
Asynchronous Anytime Sequential Monte Carlo

Brooks Paige Frank Wood
Department of Engineering Science

University of Oxford
Oxford, UK

{brooks,fwood}@robots.ox.ac.uk

Arnaud Doucet Yee Whye Teh
Department of Statistics

University of Oxford
Oxford, UK

{doucet,y.w.teh}@stats.ox.ac.uk

Abstract

We introduce a new sequential Monte Carlo algorithm we call the particle cas-
cade. The particle cascade is an asynchronous, anytime alternative to traditional
sequential Monte Carlo algorithms that is amenable to parallel and distributed
implementations. It uses no barrier synchronizations which leads to improved
particle throughput and memory efficiency. It is an anytime algorithm in the sense
that it can be run forever to emit an unbounded number of particles while keeping
within a fixed memory budget. We prove that the particle cascade provides an un-
biased marginal likelihood estimator which can be straightforwardly plugged into
existing pseudo-marginal methods.

1 Introduction

Sequential Monte Carlo (SMC) inference techniques require blocking barrier synchronizations at
resampling steps which limit parallel throughput and are costly in terms of memory. We introduce
a new asynchronous anytime sequential Monte Carlo algorithm that has statistical efficiency com-
petitive with standard SMC algorithms and has sufficiently higher particle throughput such that it is
on balance more efficient per unit computation time. Our approach uses locally-computed decision
rules for each particle that do not require block synchronization of all particles, instead only sharing
of summary statistics with particles that follow. In our algorithm each resampling point acts as a
queue rather than a barrier: each particle chooses the number of its own offspring by comparing its
own weight to the weights of particles which previously reached the queue, blocking only to update
summary statistics before proceeding.

An anytime algorithm is an algorithm that can be run continuously, generating progressively better
solutions when afforded additional computation time. Traditional particle-based inference algo-
rithms are not anytime in nature; all particles need to be propagated in lock-step to completion in
order to compute expectations. Once a particle set runs to termination, inference cannot straight-
forwardly be continued by simply doing more computation. The naı̈ve strategy of running SMC
again and merging the resulting sets of particles is suboptimal due to bias (see [12] for explana-
tion). Particle Markov chain Monte Carlo methods (i.e. particle Metropolis Hastings and iterated
conditional sequential Monte Carlo (iCSMC) [1]) for correctly merging particle sets produced by
additional SMC runs are closer to anytime in nature but suffer from burstiness as big sets of particles
are computed then emitted at once and, fundamentally, the inner-SMC loop of such algorithms still
suffers the kind of excessive synchronization performance penalty that the particle cascade directly
avoids. Our asynchronous SMC algorithm, the particle cascade, is anytime in nature. The particle
cascade can be run indefinitely, without resorting to merging of particle sets.

1.1 Related work

Our algorithm shares a superficial similarity to Bernoulli branching numbers [5] and other search
and exploration methods used for particle filtering, where each particle samples some number of

1

children to propagate to the next observation. Like the particle cascade, the total number of particles
which exist at each generation is allowed to gradually increase and decrease. However, computing
branching correction numbers is generally a synchronous operation, requiring all particle weights
to be known in order to choose an appropriate number of offspring; nor are these methods anytime.
Sequentially interacting Markov chain Monte Carlo [2] is an anytime algorithm, which although
conceptually similar to SMC has different synchronization properties.

Parallelizing the resampling step of sequential Monte Carlo methods has drawn increasing recent
interest as the effort progresses to scale up algorithms to take advantage of high-performance com-
puting systems and GPUs. Removing the global collective resampling operation [9] is a particular
focus for improving performance.

Running arbitrarily many particles within a fixed memory budget can also be addressed by tracking
random number seeds used to generate proposals, allowing particular particles to be deterministi-
cally “replayed” [7]. However, this approach is not asynchronous nor anytime.

2 Background

We begin by briefly reviewing sequential Monte Carlo as generally formulated on state-space mod-
els. Suppose we have a non-Markovian dynamical system with latent random variablesX0, . . . , XN

and observed random variables Y0, . . . , YN described by the joint density

p(xn|x0:n−1, y0:n−1) = f(xn|x0:n−1)

p(yn|x0:n, y0:n−1) = g(yn|x0:n), (1)

where X0 is drawn from some initial distribution µ(·), and f and g are conditional densities.

Given observed values Y0:N = y0:N , the posterior distribution p(x0:n|y0:n) is approximated by a
weighted set of K particles, with each particle k denoted Xk

0:n for k = 1, . . . ,K. Particles are
propagated forward from proposal densities q(xn|x0:n−1) and re-weighted at each n = 1, . . . , N

Xk
n|Xk

0:n−1 ∼ q(xn|Xk
0:n−1) (2)

wkn =
g(yn|Xk

0:n)f(Xk
n|Xk

0:n−1)

q(Xk
n|Xk

0:n−1)
(3)

W k
n = W k

n−1w
k
n, (4)

where wkn is the weight associated with observation yn and W k
n is the unnormalized weight of

particle k after observation n. It is assumed that exact evaluation of p(x0:N |y0:N) is intractable and
that the likelihoods g(yn|Xk

0:n) can be evaluated pointwise. In many complex dynamical systems,
or in black-box simulation models, evaluation of f(Xk

n|Xk
0:n−1) may be prohibitively costly or even

impossible. As long as one is capable of simulating from the system, the proposal distribution can be
chosen as q(·) ≡ f(·), in which case the particle weights are simply wkn = g(yn|Xk

0:n), eliminating
the need to compute the densities f(·).

The normalized particle weights ω̄kn = W k
n/
∑K
j=1W

j
n are used to approximate the posterior

p̂(x0:n|y0:n) ≈
K∑
k=1

ω̄knδXk
0:n

(x0:n). (5)

In the very simple sequential importance sampling setup described here, the marginal likelihood can
be estimated by p̂(y0:n) = 1

K

∑K
k=1W

k
n .

2.1 Resampling and degeneracy

The algorithm described above suffers from a degeneracy problem wherein most of the normalized
weights ω̄1

n, . . . , ω̄
K
n become very close to zero for even moderately large n. Traditionally this is

combated by introducing a resampling step: as we progress from n to n + 1, particles with high
weights are duplicated and particles with low weights are discarded, preventing all the probability
mass in our approximation to the posterior from accumulating on a single particle. A resampling

2

scheme is an algorithm for selecting the number of offspring particles Mk
n+1 that each particle k

will produce after stage n. Many different schemes for resampling particles exist; see [6] for an
overview. Resampling changes the weights of particles: as the system progresses from n to n + 1,
each of theMk

n+1 children are assigned a new weight V kn+1, replacing the previous weightW k
n prior

to resampling. Most resampling schemes generate an unweighted set of particles with V kn+1 = 1 for
all particles. When a resampling step is added at every n, the marginal likelihood can be estimated
by p̂(y0:n) =

∏n
i=0

1
K

∑K
k=1 w

k
i ; this estimate of the marginal likelihood is unbiased [8].

2.2 Synchronization and limitations

Our goal is to scale up to very large numbers of particles, using a parallel computing architecture
where each particle is simulated as a separate process or thread. In order to resample at each n we
must compute the normalized weights ω̄kn, requiring us to wait until all individual particles have both
finished forward simulation and computed their individual weight W k

n before the normalization and
resampling required for any to proceed. While the forward simulation itself is trivially parallelizable,
the weight normalization and resampling step is a synchronous, collective operation. In practice this
can lead to significant underuse of computing resources in a multiprocessor environment, hindering
our ability to scale up to large numbers of particles.

Memory limitations on finite computing hardware also limit the number of simultaneous particles
we are capable of running in practice. All particles must move through the system together, simul-
taneously; if the total memory requirements of particles is greater than the available system RAM,
then a substantial overhead will be incurred from swapping memory contents to disk.

3 The Particle Cascade

The particle cascade algorithm we introduce addresses both these limitations: it does not require
synchronization, and keeps only a bounded number of particles alive in the system at any given time.
Instead of resampling, we will consider particle branching, where each particle may produce 0 or
more offspring. These branching events happen asynchronously and mutually exclusively, i.e. they
are processed one at a time.

3.1 Local branching decisions

At each stage n of sequential Monte Carlo, particles process observation yn. Without loss of gener-
ality, we can define an ordering on the particles 1, 2, . . . in the order they arrive at yn. We keep track
of the running average weight W k

n of the first k particles to arrive at observation yn in an online
manner

W k
n = W k

n for k = 1, (6)

W k
n =

k − 1

k
W k−1

n +
1

k
W k
n for k = 2, 3, (7)

The number of children of particle k depends on the weight W k
n of particle k relative to those of

other particles. Particles with higher relative weight are more likely to be located in a high posterior
probability part of the space, and should be allowed to spawn more child particles.

In our online asynchronous particle system we do not have access to the weights of future particles
when processing particle k. Instead we will compare W k

n to the current average weight W k
n among

particles processed thus far. Specifically, the number of children, which we denote by Mk
n+1, will

depend on the ratio

Rkn =
W k
n

W k
n

. (8)

Each child of particle k will be assigned a weight V kn+1 such that the total weight of all children
Mk
n+1V

k
n+1 has expectation W k

n .

There is a great deal of flexibility available in designing a scheme for choosing the number of child
particles; we need only be careful to set V kn+1 appropriately. Informally, we would like Mk

n+1 to

3

be large when Rkn is large. If Mk
n+1 is sampled in such a way that E[Mk

n+1] = Rkn, then we set
the outgoing weight V kn+1 = W k

n. Alternatively, if we are using a scheme which deterministically
guarantees Mk

n+1 > 0, then we set V kn+1 = W k
n/M

k
n+1.

A simple approach would be to sample Mk
n+1 independently conditioned on the weights. In such

schemes we could draw each Mk
n+1 from some simple distribution, e.g. a Poisson distribution with

mean Rkn, or a discrete distribution over the integers {bRknc, dRkne}. However, one issue that arises
in such approaches where the number of children for each particle is conditionally independent is
that the variance of the total number of particles at each generation can grow faster than desirable.
Suppose we start the system with K0 particles. The number of particles at subsequent stages n is
given recursively as Kn =

∑Kn−1

k=1 Mk
n . We would like to avoid situations in which the number of

particles becomes too large, or collapses to 1.

Instead, we will allow Mk
n to depend on the number of children of previous particles at n, in such

a way that we can stabilize the total number of particles in each generation. Suppose that we wish
for the number of particles to be stabilized around K0. After k − 1 particles have been processed,
we expect the total number of children produced at that point to be approximately k − 1, so that if
the number is less than k − 1 we should allow particle k to produce more children, and vice versa.
Similarly, if we already currently have more thanK0 children, we should allow particle k to produce
fewer children.

We use a simple scheme which satisfies these criteria, where the number of particles is chosen at
random when Rkn < 1, and set deterministically when Rkn ≥ 1

(Mk
n+1, V

k
n+1) =


(0, 0) w.p. 1−Rkn, if Rkn < 1;
(1,W k

n) w.p. Rkn, if Rkn < 1;

(bRknc,
Wk

n

bRk
nc

) if Rkn ≥ 1 and
∑k−1
j=1 M

j
n+1 > min(K0, k − 1);

(dRkne,
Wk

n

dRk
ne

) if Rkn ≥ 1 and
∑k−1
j=1 M

j
n+1 ≤ min(K0, k − 1).

(9)

As the number of particles becomes large, the estimated average weight closely approximates the
true average weight. Were we to replace the deterministic rounding with a Bernoulli(Rkn − bRknc)
choice between {bRknc, dRkne}, then this decision rule defines the same distribution on the number
of offspring particles Mk

n+1 as the well-known systematic resampling procedure [3, 9].

Note the anytime nature of this algorithm — any given particle passing through the system needs
only the running average W k

n and the preceding child particle counts
∑k−1
j=1 M

j
n+1 in order to make

local branching decisions, not the previous particles themselves. Thus it is possible to run this
algorithm for some fixed number of initial particlesK0, inspect the output of the completed particles
which have left the system, and decide whether to continue by initializing additional particles.

3.2 Computing expectations and marginal likelihoods

Samples drawn from the particle cascade can be used to compute expectations in the same man-
ner as usual; that is, given some function ϕ(·), we normalize weights ω̄kn = W k

n/
∑Kn

j=1W
j
n and

approximate the posterior expectation by E[ϕ(X0:n)|y0:n] ≈
∑Kn

k=1 ω̄
k
nϕ(Xk

0:n).

We can also use the particle cascade to define an estimator of the marginal likelihood p(y0:n),

p̂(y0:n) =
1

K0

Kn∑
k=1

W k
n . (10)

The form of this estimate is fairly distinct from the standard SMC estimators in Section 2. One can
think of p̂(y0:n) as p̂(y0:n) = p̂(y0)

∏n
i=1 p̂(yi|y0:i−1) where

p̂(y0) =
1

K0

K0∑
k=1

W k
0 , p̂(yn|y0:n−1) =

∑Kn

k=1W
k
n∑Kn−1

k=1 W k
n−1

for n ≥ 1. (11)

Note that the incrementally updated running averages W k
n are very directly tied to the marginal

likelihood estimate; that is, p̂(y0:n) = Kn

K0
W k

n.

4

3.3 Theoretical properties, unbiasedness, and consistency

Under weak assumptions we can show that the marginal likelihood estimator p̂(y0:n) defined in
Eq. 10 is unbiased, and that both its variance and L2 errors of estimates of reasonable posterior ex-
pectations decrease in the number of particle initializations as 1/K0. Note that because the cascade
is an anytime algorithm K0 may be increased simply, without restarting inference. Detailed proofs
are given in the supplemental material; statements of the results are provided here.

Denote by B(E) the space of bounded real-valued functions on a space E, and suppose each Xn

is an X -valued random variable. Assume the Bernoulli(Rkn − bRknc) version of the resampling rule
in Eq. 9, and further assume that g(yn|·, y0:n−1) : Xn+1 → R is in B(Xn+1) and strictly positive.
Finally assume that the ordering in which particles arrive at each n is a random permutation of
the particle index set, conditions which we state precisely in the supplemental material. Then the
following propositions hold:

Proposition 1 (Unbiasedness of marginal likelihood estimate) For any K0 ≥ 1 and n ≥ 0

E [p̂(y0:n)] = p(y0:n). (12)

Proposition 2 (Variance of marginal likelihood estimate) For any n ≥ 0, there exists a constant
an <∞ such that for any K0 ≥ 1

V [p̂(y0:n)] ≤ an
K0

. (13)

Proposition 3 (L2 error bounds) For any n ≥ 0, there exists a constant an <∞ such that for any
K0 ≥ 1 and any ψn ∈ B

(
Xn+1

)
E

{(Kn∑
k=1

ω̄knψn(Xk
0:n)

)
−
∫
p(dx0:n|y0:n)ψn(x0:n)

}2
 ≤ an

K0
‖ψn‖2 . (14)

Additional results and proofs can be found in the supplemental material.

4 Active bounding of memory usage

In an idealized computational environment, with infinite available memory, our implementation of
the particle cascade could begin by launching (a very large number) K0 particles simultaneously
which then gradually propagate forward through the system. In practice, only some finite number
of particles, probably much smaller than K0, can be simultaneously simulated efficiently. Further-
more, the initial particles are not truly launched all at once, but rather in a sequence, introducing a
dependency in the order in which particles arrive at each observation n.

Our implementation of the particle cascade addresses these issues by explicitly injecting randomness
into the execution order of particles, and by imposing a machine-dependent hard cap on the number
of simultaneous extant processes. This permits us to run our particle filter system indefinitely, for
arbitrarily large and, in fact, growing initial particle counts K0, on fixed commodity hardware.

Each particle in our implementation runs as an independent operating system process [11]. In order
to efficiently run a large number of particles, we impose a hard limit ρ on the total number of
particles which can simultaneously exist in the particle system; most of these will generally be
sleeping processes. The ideal choice for this number will vary based on hardware capabilities, but
in general should be made as large as possible.

Scheduling across particles is managed via a global first-in random-out process queue of length
ρ; this can equivalently be conceptualized as a random-weight priority queue. Each particle corre-
sponds to a single live process, augmented by a single additional control process which is responsible
only for spawning additional initial particles (i.e. incrementing the initial particle count K0). When
any particle k arrives at any likelihood evaluation n, it computes its target number of child parti-
cles Mk

n+1 and outgoing particle weight V kn+1. If Mk
n+1 = 0 it immediately terminates; otherwise

it enters the queue. Once this particle either enters the queue or terminates, some other process

5

101 102 103 104 105
10-4

10-3

10-2

10-1

100

M
S
E

101 102 103 104 105

HMM: # of particles

−180

−160

−140

−120

lo
g
p̂
(y
0
:N
)

101 102 103 104 105
10-1

100

101

102

SMC

Particle Cascade

No resampling

iCSMC

101 102 103 104 105

Linear Gaussian: # of particles

−130

−120

−110

−100

−90

−80

True value

SMC

Particle Cascade

No resampling

Figure 1: All results are reported over multiple independent replications, shown here as independent
lines. (top) Convergence of estimates to ground truth vs. number of particles, shown as (left) MSE
of marginal probabilities of being in each state for every observation n in the HMM, and (right)
MSE of the latent expected position in the linear Gaussian state space model. (bottom) Convergence
of marginal likelihood estimates to the ground truth value (marked by a red dashed line), for (left)
the HMM, and (right) the linear Gaussian model.

continues execution — this process is chosen uniformly at random, and as such may be a sleeping
particle at any stage n < N , or it may instead be the control process which then launches a new
particle. At any given time, there are some number of particles Kρ < ρ currently in the queue, and
so the probability of resuming any particular individual particle, or of launching a new particle, is
1/(Kρ + 1). If the particle released from the queue has exactly one child to spawn, it advances to
the next observation and repeats the resampling process. If, however, a particle has more than one
child particle to spawn, rather than launching all child particles at once it launches a single particle to
simulate forward, decrements the total number of particles left to launch by one, and itself re-enters
the queue. The system is initialized by seeding the system with a number of initial particles ρ0 < ρ
at n = 0, creating ρ0 active initial processes. The ideal choice for the process count constraint ρ
may vary across operating systems and hardware.

In the event that the process count is fully saturated (i.e. the process queue is full), then we forcibly
prevent particles from duplicating themselves and creating new children. If we release a particle
from the queue which seeks to launch m > 1 additional particles when the queue is full, we instead
collapse all the remaining particles into a single particle; this single particle represents a virtual set
of particles, but does not create a new process and requires no additional CPU or memory resources.
We keep track of a particle count multiplier Ckn that we propagate forward along with the particle.
All particles are initialized with Ck0 = 1, and then when a particle collapse takes place, update their
multiplier at n + 1 to mCkn. This affects the way in which running weight averages are computed;
suppose a new particle k arrives with multiplier Ckn and weight W k

n . We incorporate all these values
into the average weight immediately, and update W k

n taking into account the multiplicity, with

W k
n =

k − 1

k + Ckn − 1
W k−1

n +
Ckn

k + Ckn − 1
W k
n for k = 2, 3, (15)

This does not affect the computation of the ratio Rkn. We preserve the particle multiplier, until we
reach the final n = N ; then, after all forward simulation is complete, we re-incorporate the particle
multiplicity when reporting the final particle weight W k

N = CkNV
k
Nw

k
N .

5 Experiments

We report experiments on performing inference in two simple state space models, each withN = 50
observations, in order to demonstrate the overall validity and utility of the particle cascade algorithm.

6

100 101 102 103
10-4

10-3

10-2

10-1

100

M
S
E

100 101 102 103

HMM: Time (seconds)

−180

−160

−140

−120

lo
g
p̂
(y
0
:N
)

100 101 102 103
10-1

100

101

102

SMC

Particle Cascade

No resampling

iCSMC

100 101 102 103

Linear Gaussian: Time (seconds)

−130

−120

−110

−100

−90

−80

True value

SMC

Particle Cascade

No resampling

Figure 2: (top) Comparative convergence rates between SMC alternatives including our new algo-
rithm, and (bottom) estimation of marginal likelihood, by time. Results are shown for (left) the
hidden Markov model, and (right) the linear Gaussian state space model.

The first is a hidden Markov model (HMM) with 10 latent discrete states, each with an associated
Gaussian emission distribution; the second a one-dimensional linear Gaussian model. Note that
using these models means that we can compute posterior marginals at each n and the marginal
likelihood Z = p(y0:N) exactly.

2 4 8 16 32

of cores

0

5

10

15

20

25

30

35

40

T
im

e
 p

e
r

sa
m

p
le

 (
m

s)

Particle Cascade

No Resampling

Iterated CSMC

SMC

Figure 3: Average time to draw a single com-
plete particle on a variety of machine architec-
tures. Queueing rather than blocking at each ob-
servation improves performance, and appears to
improve relative performance even more as the
available compute resources increase. Note that
this plot shows only average time per sample, not
a measure of statistical efficiency. The high speed
of the non-resampling algorithm is not sufficient
to make it competitive with the other approaches.

These experiments are not designed to stress-
test the particle cascade; rather, they are de-
signed to show that performance of the particle
cascade closely approximates that of fully syn-
chronous SMC algorithms, even in a small-data
small-complexity regime where we expect their
performance to be very good. In addition to
comparing to standard SMC, we also compare
to a worst-case particle filter in which we never
resample, instead propagating particles forward
deterministically with a single child particle at
every n. While the statistical (per-sample) effi-
ciency of this approach is quite poor, it is fully
parallelizable with no blocking operations in
the algorithm at all, and thus provides a ceiling
estimate of the raw sampling speed attainable
in our overall implementation.

We also benchmark against what we believe to
be the most practically competitive similar ap-
proach, iterated conditional SMC [1]. Iterated
conditional SMC corresponds to the particle Gibbs algorithm in the case where parameter values
are known; by using a particle filter sweep as a step within a larger MCMC algorithm, iCSMC pro-
vides a statistically valid approach to sampling from a posterior distribution by repeatedly running
sequential Monte Carlo sweeps each with a fixed number of particles. One downside to iCSMC
is that it does not provide an estimate of the marginal likelihood. In all benchmarks, we propose
from the prior distribution, with q(xn|·) ≡ f(xn|x0:n−1); the SMC and iCSMC benchmarks use a
multinomial resampling scheme.

On both these models we see the statistical efficiency of the particle cascade is approximately in line
with synchronous SMC, slightly outperforming the iCSMC algorithm and significantly outperform-

7

ing the fully parallelized non-resampling approach. This suggests that the approximations made by
computing weights at each n based on only the previously observed particles, and the total particle
count limit imposed by ρ, do not have an adverse effect on overall performance. In Fig. 1 we plot
convergence per particle to the true posterior distribution, as well as convergence in our estimate of
the normalizing constant.

5.1 Performance and scalability

Although values will be implementation-dependent, we are ultimately interested not in per-sample
efficiency but rather in our rate of convergence over time. We record wall clock time for each algo-
rithm for both of these models; the results for convergence of our estimates of values and marginal
likelihood are shown in Fig. 2. These particular experiments were all run on Amazon EC2, in an
8-core environment with Intel Xeon E5-2680 v2 processors. The particle cascade provides a much
faster and more accurate estimate of the marginal likelihood than the competing methods, in both
models. Convergence in estimates of values is quick as well, faster than the iCSMC approach. We
note that for very small numbers of particles, running a simple particle filter is faster than the parti-
cle cascade, despite the blocking nature of the resampling step. This is due to the overhead incurred
by the particle cascade in sending an initial flurry of ρ0 particles into the system before we see
any particles progress to the end; this initial speed advantage diminishes as the number of samples
increases. Furthermore, in stark contrast to the simple SMC method, there are no barriers to draw-
ing more samples from the particle cascade indefinitely. On this fixed hardware environment, our
implementation of SMC, which aggressively parallelizes all forward particle simulations, exhibits
a dramatic loss of performance as the number of particles increases from 104 to 105, to the point
where simultaneously running 105 particles is simply not possible in a feasible amount of time.

We are also interested in how the particle cascade scales up to larger hardware, or down to smaller
hardware. A comparison across five hardware configurations is shown in Fig. 3.

6 Discussion

The particle cascade has broad applicability to all SMC and particle filtering inference applications.
For example, constructing an appropriate sequence of densities for SMC is possible in arbitrary prob-
abilistic graphical models, including undirected graphical models; see e.g. the sequential decompo-
sition approach of [10]. We are particularly motivated by the SMC-based probabilistic programming
systems that have recently appeared in the literature [13, 11]. Both suggested that the primary per-
formance bottleneck in their inference algorithms was barrier synchronization, something we have
done away with entirely. What is more, while particle MCMC methods are particularly appropri-
ate when there is a clear boundary that can be exploited between between parameters of interest
and nuisance state variables, in probabilistic programming in particular, parameter values must be
generated as part of the state trajectory itself, leaving no explicitly denominated latent parameter
variables per se. The particle cascade is particularly relevant in such situations.

Finally, as the particle cascade yields an unbiased estimate of the marginal likelihood it can be
plugged directly into PIMH, SMC2 [4], and other existing pseudo-marginal methods.

Acknowledgments

Yee Whye Teh’s research leading to these results has received funding from EPSRC (grant
EP/K009362/1) and the ERC under the EU’s FP7 Programme (grant agreement no. 617411).
Arnaud Doucet’s research is partially funded by EPSRC (grants EP/K009850/1 and EP/K000276/1).
Frank Wood is supported under DARPA PPAML through the U.S. AFRL under Cooperative Agree-
ment number FA8750-14-2-0004. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation heron. The views and
conclusions contained herein are those of the authors and should be not interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA, the U.S.
Air Force Research Laboratory or the U.S. Government.

8

References

[1] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342, 2010.

[2] Anthony Brockwell, Pierre Del Moral, and Arnaud Doucet. Sequentially interacting Markov
chain Monte Carlo methods. Annals of Statistics, 38(6):3387–3411, 2010.

[3] James Carpenter, Peter Clifford, and Paul Fearnhead. An improved particle filter for non-linear
problems. Radar, Sonar and Navigation, IEE Proceedings -, 146(1):2–7, Feb 1999.

[4] Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. SMC2: an efficient algorithm
for sequential analysis of state space models. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 75(3):397–426, 2013.

[5] D. Crisan, P. Del Moral, and T. Lyons. Discrete filtering using branching and interacting
particle systems. Markov Process. Related Fields, 5(3):293–318, 1999.

[6] Randal Douc, Olivier Cappé, and Eric Moulines. Comparison of resampling schemes for
particle filtering. In In 4th International Symposium on Image and Signal Processing and
Analysis (ISPA), pages 64–69, 2005.

[7] Seong-Hwan Jun and Alexandre Bouchard-Côté. Memory (and time) efficient sequential
monte carlo. In Proceedings of the 31st International Conference on Machine Learning, 2014.

[8] Pierre Del Moral. Feynman-Kac Formulae – Genealogical and Interacting Particle Systems
with Applications. Probability and its Applications. Springer, 2004.

[9] Lawrence M. Murray, Anthony Lee, and Pierre E. Jacob. Parallel resampling in the particle
filter. arXiv preprint arXiv:1301.4019, 2014.

[10] Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Sequential Monte Carlo for
Graphical Models. In Advances in Neural Information Processing Systems 27. 2014.

[11] Brooks Paige and Frank Wood. A compilation target for probabilistic programming languages.
In Proceedings of the 31st International Conference on Machine learning, 2014.

[12] Nick Whiteley, Anthony Lee, and Kari Heine. On the role of interaction in sequential Monte
Carlo algorithms. arXiv preprint arXiv:1309.2918, 2013.

[13] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to prob-
abilistic programming inference. In Proceedings of the 17th International conference on
Artificial Intelligence and Statistics, 2014.

9

	Introduction
	Related work

	Background
	Resampling and degeneracy
	Synchronization and limitations

	The Particle Cascade
	Local branching decisions
	Computing expectations and marginal likelihoods
	Theoretical properties, unbiasedness, and consistency

	Active bounding of memory usage
	Experiments
	Performance and scalability

	Discussion

