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ENTROPY AND SEARCH THEORY

1. INTRODUCTION

A recent article by Pierce (1978) has brought search theory to the
attention of workers in related fields which also use statistical theory.
In recountinc history, he noted that early workers tried to relate detection
probability Pp and search effort to the posterior entropy HND conditional
on nondetection [Eq. {4) below] or to the "expected posterior entropy"

He = DDP%J+ (1-—pD) HND’ discovered quickly that no general relation
exists; and concluded that information theory has no useful connection
with search theory.

As Pierce stated: “These negative findings had a clearly inhibiting
effect on research, and relatively little effort has been devoted to the
connections between information and search for the past fifteen years.
Nonetheless, the intuitive appeal of information theory remains strong.”

He then presented some numerical analyses showing that in some cases
maximum posterior entropy did, after all, correspond closely with maximum
detection probability, although exceptions were also found. After analyzing
the available evidence, Pierce concluded that the relation between search
theory and information theory remains complex, but that the situation is
promising enough to justify further study.

To an information theorist that intuitive appeal is so strong that
one is convinced from the start; there must exist a close relation between
information and optimal search policyv; and not just a numerical coincidence
holding in some cases. There must be an exact, analytically demonstrable,

and very aeneral relation pertaining not only to search theory, but to



optimal planning for any objective. For any optimal strategy is only a
procedure for exploiting our prior information in order to achieve whatever
goal is set, as quickly (or as efficiently as measured by any cost assignment)
as possible.

Indeed, Shannon's orioinal creation of information theory arose from
a special case of this: optimal encodinag of a message so as to transmit
it most efficiently by the cost assignment of channel capacity. As we have
pointed out {Javnes, 1978), all of presentlv known Statistical Mechanics is
included in the solution that Shannon proposed for this problem. In any
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such problem, the attainable efficiency must be related to--because it 1s
determined by--the amount of prior information available. If past efforts
to find this relation have failed, it can be only from a technical failure
to ask the right question

We show here that such a relation does indeed exist, but it involves
different entropies than HND' We develop it here by analyzing the simple
search model studied by Pierce (single stationary target, no false alarms,
independent detection probability for successive looks), after which we
speculate on generalizations. One of our entropy connections was given by
Barker (1977); the other is possibly new. However, our purpose nere is

"introductory tutorial" rather than reporting new research.

2. THE SIMPLE MODEL
There is a hidden "target" in region R. £Each time we look at R we
have, independently, the probability q of detecting it, so the probability
that it will have been detected in k looks is [1 -(1—q)k]. We generalize
by replacing the discrete number of looks k by a continuous "search effort"

variable z, and define a "search parameter” s by (1-q) = exp(-s_}).



Then the probability that a search effort z will result in detection is
p(D]z) = 1 - exp(-z/s) : (1)

Now consider that, instead of @ single region R, the target is known
to be in one and only one of n different "cells" with various search
parameters {s?... sn}. With prior probability Pi that it is in cell 1

(1 <1< n), the predictive prior probability that the search allocations

{z]... zn} will result in detection, is
n
D = - —
Py iil Pi[l exp( Zi/si)] . (2)

If, after this search, the taraet has not been located, the posterior

probability that it is in cell i will be

Pi exp(—zi/si)

p.

L Eij exp(—zi—sj)

——
[8)
L

In this notation, we use p; = pi(z]... zh) as the "running variable" cell
probabilities that evolve continuously throughout the search, and Pi: pi(O)

for their fixed initial values. The aforementioned entropy is then



3. RELATIVE ENTROPY

The cell parameter 5. is a measure of the search effort required to
achieve a given detection probability in cell i. If the cells consist of
various areas to be searched, then one expects that a cell of twice the
area will require twice the search effort; thus we may think of 5. guite
generally as the "size" of cell 1. Of course, in different problems this
size may be measured in various terms: not only area, but equally well
man-days, gascline consumption, number of microscope slides, film footage,
computer time, etc. In whatever units cell size s is measured, search
effort z will be measured in the same units.

Now the original definition of our cells arose presumably in some
natural way out of circumstances of the problem; but in principle their
definition is arbitrary. They may be combined or subdivided in various
ways and the cell sizes are additive. In particular, we can find integers

N1 such that

S N
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= , (5)
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to any desired accuracy (by choosing Ni sufficiently large). But then a
cell with size, probability, andsearchallocation {Si’ pi,zi} may be
subdivided into Ni equal cells, each of size, probability, and search

allocation
re = Si/Ni ; W = pi/Ni : Y = zi/Ni ; 1T < k<N, (6)

and the detection probability p1[1 - exp(-zi/si)] may be written equally



well as

NS

k; w1 - expl-y,/r)l . (7)

But by construction all the new cells (k) are the same size, from whatever
old cell (i) they were derived. Therefore we have refined the problem to

one where we have
n
No= %N (8)
i=]

equal cells. At this point, we could generalize further by relaxing the
requirement of equal w ., y, in (6).
Clearly, in view of the symmetry, the correct entropy which measures

our information about the refined cells must be

N n
= -E;] W, 1og w, = §: P /N ]OQ(Pi/Nj) (9)

7=1

which has the upper bound Hmax = log N. It is customary to subtract off
this irrelevant additive constant by defining the new entropy I = H- log N,

or

I(z) = i p; Tog(m./p.) | (10)

where

i _



are the cell sizes, normalized to Ejmi = 1. HWe may, equally well, define an

entropy in which the roles of the distributions {pi}, {mi} are interchanged:

n
J(z) = Z] m. log(m,/p.) (12)
=

These satisfy the Gibbs inequalities I < 0, J >0, with equality in each
case if and only if {pi = mys 1 <1 <nj.

The quantity I may be called the entropy of the distribution {pi}
relative to the basic "measure" m. (so called to suggest still further
generalizations not needed here), while (-J) is the entropy of {mi} relative
to {pi}’ These quantities go by various other names--'"cross entropy,”
"directed divergence," "minimum discrimination information statistic,"”

"essergy," etc.--but we think those terms should be discouraged because

they imply that I is a different kind of object than H In fact, I is

ND*
simply the entropy over the symmetric refined cells, and is every bit as

much as a "true entropy" as H Indeed, it is not H but I and J,

ND” ND?

that have a simple and general relation to search theory, as follows:
Consider a search that starts from initial values I(0), J(0) which

are measures of our prior information about the target location. At any

subsequent stage {z zn} of the search effort--whether optimal or not--

1
the present values are I(z), J(z). The change [I(z)-1(0)] is the measure
of the amount of prior information utilized up to that point, while
[J(0) - J(z)] is the measure of the saving in search effort thereby

achieved. The optimal policy is then the one that trades off initial

information for reduced search effort, as quickly as possible.



The connection of I{z) with information was indicated in the derivation
of {10). To demonstrate the connection of J(z) with search effort, note
that from (2), the denominator of (3) is just (1-—pD). Therefore, at any

stage where we have allocated the search effort {Zi}’ J(z) is from (12)

J{z) = ; m. 109(Eﬁ-(1 - pn) exp(z./s.)l
=1L | v
= 3(0) + Tog(1 - py) + (2/5) (13)

where z = E:zi is the total search effort used. But {13) states only that

at this stage the detection probability is

Pp = 1 - exp{— z ; z* (14)
where
z* = S[J{0) - J(z2)] . (15)

Since J(z) > 0, if we start from prior ignorance, J(0) = 0, then clearly
the best we can do is to conduct the search so as to keep J(z)=0; then

the detection probability will be

Py = 1 - exp(-2/S) ; (16)

i.e., just the original detection function (1), in which we have Tumped all
cells together into one large cell of size S :E:Si' Thus, z* is precisely
the saving in search effort, for a given detection probability, that has
been achieved up to that point by exploiting the prior information.

A1l details of an optimal policy are easily set forth if we may

assume the following property.



4. DYNAMICAL CONSISTENCY

In a real-1ife situation the problem of deciding on a search allocation
will be almost hopelessly complicated, or even indeterminate, unless the
following property holds. Consider two different problems:

(A) You are allotted a total search effort }:zi = C. Decide on the
optimal allocation {2]... En} to maximize the probability of detection.

(B) The authorities have divided the search effort C into two portions,
C}+C2 = C. You are allotted first the amount C], and must decide on the
optimal allocation {21(])} with Ejzi(}) = C] on the assumption that no
further search effort is available. This fails to locate the target;
but you then learn that you may apply for permission to use the additional
search*effort*Cz. If thisis granted, you must then decide on the optimal
allocation {zi(z)} with §jzi(2) = C2 for the second try.

The problem has dynamical consistency if the optimal total search

allocation is the same in problems (A) and (B); i.e., if
Z: =z, . T <i<n (17)

for all Cl in (0 < C] < C). This is a highly desirable property for
psychological, practical, and mathematical reasons.
Psycholoaically, it is a comfort to the decision maker; for then he
can face his problems one at a time, making at each step the decision that
is optimal for the search effort being then committed--secure in the knowledge
that whatever the final outcome, no critic full of hindsight can later
accuse him of blundering (this remains true even if he has inherited the
Job from a blundering predecessor). Put differently, we are supposing that

“global" optimization can be found by a sequence of "local" optimizations.



Practically, it is a useful propertyv: for even if one knows in advance
exactly how much total search effort can be used, it may be necessary to
search the cells one at a time. Then one must in any event decide on the
optimal order of searching, which amounts to a sequence of problems of type
{B). Without dynamical consistency, the optimal action for today would 1in
general depend con imaainary contingencies that might or might not arise
tomorrow, and a "global" optimum would be very hard to find.

Mathematically, dynamical consistency reduces the problem for any
amount of search effort to successive allocations of infinitesimal amounts
&z, for which the optimal allocation is obvious. Given any previous search

allocation {z, ... zn}, whether optimal or not, which has reduced the cell

]
probabilities (3) to {p]... pn}, if the new increment &z is used in cell j,

the probability that it will result in detection is

DjD - exp(-GZ/sJ«)] = (pj/sj)ﬁz : (18)

But if detection does not result, then according to (3) the probability of

the i'th cell is changed by

and from (10), (12) the entropies I{(z), J(z) will receive the increments

O»
—
n

[T+ Tog(py/m ) I(ps/m, )z - (20)

6J

1}

s - (ps/m, )17 . (21)
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SmceZp_i =§]ni= 1, we have always (pj/mj)max > 1, and from (10),

[T+ 1og(pj/mj)maxj > 0. Thus the allocation of &z which maximizes the
detection probability (18) leads to &I > 0, 6J < 0; from (20), (21) it
therefore also maximizes the posterior entropy I and minimizes J. By

all three criteria, the optimal policy allocates each new increment &z

to whatever cell has at that time the greatest value of (pj/mj); as noted,
this is the optimal present policy even if the previous allocation {Zi}

was not optimal.

This optimal search policy always takes us toward the condition of
"complete ignorance” 1=J=0; and thus (as noted by Pierce, in agreement
with an earlier conjecture of Richardson) it "uses up" the prior information,
as rapidly as possible. The Timiting state I1=J=0 is actually reached,
at a finite total search effort, if the search continues long enough without
detection [Eg. (37) below]. Such a search therefore has a fundamental
division into an "early phase" in which I < 0, J > 0 and the prior
information is being used to determine policy; and a "final phase" in
which it is all used up: I=J=0, and the optimal policy is independent
of the prior information.

We now examine in some detail the course of the optimal search policy
for this model. In this we necessarily repeat a few facts well known in
the literature of search theory; our object is to point out their inter-
pretation in the Tight of the entropies I(z), J{z). The search process
now appears very much 1ike an irreversible process in thermodynamics, in
which an initially nonequilibrium state relaxes into the equilibrium state
of maximum entropy. But now it is only our state of knowledge that relaxes

to the "equilibrium" condition of maximum uncertainty, 1=J=0.



5. AN EXAMPLE OF OPTIMAL SEARCH

On the assumption of dynamical consistency, the entire course of the
optimal search effort is clear; since according to (19) the probability of
the searched cell is always lowered, that of the others raised, the optimal
strategy is the one that equalizes the numbers

a; = pi/mi (22)

starting from the top, as auickly as possible. We follow the aforementioned
notation of writing ai==ai(z]... zn) for the "running variables" that evolve
during the search, and Ai = ai(O) for their fixed initial values. Number

the cells according to those initial values, so that

Ay > A, > ... > A . (23)

] 2 - 'n

Then the optimal search proceéds as follows:

Stage 1. A1l the initial effort should go into cell 1 until its probability
is reduced to the point where ay = a,. The search effort required to do
this is, from (3),

2, (1. s, Tog(A/A,) (24)

and the prior probability of detection at or before this point is

(1) _ (1)

Py = P][l - exp(-z] /s])] = m](AI - Az) . (25)

Thus from (13) the entropy J has changed by

32 510 = Toq1 - my(Ay = A1+ m Tog(A/A) . (26)



12

That this must be negative if A] > AZ is evident from (21); to prove it
directly from (26) one must take into account also the inequalities
I

At any stage in the search, the entropy 1(z) may be written in the
form

-1

1(z) = Tog(1-py) + (1-p)7" K(z) (27)

where K(z) is an analytically simpler expression. Therefore we indicate
the entropy changes by giving the values of K at each stage of the search.

Initially, K(0) = I(0), but after the search effort (24) we find

K(i) = I(0) - P] 10g(m}/P]) + (m]/mz)P2 ]og(mz/Pz) ) (28)

That is, the right-hand side of (28) is the expression (10) for 1(0) in
which the first term [P] 1og(m1/P])] = —mTA] Tog A] has been replaced by
—m]A2 log AZ' In effect, this Tumps the first two cells together into a
single cell of measure (m] + mz).

Stage 2. According to (18), (20), (21) cells 1 and 2 are now equally
search-worthy, a further small search effort yielding equal detection
probability and equal entropy increase in either. The next efforts should
therefore by allocated to both, in the ratio which maintains the equality
3y = 2,3 that is, in the ratio myim,, which amounts to equal allocation
to the (N] + NZ) refined cells derived from cells 1, 2. The second stage
continues until 8y 7 a, = a,, at which point we have used the additional

search effort

(s +s,) Tog(A,/A;) | (29)
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and the total amounts expended in cells 1 and 2 up to this point are

21(2) = 21(1) t s, Tog(AZ/A3)
= s, 109(A1/A3) (30)
2,'2) = s, Toglan,) . (31)

The prior probability of detection at or before this point is

opt2 = m (A - Ay) + my (A, - A) (32)
and the entropy 1(2) is given by (27) with
(22 1(0) =P, Toa(m/P) - P. Toa(m./p.)+ o] M2, Tog(m,/P.) (33)
1 10a{my/Py) =Py Toglm,/P, 3 100lmg/Py

M3

that is, by I{(0) with the first two terms replaced, in effect Tumping the
first three cells into a single cell of measure (m]i-m2+-m3).'
Stage 3. At this point, cells 1, 2, and 3 are equally search-worthy, and
so the next effort is allocated to them in the ratios M, im, iy until
ap=a,=ay=a,, at which point K(3) is given by I(0) with the first
three terms replaced--and so on.

This initial "equalization phase" continues until for the first

time a1 a, % ... 72, at which point we have used up the total search

effort

N
il
N
1t
7]
—
@]
w
Faam Y
>
-
S~
o]
=
—
il

-S[3(0) + Tog A ] (34)
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but have not searched at all in cell n: z, = 0. The prior probability of

detection has reached

pD(n—U =1 - A (35)

and K(n‘]) is I{0) with the first (n-1) terms replaced: i.e.,

n-1)

( - .
K =-A Tog A . (36)

From (27), (35), the entropy I(z) is now reduced to

(n-1) _ (37)

and from (13), (34), (35) we have a]sotJ(n‘])= 0. The posterior probabilities
(3) have completed the relaxation into their "equilibrium" values

{p, = m,, 1 < i nt; i.e., the refined cells now have equal probabilities

i i -

-
fw, =N, 1 <k

A

N}.

I A

Final Phase. ATl cells are now equally search-worthy, so if detection is

not yet achieved, any further search effort z" is allocated to all cells in

the proportions z{' =m 2 which maintain that condition; i.e., it is
allocated equally to the refined cells. The posterior probabilities
remain at their equilibrium values, the entropies I, J remain zero, and

the detection probability with any further amount of search effort (i.e.,

for total effort z=2z'+2z" > z') is

z + z**}

py(=) = 1 - exp{- : (38)
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where, comparing with (14), (15),

z** = S J(0) (39)

is the maximum possible saving in search effort that can be "bought" with

the prior information.

6. CONCLUSION — THE MORAL

We have shown how entropy maximization is related to optimal strategy
in one simple case. This can, of course, be generalized in many different
ways--in fact, the situation is open-ended because there is no end to the
variety of new problems that could arise. So it is impossible to give a
"most general" case once and for all. But before one can extend the theory
to some particular new case, it is necessary to understand the moral of
what we have just learned.

Why did it require nearly thirty years after Shannon's work to find
this (maximum entropy)-(optimal search) connection, in spite of the fact
that many workers suspected its existence and tried to find it? The answer
was given about 130 years ago by George Boole, who remarked: "I think it
one of the peculiar difficulties of probability theory, that its difficulties
sometimes are not seen". What has not always been seen here is that the
simple, ungualified term "entropy" is meaningless; entropy is always defined
with respect to some basic "measure" and the result of maximizing it depends
not only on the constraints, but also on the measure.

The difficulty in applying maximum entropy to probiems outside
thermodynamics is not in deciding what constraints should be applied,
but in deciding what is the underlying measure--or, as I prefer to call
it, what is the "hypothesis space” on which our entropies are defined?

More informally, what is the field on which our game is to be played?
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This problem does not Toom large in thermodynamics--in fact most
writers seem hardly aware of it--but this is only because it was solved
over 100 years ago by Liouville. Classical phase volume is invariant under
canonical transformations (of which the equatiors of motion are a special
case), and so equal weighting to equal phase volumes was the field on which
Gibbs' game was played.

This leads to many correct predictions {equations of state,
susceptibilities, high-temperature specific heats of solids and monatomic
gases), but at Tow temperatures Nature persisted in giving Tower specific
heats--and therefore states of lower entropy--than Gibbs predicted. In
Nature, therefore, there must be further constraints operative, beyond
those imposed by Gibbs. This was the first clue pointing to quantum theory.

The resolution, found by Einstein, Debye, von Neumann, and Brillouin,
was quite simple. It seems that not all classically allowed energies are
used by Nature, and equal weighting to orthogonal quantum states of a
system--which goes asymptotically into Liouville's weighting--is the new
field on which we play the game of quantum statistics. According to all
present knowledge, maximum entropy on this hypothesis space leads unerringly
to correct predictions. Still, I keep trying to find a case where it fails,
because then we would have a clue pointing to the new theory that will
someday replace our present quantum theory, and so history would be repeated.

In applications outside thermodynamics we are still at a phase cor-
responding to--if one can imagine it--statistical mechanics before the

discovery of Liouville's theorem. The originally tried entropy H f

D ©
Eq. (4) was defined with respect to uniform weighting of all search cells
regardless of their size. Such a weighting simply ignores the cogent

information about cell sizes. OQur proceeding to the refined cells of
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equal size restored the symmetry of our hypothesis space--and corresponded

to the discovery of Liouville's theorm. As soon as we play our game on the
field defined by (9), the connection of entropy with optimal search appears
immediately.

Moral: In any new problem, one must face anew, what is the underlying
symmetrical hypothesis space on which our entropies are defined? The
strategy 1is:

(1) Think hard about the appropriate hypothesis space.

Look for some symmetry/invariance property.

(2) Try out your best choice. If the desired kind of useful
results appear, then well and good--there is no evidence
pointing to a different hypothesis space and you are
done--at least for the time being.

(3) If you get unsatisfactory results, then if you are convinced
that all relevant constraints have been taken into account,
this is evidence that Nature is using a different hypothesis

space than yours. Go to step (1).

In spectrum analysis, the Burg solution implied independent uniform
weighting to all possible values of {yo...yN}. Its success thus far
indicates that we are now at step (2). However, the future may bring some
surprise here. Any persistent failures would point to a new hypothesis
space--and therefore to the possibility of still better predictions.

In image reconstruction, the present solutions seem to be based on
uniform independent weighting to all values of Tuminance for each pixel.

I have a suspicion--perhaps shared by John Skilling, although he expresses
himself in very different terms--that a deeper hypothesis space that to

some degree "anticipates" correlations of adjacent pixels, may be still
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better. Of course, we would have to accumulate a great deal of further
experience before we could be sure that we were at step (3).

We hope that entropy considerations will be brought to bear on other
problems of optimal strategy, and perhaps with enough experience we shall
Tearn how to define our hypothesis space for such probTems, just as

confidently as physicists now do in Statistical Mechanics.
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