Experiences with an SMP Implementation for
X10 based on the Java Concurrency Utilities
(Extended Abstract)

Rajkishore Barik
IBM India Research Lab.

rajbarik@in.ibm.com

Allan Kielstra
IBM Toronto Laboratory

kielstra@ca.ibm.com

1. INTRODUCTION

It is now well established that future computer systems are
rapidly moving from uniprocessor to multi-core configura-
tions, and using parallelism instead of frequency scaling as
the foundation for increased compute capacity. Unlike pre-
vious generations of hardware evolution, this shift towards
ubiquitous parallelism will have a major impact on soft-
ware. Modern OO languages, such as JAvA™ and C#,
together with their runtime environments, libraries, frame-
works and tools, have made concurrent programming acces-
sible to mainstream application developers, rather than just
system programmers. However, the facilities for concurrent
programming in these languages have also revealed several
drawbacks of parallel programming at the level of unstruc-
tured threads with lock-based synchronization.

X10 [1] is an experimental new language currently under de-
velopment at IBM in collaboration with academic partners.
The goal of the X10 project is to build a full language system
— including a new language, compiler, optimizer, runtime
system, and programming environment — that provides a
10x improvement in development productivity for parallel
applications. As part of this agenda, we have developed
an SMP implementation for X10 built on the Java Concur-
rency Utilities, also known as java.util.concurrent or the
JUC. This paper summarizes our experiences to date with
the SMP implementation based on the JCU, and outlines
directions for future work.

2. OVERVIEW OF X10

This section provides a brief summary of v0.41 of the X10
programming language, as described in [1]. The goal of X10
is to introduce a core set of new language constructs that

Proceedings of the 2006 Workshop on Programming Models for Ubiqui-
tous Parallelism, co-located with PACT 2006, September 2006, Seattle,
Washington.

Vincent Cave
IBM T.J. Watson Res. Ctr.

vcave@us.ibm.com
Igor Peshansky
IBM T.J. Watson Res. Ctr.
igorp@us.ibm.com

Christopher Donawa
IBM Toronto Laboratory

donawa@ca.ibm.com

Vivek Sarkar
IBM T.J. Watson Res. Citr.

vsarkar@us.ibm.com

address the fundamental requirements for high productiv-
ity programming of parallel systems at all scales — multi-
core processors, symmetric shared-memory multiprocessors
(SMPs), commodity clusters, high end supercomputers like
Blue Gene, and even embedded processors like Cell.

With a view to ubiquitous adoption, X10 uses a serial sub-
set of the Java language as its foundation, but replaces the
Java language’s current support for concurrency by new
constructs that are motivated by high-productivity high-
performance parallel programming.

Perhaps the simplest introduction to X10 is to examine how
three X10 constructs — async, atomic, finish — can be used
to write a large class of single-place parallel programs. In a
single-place X10 program, all activities execute in the same
place, and have uniform read and write access to all shared
data, as in multithreaded Java programs where all threads
operate on a single shared heap. An important safety re-
sult in X10 is that any program written with async, finish,
atomic can never deadlock. (This result also holds with the
addition of foreach, ateach, and clock constructs.) We now
briefly describe the three constructs below.

Async is the X10 construct for creating or forking a new
asynchronous activity. The statement, async {stmt), causes
the parent activity to create a new child activity to execute
(stmt). Execution of the async statement returns immedi-
ately i.e., the parent activity can proceed immediately to its
next statement.

Consider the following X10 code example of an async con-
struct. The goal of this example is to use two activities to
compute in parallel the sums of the odd and even numbers in
the range 1...n. This is accomplished by having the main
program activity use the async for (inti...) ... statement
to create a child activity to execute the for-i loop and print
0ddSum, while the main program activity proceeds in par-
allel to execute the for-j loop and print evenSum.

public static void main(String[] args) {
final int n = 100;

async { // Compute oddSum in child activity
double oddSum = 0;
for (int i =1 ; i<=n; i+=2)
oddSum += i;
System.out.println("oddSum = " + oddSum) ;
}
// Compute evenSum in parent activity
double evenSum = 0;
for (int i =2 ; i <=n ; i +=2)
evenSum += i;
System.out.println("evenSum = " + evenSum);

} // main()

X10 permits the use of async to create multiple nested ac-
tivities in-line in a single method, unlike Java threads where
the body of the thread must be specified out-of-line in a sep-
arate Runnable class. Also, note that the child activity uses
the value of local variable n from the parent activity, without
the programmer having to pass it explicitly as a parameter.
X10 provides this sharing of local variables for convenience,
but requires that any local variables in the parent activity
that are accessed by a child activity must be defined as final
(constant) in the parent activity.

The X10 statement, finish (stmt), causes the parent activity
to execute (stmt) and then wait till all sub-activities created
within (stmt) have terminated globally. If async is viewed
as a fork construct, then finish can be viewed as a join con-
struct. However, as discussed below, the async-finish model
is more general than the fork-join model. X10 distinguishes
between local termination and global termination of a state-
ment. The execution of a statement by an activity is said
to terminate locally when the activity has completed all the
computation related to that statement. For example, the
creation of an asynchronous activity terminates locally when
the activity has been created. A statement is said to ter-
minate globally when it has terminated locally and all ac-
tivities that it may have spawned (if any) have, recursively,
terminated globally.

Consider a variant of the previous example in which the
main program waits for its child activity to finish so that it
can print the result obtained by adding oddSum and Even-
Sum:

public static void main(String[] args) {
final int n = 100;
final BoxedDouble oddSumResult = new BoxedDouble();
double evenSum = 0;
finish {
async { // Compute oddSum in child activity
for (int i =1 ; i<=n; i +=2)
oddSumResult.val += i;
}
// Compute evenSum in parent activity
for (int i =2 ; i<=n ; i +=2)
evenSum += i;
} // finish
System.out.println("Sum = " +
(oddSumResult.val + evenSum));
} // main(Q)

The finish statement guarantees that the child activity ter-
minates globally before the print statement is executed. Note
that the result of the child activity is communicated to the
parent in a shared object, oddSumResult, since X10 does not
permit a child activity to update a local variable in its par-
ent activity. In this case, the local variable oddSumResult
contains a pointer to an object with a val field, thereby en-
abling oddSumResult.val to be updatable even though odd-
SumResult is a constant pointer. It is also worth noting that
the X10 memory model is weak enough to allow oddSum-
Result.val to be allocated to a register during the execution
of the entire for-i loop.

The atomic construct in X10 is used to coordinate accesses
by multiple activities to shared data. The X10 statement,
atomic (stmt), causes (stmt) to be executed atomically i.e.,
its execution occurs as if in a single step during which (stmt)
executes and terminates locally while all other concurrent
activities in the same place are suspended. Compared to
user-managed locking, the X10 user only needs to specify
that a collection of statements should execute atomically
and leaves the responsibility of lock management and alter-
native mechanisms for enforcing atomicity to the language
implementation. Commutative operations, such as updates
to histogram tables and insertions in a shared data structure,
are a natural fit for atomic blocks when performed by mul-
tiple activities. An atomic block may include method calls,
conditionals, and other forms of sequential control flow. For
scalability reasons, blocking operations like finish and force
are not permitted in an atomic block. Also, as we will see,
an X10 atomic block can only be used to enforce atomicity
within a place.

X10 also permits the modifier atomic on method definitions
as a shorthand for enclosing the body of the method in an
atomic block.

Current programming models use two separate levels of ab-
straction for shared-memory thread-level parallelism (e.g.,
Java threads, OpenMP, pthreads) and distributed-memory
communication (e.g., Java messaging, RMI, MPI, UPC) re-
sulting in significant complexity when trying to combine the
two. In this section, we show how the three core X10 con-
structs introduced earlier can be extended to multiple places.
A place is a collection of resident (non-migrating) mutable
data objects and the activities that operate on the data.
Every X10 activity runs in a place; the activity may obtain
a reference to this place by evaluating the constant here.

Places are virtual — the mapping of places to physical loca-
tions in is performed by a deployment step that is separate
from the X10 program. Though objects and activities do
not migrate across places in an X10 program, an X10 de-
ployment is free to migrate places across physical locations
based on affinity and load balance considerations. While an
activity executes at the same place throughout its lifetime,
it may dynamically spawn activities in remote places.

X10 supports a partitioned global address space (PGAS)
that is partitioned across places. Each mutable location
and each activity is associated with exactly one place, and
places do not overlap. A scalar object in X10 is allocated
completely at a single place. In contrast, the elements of an

array, may be distributed across multiple places.

The statement, async ({place-ezpr)) (stmt), causes the par-
ent activity to create a new child activity to execute {stmt)
at the place designated by (place-ezpr). The async is local if
the destination place is same as the place where the parent
is executing, and remote if the destination is different. Local
async’s are like lightweight threads, as discussed earlier in
the single-place scenario. A remote async can be viewed as
an active message, since it involves communication of input
values as well as remote execution of the computation spec-
ified by (stmt). The semantics of the X10 finish operator is
identical for local and remote async’s viz., to ensure global
termination of all asyncs created in the scope of the finish.

3. AN SMP IMPLEMENTATION FOR X10

We have constructed an optimized SMP implementation of
X10 that extends the reference implementation described
in [1]. There were two main reasons for basing this SMP
implementation on the Java Concurrency Utilities [4]:

1. Performance: a more efficient implementation can be
obtained by creating lightweight X10 activities that
can be processed by a fixed number of Java threads in a
ThreadPoolExecutor, compared to creating a separate
Java thread for each X10 activity.

2. Simplicity: the X10 runtime can be simplified since
it need not perform low-level synchronizations that
are encapsulated in the JUC for implementing thread
pools and other services needed by a parallel language
runtime system.

The highlights of the implementation are as follows:

e An X10ThreadPoolExecutor class is introduced as an
extension to the JUC ThreadPoolExecutor class. The
main functionality in this extension is the ability for
the thread pool to increase and decrease the number
of threads in the pool as required by the X10 runtime
system.

o If an X10 activity performs a blocking operation (fin-
ish, force or next), then the Java thread executing the
X10 activity will also block and new threads will be
added to the pool as needed. If the number of blocked
activities (and threads) becomes a significant bottle-
neck, we will consider a more sophisticated implemen-
tation in which the continuation of a blocked activity is
serialized thereby enabling its Java thread to do some-
thing else till the activity becomes unblocked.

e A LinkedBlockingQueue is used to hold X10 activities
ready for execution by the X10ThreadPoolExecutor.
A LIFO policy is used on the queue so as to avoid the
large growth in queue size that can occur with a FIFO
policy.

e A modified version of the JUC CountDownLatch class
is used to support a count-down latch in which incre-
ments are permitted to the latch’s counter. This is
necessary to support X10’s finish construct, since the

Place

Ready Executing Outbound
Activities Activities activities
Atomic blocks do not
h, blocki
Completed Blocked Z‘;em aro1tci cls"g
Activities Activities

£
-

— T

Inbound
replies

Figure 1: Logical structure of a single X10 place

——Crypt

—#- LUFact
SOR
SparseMM

—%—Series

Speedup (relative to 1-thread case)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Thread Pool Size (number of threads)

Figure 3: Performance measurements of five Java
Grande Forum benchmarks rewritten in X10

number of descendant activities that a finish operation
needs to wait on can increase after a finish operation
is initiated.

e A modified version of the JUC CyclicBarrier class is
used to implement X10 clocks. As with the modified
CountDownLatch, the main modification is to allow the
count to be increased dynamically before it trips (and
to also change the reset value).

e Asin the original X10 reference implementation, a sin-
gle lock per place is used to support atomic blocks.
Current JVMs are very efficient in dealing with un-
contended locks. If a single lock per place becomes
a source of contention, our recommendation is that
the original X10 program be rewritten to use multiple
places thereby reducing the amount of contention that
occurs within a place.

X10 programs executing on this implementation can emulate
multiple places on a single SMP system by using multiple

14 Boot Activity A

Activity \ ‘ Activity \ Activity
)
cl cl

AN !

Activity

o Actviy
[—J:} o] E

J

Active Blocked

[T Jeeo[[|)

Queued

JCuU
JCU Thread Pool Thread Pool
X10 Place X10 Place

DA

X10 Runtime

JAVA Runtime]

Figure 2: Structure of X10 Runtime System for SMP Implementation

thread pools. The X10 Run Time System (RTS) is written
in the Java programming language and thus can take ad-
vantage of object oriented language features such as garbage
collection, dynamic type checking and polymorphic method
dispatch. The design of a place in the SMP implementation
corresponds to the ezecutor pattern [3]. A place acts as an
executor that dispatches individual activities to a pool of
JAVA threads, as outlined in Figures 1 and 2. Activities in
X10 can be created by async statements, future expressions,
foreach and ateach constructs, and array initializers. The
thread pool model makes it possible to reuse a thread for
multiple X10 activities. However, if an X10 activity blocks,
e.g., due to a force operation on a future, or a next operation
on a clock, its thread will not be available until the activ-
ity resumes and completes execution. In that case, a new
JAVA thread will need to be created to serve any outstand-
ing activities. As a result, the total number of threads that
can be created in a single place is bounded by the sum of
the number of threads initially created in the pool and the
maximum number of activities that can be simultaneously
blocked.

Atomic blocks are currently implemented using a single mu-
tual exclusion lock per place. While this implementation
strategy limits parallelism, it is guaranteed to be deadlock-
free since no X10 computation can require the implementa-
tion to acquire locks for more than one place. We call an
atomic block analyzable if the locations and places of all data
to be accessed in the atomic section can be computed on en-
try to the atomic section. Analyzability of atomic sections
is not a language requirement, but serves as an important
special case for which optimized implementations of atomic
sections can be developed using multiple locks instead of a
single lock [5].

X10 Relative To Threaded Java

©

——Crypt

—= LUFact
SOR
SparseMM

—%—Series

(X10 execution time) / (Java execution time)
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Thread Pool Size (number of threads)

Figure 4: Performance of X10 version relative to
original Java version

4. PRELIMINARY EXPERIMENTAL RESULTS

In this section, we present preliminary results comparing
the performance of our SMP X10 implementation with a
baseline multithreaded Java implementation on an SMP sys-
tem. The results were obtained on a 16-core 1.9GHz Power5
SMP system with 63.5GB of main memory AIX 5.3 and an
IBM J9 VM for Java 5. The Java Grande Forum bench-
marks [2] contains five multithreaded benchmarks in Section

——Crypt

—#- LUFact
SOR
SparseMM

—%—Series

(X10 execution time) / (JUC execution time)

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
Thread Pool Size (number of threads)

Figure 5: Performance of X10 version relative to
Java version written using the JUC

2 — crypt, lufact, series, sor, sparsematmult. We report re-
sults for X10, Java, and JUC versions of all five benchmarks
with the largest input size (size C). All results were obtained
using the -J-mx2000M -J-ms2000M options to set the heap
size to 2GB, and the J-Xjit:count=0 option to ensure that
each method was JIT-compiled on its first invocation. Since
X10’s class loading semantics is more relaxed than that of
Java, an additional ~-PRELOAD_CLASSES=true option was used
in the X10 case to cause all X10 classes referenced by the
application to be forcibly loaded before the main program is
executed. This allows for better code to be generated when
each method is compiled on its first invocation.

Figure 3 summarizes the performance (relative to the 1-
thread case) obtained as the number of threads is increased
from 1 to 16. Each benchmark is self-validating, so these
results represent executions that passed validation. The
benchmark configurations used to obtain these results were
such that dynamic compilation overhead was included in
the measurements for sor and sparsematmult, but not for
crypt, lufact, and series. For 16 threads, a speedup in the
range of 8x to 9x was obtained for three of the benchmarks
(crypt, lufact, series), a lower speedup of 5.2x for sor, and a
super-linear speedup of 20.1x for sparsemm. We are study-
ing these results so as to identify opportunities for further
optimization in the X10 runtime system.

Figure 4 summarizes the performance of the X10 version rel-
ative to the original Java version of the Java Grande Forum
benchmarks. For two of the benchmarks (sparsemm, crypt),
the X10 version performed consistently better than the Java
version. For another two benchmarks (lufact, series), both
versions showed roughly comparable performance. Finally,
for one benchmark (sor), the Java version outperformed the
X10 version, with a performance gap that increased with
the number of threads. The sor benchmark uses the clock
construct in X10, which was implemented using the JUC
CyclicBarrier to obtain these performance results. We are

investigating ways in which to further improve the perfor-
mance of the cyclic barrier.

Finally, Figure 5 summarizes the performance of the X10
version relative to hand-coded JUC versions. There are only
two benchmarks (sor, series) for which the JUC version out-
performed the X10 version. We are studying these results
so as to determine why the X10 version is slower in these
two cases.

S. CONCLUSIONS

In this paper, we described our experiences with an SMP
implementation of the X10 language based on the Java Con-
currency Utilities. The preliminary results are encouraging
in showing how our approach offers users the best of both
worlds — higher-level abstractions of concurrency, coupled
with state-of-the-art performance obtained by leveraging op-
timized implementations of the JUC. We believe that fur-
ther performance improvements should be achievable in the
future, as we leverage the lessons learned from the perfor-
mance results reported in this paper.

Acknowledgments

X10 is being developed in the context of the IBM PERCS
(Productive Easy-to-use Reliable Computing Systems) project,
which is supported in part by DARPA under contract No.
NBCH30390004. We are grateful to the following people
for their contributions to the X10 implementation described
in this paper: Philippe Charles, Kemal Ebcioglu, Robert
Fuhrer, Christian Grothoff, Christoph von Praun, and Vi-
jay Saraswat.

6. REFERENCES

[1] Philippe Charles, Christopher Donawa, Kemal
Ebcioglu, Christian Grothoff, Allan Kielstra, Christoph
von Praun, Vijay Saraswat, and Vivek Sarkar. X10: An
object-oriented approach to non-uniform cluster
computing. In OOPSLA 2005 Onward! Track, 2005.

[2] The Java Grande Forum benchmark suite.
http://www.epcc.ed.ac.uk/javagrande/javag.html.

[3] Doug Lea. Concurrent Programming in Java, Second
Edition. Addison-Wesley, Inc., Reading, Massachusetts,
1999.

[4] Doug Lea. The Concurreny Utilities, 2004. JSR 166,
http://www.jcp.org/en/jsr/detail?id=166.

[5] V. Sarkar and G. R. Gao. Analyzable atomic sections:
Integrating fine-grained synchronization and weak
consistency models for scalable parallelism. Technical
report, CAPSL Technical Memo 52, February 2004.

