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Abstract. We describe a new modelling and analysis approach for sig-
nal transduction networks in the presence of incomplete data. We illus-
trate the approach with an example, the RKIP inhibited ERK pathway
[1]. Our models are based on high level descriptions of continuous time
Markov chains: reactions are modelled as synchronous processes and con-
centrations are modelled by discrete, abstract quantities. The main ad-
vantage of our approach is that using a (continuous time) stochastic logic
and the PRISM model checker, we can perform quantitative analysis of
queries such as if a concentration reaches a certain level, will it remain at
that level thereafter? We also perform standard simulations and compare
our results with a traditional ordinary differential equation model. An
interesting result is that for the example pathway, only a small number
of discrete data values is required to render the simulations practically
indistinguishable.

1 Introduction

Signal transduction pathways allow cells to sense an environment and make
suitable responses. External signals detected by cell membrane receptors activate
a sequence of reactions, allowing the cell to recognise the signal and pass it into
the nucleus. The cellular response is then activated inside the nucleus. This
signalling mechanism is involved in a number of important processes, such as
proliferation, cell growth, movement, apoptosis, and cell communication. The
pathways are usually very complicated and embedded in more complex networks,
thus manual analysis is almost impossible. Some form of modelling for computer
guided analysis is required.

Our aim is to develop techniques for signal transduction pathway3 modelling
and analysis, based on incomplete, or semiquantitative data. Our models are
distinctive in two ways. First, we model concentrations (rather than molecules).
Second, we model incomplete data. Incompleteness is an issue because contem-
porary methods for biochemical experiments do not, in general, permit the mea-
surement of absolute and continuous values of concentrations. Consequently,

3 In this paper we use the terms pathway and network synonymously.



some existing quantitative models are over constrained. We avoid this by con-
sidering discrete, abstract concentrations. Our analysis includes simulation, but
extends much further to include checking for quantitative, temporal biological
queries. The models are based on high level descriptions of stochastic transition
systems, i.e continuous time Markov chains (CTMCs). Reactions are modelled
by synchronous processes and concentrations are modelled by discrete, abstract
quantities. We use a continuous stochastic logic and the probabilistic symbolic
model checker PRISM [2] to express and check a variety of temporal queries
for both transient behaviours and steady state behaviours. We can also perform
standard simulations and so we compare our results with a traditional ordi-
nary differential equation model. Throughout, we illustrate our approach with
an example pathway: the RKIP inhibited ERK pathway [1].

The paper is organised as follows. In section 2 we describe our example
pathway the RKIP inhibited ERK pathway. Our model is developed in section
3. In section 4, we discuss different types of analysis and present three types
of probabilistic, temporal queries for the model pathway. We express examples
of each in the continuous stochastic logic CSL [3], and check their validity. In
section 5 we show how our model compares with simulations from a MATLAB r©
implementation of the ordinary differential equations for the example pathway.
In section 6 we discuss our results and in section 7 we review related work. We
conclude in section 8.

2 RKIP and the ERK pathway

The example system we consider in this paper is the RKIP inhibited ERK path-
way [1].

The ERK pathway (also called Ras/Raf, or Raf-1/MEK/ERK pathway) is
a ubiquitous pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus. An important area of experimental scientific
investigation is the role the kinase inhibitor protein RKIP plays in the behaviour
of this pathway. Moreover, an understanding of the functioning and structure of
this pathway may lead to more general results applicable to other pathways.

We consider the pathway as described in the graphical representation of
Figure 1. This figure is taken from [1], where a number of nonlinear ODEs and
difference equations representing the kinetic reactions are given. We take Figure 1
as our starting point, and explain informally, its meaning. Each node is labelled
by the protein (or substrate, we use the two interchangeably) it denotes. For
example, Raf-1*, RKIP and Raf-1*/RKIP are proteins, the last being a complex
built up from the first two. It is important to note that Raf-1*/RKIP is simply
a name, following biochemical convention; the / symbol is not an operator (in
this context). A suffix -P or -PP denotes a phosyphorylated protein, for example
MEK-PP and ERK-PP. Each protein has an associated concentration, denoted
by m1, m2 etc. Reactions define how proteins are built up and broken down.
Each reaction has a rate denoted by the rate constants k1, k2, etc. These are
given in the rectangles, with kn/kn+1 denoting that kn is the forward rate and



Fig. 1. RKIP inhibited ERK pathway

kn+1 the backward rate. So for example, Raf-1* and RKIP react (forward) with
rate k1, and Raf-1/RKIP disassociates with rate k2. Initially, all concentrations
are unobservable, except for m1, m2, m7, m9, and m10 [1].

3 Modelling signalling networks

Signalling networks describe the interaction between proteins. In this section we
describe how we model the concentrations of proteins by discrete variables, and
the dynamic behaviour of proteins by computational processes.

3.1 Discrete concentrations

Each protein defined in a network has a concentration which changes with time,
thus m = f(t), where m is a concentration of the protein and t is time. In
classical approaches, ordinary differential equations are used to describe the
dynamics of reactions and concentrations. But as we have indicated earlier, there
is a difficulty in obtaining absolute concentration values using the methods of
contemporary biochemistry. We therefore make discrete approximations to the
data values and assume a set of totally ordered symbolic names representing
levels of concentration:

level0 < level1 < . . . < levelN

We additionally assume that the symbolic levels correspond to equally dis-
tributed intervals (of absolute concentrations).



3.2 Proteins as processes

We associate a concurrent, computational process with each of the proteins de-
fined in the network and define those processes using the PRISM model checker
language. This language allows the definition of systems of concurrent processes
which when synchronised, denote continuous time Markov chains (CTMCs). Be-
low, we give a very brief overview of the language, illustrating each concept with
a simple example; the reader is directed to [2] for further details.

Transitions of a process are labelled with performance rates and (optional)
action names. For each action, the performance rate is defined as the parameter
λ of an exponential distribution of the action duration. The distribution is the
“memoryless” negative exponential, that is, P (t) = 1 − e−λt is the probability
that the action will be completed before time t. A key feature is synchronisation:
concurrent processes are synchronised on transitions (i.e. the transitions occur
simultaneously) with common names. Transitions with distinct names are not
synchronised. The performance rate for the synchronised action is the product of
the performance rates of the synchronised processes. For example, if process A
performs action α with rate λ1, and process B performs action α with rate λ2,
then the performance rate of action α when A is synchronised with B is λ1 · λ2.

As an example, consider the single reaction RAF-1* + RKIP → RAF-
1*/RKIP which describes the binding of Raf-1* and RKIP proteins. Let us call
this reaction “bind” and assume that the reaction kinetics is the following:

m1 + m2 ⇀↽ m3

where m1,m2, and m3 are the concentrations of Raf-1*, RKIP, and Raf-
1*/RKIP respectively.

Now consider the PRISM model for this system, listed as Model 1. The model
begins with the keyword stochastic and consists of some preliminary constants
(N and R), four modules: RAF1Process, RKIPProcess, RAF1RKIPProcess,
and Constants, and a system description which states that the four modules
should be run concurrently. The constant N defines the number of symbolic
levels for protein concentrations (in this case, 4 = N + 1 = 3 + 1). Consider the
first three modules which represent the proteins of the same name. Each module
has the form: a state variable which denotes the protein concentration, followed
by a single transition named bind. The transition has the form condition→ rate:
assignment, meaning when the condition is true, then perform the assignment
at the given rate. The rate for transitions of the first two modules is protein
concentration multiplied by R, the rate for the third is 1. The assignments in the
first two modules decrease the protein level by 1, it is increased by 1 in the third
module. This corresponds to the fact that the rate of the reaction is determined
by the concentrations of the reactants, and the reactants are consumed in the
reaction to produce Raf-1*/RKIP. But, we must not forget that there is a fourth
module, Constants, which simply defines constants for the reaction kinetics.
In this case the module contains a “dummy” state variable called x, and one
(always) enabled transition named bind which defines the constant rate (i.e.
k/R) for the transition bind.



Model 1 Raf-1 binding with RKIP
stochastic

const int N = 3;
const double R = 1/N;

module RAF1Process
RAF1: [0..N] init N;
[bind] (RAF1>0) -> RAF1*R: (RAF1’ = RAF1 - 1);

endmodule

module RKIPProcess
RKIP: [0..N] init N;
[bind] (RKIP>0) -> RKIP*R: (RKIP’ = RKIP - 1);

endmodule

module RAF1RKIPProcess
RAF1RKIP: [0..N] init 0;
[bind] (RAF1RKIP < N) -> 1: (RAF1RKIP’ = RAF1RKIP + 1);

endmodule

module Constants
x: bool init true;
[bind] (x=true) -> 0.8/R: (x’=true);

endmodule

system
RAF1Process || RKIPProcess || RAF1RKIPProcess || Constants

endsystem

Since all four transitions have the same name, they will all have to syn-
chronise, and when they do, the resulting transition corresponds directly to the
dynamics of reaction described by the differential equation. For example, the
first transition will occur with rate N ·R·N ·R·0.8

R = 2.4 (RAF1 and RKIP are
initialised to N , RAF1RKIP is initialised to 0).

In this simple PRISM model, all the proteins are involved in only one reac-
tion. But in the RKIP inhibited ERK pathway, each protein is involved in several
reactions. We model this quite easily by introducing different names (r1, r2, . . .)
for each reaction (and the corresponding transitions). Notice also that we can
describe all the transitions of the processes independently of the number of sym-
bolic levels: we simply make the appropriate comparison (in the precondition).
The size of complete model depends on number of levels used to model concen-
trations. For the RKIP inhibited ERK pathway model the size of continuous
time Markov chain is the following:

– for 4 levels of concentration: 273 states and 1316 transitions;
– for 6 levels of concentration: 1974 states and 12236 transitions;
– for 10 levels of concentration: 28171 states and 216282 transitions.

The full stochastic model for the RKIP inhibited pathway can be found
at the following web page: http://www.dcs.gla.ac.uk/~vvv/rkip.sm. And
MATLAB r© implementation of this model is accessible as
http://www.dcs.gla.ac.uk/~vvv/rkip.m.



4 Analysis

Simulation is the exploration of a single behaviour over a given time interval.
It provides a good means of validating a model, and of exploring particular
scenarios, but it has drawbacks.

In order to reason rigorously about unbounded time intervals and sets of
behaviours, we use use a temporal logic. Temporal logics are powerful tools for
expressing temporal queries which may be generic (e.g. state reachability, dead-
lock) or application specific (e.g. referring to variables representing application
characteristics). For example, we can express queries such as if a concentration
reaches a certain level, will it remain at that level thereafter?, or if we vary the
rate of a particular reaction, how does the network behave?

Since we have a stochastic model, we employ the logic CSL (Continuous
Stochastic Logic) [3], and the symbolic probabilistic model checker PRISM [4]
to compute validity. We can not only check validity of logical properties, but
using PRISM we can analyse open formulae, i.e. we can perform experiments as
we vary instances of variables in a formula expressing a property.

CSL is a continuous time logic that allows one to express a probability mea-
sure that a temporal property is satisfied, in either transient behaviours or in
steady state behaviours. We assume a basic familiarity with the logic. A short
description of CSL are given in [4]. The P./p[φ] properties are transient, that
is, they depend on time; S./p[φ] properties are steady state, that is they hold in
the long run. To check the latter properties, we use a linear algebra package in
PRISM to generate the steady state solution. Note that in this context steady
state solutions are not (generally) single states, rather a network of states (with
cycles) which define the probability distributions in the long run.

In the next section we use CSL and PRISM to formulate and check a number
of biological queries about the RKIP inhibited ERK pathway.

We consider three different kinds of temporal property:

1. steady state analysis of stability of a protein i.e. a protein reaches and then
remains within certain bounds,

2. steady state analysis of protein stability when varying reaction rates i.e. a
protein is more likely to be stable for certain reaction rates,

3. transient analysis of protein activation sequence i.e. concentration peak or-
dering.

4.1 Stability of protein in steady state

We illustrate this type of property by considering the concentration of Raf-1*,
as represented by the variable RAF1. Stability for this protein (within bounds
C − 1, C + 1) is expressed by the formula:(RAF1 ≥ C − 1) ∧ (RAF1 ≤ C + 1).
where C is the level of interest. In other words, the level of Raf-1* is at most 1
increment/decrement step away from C.

In the steady state, we performed experiments to evaluate the probability of
this condition holding as we varied the parameter C. The CSL formula is:

S=?[(RAF1 ≥ C − 1) ∧ (RAF1 ≤ C + 1)].



Fig. 2. Stability of Raf-1* in steady
state

Fig. 3. Probability of Raf-1* stable
state while varying the rate of bind-
ing to RKIP

The results are given Figure 2, with C ranging over ten (0..9) levels. The
results illustrate that Raf-1* is most likely stable at level 1, with relatively high
probability of stability at level 0 and level 2. It is unlikely to be stable around
levels 3 and higher.

4.2 Protein stability in steady state while varying coefficients

This type of property is particularly useful during model fitting, i.e. fitting the
model to experimental data. As an example, consider evaluating the probability
of Raf-1* to be stable at level 2 or level 3 in steady state, whilst varying the
performance of reaction which binds Raf-1* and RKIP. This reaction is denoted
by r1. In this experiment we varied the rate of r1 (named k1) over the interval
[0 . . . 1]. The stability property is expressed by:S=?[(RAF1 ≥ 2)∧ (RAF1 ≤ 3)].
Additionally we evaluated the probability for Raf-1* to be stable at levels 0 and
1. The formulae for this property is:S=?[(RAF1 ≥ 0) ∧ (RAF1 ≤ 1)].

Both experiments were run with six levels of concentration, the results are
plotted in Figure 3. We conclude that Raf-1* is more unlikely to be stable at
level 2 or level 3, when the binding rate for Raf-1* and RKIP increases, on the
other hand, the probability of stability at level 0 or level 1 increases significantly
with the binding rate increase.

It is quite important to emphasise the peak of red plot in Figure 3. This peak
corresponds to the best fitting of the k1 rate (0.03) to keep the Raf-1* protein
stable on levels 2 or 3.

4.3 Activation sequence analysis

This last example illustrates queries over several proteins, in particular it con-
cerns sequences of protein activations. We draw our motivation from an exam-
ination of this pathway simulation. RAF-1*/RKIP complex reaches its peak at



Level 2 a little bit earlier than RAF-1*/RKIP/ERK-PP complex reaches its
maximal value at Level 6. Moreover, RAF-1*/RKIP complex reaches Level 2
earlier than RAF-1*/RKIP/ERK-PP complex.

The logical formula to check this property is:

P=?[(RAF1RKIPERKPP < M)U(RAF1RKIP = C)]. (1)

This property expresses “What is the probability that the concentration of
Raf-1*/RKIP/ERK-PP complex will be less than Level M until Raf-1*/RKIP
complex reaches concentration Level C?” The results of this query for the val-
ues of C within interval [1 . . . 2] and the values of M within interval [1 . . . 5] are
plotted on the Figure 4; the line representing Raf-1*/RKIP/ERK-PP complex
concentration at Level 5 is emphasised with crosses. The point we are espe-
cially interested in is (C = 2,M = 5). The probability at this point is 0.9986,
which means that the RAF-1*/RKIP complex reaches concentration Level 2 be-
fore RAF-1*/RKIP/ERK-PP complex reaches concentration Level 5, with the
probability 99.86%.

Further analysis of this plot shows that it is possible, with the probability
almost 96%, that the RAF-1*/RKIP complex will reach concentration Level 2
before RAF-1*/RKIP/ERK-PP complex reaches concentration Level 2.

Fig. 4. Activation sequence analy-
sis

Fig. 5. MEKPP behaviour mod-
elled with MATLAB r© and PRISM.

This concludes our analysis, we now consider the correlation between simu-
lations of our stochastic model and the ordinary differential equations model.

5 Comparison with ODE simulations

We can also use PRISM to carry out numerical calculations for simulation, us-
ing the concept of state rewards [5]. For comparison, we have implemented the



ODE model in the MATLAB r© toolset and in Figure 5 we plot the behaviour
of phosphorylated MEK, MEK-PP, over a time interval, using both the ODE
model, and two instances of our stochastic model, with N = 3 and N = 7 (i.e.
4 and 8 discrete levels). We observe that as N increases, the closer the plots.
Indeed, with N = 7 we do not distinguish the two plots by visual inspection. We
have many more simulation results, but for brevity, these are excluded.

Levels εa εr Cεa Cε2a
4 0.126 mM 0.280 21.557 mM 2.58

5 0.103 mM 0.217 17.569 mM 1.727

6 0.086 mM 0.176 14.582 mM 1.191

8 0.061 mM 0.122 10.402 mM 0.605

12 0.036 mM 0.071 6.042 mM 0.204

Fig. 6. Error measurements for PRISM model

To decide which number of levels is sufficient to make the two models indis-
tinguishable, for any practical purposes, we define the following error metrics:
maximal absolute error of simulation εa; maximal relative error of simulation εr;
cumulative absolute error of simulation Cεa; cumulative square error of simula-
tion Cε2a. We have measured these errors with 200 data points in time interval
[0..100]. Cumulative errors are measured for the protein complex Raf-1*/RKIP
which has maximal absolute error. The results are shown in the Figure 6.

Of course experimental measurements also have associated error bars, thus
we conclude that in this network, 7 or 8 levels are sufficient to make the two
models indistinguishable, for all practical purposes. We conjecture that this is
the case for any network of biochemical reactions without modifiers.

6 Discussion

In our stochastic model we have made an assumption that there are equal dis-
tributions of absolute concentrations in each of our discrete abstractions. We
chose equal distributions because we have no information to the contrary, we are
simply choosing abstractions over a continuous range. We note that this distribu-
tion gives us simulation results which align with the behaviour of the differential
equations, thus there is no evidence to support a different distribution (at least
for the example pathway). Our simulation results also show convergence with be-
haviour defined by the (mass action) differential equations, but it is quite simple
to handle other kinds of kinetics, for example Henri-Michaelis-Menten kinetics.

A number of interesting (generic) temporal biological properties were pro-
posed in [6], but we have not repeated that analysis here. Rather, we have con-
centrated on further properties which are specific to signalling networks models
with discretized protein concentrations. Mainly, we have found steady-state anal-
ysis most useful, but we have also illustrated the use of transient properties (in
4.3).



PRISM has been a useful tool for model checking, experimentation, and even
simulation. All computations have been tractable on a single standard proces-
sor. We note that for networks with inhibition (not exhibited in our example
network), the computations became intractable, and we required a computa-
tional grid of some 90+ machines to carry out the simulations. This complexity
is conditioned by the dynamics of an inhibition which includes division, thus
very small changes of inhibitor concentration, when this tends to zero, causes
quite significant changes in the reaction flux. Furthermore, this error may be
amplified by feedback structures. Consequently, an enormous number of discrete
levels is needed, in order to obtain a good approximation. At the moment we
are looking for an alternative representation of negative feedbacks, in order to
find a tractable solution for this problem.

7 Related Work

The most widely used models are systems of ordinary differential equations
(ODEs) [1,7], but more recent approaches include using process calculi and al-
gebras [8,9], Petri nets [10,11], and logics [12].

The π-calculus [13] has been used for modelling biochemical systems, with
molecules and their domains represented by computational processes, and reac-
tions by communication and channel passing. The π-calculus offers the ability to
reconfigure communication, thus it is particularly suitable for systems in which
communication evolves. Further developments include the stochastic π-calculus
[8], and BioSPi, a hybrid system. The models developed thus far are for simula-
tion only.

An alternative is proposed in [9] where the stochastic process algebra PEPA
is used to model a pathway. This model also handles incomplete data. The main
advantage is that using the algebra, different formulations of the model can be
compared (by bisimulation). For example, one formulation relates clearly to the
data, whereas another permits abstraction over sub-pathways. However, while
it is possible to show how the algebraic models relate to ordinary differential
equations, they cannot be used directly for simulation.

Petri nets are another class of modelling notations widely used to analyse
biochemical networks [14]. A number of logical properties can be verified using
Petri nets approaches [15,16], such as hybrid function Petri nets (HFPN) [10],
time Petri nets [17], and stochastic Petri nets [18]. Hybrid function Petri nets are
useful for illustrating system behaviour and quite mature simulation algorithms
exist for these models. However, at the moment there are no algorithms for
model checking hybrid function Petri nets. Stochastic Petri nets have almost the
same expressiveness as our approach. Some of our experiments can be repeated
with SPN, but there exist no general model checkers, thus the most of our CSL
queries cannot be checked on stochastic Petri nets automatically. There are a
number of model checking algorithms for time Petri nets [19], and many of the
logical properties we consider in this paper could be verified using a time Petri
nets approach. But, in order to do so, the description of our nonlinear system



behaviour would be approximated with linear time constraints, these would also
be huge and inconvenient to read. We note that usually Petri nets modellers just
neglect nonlinearity in biochemical systems.

The BIOCHAM workbench [6,12] provides an interface to the symbolic model
checker NuSMV; the interface is based on a simple language for representing bio-
chemical networks. The workbench provides mechanisms to reason about reach-
ability of certain states, existence of partially described stable states, and some
types of temporal behaviour. But this approach does not support quantitative
model checking of the biochemical systems, and only qualitative (structural)
queries can be verified.

8 Conclusions

We have described a new modelling and analysis approach for signal transduc-
tion networks in the presence of incomplete data. We model the dynamics of
networks by continuous time Markov chains, making discrete approximations to
protein concentrations. We describe the models in a high level language, using
the PRISM modelling language: reactions are synchronous processes and con-
centrations are discrete, abstract quantities. Throughout, we have illustrated our
approach with an example, the RKIP inhibited ERK pathway [1].

The main advantage of our approach is that using a (continuous time) sto-
chastic logic and the PRISM model checker, we can perform quantitative analy-
sis of queries such as if a concentration reaches a certain level, will it remain at
that level thereafter? This approach offers considerably more expressive power
than simulation. We can also perform standard simulations and we have com-
pared our results with traditional ordinary differential equation-based (simula-
tion) methods, as implemented in MATLAB r©. An interesting result is that in
the example pathway, only a small number of discrete data values are required to
render the simulations practically indistinguishable. We have conjectured that
in the absence of inhibition, this result will hold for any pathway represented as
a stochastic transition system, using our approach.

Future work will be to prove that conjecture and to consider the addition of
spatial dimensions (e.g. scaffolds) to our models.
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