, the suin is infinite and the system is unstable.

To test causality of the linear time-invariant systems in Examples 2.3,2.4, 2.6, and
2.10, we can check to see whether A[n] = 0 for n < 0. As discussed in Section 2.2.4, the
ideal delay [ns > 0 in Eq. (2.23)] is causal. If n; < 0, the system is noncausal. For the
moving average, causality requires that —M; > 0 and M; > 0. The accumulator and
backward difference systems are causal, and the forward difference system is noncausal.

The concept of convolution as an operation between two sequences leads to the
simplification of many problems involving systems. A particularly useful result can be
stated for the ideal delay system. Since the output of the delay system is y[n] = x[n—n4],
and since the delay system has impulse response h[n] = 8[n — ng4], it follows that

x[n] * 8[n — n4]l = 8[n — ng] * x[n] = x[n — ng4). (2.78)

That is, the convolution of a shifted impulse sequence with any signal x[n] is easily
evaluated by simply shifting x[n] by the displacement of the impulse.

Since delay is a fundamental operation in the implementation of linear systems,
the preceding result is often useful in the analysis and simplification of interconnections
of linear time-invariant systems. As an example, consider the system of Figure 2.13(a),
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Forward One-sample
. > -
x[n] difference delay y[n]

(@)

One-sample Eorward
x[n] delay difference y[n]

(b)

B.ackward
x[n] difference y[n]

Figure 2.13 Equivalent systems found
by using the commutative property of
(c) convolution.

which consists of a forward difference system cascaded with an ideal delay of one sample.
According to the commutative property of convolution, the order in which systems are
cascaded does not matter, as long as they are linear and time invariant. Therefore, we
obtain the same result when we compute the forward difference of a sequence and
delay the result (Figure 2.13a) as when we delay the sequence first and then compute
the forward difference (Figure 2.13b). Also, it follows from Eq. (2.63) that the overall
impulse response of each cascade system is the convolution of the individual impulse
responses. Consequently,

h[n] = (8[n+ 1] — é[n]) * 6[n — 1]
=48[n—1]*(8[n+ 1] — 8[n]) (2.79)
= §[n] — 8[n — 1].

Thus, A[n] is identical to the impulse response of the backward difference system; that
is, the cascaded systems of Figures 2.13(a) and 2.13(b) can be replaced by a backward
difference system, as shown in Figure 2.13(c).

Note that the noncausal forward difference systems in Figures 2.13(a) and (b)
have been converted to causal systems by cascading them with a delay. In general, any
noncausal FIR system can be made causal by cascading it with a sufficiently long delay.

Another example of cascaded systems introduces the concept of an inverse system.
Consider the cascade of systems in Figure 2.14. The impulse response of the cascade
system is

Hln] = uln] * (8] — 8 — 1])
= u[n] —ufn —1] (2.80)
= 8[n].

That is, the cascade combination of an accumulator followed by a backward difference

(or vice versa) yields a system whose overall impulse response is the impulse. Thus, the

output of the cascade combination will always be equal to the input, since x[n] * §[n] =

x[n]. In this case, the backward difference system compensates exactly for (or inverts)
the effect of the accumulator; that is, the backward difference system is the inverse
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Figure 2.14 An accumulator in
cascade with a backward difference.
Since the backward difference is the
Backward- h
Accumulator o inverse system for the accumulator, the
N -] difference p——> . .
x[n] system y[n] system x[n]  cascade pombmat:on is equivalent to
the identity system.

system for the accumulator. From the commutative property of convolution, the accu-
mulator is likewise the inverse system for the backward difference system. Note that
this example provides a system interpretation of Egs. (2.8) and (2.10). In general, if
a linear time-invariant system has impulse response A[n], then its inverse system, if it
exists, has impulse response A;[n] defined by the relation

h[n] = h;[n] = h;[n] * h[n] = 8[n]. (2.81)

Inverse systems are useful in many situations in which it is necessary to compensate
for the effects of a linear system. In general, it is difficult to solve Eq. (2.81) directly
for h;[n], given h[n]. However, in Chapter 3 we will see that the z-transform provides a
straightforward method of finding an inverse system.

2.5 LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

An important subclass of linear time-invariant systems consists of those systems for
which the input x[r] and the output y[n] satisfy an Nth-order linear constant-coefficient
difference equation of the form

N M
> ayln—kl = bnx[n—m]. (2.82)
k=0 m=0

The properties discussed in Section 2.4 and some of the analysis techniques introduced
there can be used to find difference equation representations for some of the linear
time-invariant systems that we have defined.

Example 2.14 Difference Equation Representation of
the Accumulator

An example of the class of linear constant-coefficient difference equations is the ac-

cumulator system defined by
n

yin] = Z x[K]. (2.83)

k=—00
To show that the input and output satisfy a difference equation of the form of Eq. (2.82),
note that we can write the output forn — 1 as

n—1

yln-1]= Z x[K]. (2.84)

=—00
By separating the term x[n] from the sum, we can rewrite Eq. (2.83) as

n—1

yinl=x[n)+ ) x[K]. (2.85)

k=—o00
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Substituting Eq. (2.84) into Eq. (2.85) yields
y[n] = x[n] + y[n —1], (2.86)

from which the desired form of the difference equation can be obtained by grouping
all the input and output terms on separate sides of the equation:

yinl—yin -1 =xn. (2.87)

Thus, we have shown that, in addition to satisfying the defining relationship of
Eq. (2.83), the input and output satisfy a linear constant-coefficient difference equation
of the form Eq. (2.82),with N=1,a0 =1,a1 = -1, M= 0,and by = 1.

The difference equation in the form of Eq. (2.86) gives us a better understanding
of how we could implement the accumulator system. According to Eq. (2.86), for each
value of n, we add the current input value x[n] to the previously accumulated sum
y[n — 1]. This interpretation of the accumulator is represented in block diagram form

-

in Figure 2.15.
il N yln]
¥
One-sample
delay
ylr-1]

Figure 2.15 Block diagram of a recursive difference equation representing an
accumulator.

Equation (2.86) and the block diagram in Figure 2.15 are referred to as a recursive
representation of the system, since each value is computed using previously computed
values. This general notion will be explored in more detail later in the section.

Example 2.15 Difference Equation Representation of
the Moving-Average System

Consider the moving-average system of Example 2.4, with M; = 0 so that the system
is causal. In this case, from Eq. (2. 72) the impulse response is

W) = G M 37 35 ] = uln = Mz — 1)) (288)
from which it follows that
R
nl= —— x[n — k], . 2.89
yln] (Mﬁl)g[ L, (2:89)
which is a special case of Eq. (2.82), with N = 0,ap = 1, M = M3, and b = 1/(M>+1)

for0 < k< M,.
Also, the impulse response can be expressed as

h[n] = (M (6[n] 8[n — M, — 1]) x u[n], (2.90)

which suggests that the causal movmg-averagc system can be represented as the cas-
cade system of Figure 2.16. We can obtain a difference equation for this block diagram
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Attenuator
— 1 Accumulator)
xin) | (My+1) system | y[n)

(My+1)
—>-1  sample
delay

Figure 2.16 Block diagram of the recursive form of a moving-average system.

by noting first that
xn] = (M D ——(x[n] — x[n — M; —1]). (2.91)
From Eq. (2.87) of Example 2.14, the output of the accumulator satisfies the difference
equation
y[n] = y[n — 1] = x[n],
so that
y[nl-yln-1]= (x[n] x[n— My —1]). (2.92)

(M

Again, we have a difference equation in the form of Eq. (2.82), but this time N = 1,
ay=1,a1 =-1, M= M; and by = —bp, 41 = 1/(M2 + 1), and b = 0 otherwise.

In Example 2.15, we showed two different difference equation representations
of the moving-average system. In Chapter 6 we will see that an unlimited number of
distinct difference equations can be used to represent a given linear time-invariant
input-output relation.

Just as in the case of linear constant-coefficient differential equations for contin-
uous-time systems, without additional constraints or information a linear constant-
coefficient difference equation for discrete-time systems does not provide a unique
specification of the output for a given input. Specifically, suppose that, for a given input
xp[n], we have determined by some means one output sequence y,[n], so that an equa-
tion of the form of Eq. (2.82) is satisfied. Then the same equation with the same input
is satisfied by any output of the form

ylnl = ypln] + yxlnl, (2.93)

where yx[n] is any solution to Eq. (2.82) with x[r] = 0, i.e., to the equation

N
Z axyn[n — k] =0. (2.94)
k=0

Equation (2.94) is referred to as the homogeneous equation and yy[n] the homogeneous
solution. The sequence yx[n] is in fact a member of a family of solutions of the form

N
wlnl =D Anz, (2.95)
m=1

gl pallinsiall i3l
EE-COMMITTEE



Al sl dnsmpall &30l
EE-COMMITTEE

Sec. 2.5 Linear Constant-Coefficient Difference Equations

caynl2YL gy sall
al g ¥ gl

Substituting Eq. (2.95) into Eq. (2.94) shows that the complex numbers z,, must be roots
of the polynomial

N
Zakz_k = 0. (2.96)
k=0

Equation (2.95) assumes that all N roots of the polynomial in Eq. (2.96) are distinct. The
form of terms associated with multiple roots is slightly different, but there are always
N undetermined coefficients. An example of the homogeneous solution with multiple
roots is considered in Problem 2.38. ,

Since yp[n] has N undetermined coefficients, a set of N auxiliary conditions is
required for the unique specification of y[n] for a given x[#]. These auxiliary conditions
might consist of specifying fixed values of y[n] at specific values of n, such as y[—1],
y[=2],..., y[—N], and then solving a set of N linear equations for the N undetermined
coefficients.

Alternatively, if the auxiliary conditions are a set of auxiliary values of y[n], the
other values of y[n] can be generated by rewriting Eq. (2.82) as a recurrence formula,
1.€., in the form

yln] = — i ﬂy[n — k] + ZM: E’fx[n — k]. | (2.97)
=1 90 k=0 0 ,

If the input x[n], together with a set of auxiliary values, say, y[—1], y[-2], ..., ¥[-N], is
specified, then y[0] can be determined from Eq. (2.97). With y[0], y[-1], ..., ¥[-N+1]
available, y[1] can then be calculated, and so on. When this procedure is used, y[#n] is
said to be computed recursively; i.e., the output computation involves not only the input
sequence, but also previous values of the output sequence.

To generate values of y[n] for n < — N (again assuming that the values y[—1],

y[-2],..., y[—N] are given as auxiliary conditions), we can rearrange Eq. (2.82) in the
form
| N M b
yjn—N]= —kzgay[n—k]+kz%;;x[n—k], (2.98)

from which y[—N — 1], y[—=N — 2], ... can be computed recursively. The following
example illustrates this recursive procedure.

Example 2.16 Recursive Computation of Difference
Equations

The difference equation satisfied by the input and output of a system is
y[n] = ay|n — 1} + x[n]. (2.99)

Consider the input x[n] = Ké&[n], where K is an arbitrary number, and the auxiliary
condition y[—1] = c. Beginning with this value, the output forn > —1 can be computed
recursively as follows:

y[0] = ac + K,
y[1] = ay[0] + 0 = a(ac + K ) = a’c + aK,
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y[2] = ay[1]1+ 0 = a(a’c +aK) = a’c + a*K,
y[3] = ay[2] + 0 = a(@®c + a’K ) = a*c + &°K,

For this simple case, we can see that for n > 0,
y[n] = a**lc+a"K, forn > 0. (2.100)
To determine the output for n < (, we express the difference equation in the form

y[n — 1] = a7 Y(y[n] — x[n]), (2.101a)
or
y[r] = a1 (y[n + 1] - x[n + 1]). (2.101b)

Using the auxiliary condition y[—1] = ¢, we can compute y[n] for n < —1 as follows:

y=2]=a ' (y[-1] —x[-1]) =a'c,
y[-3] = a"(y[—2] - x[-2]) =a~la~lc = a2,
y[-4] = aty[-3] - x[-3]) =a"la?c =ac,
It then follows that
y[p] =a"*lc  forn < 1. (2.102)

In sum, combining Eqgs. (2.100) and (2.102), we obtain, as the result of the recursive
computation,

yln] = a*'c + Ka"uln), for all n. (2.103)

Several important points are illustrated by the solution of Example 2.16. First,
note that we implemented the system by recursively computing the output in both the
positive and the negative direction, beginning with n = —1. Clearly, this procedure is
noncausal. Also, note that when K = 0, the input is zero, but y[n] = a"*'c. A linear
system requires that the output be zero for all time when the input is zero for all time.
(See Problem 2.21.) Consequently, this system is not linear. Furthermore, if the input
were shifted by ny samples, i.e., x1[rn] = Ké[n — ny], the output would be

yi[n] = a*lc + Ka" ™uln — ngy], (2.104)

and the system is therefore not time invariant.

Our principal interest in this text is in systems that are linear and time invariant,
in which case the auxiliary conditions must be consistent with these additional require-
ments. In Chapter 3, when we discuss the solution of difference equations using the
z-transform, we implicitly incorporate conditions of linearity and time invariance. As
we will see in that discussion, even with the additional constraints of linearity and time
invariance, the solution to the difference equation, and therefore the system, is not
uniquely specified. In particular, there are, in general, both causal and noncausal linear
time-invariant systems consistent with a given difference equation.

If a system is characterized by a linear constant-coefficient difference equation
and is further specified to be linear, time invariant, and causal, the solution is unique.
In this case, the auxiliary conditions are often stated as initial-rest conditions. In other
words, the auxiliary information is that if the input x[#] is zero for n less than some time
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np, then the output y[n] is constrained to be zero for n less than ny. This then provides
sufficient initial conditions to obtain y[n] for n > ny recursively using Eq. (2.97).

To summarize, for a system for which the input and output satisfy a linear constant-
coefficient difference equation:

e The output for a given input is not uniquely specified. Auxiliary information or
conditions are required.

o If the auxiliary information is in the form of N sequential values of the output,
later values can be obtained by rearranging the difference equation as a recursive
relation running forward in n, and prior values can be obtained by rearranging
the difference equation as a recursive relation running backward in n.

¢ Linearity, time invariance, and causality of the system will depend on the auxiliary
conditions. If an additional condition is that the system is 1n1t1ally at rest, then the
system will be linear, time invariant, and causal.

With the preceding discussion in mind, let us now consider again Example 2.16,
but with initial-rest conditions. With x[n] = Ké[n], y[—1] = 0, since x[n] =0, n < 0.
Consequently, from Eq. (2.103), :

y[n] = Ka"uln]. (2.105)

If the input is instead K8[n — ny), again with initial-rest conditions, then the récursive

solution is carried out using the initial condition y[r] = 0, n < ny. Note that for ny < 0,

initial rest implies that y[—1] s 0. That is, initial rest does not always mean y[—1] =

- = y[-N] = 0. It does mean that y[ny — 1] = --- = y[ny — N] = 0if x[n] = 0 for

n < np. Note also that the impulse response for the example is k[n] = a"u[n]; i.e., h[n]

is zero for n < 0, consistent with the causality imposed by the assumption of initial rest.

The preceding discussion assumed that N > 1 in Eq. (2.82). If, instead, N = 0,

no recursion is required to use the difference equation to compute the output, and
therefore, no auxiliary conditions are required. That is,

M
yinl=Y" (s—’;) x[n — k]. (2.106)

k=0

Equation (2.106) is in the form of a convolution, and by setting x[n] = §[n], we see that
the impulse response is

hln] = f: (Z—:) 5[n — K],

k=0
or
(E), 0<n=<M,
h[n] = aop (2.107)
0, otherwise.

The impulse response is obviously finite in duration. Indeed, the output of any FIR sys-
tem can be computed nonrecursively using the difference equation of Eq. (2.106), where
the coefficients are the values of the impulse response sequence. The moving-average
system of Example 2.15 with M; = 0O is an example of a causal FIR system. An interest-
ing feature of that system was that we also found a recursive equation for the output. In
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Chapter 6 we will show that there are many possible ways of implementing a desired sig-
nal transformation using difference equations. Advantages of one method over another
depend on practical considerations such as numerical accuracy, data storage, and the
number of multiplications and additions required to compute each sample of the output.

2.6 FREQUENCY-DOMAIN REPRESENTATION OF
DISCRETE-TIME SIGNALS AND SYSTEMS

In the previous sections, we have introduced some of the fundamental concepts of the
theory of discrete-time signals and systems. For linear time-invariant systems, we saw
that a representation of the input sequence as a weighted sum of delayed impulses
leads to a representation of the output as a weighted sum of delayed impulse responses.
As with continuous-time signals, discrete-time signals may be represented in a number
of different ways. For example, sinusoidal and complex exponential sequences play a
particularly important role in representing discrete-time signals. This is because com-
plex exponential sequences are eigenfunctions of linear time-invariant systems and the
response to a sinusoidal input is sinusoidal with the same frequency as the input and
with amplitude and phase determined by the system. This fundamental property of
linear time-invariant systems makes representations of signals in terms of sinusoids or
complex exponentials (i.e., Fourier representations) very useful in linear system theory.

2.6.1 Eigenfunctions for Linear Time-Invariant Systems

To demonstrate the eigenfunction property of complex exponentials for discrete-time
systems, consider an input sequence x[n] = e/*" for —oo < n < o0, i.e., a complex
exponential of radian frequency w. From Eq. (2.62), the corresponding output of a
linear time-invariant system with impulse response h[n] is

= 3 el

k=—o¢
(2.108)
= elwn ( Z h[k]e_j“’k)_
k=—00
If we define
- o ]
H(e/®) = Y h[kle~/*, (2.109)
Eq. (2.108) becomes
y[n] = H(e/*)e/*", (2.110)

Consequently, e/“" is an eigenfunction of the system, and the associated eigenvalue is
H(e/?).From Eq. (2.110), we see that H(e/*) describes the change in complex amplitude
of a complex exponential input signal as a function of the frequency w. The eigenvalue
H(e’?) is called the frequency response of the system. In general, H(e/®) is complex
and can be expressed in terms of its real and imaginary parts as

H(e’®) = Hp(e'®) + j Hi(e'®) (2111)
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or in terms of magnitude and phase as

H(ejw) _ |H(ejw)|€j< H(e”) (2.112)

Examplie 2.17 Frequency Response of the Ideal Delay
System '

As a simple example of how we can find the frequency response of a linear time-
invariant system, consider the ideal delay system defined by

yn] = x[n — n4), (2.113)
where ny is a fixed integer. If we consider x[n] = e/®" as input to this system, then,
from Eq. (2.113), we have

y[n] — ej'(u(n—nd) — e—ja)ndej(un.
Thus, for any given value of w, we obtain an output that is the input multiplied by a

complex constant, the value of which depends on the frequency « and the delay n,.
The frequency response of the ideal delay is therefore

H(el®) = e~ioma, | (2.114)

As an alternative method of obtaining the frequency response, recall that h[n] =
8[n — ng4] for the ideal delay system. Using Eq. (2.109), we obtain
o0
HE'*) = Z 8[n — ngle”/on = e Joma,
H==—0C .

From the Euler relation, the real and imaginary parts of the frequency response are

Hg(e/®) = cos(wny), (2.115a)
Hi(e/®) = —sin(wny). (2.115b)
The magnitude and phase are
|H(e!®)| =1, (2.116a)
<H(e/®) = —wny. (2.116b)

In Section 2.7 we will show that a broad class of signals can be represented as a
linear combination of complex exponentials in the form

x[n] = Z e’ o, (2.117)
k

From the principle of superposition, the corresponding output of a linear time-invariant
system is

ynl =) e H(el™ e, (2.118)
k

Thus, if we can find a representation of x[n] as a superposition of complex exponential
sequences, as in Eq. (2.117), then we can find the output using Eq. (2.118) if we know
the frequency response of the system. The following simple example illustrates this
fundamental propertv of linear time-invariant svstems.
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Example 2.18 Sinusoidal Response of LTI Systems

Since it is simple to express a sinusoid as a linear combination of complex exponentials,
let us consider a sinusoidal input

x[n] = Acos(won + ¢) = gef"’e"“"’" + ge“""’e‘j‘”"". (2.119)
From Eq. (2.110), the response to x[r] = (A/2)e/¢e/ =0 is
yi[n] = H(ef“"’)?ef"’ef“’“”. (2.120a)
The response to x;[n] = (4/2)e ¢e~iwo” ig
y2[n] = H(e‘f“’o)?e‘f"’e'f““’". (2.120b)
Thus, the total response is
y[n] = ?[H(ef‘”o)e”’ej“"’" + H(e /@0)e 1#g=/w0n], (2.121)

If A[n] is real, it can be shown (see Problem 2.71) that H(e~/¢?) = H*(e/®°). Conse-
quently,

yln] = A|H(e/“%)| cos(won + ¢ + 0), (2.122)

where § = < H(e/?) is the phase of the system function at frequency wy.
For the simple example of the ideal delay, | H(e/“?)| = 1 and 8 = —wqny, as we
determined in Example 2.17. Therefore,

yln] = Acos(won+ ¢ — wony)
= A cos[wo(n — ng) + ¢},

which is consistent with what we would obtain directly using the definition of the ideal
delay system.

(2.123)

The concept of the frequency response of linear time-invariant systems is essen-
tially the same for continuous-time and discrete-time systems. However, an important
distinction arises because the frequency response of discrete-time linear time-invariant
systems is always a periodic function of the frequency variable o with period 2. To
show this, we substitute w + 27 into Eq. (2.109) to obtain

H(e/@¥?) = 3" pln]e~/¥2on, (2.124)

N=--00
Using the fact that et/2"" = 1 for n an integer, we have

e—j(w+2:r)n = e—jwne—jann — e—jwn.

Therefore,
H(e/@™)) = H(el®), (2.125)
and, more generally,
H(e/ @ty = H(e/®), for r an integer. (2.126)

That is, H(e/®) is periodic with period 2rr. Note that this is obviously true for the ideal
delay system, since e~/(@12)mn = ¢~jons when n, is an integer.
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The reason for this periodicity is related directly to our earlier observation that
the sequence

{efomy, —00 < 1 < 00,

is indistinguishable from the sequence

(efl@t2mmy —00 < B < 00.

Because these two sequences have identical values for all r, the system must respond
identically to both input sequences. This condition requires that Eq. (2.125) hold.
Since H(e/®) is periodic with period 27, and since the frequencies @ and
w + 27 are indistinguishable, it follows that we need only specify H(e/“) over an inter-
val of length 27, e.g.,0 < @ < 27w or —7 < w < . The inherent periodicity defines
the frequency response everywhere outside the chosen interval. For simplicity and for
consistency with the continuous-time case, it is generally convenient to specify H(e/®)
over the interval —n < w < 7. With respect to this interval, the “low frequencies” are
frequencies close to zero, while the “high frequencies” are frequencies close to +. Re-
calling that frequencies differing by an integer multiple of 2r are indistinguishable, we
might generalize the preceding statement as follows: The “low frequencies” are those
that are close to an even multiple of &, while the “high frequencies” are those that are
close to an odd multiple of &, consistent with our earlier discussion in Section 2.1.

Exampie 2.19 Ideal Frequency-Selective Filters

An important class of linear time-invariant systems includes those systems for which
the frequency response is unity over a certain range of frequencies and is zero at
the remaining frequencies. These correspond to ideal frequency-selective filters. The
frequency response of an ideal lowpass filter is shown in Figure 2.17(a). Because of the
inherent periodicity of the discrete-time frequency response, it has the appearance of

Hlp(ejw)

1

{ | | |
=27 2m+w, -7 -, w, T 2r-w, 2m @

(2)
Hlp(ejw)

1

t |
- -, w, aT w
(b)

Figure 2.17 ldeal lowpass filter showing (a) periodicity of the frequency response
and (b) one period of the periodic frequency response.
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th(ejm)
1
| l
- -w, 0 w, T
(a)
Hyy(e™)
1
1 |
- —-w, W, 0 w, W, T ®
(b)
pr(ejm)
1
| 1
~ —w, -, 0 W, w, T ®
(©

Figure 2.18 Ideal frequency-selective filters. (a) Highpass filter. (b) Bandstop
filter. (c) Bandpass filter. In each case, the frequency response is periodic with
period 2sr. Only one period is shown.

a multiband filter, since frequencies around w = 2x are indistinguishable from fre-
quencies around @ = 0. In effect, however, the frequency response passes only low
frequencies and rejects high frequencies. Since the frequency response is completely
specified by its behavior over the interval —7 < @ < &, the ideal lowpass filter fre-
quency response is more typically shown only in the interval -7 < @ < =, as in
Figure 2.17(b). It is understood that the frequency response repeats periodically with
period 27 outside the plotted interval. The frequency responses for ideal highpass,
bandstop, and bandpass filters are shown in Figures 2.18(a), (b), and (c), respectively.

Example 2.20 Frequency Response of the
Moving-Average System

The impulse response of the moving-average system of Example 2.4 is

1

- 7 ~—Mi=n<M,
h[n]= M1+M2+1

0, otherwise.
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Therefore, the frequency response is

H(e/*)y= ——— e~ jom, (2.127)

Equation (2.127) can be expressed in closed form by using Eq. (2.56), so that

. L eieM _ gmja(Mat)
Sl VAN VAN B pp
_ 1 elo(Mi+Ma+1)/2 _ e_.jw(M1+'M2+1)/2 e~ Je{Ma—M+1)/2
Mi+M;+1 l—eJe
(2.128)
_ 1 e;w(M1+Mz+.1)/2 _ e—{w(M1+M2+1)/2 o= jo(Ma—My)/2
Mi+M;+1 ejof? — g=Jol2
_ 1 sinfw(M1 + M3 + 1)/2] o ia(Ma=M)/2.
M +M+1 sin{w/2)
\H(e/)]
1
1 l ' :
27 - =2 2w ™ 2m @
LH(e/®)
W b
\ \ N \ \
_27\ \ —A N \ ™ 27\ @
o

Figure 2.19 (a) Magnitude and (b) phase of the frequency response of the
moving-average system for the case My = 0and M, = 4.

The magnitude and phase of H(e/®) are plotted in Figure 2.19 for M; = Oand M, = 4.
Note that H(e/®) is periodic, as is required of the frequency response of a discrete-
time system. Note also that | H(e/%)] falls off at “high frequencies” and <(H(e/?), i.e.,
the phase of H(e/®), varies linearly with w. This attenuation of the high frequencies
suggests that the system will smooth out rapid variations in the input sequence; in other
words, the system is a rough approximation to a lowpass filter. This is consistent with
what we would intuitively expect about the behavior of the moving-average system.



Al sl dnsmpall &30l
EE-COMMITTEE

46 Discrete-Time

caynl2YL gy sall
al g ¥ gl

2.6.2 Suddenly Applied Complex Exponential Inputs

We have seen that complex exponential inputs of the form e/“” for —oo0 < n < o0
produce outputs of the form H(e/®)e/*" for linear time-invariant systems. Such inputs,
nonzero over a doubly infinite domain, may seem to be impractical models of signals;
however, as we will see in the next section, models of this kind are crucial to the mathe-
matical representation of a wide range of signals, even those that exist only over a finite
domain. Even so, we can gain additional insight into linear time-invariant systems by
considering more practical-appearing inputs of the form

x[n] = e/*"uln],

1.e., complex exponentials that are suddenly applied at an arbitrary time, which for
convenience here we choose as n = 0. Using the convolution sum in Eq. (2.62), the
corresponding output of a causal linear time-invariant system with impulse response
h[n] is

0, n <0,
y[ﬂ] = (Z h[k]e—ja)k) ejwrl’ n> 0.
k=0
If we consider the output for n > 0, we can write

y[n] = (i h[k]e'f“’k) elon — ( i h[k]e‘j"’k) elon (2.129)
k=0

k=n+1

= H(e/*)elom - ( i h[k]e‘f"”‘) efon. (2.130)

k=n+1
From Eq. (2.130), we see that the output consists of the sum of two terms, i.e., y[n] =
yss[r] + y:[n]. The first term,
yssn] = H(e!“)e/",

is called the steady-state response. It is identical to the response of the system when the
input is e/*” for all n. In a sense, the second term,

o
wlnl=— > hlkle /“keion,
k=n+1
is the amount by which the output differs from the eigenfunction result. This part is
called the transient response, because it is clear that in some cases it may approach zero.
To see the conditions for which this is true, let us consider the size of the second term.
Its magnitude is bounded as follows:

w . .
Z h[k]e"“’ke""”

k=n+1

< Y IK[A]l. (2.131)

k=n+1

|ye[n]l =

From Eq. (2.131), it should be clear that if the impulse response has finite length, so that
h[n] = O except for 0 < n < M, then the term y,[n] =0forn+1> M,orn > M —1.
In this case,

y[n] = ys[n] = H(e’*)e/*",  forn> M—1.
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When the impulse response has infinite duration, the transient response does not disap-
pear abruptly, but if the samples of the impulse response approach zero with increasing
n, then y,[n] will approach zero. Note that Eq. (2.131) can be written

yelnll = | Y hikle 7ekeiom| < Z |h[K]| <§:|h K. (2.132)
k=n+1 k=n+1

That is, the transient response is bounded by the sum of the absolute values of all of the
impulse response samples. If the right-hand side of Eq. (2.132) is bounded, so that

(o <]

> " Ik[k]l < oo,

k=0
then the system is stable, From Eq. (2.132), it follows that, for stable systems, the tran-
sient response must become increasingly smaller as n — oc. Thus, a sufficient condition
for the transient response to die out is that the system be stable.

Figure 2.20 shows the real part of a complex exponential signal with frequency

@ = 2m/10. The solid dots indicate the samples x[k] of the suddenly applied complex
exponential, while the open circles indicate the samples of the complex exponential that
are “missing.” The shaded dots indicate the samples of the impulse response h[n — k]
as a function of k for n = 8. In the finite-length case shown in Figure 2.20(a), it is clear
that the output would consist only of the steady-state component for n > 8, while in
the infinite-length case, it is clear that the missing samples have less and less effect as n
increases, due to the decaying nature of the impulse response.

"r ’e hn -k

) P 1 Ml
gl“& J,ng 0 1" J'ln 11“1 C

(2)

,mm Wi, ]

II 0 11 n 1 k

0 ..
lll

Figure2.20 lllustration of real part of suddenly applied complex exponential input
with (a) finite-length impulse response and (b) infinite-length impulse response.
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The condition for stability is also a sufficient condition for the existence of the
frequency response function. To see this, note that, in general,

|H(e™) = | Y alkle /| < > a[kle ™ < > kK],
k=—co k=—oc0 k=—o00
so the general condition
> kK]l < o0

k=—o0

ensures that H(e/“) exists. It is no surprise that the condition for existence of the
frequency response is the same as the condition for dominance of the steady-state
solution. Indeed, a complex exponential that exists for all n can be thought of as one
thatis applied atn = —o0. The eigenfunction property of complex exponentials depends
on stability of the system, since at finite n, the transient response must have become
zero, so that we only see the steady-state response H(e/“)e/*" for all finite 7.

2.7 REPRESENTATION OF SEQUENCES BY FOURIER TRANSFORMS

One of the advantages of the frequency-response representation of a linear time-

invariant system is that interpretations of system behavior such as the one we made

in Example 2.20 often follow easily. We will elaborate on this point in considerably

more detail in Chapter 5. At this point, however, let us return to the question of how

we may find representations of the form of Eq. (2.117) for an arbitrary input sequence.
Many sequences can be represented by a Fourier integral of the form

1 7 . .
- Joy ,jon
x[n] 57 X(e’*)e!"dw, (2.133)
where
X(e®)y= Y x[nle . (2.134)

Equations (2.133) and (2.134) together form a Fourier representation for the sequence.
Equation (2.133), the inverse Fourier transform, is a synthesis formula. That is, it repre-
sents x[n] as a superposition of infinitesimally small complex sinusoids of the form

1 ) .
jowy,jon
o X(e’*)e!"dw,

with w ranging over an interval of length 27 and with X (e/#) determining the relative
amount of each complex sinusoidal component. Although, in writing Eq. (2.133), we
have chosen the range of values for w between —z and +x, any interval of length 2=
can be used. Equation (2.134), the Fourier transform,? is an expression for computing
X (e/*) from the sequence x[n), i.e., for analyzing the sequence x[n] to determine how
much of each frequency component is required to synthesize x[n] using Eq. (2.133).

3Sometimes we will refer to Eq. (2.134) more explicitly a