
A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 532–546, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Formal Verification of Avionics Software Products

Jean Souyris1, Virginie Wiels2, David Delmas1, and Hervé Delseny1

1 Airbus France S.A.S.
316, route de Bayonne

31060 TOULOUSE Cedex 9, France
2 Onera / DTIM*

2 avenue E. Belin, BP 74025
31055 Toulouse cedex, France

jean.souyris@airbus.com, Virginie.Wiels@onera.fr,
david.delmas@airbus.com, herve.delseny@airbus.com

Abstract. This paper relates an industrial experience in the field of formal veri-
fication of avionics software products. Ten years ago we presented our very
first technological research results in [18]. What was just an idea plus some ex-
perimental results at that time is now an industrial reality. Indeed, since 2001,
Airbus has been integrating several tool supported formal verification tech-
niques into the development process of avionics software products. Just like all
aspects of such processes, the use of formal verification techniques must com-
ply with DO-178B [9] objectives and Airbus has been a pioneer in this domain.

Keywords: avionics software, safety, development process, verification, formal
verification, Abstract Interpretation, static analysis.

1 Introduction

Industrial context. Avionics software products in onboard computers are major
components of the systems of an aircraft. Such software products are developed
according to very stringent rules imposed by the DO-178B standard. Of course verifi-
cation, although being one activity among others, is the heaviest task of the develop-
ment of an avionics software product. Verification, as defined by DO-178B, is
performed by reviews, analyses or tests. The first two ones are purely intellectual
while the latter basically consists in executing the program to be verified and in
checking whether the results of this execution are those expected.

Airbus technological research in Formal Verification. The above mentioned veri-
fication means constituted the state of the art at the time DO-178B was written. Dur-
ing the last decade, new verification techniques coming from research in Computer
Science have become usable in the industry of critical embedded software. These
techniques are formal and are usually categorized as follows: Abstract Interpretation
based static analysis, theorem proving and model-checking.

* Onera is the French aerospace lab and is working with Airbus on methods and certification

aspects of formal verification.

 Formal Verification of Avionics Software Products 533

Transfer to operational teams. Since 2001, Airbus has been transferring formal
verification tools – and associated methods of use – to its teams who develop avionics
software. The first set of tools to be transferred have been: Caveat [18], aiT [12] and
Stackanalyzer [23] . They are all used for achieving some DO-178B verification ob-
jective. This means that they have been qualified in the sense of this standard.

The aim of this paper is to show how the development of avionics software could
benefit from formal verification techniques far beyond their first use mentioned just
above. This paper is based on the synthesis of ongoing technological research work at
Airbus, in close cooperation with academic and industrial labs. The various aspects of
this research are handled – or have been handled – in the context of the following past
or ongoing research projects: DAEDALUS [5], ASTREE [1], THESEE [24], CAT
[2], U3CAT [25], ASBAPROD (French civilian aviation project), ES_PASS [11].

Structure of the paper. Section 2 is a quick overview of the development and verifi-
cation process of a DO-178B conforming avionics product. In section 3, the formal
verification technologies used by Airbus are presented, whether already used industri-
ally or close to be. Sections 4 and 5 show what development activities it is possible to
base on the use of the tools introduced in section 3, and what are possible develop-
ment processes including these activities. Considerations about the compliance of
these new processes to DO-178B and, beyond, to DO-178C (the standard being de-
fined) are discussed in section 6. Section 7 concludes and introduces future work.

2 DO-178B Compliant Development Process of an Avionics
Software Product

The development of avionics software products has to conform to the DO-178B [9]
standard. DO-178B does not prescribe a specific development process, it identifies
important steps inside a development process and defines objectives for each of these
steps. DO-178B distinguishes the development processes from “integral” processes
that are meant to ensure correctness control and confidence of the software life cycle
processes and their outputs. The verification process is part of the integral processes.
In this section, we give an overview of the development and verification processes.

2.1 Development Processes

Four processes are identified:

- The software requirements process develops High Level Requirements
(HLR) from the outputs of the system process;

- The software design process develops Low Level Requirements (LLR) and
Software Architecture from the HLR;

- The software coding process develops source code from the software archi-
tecture and the LLR;

- The software integration process loads executable object code into the target
hardware for hardware/software integration.

Each of the above mentioned processeses is a step towards the actual software prod-
uct, Figure 1 presents the different steps.

534 J. Souyris et al.

Design process

Requiremenst process

Integration process

Coding process

Executable
Object code

Source code

LLR Soft Arch

HLR

System reqts

Fig. 1. DO-178B development processes

So far, for the software products it develops, Airbus has been defining the Low

Level Requirements as being applied to design entities that are later implemented in
the form of modules and functions of the programming language (C, most of the time)
in a one-to-one manner. The way those design entities collaborate in order to imple-
ment the High Level Requirements is first defined during the software architecture
phase.

2.2 Verification Process

The results of all activities1 of the development must be verified. Detailed objectives
are defined for each step of the development, typically some objectives are defined on
the output of a development process itself and also on the compliance of this output to
the input of the process that produced it. For example, Figure 2 presents the objectives
related to LLR. Arrows are labeled with verification objectives; the loop arrow on
LLR means the objectives only concern LLR while the arrow between LLR and HLR
means that objectives address relationships between LLR and HLR.

On one hand, LLR shall be accurate and consistent, compatible with the target
computer, verifiable, conform to requirements standards, and they shall ensure algo-
rithm accuracy. On the other hand, LLR shall be compliant and traceable to HLR.

Verification means identified by DO-178B are reviews, analyses and test. Reviews
provide a qualitative assessment of correctness. Analyses provide repeatable assess-
ment of correctness. Reviews and analyses are used for all the verification objectives
regarding HLR, LLR, software architecture and source code. Test is used to verify

1 We use the terms activity and process, a process is a set of activities.

 Formal Verification of Avionics Software Products 535

HLR

LLR Accuracy & Consistency
HW Compatibility
Verifiability
Conformance to standards
Algorithm Accuracy

Compliance
Traceability

Fig. 2. Verification objectives associated to LLR

that the executable object is compliant with LLR and HLR. Test is always based on
the requirements (functional test) and shall include normal range and robustness
cases. A structural coverage analysis is performed to ensure that the software has been
tested enough (different coverage criteria are used depending on the criticality level of
the software).

3 Formal Verification Technologies Applicable to Avionics
Programs

In this section, we briefly present the two kinds of formal techniques used for the
verification of avionics programs (deductive methods and Abstract Interpretation
based static analysis) and we describe the associated tools.

3.1 Deductive Methods

The first kind of formal technique we consider for the verification of programs is de-
ductive proof based on Hoare logic [15], and the computation of Dijkstra’s weakest
precondition predicate transformer [8]. The objective is to prove user defined proper-
ties on a given program. Properties must be formally expressed in logic. This tech-
nique proceeds in two steps:

- computation of the verification conditions: post-conditions (properties that
should hold after the execution of the program) are defined, this first step
analyses the program and computes the conditions that must hold for these
post-conditions to be verified;

- proof of the verification conditions: a theorem prover is used to prove the
conditions computed before.

The first step is completely automated, the second step usually requires interaction
with the user, but automation can be improved by the definition of specific heuristics.

Several tools exist for different programming languages (mostly C and java). The
tools considered in this paper are Caveat and Frama-C [14].

536 J. Souyris et al.

3.2 Abstract Interpretation Based Static Analysis

The second kind of techniques is techniques based on Abstract Interpretation [4]. The
principle of Abstract interpretation is the construction of a sound approximation of the
semantics of programs. A specific approximation is generated for each particular
property being analysed. Abstract interpretation is a completely automated technique.
It may produce so called “false positives” (errors that can occur on the approximation
of the program that has been computed, but cannot occur on the real program). The
challenge is thus to be able to build a precise enough approximation in order to have
as few false positives as possible. This usually implies a specialisation of the tech-
nique with respect to the analysed programs.

The Abstract Interpretation based tools considered in this paper are Astrée [3], aiT
[12], Stackanalyzer [23] and Fluctuat [6].

3.3 Tools

We only present briefly the tools, the use of tools in the Airbus process will be de-
scribed in section 4.

Caveat [18] is the first formal verification tool that Airbus has been using in devel-
opment (since 2002). Caveat analyses C programs (with some restrictions in terms of
language constructs) and has its own specification (or property) language based on
first order logic.

Caveat proposes two main functionalities:

• data and control flow analysis;
• proof of user-specified properties.

Data and control flows analyses are fully automatic on the set of C modules given to
Caveat.

Proof of user-specified properties is in general not automatic. For completing a
proof or understanding why it cannot be completed, the user can use Caveat Interac-
tive Predicate Transformer. This interactive part of the tool takes a first order logic
formula as input that the user can handle in order to prove it equivalent to true or to
understand that it is not possible. Each predicate transformation is performed under
the control of the tool.

Frama-C [14] is a toolbox that aims at analysing C programs. It is extensible by
means of plug-ins. A plug-in implements a specific analysis and can exchange data
with other plug-ins or with the core of Frama-C thanks to a common specification
language called ACSL.

Examples of existing plug-ins are:

• Abstract Interpretation based value analysis;
• Slicing;
• Weakest Precondition (WP) computation whose proof obligations are

given to the WHY platform of provers.

It must be noticed that the development of simple but useful plug-ins is accessible to
industrial Frama-C users.

 Formal Verification of Avionics Software Products 537

Whereas Frama-C mixes several techniques coming from research in Computer
Science, the following tools are all based on Abstract Interpretation.

Astrée [3] analyses – a subset of - C programs on which it aims at proving the ab-
sence of Run-Time Errors (RTE). Since it has been designed in the context of the
Abstract Interpretation theory [13], it might produce false alarms, also called false
positives, due to the abstraction of the concrete semantics of the analysed program. In
order to make it industrially usable on safety-critical programs, Astrée had to be spe-
cialized for a family of programs. This has been made for control-command synchro-
nous programs produced from SCADE (or SAO, SCADE ancestor) models. The
result is that Astrée precision is very high (almost zero false positives) when analysing
programs that belong to the family for which it has been specialized. Scalability is
also very good, i.e., 500,000 lines of code are analysed successfully within a time-
scale compatible with industrial development constraints.

aiT [12] analyses a program in its binary form for computing an upper bound of the
Worst Case Execution Time (WCET) of the program tasks. This static analyser con-
tributes to proving that the timing constraints assigned to a program are met. Indeed
all kinds of schedulability analyses take the WCET of the tasks of the system as input.
Because the execution time of a piece of code also depends on the hardware on which
it is intended to be executed, aiT includes a model of the target processor and its asso-
ciated memory controller. Whereas the drawback of abstraction is the false positive in
the case of an Abstract Interpretation based static analyser dealing with RTE, the
counterpart for aiT is the overestimation of the WCET (upper bound).

Stackanalyzer [23] analyses a program in its binary form for computing an upper
bound of the amount of memory actually used by the program task stack. This static
analysis contributes to proving that no execution of the program will cause a stack
overflow.

Fluctuat [6]. Whereas in mathematics the set of real numbers is infinite, the set of
floating-point numbers is finite, be it float, double, etc. So, during the float operations
performed by a program, rounding errors affect the results. This might lead to a sig-
nificant difference between a floating-point value and the real one that should have
been computed. Furthermore, a calculus scheme might be stable in the real arithmetic
and become instable in the floating-point arithmetic. With respect to this problem,
Fluctuat analyses C programs – note that there is a Fluctuat for a specific assembly
language (TMS320C33 processor) – for computing safe ranges for:

• The floating-point values the variables still alive at the end of the program
may have;

• The error between the floating point value and the real one that should
have been computed if operations were in the real numbers, for each vari-
able still alive at the end of the program.

Fluctuat does not only compute these ranges, it also allows the user to find the origin
of imprecisions in its code. Problems like lacks of precision, instability, sensitivity are
detected by this static analyser.

Certified compilation. There are various approaches for proving that a program in its
binary (or assembly) form is semantically equivalent to the source program (in C, for
instance) from which it has been compiled. Two of them are being considered: the

538 J. Souyris et al.

Translation validation [19] and the Certified compiler [17]. The first one consists in
proving that after each production of a binary file, this executable program is seman-
tically equivalent to the input source program (e.g., in C files). This is a kind of vali-
dator separated from the compiler. The second selected approach, i.e., the Certified
compiler, consists in developing a compiler formally and proving once and for all that
it produces target programs semantically equivalent to source programs.

Certified compilation is of utmost importance in itself, especially for safety-critical
software products. It is also natural to consider it when formal verification is per-
formed on source programs. Indeed, a bug of a compiler might lead to produce a code
on which some proof of a property made on the source code does not longer hold.

4 Development Process Activities Based on the Use of Formal
Techniques

4.1 Operational Use of Formal Methods

Unit Proof [10, 21]. Within the development process of the most safety-critical avi-
onics programs, the unit verification technique is used for achieving DO-178B objec-
tives related to the verification of the executable code with respect to the Low Level
Requirements, the classical technique being the Unit Tests. Since 2002, a formal ap-
proach to Unit Verification is also used industrially: Unit Proof. The tool used for this
activity is Caveat (see section 3.3). Basically, it consists in:

• Writing formal Low Level Requirements in Caveat property language
during the detailed design activity of the development process;

• Once a C module has been written during the coding activity, the formal
requirements of this C module and the module itself are given to Caveat
for proving. This activity is performed for each C function of each C
module. When a C function is called by the one being proved it is stubbed
according to a sound technique.

Worst Case Execution Time analysis [22]. In real-time systems, computing correct
values is not enough. Indeed, the program must also compute these values in due time
in order to remain synchronised with the physical environment. The scheduling of the
most critical avionics real-time programs is an off-line scheduling. This means that the
serialisation (single processor) of the various program tasks is performed at design
time, leading to a fixed interleaving of these tasks. In this context, schedulability
analysis boils down to the safe computation of an upper bound of the Worst Case
Execution Time of the program tasks, almost exclusively. This computation is per-
formed with aiT (see section 3.3).

Maximum stack usage computation. The amount of memory given to a task of an
avionics program is determined statically when the program is built. If any task stack
of a program actually requires more memory than what has been allocated statically, a
stack overflow exception is raised during execution. In order to avoid this serious
problem, a safe upper bound of each stack of the program must be computed. With
these figures, the computation a safe upper bound of the total amount of memory used

 Formal Verification of Avionics Software Products 539

for stacks is performed, by means of an analysis that takes into account some mecha-
nisms such as interrupt tasks or Operating System calls.

4.2 Envisaged Use of Formal Methods

Integration Proof. The kind of defects that are covered by the Unit Proof technique
does not include the ones that arise when a C function calls another one with a wrong
interpretation of the service provided by the latter. Let us call this sort of bugs “design
bugs” since they are introduced during the activity which aims at defining the inter-
faces between the future C functions.

Integration Proof is being elaborated in the frame of the research project AS-
BAPROD and can be defined as an extension of the Unit Proof technique. Indeed, in-
stead of considering C functions individually, Integration Proof deals with sub-trees
of the program call tree. Let us consider an example. Suppose four C functions: f(),
g(), h() and i(), f() being the entry point of a call-tree (sub-tree of the whole program
call-tree) containing the other C functions. Whereas the Unit Proof technique aims at
proving that f (), g(), h() and i() satisfy their individual formal requirements without
taking into account the semantics of their callees (the C functions they call), the goal
of Integration Proof technique is to prove that the formal requirements of function f()
are satisfied by taking into account the semantics of all C functions contained in “its”
call-tree. The relevant design entities are bigger than the ones considered in Unit
Proof but smaller than the whole program. The reason why we did not move from the
proof of each C function individually to the proof of the whole – sequential – program
made of these C functions is the fact that we want to keep a great automatic proof
rate, for obvious industrial reasons. It is a design-time issue to define these intermedi-
ate-level entities in such a way that their further proof is as automatic as possible.

Proof of absence of Run-Time error [7, 20]. The underlying notion has been pre-
sented in several academic papers, such as [3, §2]: “The absence of runtime errors is
the implicit specification that there is no violation of the C norm (e.g., array index of
bounds), no implementation-specific undefined behaviours (e.g., floating-point divi-
sion by zero), no violation of the programming guidelines (e.g., arithmetic operators
on short variables should not overflow the range [-32768,32767] although, on
the specific platform, the result can be well-defined through modular arithmetic).”

This includes checking that no floating-point overflow can occur, as suggested by
DO-178B. So far, this need has been addressed through a combination of design and
coding guidelines, testing activities and source code reviews. Today, the ASTRÉE
static analyzer makes it possible to perform sound global proofs of absence of run-
time errors on complete applications. The analysis process is highly automatic, espe-
cially when dealing with Airbus large control programs, generated from SCADE
models.

Quality of floating-point calculus [6]. Freedom from run-time errors is not enough
when dealing with complex control programs that make massive use of floating-point
arithmetic. The accuracy of computations has to be addressed also, as requested by
DO-178B. The usual way to deal with this issue is to conduct:

540 J. Souyris et al.

- a set of dedicated test cases on real hardware;
- intellectual analyses of the numerical precision of all floating-point opera-

tions. The goal is to check that the program parts using floating-point arith-
metic can only generate negligible rounding errors, and cannot propagate
errors on inputs (sensitivity analysis). Such an activity is both time-
consuming and error-prone.

Today, the FLUCTUAT static analyser enables us to automate the latter activity in a
sound and precise way for libraries of widely-used basic operators of control pro-
grams. Besides, this tool can also be used to assess the numerical accuracy of some
critical system-level functions, through static analyses of the C code generated from
limited sets of SCADE nodes.

Certified compilation. As stated in section 2, the development of an avionics pro-
gram is made of four basic steps to which verification activities are applied. One step
being the production of the object code from the source code by compilation (and
production of the absolute binary code), it is natural to think about checking that this
step does not introduce bugs. In the “traditional” development process (see section 2),
an important verification activity consists in testing the program against its Low Level
requirements and, later on, against its High Level Requirements, by execution on the
real target (or on a very representative hardware). This verification covers the com-
piler outputs. With the use of formal verification techniques that apply to source code,
the compiler outputs are not included in what is verified; the risk being that proofs
made on the source code no longer hold on the binary code. This almost new activity
will be supported by the use of either a “Certified” compiler [17] or by a validator
[19] in order to prove that source and binary programs are semantically equivalent
(see section 3.3).

4.3 Lessons Learnt and Deployment Aspects

We will give here some quantitative data for the techniques that have been deployed
operationally at Airbus.

• Stack Analyzer is used on all the embedded software products developed
by Airbus teams, on more than 10 projects for A380 and A400M air-
crafts. All software developers use it, no specific training is necessary.

• AiT is used on approximately 6 projects and more are on the way. All
software developers use it, without specific training, there is one special-
ised engineer who has more specific knowledge, is responsible for the
tuning of the tools and can be consulted for advice by the other engineers.
It is important to note that this specialist is not a formal method specialist,
but a specialist of execution time estimation.

• Unit proof is deployed on three projects and necessitates a specific three-
day training.

In the course of experimenting formal techniques, Airbus has defined five criteria for
the choice of the techniques and the conditions of their operational use. These criteria
are given and explained below.

 Formal Verification of Avionics Software Products 541

− Soundness: the technique used has to be sound, i.e. it does not say a prop-
erty is true if it might not be true.

− Applicability to the code that will be embedded onboard the aircraft: no
specific model has to be developed to perform the verification, it is done di-
rectly on the code.

− Usability by “normal” engineers on “normal” computers: formal verification
is performed on the computers that are used for software development (no
need for super computers) and by the engineers (no need for formal method
gurus).

− Ability to optimise an existing industrial process: formal techniques must
bring better performances than classical methods.

− Certifiability: the objective is to get certification credits for the use of for-
mal methods.

The three techniques that have been deployed operationally meet these five criteria.
Moreover, in some cases, formal methods are the only way to keep the same rigor in
verification and have an acceptable precision. For example, for stack analysis and
worst case execution time computation, classical methods lead to safe but much over-
estimated results (because of the complexity of the software), formal tools provide
better results that allow an optimisation of hardware resources. Finally, formal meth-
ods are used if they are automated. The experimental phase is used to augment auto-
mation (by defining proof heuristics for proof techniques or code annotations for
abstract interpretation based techniques), deployment of the technique is done when
sufficient automation is reached. Automation brings high efficiency to the mainte-
nance phase, verification can indeed be redone very easily.

The operational deployment of several formal techniques necessarily modifies the
verification process and more generally the development process. The next section
will present foreseen evolution of the processes.

5 Towards Product-Based Assurance

5.1 Process and Product Based Assurances

In the Process based Assurance, the confidence in the fact that any execution of the
software product conforms to the system specification for that product is obtained by
the strict observance of DO-178B development process rules. It is the whole devel-
opment process that allows to get reasonable confidence in the software product. In
other words, if a software product is developed by performing the activities prescribed
by DO-178B successfully it will be considered as “good for flight” by the regulation
authorities. The main reason why DO-178B emphasizes the quality of the develop-
ment process is that classical verification techniques do not make it possible to prove
the absence of software errors.

In the product based assurance, the confidence is obtained by making sure that the
software product has the required characteristics (or properties). The most ambitious
goal would be to have a set of formal requirements of the program to develop which
specify all aspects of the program execution, and to be able to prove that all possible

542 J. Souyris et al.

executions of the binary program satisfy these requirements. If it was possible, this
would prove that there is no software error.

5.2 Formal Verification Activities and Product Based Assurance

Executability. By this term we refer to the ability of the program to have well defined
behaviours with respect to:

• The “ISO/IEC 9899:1999 (E)" standard (including IEEE 754 standard [16]);
• Specific coding and code generation rules;
• Timing constraints;
• Numerical precision constraints;
• Synchronisation / communication mechanisms.

It must be noticed that without proving the above properties, any proof of user defined
requirements (see below) by partial formal verification techniques might be invali-
dated by some undefined behaviour. Therefore, whenever a formal verification tech-
nique not covering the detection of undefined behaviours is used, additional activities
must be performed, either based on tools or on intellectual analyses.

Formally proving the executability of a program is the basic kind of Product based
assurance. Furthermore, most of the tools mentioned in section 3 are able to analyse
whole applications.

Proof of user-defined requirements. So far, there is no cost-effective industrial
technique able to verify that whole avionics C programs satisfy their user-defined re-
quirements formally. As stated in section 4, Unit Proof and Integration Proof tech-
niques aim at such formal verification but on program pieces taken individually. The
fact that the pieces considered in the Integration Proof technique are bigger than the
ones of the Unit Proof technique leads to a better coverage but cannot stand for a for-
mal verification of the whole application with respect to its High Level Requirements.

Nevertheless, we can look at the program pieces which are formally verified as in-
termediate software products, each of them being specified formally, and then con-
sider such verifications as an application of the Product based assurance paradigm
within the development process (Process based assurance).

Certified compilation. As stated in section 4.2, evidences that proofs performed at
source code level still hold on the executable program is mandatory. This is another
way of saying that in the Product based assurance, the actual software product is the
executable program.

5.3 Mix of Formal Verification and Tests

Checking real program executions on real hardware will always be required by
DO-178. The basic reason for that is the activity called software/hardware integration.

Beyond this reason, one must also take into account that the huge test campaigns
performed on the real hardware during the “traditional” avionics software develop-
ment process also allow to detect hardware defects. Indeed, most of the time, espe-
cially for flight control functions, both hardware and software are developed almost

 Formal Verification of Avionics Software Products 543

from scratch when a new aircraft is developed. This means that software tests on the
real – new – hardware contribute to achieve hardware maturity earlier.

This second reason makes the reduction of the amount of tests an issue. It is clear
that the test amount will not be reduced down to the sole software / integration tests.

Therefore, a trade-off between tool-aided formal verification and testing will have
to be set, which combines the main advantages of both kinds of techniques, i.e., the
automation and good coverage on the one hand, maximal representativity of the tests
by execution on the hardware, on the other hand.

5.4 Development Processes Including Some Product Based Assurance

A “traditional” DO-178B conforming process could use static analysers to replace or
strengthen some intellectual analyses in order to prove executability (see above).
Since some static analysers deal with source code, one must trust the compilation in
order to get sure that proofs still hold on the binary code.

Another way of improvement is to introduce Unit Proof technique (see section 4)
for formal verification of the source code against its Low Level Requirements. One
can also introduce Integration Proof technique (see section 4) for formal verification
of the source code against its Low Level Requirements. In both cases, certified com-
pilation is a way to secure the formal verification process.

Actually, there are many ways to introduce formal verification techniques in an
avionics development process. An important criterion of such an introduction is
whether a “certification credit” is based on the use of a technique or not. So far, Air-
bus has always been introducing formal verification techniques from which a certifi-
cation credit has been derived. Nevertheless, it might be the case that some formal
verification technique could be used for debugging rather than for achieving some
DO-178 objective.

6 Certification Aspects

In this section, we will highlight the specificities of the certification process when
formal methods are used for part of the verification. We consider certification with re-
spect to DO-178B, the current software certification standard for avionics software.
DO-178 is currently being updated by a dedicated international working group, ver-
sion C of the standard should be available in 2010, we will end the section with a
brief presentation of the current proposal regarding formal methods.

Several cases exist for what concerns certification:

• Formal techniques are used in places where reviews or analyses were used
previously to reach the same verification objective. In that case formal meth-
ods are simply an alternative means to reach the objective, the main differ-
ence being that formal techniques are implemented by a tool and so this tool
must be qualified with respect to DO-178B rules for the qualification of
verification tools. More information on qualification of tools is given in
subsection 6.1.

• Formal techniques replace verifications that were previously done by test.

544 J. Souyris et al.

o A first difference that occurs is that the verification is thus done on
the source code instead of the object code. To reach the same level
of confidence than with test, complementary analyses must be per-
formed to ensure that the properties that are verified on source code
are still satisfied by the object code (this can be done using formal
methods also, see the work on certified compilation in section 3).

o The most complex case for certification is the unit or integration
proof case, where formal methods are used to verify properties of a
C program and replace unit test or integration test. The issue here is
the coverage of the verification with respect to the c code. This is-
sue is discussed in subsection 6.2.

6.1 Qualification of Tools

DO-178B distinguishes two kinds of tools: development tools that have an effect on
the code being produced (for example code generators) and verification tools that are
used to verify some properties on the code (but cannot insert errors). Formal methods
tools have to be qualified as verification tools. It must be shown that the tool complies
with its operational requirements under normal operational conditions. In practice, it
means that a set of representative cases will be defined and it will be checked that the
tool provides the expected results for these cases. Stackanalyzer, aiT and Caveat have
been qualified as verification tools. No specific requirements are defined for formal
method tools in DO-178B, but it might change in version C of the standard where the
current proposal is to add objectives targeted for this kind of tools.

6.2 Coverage

When test is used to verify a function against its requirements, a set of requirement-
based test cases are defined and executed. A functional coverage analysis is
performed to ensure that test cases have been defined for every requirement and a
structural coverage analysis is performed to ensure that all the code has been covered
and that there is no dead code (for level A software, the most critical one, 100%
MC/DC [13] is required). When formal proof is used to verify a C function against a
set of properties, it ensures an exhaustive coverage for a given property, but it must
also be demonstrated that the set of properties that has been defined covers all the
behaviours of the code.

In the case of the unit proof, the argument provided to the certification authorities
was based on a demonstration that the set of properties was complete (demonstration
using formal proof and reviews). In the case of integration proof, the argument is still
the object of research. The general issue that will have to be solved is to be able to
measure the coverage of the code obtained by formal verification, and in some cases
to be able to mix it with a coverage obtained by test in order to argument the complete
coverage of code for certification authorities.

6.3 DO-178C

The update of DO-178 will leave the core of the standard mostly unchanged but will
propose several technical supplements dealing with the use of specific techniques

 Formal Verification of Avionics Software Products 545

such as object-oriented languages or formal methods, a technical supplement on tools
is also expected. The current draft of the formal method technical supplement defines
what formal methods are, gives criteria for such methods, explains how and under
which conditions formal methods can be used to reach DO-178 verification objectives
at each step. For verification objectives on the executable object code, it replaces the
testing objectives by more generic verification objectives, some testing is still re-
quired but some objectives can also be reached using formal methods.

7 Conclusion and Future Work

In this paper it has been shown how formal verification techniques can be used in the
development process of avionics software products.

The authors are convinced that the story is far from being finished and that more
and more formal verification techniques will be used in the future, as tools become
available for industrial use. These techniques are the only way to face the dramatic in-
crease of software complexity, especially when safety is at stake. Technological re-
search is therefore continued in the following three areas: Computer Science research,
by means of collaboration with labs, contribution to the development of tools and
definition of methods of use.

Regulation aspects are a crucial issue for the industrial use of formal methods, the
authors are working on means to conform to the standards but also on evolution of
standards in the hope to facilitate future use of formal techniques.

Acknowledgements. The authors warmly thank Famantanantsoa Randimbivololona for
his careful reading of this paper.

References

1. The ASTREE project (Analyse Statique de logiciels Temps-REel Embarqués). RNTL
(2003), http://www.di.ens.fr/~cousot/projets/ASTREE/

2. The CAT project (C analysis toolbox). RNTL (2005)
3. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The

ASTRÉE analyser. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)

4. Cousot, P., Cousot, R.: Basic Concepts of Abstract Interpretation. In: Jacquard, R. (ed.)
Building the Information Society, pp. 359–366. Kluwer Academic Publishers, Dordrecht
(2004)

5. DAEDALUS project. IST-1999-20527 of the european IST Programme of the Fifth
Framework Programme (FP5) on the « validation of software components embedded in fu-
ture generation critical concurrent systems by exhaustive semantic-based static analysis
and abstract testing methods based on abstract interpretation » (DAEDALUS lasted from
October 1st, 2000 to September 30th 2002)

6. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an indus-
trial use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B.,
Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)

546 J. Souyris et al.

7. Delmas, D., Souyris, J.: ASTRÉE: From research to industry. In: Riis Nielson, H., Filé, G.
(eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007)

8. Dijkstra, E.W.: A discipline of programming; automatic Computation. Prentice Hall Int.,
Englewood Cliffs (1976)

9. DO-178B/ED-12B. Software Considerations in Airborne Systems and Equipment Certifi-
cation. RTCA/EUROCAE (1992)

10. Duprat, S., Souyris, J., Favre-Félix, D.: Formal verification workbench for avionics soft-
ware. In: SIA (ed.) European Congress ERTS 2006 (European Real Time Software). R-
2006-01-2A2 (2006)

11. ES_PASS project. ITEA 2 06042 (October 2007),
http://www.itea2.org/public/project_leaflets/
ES_PASS_profile_oct-07.pdf

12. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H.,
Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real life proces-
sor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 469–
485. Springer, Heidelberg (2001)

13. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A practical tutorial on
Modified Condition/Decision Coverage. NASA/TM-2001-210876 (2001)

14. Frama-C, http://frama-c.cea.fr/
15. Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of the

ACM 12(10) (October 1969)
16. The Institute of Electrical and Inc Electronics Engineers. IEEE standard for binary float-

ing-point arithmetic. Technical Report ANSI/IEEE Std 745. IEEE Computer Society, Los
Alamitos (1985)

17. Leroy, X.: The Compcert verified compiler, software and commented proof (August
2008), http://compcert.inria.fr/

18. Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen, D.: Ap-
plying Formal Proof Techniques to Avionics Software: A Pragmatic Approach. In: Wood-
cock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1798–1815.
Springer, Heidelberg (1999)

19. Rival, X.: Symbolic Transfer Functions-based Approaches to Certified Compilation. In:
31st Symposium on Principles of Programming Languages (POPL 2004), Venice. ACM,
New York (2004)

20. Souyris, J., Delmas, D.: Experimental assessment of astrée on safety-critical avionics
software. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 479–
490. Springer, Heidelberg (2007)

21. Souyris, J., Favre-Felix, D.: Proof of properties in avionics. In: IFIP Congress Topical Ses-
sions 2004, pp. 527–536 (2004)

22. Souyris, J., Le Pavec, E., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Computing the
worst case execution time of an avionics program by abstract interpretation. In: 5th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, pp. 21–24 (2005)

23. Stackanalyzer, http://www.absint.com/stackanalyzer/
24. Projet 2005 THÉSÉE du RNTL (Réseau National des Technologies Logicielles) de l’ANR
25. Projet 2008 U3CAT de l’Agence nationale de la recherche (ANR)

	Formal Verification of Avionics Software Products
	Introduction
	DO-178B Compliant Development Process of an Avionics Software Product
	Development Processes
	Verification Process

	Formal Verification Technologies Applicable to Avionics Programs
	Deductive Methods
	Abstract Interpretation Based Static Analysis
	Tools

	Development Process Activities Based on the Use of Formal Techniques
	Operational Use of Formal Methods
	Envisaged Use of Formal Methods
	Lessons Learnt and Deployment Aspects

	Towards Product-Based Assurance
	Process and Product Based Assurances
	Formal Verification Activities and Product Based Assurance
	Mix of Formal Verification and Tests
	Development Processes Including Some Product Based Assurance

	Certification Aspects
	Qualification of Tools
	Coverage
	DO-178C

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

