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ABSTRACT

Depth Image Based Rendering (DIBR) is a widely used tech-

nique to enable free viewpoint television. It utilizes one or

more reference texture images and their associated depth im-

ages to synthesize virtual camera views. The depth image

plays a crucial role for DIBR. However, most of the conven-

tional depth image estimation approaches determine the depth

information from a limited set of nearby reference images.

This leads to inconsistencies among multiple reference depth

images, thus resulting in poor rendering quality. In this paper,

we propose an approach that uses the Scale Invariant Feature

Transform (SIFT) to improve depth images at virtual view-

points. We extract SIFT features in left and right reference

images, and use feature correspondences to improve the con-

sistency between reference depth images. By doing so, the

quality of rendered virtual views can be enhanced.

Index Terms— Free viewpoint television, DIBR, SIFT,

depth consistency.

1. INTRODUCTION

In recent years, research on free viewpoint television has

developed rapidly. Envisioned services will provide a rich

and compelling immersive experience by allowing viewers

to place a virtual camera in a live-action scene and move it

freely. However, the multiview video data captured by multi-

ple cameras consequently increases the data volume signif-

icantly. Thus, efficient processing at lower computational

complexity is needed to handle a large amount of data for

high-quality real-time view synthesis.

Depth Image Based Rendering (DIBR) utilizes one or

more reference texture images and their associated depth im-

ages to synthesize ”virtual” camera views [1]. Generally,

DIBR projects original pixels from reference images into 3D

world coordinates according to their depth values as specified

by the associated depth images. Thereafter, 3D world coordi-

nates are projected onto the image plane of the virtual cam-

era view. DIBR is advantageous due to its rendering ability,

low bandwidth requirement, and low computational complex-

ity [2].

The depth image plays a crucial role in DIBR. The more

accurate the depth map, the better is the quality of the ren-

dered image. Many approaches have been proposed [3-5] to

improve the accuracy of depth images. However, most of the

conventional depth image estimation or improvement meth-

ods estimate or improve the depth information view by view

[6]. This leads to inconsistencies among multiple reference

depth images. Thus, when warping a pair of reference depth

images to the same target position, misaligned or inconsistent

depth will reduce the reliability of each single depth value and

result in poor rendering quality.

In this paper, we propose an approach that uses a Scale

Invariant Feature Transform (SIFT) to improve the consis-

tency among multiple reference depth images. SIFT has been

widely used in object recognition, robotic mapping, video

tracking, and match moving [7]. It has also been exploited

for depth recovery in textureless image pairs [8]. We extract

SIFT features in left and right reference images and use fea-

ture correspondences to improve the consistency among ref-

erence depth images. The primary advantage of SIFT is its

invariance under rotation, scale change and affine transfor-

mation. It performs better than conventional feature matching

techniques like ordinary correlation and Harris corners which

are not invariant under rotation and changes in scale [9]. Ad-

ditionally, SIFT can be run in real-time with modern GPU

implementations [10]. All these benefits ensure that SIFT can

be used efficiently to extract feature matches among different

camera views.

The remainder of this paper is organized as follows. Sec-

tion 2 presents our SIFT-based depth image improvement al-

gorithm that can enhance the consistency among reference

depth images. The verification of our algorithm and the com-

parison to a reference algorithm are given in Section 3, fol-

lowed by a short conclusion.

2. IMPROVEMENT OF MULTI-VIEW DEPTH
CONSISTENCY

In this section, SIFT features will be exploited to establish

feature correspondences between two reference images. A

warping method will be applied to acquire two versions of

the depth images at the target position, one from the left ref-



Fig. 1. SIFT features in left and right reference images.
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Fig. 2. SIFT-based improvement of depth.

erence dl0 and one from the right reference depth dr0. The

SIFT features will be used to improve the consistency be-

tween these two versions of the target position depth image.

Thus, a new depth image at the target position can be gen-

erated from above two improved versions. Finally, with the

newly generated depth image, the texture at the target posi-

tion can be projected onto the target image plane. The block

diagram of our algorithm is shown in Fig. 2.

2.1. SIFT Feature Matching and Refinement

First, we extract SIFT features in both reference images and

find correct correspondences. Correct correspondences relate

to the same 3D point in the scene and, hence, can be used to

establish consistency in depth images. That is, a correct cor-

respondence in two reference images leads to a pair of con-

sistent depth values in their associated depth images.

For simplicity, we choose a rectified camera display sce-

nario where two cameras are parallel and share the same im-

age plane. Left I1 and right I2 reference images are captured

by these two cameras, and we set our virtual target view at a

position between them. By using the SIFT algorithm, we can

extract and match the SIFT features between left I1 and right

I2 reference images, as depicted in Fig. 1.

Let the pixel with position q = (x, y) be in the left I1 or

the right I2 image. Knowing the camera calibration parame-

ters, we are able to check the correctness of feature matches

based on the geometric constraint [1]

[X,Y, Z]T = R−1 ·A−1 · [x, y, 1]T · d−R−1 · t, (1)

where [X,Y, Z]T is the 3D world coordinate, d is the depth,

and where R, A and t are the camera calibration parameters

which depend on the camera position. In our case, d is equal

to Z since a rectified camera scenario. Thus, d is replaced by

Z for simplicity.

Let pri ↔ plj be a feature correspondence, where pri de-

notes the i-th feature point with the image coordinate (xr
i , y

r
i )

in the right reference and plj the j-th feature point with the

image coordinate (xl
j , y

l
j) in the left reference. If it is a cor-

rect correspondence, pri and plj are originally projected from

the same 3D world coordinate. Thus, by using (1) for corre-

sponding points, the following equation holds:

R−1
r ·A−1

r · [xr
i , y

r
i , 1]

T · Z −R−1
r · tr

= R−1
l ·A−1

l · [xl
j , y

l
j , 1]

T · Z −R−1
l · tl. (2)

As we assume to know the true camera calibration parame-

ters, expression (2) is over-determined. For our practical ap-

plication, we determine the least square error solution of the

depth value Z∗ according to

Z∗ = argmin
Z

‖R−1
r ·A−1

r · [xr
i , y

r
i , 1]

T · Z −R−1
r · tr

−R−1
l ·A−1

l · [xl
j , y

l
j , 1]

T · Z +R−1
l · tl‖2. (3)



Fig. 3. SIFT features in reference and target images.

The two resulting 3D world coordinates [X,Y, Z]rTi and

[X,Y, Z]lTj are obtained by the least square error solution

and (1) with respect to pri and plj . However, some small

misalignment caused by calibration parameters should also

be considered. Thus, we use an additional criterion. If

‖[X,Y, Z]rTi − [X,Y, Z]lTj ‖2 < δd, where δd is a small

threshold for the Euclidean distance in 3D space, the correct-

ness of the correspondence pri ↔ plj is sufficiently reliable.

2.2. Projection in Target View

For each correct correspondence pri ↔ plj , (1) and (3) are

used to calculate a least square error solution of [X,Y, Z]T ,

which is the 3D world coordinate of both pri and plj . This

3D world coordinate is then projected onto the image plane

of the virtual target camera It, resulting in the correspond-

ing feature ptk. Therefore, combining SIFT and geomet-

ric constraints, we obtain the feature correspondence pri ↔
plj ↔ ptk between references and target image as depicted

in Fig. 3. Thus, we define a set of correct feature matches

R = {(pri , plj , ptk)|pri ↔ plj ↔ ptk} along with the sets of

chosen features for each image

F r = {pri |pri ↔ plj ↔ ptk} ,

F l = {plj |pri ↔ plj ↔ ptk} ,

F t = {ptk|pri ↔ plj ↔ ptk} . (4)

Finally, we define a sparse depth map only for the chosen

features in each image. For example, for the right reference

image, we obtain

drf (p
r) = Z∗(pr), ∀pr ∈ F r, (5)

where the feature depth map is not defined for other pixels

than the chosen features. Similarly, for the target view image

we define

dtf (p
t) = Z∗(pt), ∀pt ∈ F t. (6)

2.3. Warping of Reference Depth Images

Widely used depth images use a finite number of depth planes,

e.g., 256 planes for 8 bit depth images. We exploit the finite

set of depth planes to define sets of pixels at the same depth

level. The depth level set for the right reference image is the

set of all pixels q that have the depth u

Lr
u = {q|dr0(q) = u} . (7)

The depth level set for the left reference image is defined sim-

ilarly.

Fig. 4. An illustration of the level set Lu with correct fea-

tures F and the features in a given level set Wu. The gray

segments depict the level sets Lu. The points depict the set

of correct features F . The collection of points with the same

color indicate the set of features Wu at the depth u.

To warp reliably the depth level set toward the target view,

we choose the features in a given level set

W r
u = F r ∩ Lr

u, (8)

where F r is the set of chosen features, and Lr
u is the level set

for depth u, as illustrated in Fig. 4.

As each depth level set specifies pixels that lie in the same

depth plane that is parallel to the camera, the warping process

can be accomplished by a disparity shift.

To calculate the correct disparity for a given depth level,

we consider only the correct features in the given level set

according to

Δr
u =

1

|W r
u |

∑
pr
i∈W r

u ,pr
i↔pt

k

(pri − ptk), (9)

where pri is correctly connected to ptk in the target view. The

disparity for the left reference is determined similarly.



Fig. 5. Left and right versions of the target depth map from

left and right references (light-blue parts are occlusions).

After we have shifted all level sets by their corresponding

disparity, we observe overlap for certain areas. In that case,

the foreground overrides the background, i.e., the smaller

depth values are kept. Note, possible holes are kept un-

changed at this stage of the algorithm. This process results

in the left and right version of the target depth map, dl1(q) and

dr1(q), respectively. An example is shown in Fig. 5.

2.4. SIFT-Based Improvement of Depth

Now we are able to improve the depth information d1 in the

left and the right version of the target view by using the cor-

rect feature correspondences in the target view. Note that the

occlusion problem will not be solved in this step.

We use again the definition of depth level sets. At this

stage, it is based on the target depth d1. For the right version

of the target view, we obtain the depth level set

Qr
u = {q|dr1(q) = u} . (10)

The level set for the left version is defined similarly.

For improving the depth d1, features of the target view for

a given level u are used. The chosen target view features for

the left version are given by

Sl
u = F t ∩Ql

u, (11)

where F t denotes the correct features in the target view ac-

cording to (4). Chosen target view features for the right ver-

sion are defined similarly.

In the previous step (6), we have determined accurate

depth values of the features in the target view dtf (p
t), ∀p ∈

F t. Moreover, we have a set of chosen features Su with accu-

rate depth values dtf (p
t) that are associated with the level set

Qu. If the depth values of these features do not match with the

given level u, we have the opportunity to improve the depth

information of the pixels in Qu with the help of the accurate

depth values of the features as illustrated in Fig. 6.

For that, we check the estimated variance of the depth val-

ues of the chosen features in Qu. If Varp∈Su{dtf (p)} < δf ,

the assumption of constant depth in Qu is accurate. Hence,

we improve the depth for all pixels in Qu according to

d2(q) =
1

|Su|
∑
p∈Su

dtf (p), ∀q ∈ Qu. (12)

p1

p2

p3

p4

p5

Su
d

Q  u
0

0

1

Fig. 6. Chosen features Su at the target view for a given level

set Qu.

Fig. 7. Improved versions of the target depth maps d2 from

left and right reference (light-blue parts are occlusions).

However, if the estimated variance exceeds the given

threshold, the assumption of constant depth in Qu is not ac-

curate. In this case, we find for each pixel q ∈ Qu its nearest

chosen feature with respect to Euclidean distance, and assign

the depth value of the nearest chosen feature also to pixel q

d2(q) = dtf (p
∗), with p∗ = arg min

p∈Su

‖q − p‖2. (13)

By doing so, the region Qu will be fragmented into local

neighborhoods as defined by the location of the features Su.

This can be observed in Fig. 7.

2.5. Fusion of Depth Images

In the previous steps, we have generated left and right ver-

sions of the depth image at the target position. Now, we are

able to combine them for the final depth image at the target

position.

By combining both versions, we are able to address the

occlusion areas and define the final depth image at the target

position.

d3(q) =

⎧⎨
⎩

dl2(q), if dr2(q) is not defined
dr2(q), if dl2(q) is not defined
1
2 · [dl2(q) + dr2(q)], if both are defined.

(14)

If d2 is not defined at position q in both versions, we will

define a window around position q, calculate the histogram of
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Fig. 8. Comparison of Y-PSNR of rendered images for pro-

posed algorithm and MPEG VSRS 3.5 (wide-baseline).

adjacent depth values, select the most likely value, and assign

it to d3(q).

2.6. Texture Warping

The texture of the target view will be warped from left and

right reference textures. With the improved depth image d3
at the target view, we use 3D warping to generate the left and

the right version of the texture at the target view. To render

the texture at the target view, we choose in general the warped

texture of a reference view that is closest to the target view.

However, if parts are occluded in the closest reference, we

choose the other reference for rendering.

3. EXPERIMENTAL RESULTS

We compare the performance of our algorithm to a MPEG

reference algorithm. For that, we use the the Peak Signal To

Noise Ratio (PSNR) of the luminance component to assess

the quality of the target view image with respect to an actual

camera image at the same view position. The subjective qual-

ity is also discussed.

We use the multi-view video test set Lovebird1 which is

provided by ETRI [11] and the test set Newspaper which

is provided by GIST [12]. We compare the performance of

our proposed algorithm to that of the View Synthesis Refer-

ence Software 3.5 (VSRS 3.5) [13] which is used for MPEG

3DV/FTV exploration experiments. VSRS 3.5 uses also a

DIBR approach which synthesizes the target view by refer-

encing left and right texture images and their associated depth

images. The average Y-PSNR between rendered view and ac-

tual camera view at the same position will be used to evaluate

the performance of each algorithm.

For our experiments, we choose one wide-baseline con-

figuration and one narrow-baseline configuration. The wide-

baseline configuration is challenging for both algorithms. We

use 50 successive frames from the test sequences.

Our experiments show that our SIFT-based algorithm for

depth image improvement outperforms MPEG’s reference al-

gorithm. The average Y-PSNR of the rendered images im-

0 10 20 30 40 50
29.5

30

30.5

31

Frame number

Y
−P

SN
R

 (
dB

)

Newspaper sequence

 

 

VSRS 3.5
Proposed

Fig. 9. Comparison of Y-PSNR of rendered images for pro-

posed algorithm and MPEG VSRS 3.5 (narrow-baseline).

Fig. 10. Comparison of foreground objects (left: proposed,

right: VSRS 3.5).

proves by about 2dB for the wide-baseline setting and about

1dB for the narrow-baseline setting, as depicted in Fig. 8 and

Fig. 9. Fig. 12 shows that our approach can improve the ac-

curacy of the depth images at the target position by using a

sparse set of image features. The improved depth images en-

hance the rendering quality of both foreground objects (Fig.

10) and background objects (Fig. 11). Our approach is par-

ticularly beneficial for wide-baseline settings.

4. CONCLUSIONS

We discussed an algorithm to improve depth images for given

target view positions that is based on a sparse set of accurate

SIFT features. For that, a subset of reliable and accurate cor-

respondences is defined among the SIFT features. Further,

sets of pixels with the same depth level are defined. We use

the accurate information of the SIFT features to update these

sets of pixels. Both, the shape of the pixel regions and their

depth values are enhanced. The experimental results show

that our proposed approach outperforms MPEG’s reference

algorithm VSRS 3.5 in terms of objective and subjective im-

age quality.
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Fig. 11. Comparison of background objects (left: proposed,

right: VSRS 3.5).

Fig. 12. Comparison of depth images at target view position

(left: proposed, right: VSRS 3.5).

Viewpoint Immersive Networked Experience”.
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