
*Corresponding author. Tel.: 215 898 3628; fax: 215 573 2207; e-mail: allenf@wharton.upenn.edu.

1Helpful comments were made by Adam Dunsby, Lawrence Fisher, Steven Kimbrough, Paul
Kleindorfer, Michele Kreisler, James Laing, Josef Lakonishok, George Mailath, and seminar
participants at Institutional Investor, J.P. Morgan, the NBER Asset Pricing Program, Ohio State
University, Purdue University, the Santa Fe Institute, Rutgers University, Stanford University,
University of California, Berkeley, University of Michigan, University of Pennsylvania, University
of Utah, Washington University (St. Louis), and the 1995 AFA Meetings in Washington, D.C. We
are particularly grateful to Kenneth R. French (the referee), and G. William Schwert (the editor) for
their suggestions. Financial support from the National Science Foundation is gratefully acknow-
ledged by the first author and from the Academy of Finland by the second and from the
Geewax-Terker Program in Financial Instruments by both. Correspondence should be addressed to
Franklin Allen, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6367.

Journal of Financial Economics 51 (1999) 245—271

Using genetic algorithms to find technical trading rules1

Franklin Allen!,*, Risto Karjalainen"

! The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
" Merrill Lynch & Co., Inc., Mercury Asset Management, 33 King William Street, London, EC4R 9AS, UK

Received 12 October 1995; received in revised form 7 April 1998

Abstract

We use a genetic algorithm to learn technical trading rules for the S&P 500 index using
daily prices from 1928 to 1995. After transaction costs, the rules do not earn consistent
excess returns over a simple buy-and-hold strategy in the out-of-sample test periods. The
rules are able to identify periods to be in the index when daily returns are positive and
volatility is low and out when the reverse is true. These latter results can largely be
explained by low-order serial correlation in stock index returns. (1999 Elsevier
Science S.A. All rights reserved.

JEL classification: C61; G11; G14

Keywords: Trading rules; Genetic algorithms; Excess returns

1. Introduction

Genetic algorithms belong to a class of machine learning algorithms that have
been successfully used in a number of research areas. There is a growing interest

0304-405X/99/$— see front matter (1999 Elsevier Science S.A. All rights reserved
PII: S 0 3 0 4 - 4 0 5 X (9 8) 0 0 0 5 2 - X

in their use in financial economics but so far there has been little formal analysis.
The purpose of this paper is to demonstrate how they can be used to find
technical trading rules. The techniques can be easily extended to include other
types of information such as fundamental and macro-economic data as well as
past prices.

Over the years there has been a large literature on the effectiveness of
various technical trading rules. The majority of this literature has found that
such rules do not make money. For instance, Alexander (1961) tests a number
of ‘filter rules’, which advise a trader to buy if the price rises by a fixed percentage
(5%, say) and sell if the price declines by the same percentage. Although
such rules appear to yield returns above the buy-and-hold strategy for the
Dow Jones and Standard & Poor’s stock indices, Alexander (1964)
concludes that adjusted for transaction costs, the filter rules are not
profitable. These conclusions are supported by the results of Fama and
Blume (1966), who find no evidence of profitable filter rules for the 30
Dow Jones stocks. On the whole, the studies during the 1960s provide little
evidence of profitable trading rules, and lead Fama (1970) to dismiss technical
analysis as a futile undertaking. In a more recent study, Brock et al. (1992)
consider the performance of various simple moving average rules in the absence
of transaction costs. They find that these rules identify periods to be in the
market (long the Dow Jones index) when returns are high and volatility is low
and vice versa.

All of this previous literature uses ad hoc specifications of trading rules. This
leads to a problem of data snooping whereby the ex post specification of rules
can lead to biased test results. We show how genetic algorithms can be used to
derive trading rules that are not ad hoc but are in a sense optimal. This
approach avoids a potential bias caused by ex post selection, because the rules
are chosen by a machine learning algorithm using price data available before the
start of the test period.

We consider trading rules for the Standard & Poor’s composite index
(S&P 500). Our results confirm those of previous studies. They suggest
that the markets for these stocks are efficient in the sense that it is not
possible to make money after transaction costs using technical trading rules.
Like Brock et al. (1992), we are able to identify periods to be in the market
when returns are high and volatility is low and out when the reverse is
true. A study of how the rules work indicates that many have trading
patterns that are like those generated by simple moving average rules.
This suggests they are exploiting well-known low-order serial correlation in
market indices (see, e.g., Fisher, 1966; French and Roll, 1986; Lo and MacKin-
lay, 1990).

Section 2 describes genetic algorithms. Section 3 shows how the rules are
found and evaluated, and addresses the robustness of the results. Section 4
contains concluding remarks.

246 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

2There are many variations of the basic genetic algorithm. The version described here employs
continuous reproduction, as opposed to a more conventional approach where the whole generation
is replaced by a new one. The idea of continuous reproduction was originally proposed by Holland
(1975), and developed by Syswerda (1989) and Whitley (1989). Similarly to Whitley, we also use
rank-based selection, instead of the more common method of computing the selection probabilities
on the basis of scaled fitness values

2. Genetic algorithms

2.1. Introduction to evolutionary algorithms

Genetic algorithms constitute a class of search, adaptation, and optimization
techniques based on the principles of natural evolution. Genetic algorithms were
developed by Holland (1962, 1975). Other evolutionary algorithms include
evolution strategies (Rechenberg, 1973; Schwefel, 1981), evolutionary program-
ming (Fogel et al., 1966), classifier systems (Holland, 1976, 1980), and genetic
programming Koza (1992). For an introduction to genetic algorithms, see
Beasley et al. (1993).

An evolutionary algorithm maintains a population of solution candidates and
evaluates the quality of each solution candidate according to a problem-specific
fitness function, which defines the environment for the evolution. New solution
candidates are created by selecting relatively fit members of the population and
recombining them through various operators. Specific evolutionary algorithms
differ in the representation of solutions, the selection mechanism, and the details
of the recombination operators.

In a genetic algorithm, solution candidates are represented as character
strings from a given (often binary) alphabet. In a particular problem, a mapping
between these genetic structures and the original solution space has to be
developed, and a fitness function has to be defined. The fitness function
measures the quality of the solution corresponding to a genetic structure. In an
optimization problem, the fitness function simply computes the value of the
objective function. In other problems, fitness could be determined by a co-
evolutionary environment consisting of other genetic structures. For instance,
one could study the equilibrium properties of game-theoretic problems whereby
a population of strategies evolves with the fitness of each strategy defined as the
average payoff against the other members of the population.

A genetic algorithm starts with a population of randomly generated solution
candidates.2 The next generation is created by recombining promising candi-
dates. The recombination involves two parents chosen at random from the
population, with the selection probabilities biased in favor of the relatively fit
candidates. The parents are recombined through a ‘crossover’ operator, which
splits the two genetic structures apart at randomly chosen locations, and joins

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 247

a piece from each parent to create an ‘offspring’ (as a safeguard against the loss
of genetic diversity, random ‘mutations’ are occasionally introduced into the
offspring). The algorithm evaluates the fitness of the offspring and replaces one
of the relatively unfit members of the population. New genetic structures are
produced until the generation is completed. Successive generations are created
in the same manner until a well-defined termination criterion is satisfied. The
final population provides a collection of solution candidates, one or more of
which can be applied to the original problem.

The theoretical foundation of genetic algorithms is laid out in Holland (1975).
Maintaining a population of solution candidates makes the search process
parallel, allowing an efficient exploration of the solution space. In addition to
this explicit parallelism, genetic algorithms are implicitly parallel in that the
evaluation of the fitness of a specific genetic structure yields information about
the quality of a very large number of ‘schemata’, or building blocks. The
so-called schema theorem shows that a genetic algorithm automatically allocates
an exponentially increasing number of trials to the best observed schemata. This
leads to a favorable tradeoff between exploitation of promising directions of the
search space and exploration of less-frequented regions of the space (see also
Vose, 1991). However, there is no general result guaranteeing the convergence of
a genetic algorithm to the global optimum.

Evolutionary algorithms offer a number of advantages over more traditional
optimization methods. They can be applied to problems with a nondifferentiable
or discontinuous objective function, to which gradient-based methods such as
Gauss—Newton would not be applicable. They are also useful when the objective
function has several local optima. Because of the stochastic nature of the
selection and recombination operators, evolutionary algorithms are less likely
to converge to local maxima than hill-climbing or gradient-type methods.
Evolutionary optimization methods can often be successfully applied when the
size of the search space poses difficulties for other optimizations methods. In
such problems, the parallel trial-and-error process is an efficient way to reduce
the uncertainty about the search space.

Evolutionary algorithms do have limitations. Maintaining a population of
genetic structures leads to an increase in execution time, due to the number of
times the objective function must be evaluated. Since evolutionary algorithms
embody very little problem-specific knowledge, they are unlikely to perform
better and can be less efficient than special-purpose algorithms in well-under-
stood domains. Despite the schema theorem, the lack of a theoretical conver-
gence result is a weakness. In differentiable problems, an evolutionary algorithm
may indeed converge to a point where the gradient is nonzero. This can happen
if there is not enough genetic variation left in the population by the time the
algorithm approaches the optimum. However, this last drawback can often be
avoided by switching to hill-climbing when the genetic algorithm makes no
further progress.

248 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

One should not view genetic algorithms or other members of the family as
a replacement for other optimization methods. It is more productive to regard
them as a complement, the usefulness of which depends on the nature of the
problem. Even though evolutionary algorithms are not guaranteed to find the
global optimum, they can find an acceptable solution relatively quickly in a wide
range of problems.

Evolutionary algorithms have been applied to a large number of problems in
engineering, computer science, cognitive science, economics, management
science, and other fields (for references, see Goldberg, 1989; Booker et al., 1989).
The number of practical applications has been rising steadily, especially since
the late 1980s. Typical business applications involve production planning,
job-shop scheduling, and other difficult combinatorial problems. Genetic algo-
rithms have also been applied to theoretical questions in economic markets, to
time series forecasting, and to econometric estimation (see, e.g., Marimon et al.,
1990; Dorsey and Mayer, 1995). String-based genetic algorithms have been
applied to finding market-timing strategies based on fundamental data for stock
and bond markets by Bauer (1994).

2.2. Genetic programming

In traditional genetic algorithms, genetic structures are represented as charac-
ter strings of fixed length. This representation is adequate for many problems,
but it is restrictive when the size or the form of the solution cannot be assessed
beforehand. Genetic programming, developed by Koza (1992), is an extension of
genetic algorithms that partly alleviates the restrictions of the fixed-length
representation of genetic structures. For the purposes of this paper, the main
advantage of genetic programming is the ability to represent different trading
rules in a natural way.

In genetic programming, solution candidates are represented as hierarchical
compositions of functions. In these tree-like structures, the successors of each
node provide the arguments for the function identified with the node. The
terminal nodes (i.e., nodes with no successors) correspond to the input data. The
entire tree is also interpreted as a function, which is evaluated recursively by
simply evaluating the root node of the tree. The structure of the solution
candidates is not specified a priori. Instead, a set of functions is defined as
building blocks to be recombined by the genetic algorithm.

The function set is chosen in a way appropriate to the particular problem
under study. Koza focuses much of his work on genetic structures that include
only functions of a single type. However, genetic programming possesses no
inherent limitations about the types of functions, as long as a so-called ‘closure’
property is satisfied. This property holds if all possible combinations of subtrees
result in syntactically valid composite functions. Closure is needed to ensure
that the recombination operator is well defined.

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 249

Genetic programming also maintains a population of genetic structures. The
initial population consists of random trees. The root node of a tree is chosen at
random among functions of the same type as the desired composite function.
Each argument of that function is then selected among the functions of the
appropriate type, proceeding recursively down the tree until a function with no
arguments (a terminal node) is reached. The evolution takes place much as in the
basic genetic algorithms, selecting relatively fit solution candidates to be recom-
bined and replacing unfit individuals with the offspring.

In genetic programming, the crossover operator recombines two solution
candidates by replacing a randomly selected subtree in the first parent with
a subtree from the second parent. If different types of functions are used within
a tree, the appropriate procedure involves choosing the crossover node at
random within the first parent, and then choosing the crossover node within the
second parent among the nodes of the same type as the crossover node in the
first tree. Mutations are introduced by using a randomly generated tree in place
of the second parent with a small probability.

Koza applies genetic programming to a diverse array of problems, ranging
from symbolic integration to the evolution of ant colonies to the optimal control
of a broom balanced on top of a moving cart. As one specific example illustra-
ting the effectiveness of the algorithm, Koza (1992, Chapter 8) applies genetic
programming to learning the correct truth table for the so-called six-multiplexer
problem. In this problem, there are six binary inputs and one binary output. The
correct logical mapping must specify the correct output for each of the 26 input
combinations. Hence, the size of the search space is 264+1019. Using genetic
programming, no more than 160,000 individual solution candidates are neces-
sary to find the correct solution with a 99% probability. By comparison, the best
solution found in a random search over ten million truth tables produced the
correct output for only 52 out of 64 possible input combinations.

3. Finding and evaluating trading rules

3.1. Ex ante optimal trading rules

Most of the previous trading rule studies have sought to test whether particu-
lar kinds of technical rules have forecasting ability. A machine learning ap-
proach to finding testable trading rules sheds light on a question that is subtly
different. Instead of asking whether specific rules work, we seek to find out
whether in a certain sense optimal rules can be used to forecast future returns.
Allowing a genetic algorithm to compose the trading rules avoids much of the
arbitrariness involved in choosing which rules to test. Were we to use a more
traditional search method, we would have to decide the form of the trading rules
before searching through the parameter space for the chosen class of rules. By

250 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

using a genetic algorithm, we can look for both the structure and the parameters
of the rules at the same time.

The rules found by the genetic algorithm are optimal in a very specific sense.
The algorithm finds rules that maximize one particular — though intuitive
— measure of fitness. In addition, some structure must be imposed on the rule
space. In this paper, the search space consists of logical combinations of simple
rules that look at moving averages and maxima and minima of past prices. The
choice of these rules as building blocks is supported by the analysis of Neftci
(1991), who shows that many trading rules relying on specific patterns can be
expressed in terms of local extrema of past prices. Moving average rules are used
to model potential short-term or long-term trends. Of course, using building
blocks similar to trading rules studied in the past poses the danger of data
snooping. We try to mitigate this problem by restricting the building blocks to
simple rules that have been used in practice for several decades.

3.2. Applying genetic programming to finding trading rules

This paper uses genetic programming to find technical trading rules for
a composite stock index. The goal of the algorithm is to find decision rules that
divide days into two distinct categories, either ‘in’ the market (earning the
market rate of return) or ‘out’ of the market (earning the risk-free rate of return).
Each genetic structure represents a particular technical trading rule. A trading
rule is a function that returns either a ‘buy’ or a ‘sell’ signal for any given price
history. The trading strategy specifies the position to be taken the following day,
given the current position and the trading rule signal. The trading strategy is
implemented as a simple automaton, which works as follows: If the current state
is ‘in’ (i.e., holding the market) and the trading rule signals ‘sell’, switch to ‘out’
(move out of the market); if the current state is ‘out’ and the trading rule signals
‘buy’, switch back to ‘in’. In the other two cases, the current state is preserved.

Building blocks for trading rules include simple functions of past price data,
numerical and logical constants, and logical functions that allow the combina-
tion of low-level building blocks to create more complicated expressions. The
root node of each genetic structure corresponds to a Boolean function. This
restriction ensures that the trading strategy is well defined.

The function set includes two kinds of functions: real and Boolean. The
real-valued functions include a function that computes a moving average of past
prices (average) in a time window specified by a real-valued argument,
rounded to an integer when the rule is evaluated. There are also functions that
return the local extrema of prices (maximum and minimum) during a time
window of a given length. Other real-valued functions include arithmetic oper-
ators (#, !, %, *) and a function returning the absolute value of the
difference between two real numbers (norm). Boolean functions include logical
functions (if-then-else, and, or, not) and comparisons of two real numbers

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 251

Fig. 1. Genetic structures corresponding to a 50-day moving average rule (left) and a 30-day trading
range break rule (right). The moving average rule returns a ‘buy’ signal if the 50-day moving average
of past closing prices is smaller than the closing price today, and a ‘sell’ signal otherwise. The trading
range break rule returns a ‘buy’ signal if the price is greater than the maximum of the past 30 days’
prices and a ‘sell’ signal otherwise.

(', (). In addition, there are Boolean constants (true, false) and real
constants. The Boolean constants are initialized randomly to either of the two
truth values, and the real constants are initialized to values drawn from the
uniform distribution between zero and two when the initial population of
genetic structures is created (and fixed thereafter). There is also a real-valued
function (price) that returns the closing price of the current day. Finally, there is
a function (lag) that causes its argument function to be applied to a price series
lagged by a number of days specified by another argument.

The functions defined above can be used to implement many commonly used
technical trading rules. For instance, Fig. 1 shows a 50-day moving average rule
on the left and a simple 30-day trading range break rule on the right. The
moving average rule asks whether the moving average of closing prices over the
past 50 days is less than today’s closing price and if so returns a buy (stay in)
signal and a sell (stay out) signal otherwise. The 30-day trading range break rule
is evaluated in the same way, asking whether today’s closing price is above the
maximum closing price during the last 30 days.

Fig. 2 depicts how the genetic algorithm combines simple rules to create
more complicated ones (a crossover). The two trading rules shown in the
top of Fig. 2 are used as the parents. In the first parent, the crossover
node chosen at random corresponds to the Boolean subtree designated by
the dotted line. In the second parent, the crossover node is selected
at random among nodes of the Boolean type. Replacing the subtree in the first
parent with the subtree of the second parent generates the trading rule shown in
the bottom of Fig. 2. This new rule returns a buy signal if both the moving
average rule and the trading range break rule are satisfied, and a sell signal
otherwise. Proceeding in the same way, complex and subtle nonlinear rules can
be created, although nothing precludes the discovery of quite elementary deci-
sion rules.

252 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

Fig. 2. An illustration of how the genetic algorithm creates a new trading rule by recombining two
parent rules. This is known as a ‘crossover’, and it works as follows. A randomly chosen subtree
(designated by the dotted line) in the first parent is discarded. The discarded subtree is replaced by
a subtree of the same type (in this case Boolean), randomly chosen from the second parent. The
resulting offspring rule is shown in the bottom of the figure.

3.3. Fitness measure

The fitness measure is based on the excess return over the buy-and-hold
strategy. This is perhaps the most obvious choice. A more sophisticated fitness
measure might take account of risk aversion by, for example, including a term

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 253

that penalizes for large daily losses or for large drawdowns of wealth, according
to the risk attitude of a particular investor.

The fitness of a rule is computed as the excess return over the buy-and-hold
strategy during a training period. To evaluate the fitness of a trading rule, it is
applied to each trading day to divide the days into periods in (earning the
market return) or out of the market (earning a risk-free return). The continuous-
ly compounded return is then computed, and the buy-and-hold return and the
transaction costs are subtracted to determine the fitness of the rule. The simple
return from a single trade (buy at date b

i
, sell at s

i
) is thus

n
i
"

P
si

P
bi

]
1!c

1#c
!1"expC

si
+

t/bi`1

r
tD]

1!c

1#c
!1

"expC
si
+

t/bi`1

r
t
#log

1!c

1#cD!1, (1)

where P
t
is the closing price (or level of the composite stock index) on day t,

r
t
"log P

t
!log P

t~1
is the daily continuously compounded return, and c

denotes the one-way transaction cost (expressed as a fraction of the price). Let
¹ be the number of trading days and let r

&
(t) denote the risk-free rate on day t.

Define two indicator variables, I
"
(t) and I

4
(t), equal to one if a rule signals buy

and sell, respectively, and zero otherwise with the indicator variables satisfying
the relation I

"
(t)]I

4
(t)"0 ∀t. Lastly, let n denote the number of trades, i.e., the

number of buy signals followed by a subsequent sell signal (an open position in
the last day is forcibly closed). Then, the continuously compounded return for
a trading rule can be computed as

r"
T
+
t/1

r
t
I
"
(t)#

T
+
t/1

r
&
(t)I

4
(t)#nlog

1!c

1#c
, (2)

and the total (simple) return is n"er!1. The return for the buy-and-hold
strategy (buy the first day, sell the last day) is

r
")
"

T
+
t/1

r
t
#log

1!c

1#c
, (3)

and the excess return or fitness for a trading rule is given by

Dr"r!r
")

. (4)

As short sales can only be made on an uptick, the implementation of
simultaneous short sales for a composite stock index is difficult. Consequently,
we do not consider short positions. Results by Sweeney (1988) suggest that large
institutional investors can achieve one-way transaction costs in the range of

254 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

3The computer code for finding trading rules for the S&P 500 index can be obtained using
anonymous ftp from opim.wharton.upenn.edu (log in as ‘anonymous’ and type your e-mail
address as password). The C code is located in the directory /pub/programs/risto/jfe99.

0.1—0.2% (at least after the mid-1970s), and floor traders can achieve consider-
ably lower costs. However, realistic transaction costs including the market
impact are likely to be higher for most investors. Initially, we use one-way
transaction costs of 0.25%. We also investigate the robustness of the results with
transaction costs of 0.1% or 0.5%.

One issue that needs to be addressed in the design of the genetic algorithm is
the possibility of overfitting the training data. The task of inferring technical
trading rules relies on the assumption that there are some underlying regulari-
ties in the data. However, there are going to be patterns arising from noise, and
the trick is to find trading rules that generalize beyond the training sample. The
problem is common to all methods of non-linear statistical inference, and several
approaches have been proposed to avoid overfitting. These include reserving
a part of the data as a validation set on which to test the predictions, increasing
the amount of training data, penalizing for model complexity, and minimizing
the amount of information needed to describe both the model and the data (for
a discussion of overfitting, see Gershenfeld and Weigend, 1993). We reserve
a selection period immediately following the training period for validation of the
inferred trading rules. After each generation, we apply the fittest rule (based on
the excess return in the training period) to the selection period. If the excess
return in the selection period improves upon the best previously saved rule, the
new rule is saved.

Table 1 summarizes the algorithm used to find trading rules.3 To start with,
an initial population of rules is created at random. The algorithm determines the
fitness of each trading rule by applying it to the daily data for the S&P 500 index
in the training period. It then creates a new generation of rules by recombining
parts of relatively fit rules in the population. After each generation, the best rule
in the population is applied to a selection period. If the rule leads to a higher
excess return than the best rule so far, the new rule is saved. The evolution
terminates when there is no improvement in the selection period for a predeter-
mined number of generations, or when a maximum number of generations is
reached. The best rule is then applied to the out-of-sample test period immedi-
ately following the selection period. If no rule better than the buy-and-hold
strategy in the training period emerges in the maximum number of generations,
the trial is abandoned.

We use a population size of 500. The size of the genetic structures is limited to
100 nodes and to a maximum of ten levels of nodes. Evolution continues for
a maximum of 50 generations, or until there is no improvement for 25 genera-
tions. Each trial starts from a different random population.

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 255

Table 1
One trial of the genetic algorithm used to find technical trading rules

Step 1
Create a random rule.
Compute the fitness of the rule as the excess return in the training period above the buy-and-hold
strategy.
Do this 500 times (this is the intial population).

Step 2
Apply the fittest rule in the population to the selection period and compute the excess return.
Save this rule as the initial best rule.

Step 3
Pick two parent rules at random, using a probability distribution skewed towards the best rule.
Create a new rule by breaking the parents apart randomly and recombining the pieces (this is
a crossover).
Compute the fitness of the rule as the excess return in the training period above the buy-and-hold
strategy.
Replace one of the old rules by the new rule, using a probability distribution skewed towards the
worst rule.
Do this 500 times (this is called one generation).

Step 4
Apply the fittest rule in the population to the selection period and compute the excess return.
If the excess return improves upon the previous best rule, save as the new best rule.
Stop if there is no improvement for 25 generations or after a total of 50 generations. Otherwise, go
back to Step 3.

4The authors are grateful to G. William Schwert for providing us with pre-1963 data

3.4. Data

We use daily data for the S&P 500 index from 3 January 1928 to 29 December
1995.4 For 1929—1991, the one-month risk-free rates corresponding to Treasury
bills are from the Center for Research in Security Prices with Datastream
providing data for 1992 to 1995. Since the S&P 500 series is clearly nonstation-
ary (rising from 17 in early 1928 to 615 by the end of 1995), we transform the
data by dividing each day’s price by a 250-day moving average. The normalized
prices have an order of magnitude around one. Since we use the first year of data
for normalization, the usable data set covers 1929—1995. All test results are
based on the unnormalized data.

256 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

Fig. 3. The yearly excess return over a buy-and-hold strategy and the average number of trades per
year for trading rules found by the genetic algorithm, using 0.25% one-way transaction costs. Each
point is labeled with an indicator of the training period, with labels 1, 2,2 corresponding to the
training periods 1929—1933, 1934—1938, etc.

3.5. Results

To find trading rules for the S&P 500 index, we conduct 100 independent
trials, saving one rule from each trial. We use a one-way transaction cost of
0.25% initially. To guard against potential data snooping in the choice of time
periods, we use ten successive training periods and report the summarized
results for each case. The five-year training and two-year selection periods start
in 1929, 1934, 2, 1974, with the out-of-sample test periods starting in 1936,
1941, 2, 1981. For instance, the first trial uses years 1929—1933 as the training
period, 1934—1935 as the selection period, and 1936—1995 as the test period. For
each of the ten training periods, we carry out ten trials.

We find a total of 89 trading rules in the 100 trials (recall that no rules are
saved from a trial if the excess returns are not positive in the selection period). As
an overview of the results, Fig. 3 shows the average annual excess return and the
average number of trades per year. The excess returns are predominantly
negative. The trading frequency is relatively low, with an average of 3.8 trades
per year. On average, the rules are long in the market for 57% of the days. The
results are generally consistent for rules found from different training periods,
except for those found in 1929—1935 and 1969—1975. The trading rules from
these two periods stay mostly out of the market during the test period, which is
perhaps not surprising given that both training periods involve substantial
negative returns to stocks.

Panel A of Table 2 summarizes the statistical tests of the out-of-sample
returns with the most reasonable level of transaction costs of 0.25%. The

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 257

T
ab

le
2

A
su

m
m

ar
y

of
th

e
te

st
re

su
lt
s
fo

r
tr

ad
in

g
ru

le
s
fo

un
d

b
y

th
e

ge
n
et

ic
al

go
ri
th

m
fo

r
va

ri
o
u
s
le

ve
ls

o
fo

ne
-w

ay
tr

an
sa

ct
io

n
co

st
s.

P
an

el
A

co
n
si
d
er

s
th

e
m

o
st

re
as

on
ab

le
ca

se
of

0.
25

%
.P

an
el

s
B

an
d

C
co

ns
id

er
0.

1%
an

d
0.

5%
to

sh
o
w

th
e
se

n
si
ti
vi

ty
of

th
e
re

su
lt
s.

T
h
e
fir

st
co

lu
m

n
sh

o
w

s
th

e
in

-s
am

p
le

tr
ai

ni
ng

an
d

se
le

ct
io

n
p
er

io
d
,w

it
h

a
co

rr
es

p
on

di
n
g

o
ut

-o
f-
sa

m
pl

e
te

st
p
er

io
d

st
ar

ti
ng

th
e

fo
ll
ow

in
g

ye
ar

an
d

ex
te

nd
in

g
to

th
e

en
d

of
19

95
.K

is
th

e
nu

m
b
er

o
ft

ra
d
in

g
ru

le
s

fo
u
nd

b
y

th
e

al
go

ri
th

m
.
E

xc
es

s
de

n
o
te

s
th

e
av

er
ag

e
ye

ar
ly

ex
ce

ss
re

tu
rn

in
th

e
o
ut

-o
f-
sa

m
p
le

p
er

io
d

ab
ov

e
th

e
b
u
y-

an
d-

h
ol

d
st

ra
te

gy
af

te
r

tr
an

sa
ct

io
n

co
st

s.
K

`
is

th
e

nu
m

b
er

o
fr

u
le

s
w

it
h

a
po

si
ti
ve

ex
ce

ss
re

tu
rn

.E
ac

h
tr

ad
in

g
ru

le
d
iv

id
es

th
e

da
ys

in
to

p
er

io
d
s
‘in

’(
lo

ng
in

th
e

m
ar

ke
t)

an
d

‘o
ut

’
o
ft

he
m

ar
k
et

(e
ar

ni
n
g

a
ri
sk

-f
re

e
ra

te
o
fr

et
ur

n)
.A

ve
ra

ge
da

il
y

re
tu

rn
s
d
u
ri
ng

‘in
’a

nd
‘o

ut
’p

er
io

d
s
ar

e
de

n
ot

ed
b
y

r "
an

d
r 4,r

es
p
ec

ti
ve

ly
,w

it
h

th
e
st

an
d
ar

d
de

vi
at

io
n

o
fd

ai
ly

re
tu

rn
s
de

n
ot

ed
b
y

p "
an

d
p 4

an
d

th
e
n
um

b
er

o
fd

ay
s
b
y

N
"
an

d
N

4.¹
*

is
th

e
n
um

b
er

o
ft

-s
ta

ti
st

ic
s
fo

r
r "!

r 4
si
gn

ifi
ca

n
t
at

th
e

5%
le

ve
l

In
-s

am
p
le

K
E
xc

es
s

K
`

N
"

r "
p "

N
4

r 4
p 4

r "!
r 4

¹
*

P
an

el
A

:
¹

ra
ns

ac
ti
on

co
st

s
of

0.
25

%

19
29

—3
5

10
!

0.
03

36
0

16
14

!
0.

00
00

68
0.

00
18

70
14

20
2

#
0.

00
02

20
0.

00
82

19
!

0.
00

02
88

0
19

34
—4

0
10

!
0.

01
05

0
93

74
#

0.
00

03
47

0.
00

76
52

49
40

#
0.

00
02

63
0.

01
02

97
#

0.
00

00
85

8
19

39
—4

5
10

!
0.

02
81

1
47

46
#

0.
00

03
71

0.
01

08
81

80
81

#
0.

00
05

82
0.

00
82

64
!

0.
00

02
11

2
19

44
—5

0
10

!
0.

00
22

3
91

12
#

0.
00

03
78

0.
00

76
65

23
05

!
0.

00
00

29
0.

00
97

77
#

0.
00

04
06

6
19

49
—5

5
4

!
0.

00
31

2
88

72
#

0.
00

02
95

0.
00

83
37

12
36

!
0.

00
00

51
0.

00
85

47
#

0.
00

03
46

1
19

54
—6

0
8

#
0.

00
14

7
84

12
#

0.
00

02
98

0.
00

85
06

43
6

!
0.

00
08

57
0.

00
80

88
#

0.
00

11
55

3
19

59
—6

5
10

!
0.

01
07

0
68

90
#

0.
00

04
27

0.
00

85
92

70
0

!
0.

00
14

73
0.

01
20

18
#

0.
00

19
00

9
19

64
—7

0
7

!
0.

03
86

2
47

14
#

0.
00

05
19

0.
00

85
14

16
43

!
0.

00
04

43
0.

01
09

32
#

0.
00

09
62

5
19

69
—7

5
10

!
0.

04
40

0
41

2
#

0.
00

32
90

0.
00

87
71

46
84

#
0.

00
03

64
0.

00
91

80
#

0.
00

29
26

2
19

74
—8

0
10

!
0.

03
59

2
11

45
#

0.
00

01
83

0.
00

35
60

26
87

#
0.

00
03

20
0.

01
03

34
!

0.
00

01
37

0

A
ve

ra
ge

8.
9

!
0.

02
05

1.
7

55
29

#
0.

00
06

04
0.

00
74

35
40

91
!

0.
00

01
10

0.
00

95
66

#
0.

00
07

14
3.

6

P
an

el
B
:
¹

ra
ns

ac
ti
on

co
st

s
of

0.
1%

19
29

—3
5

10
!

0.
03

72
0

13
!

0.
00

01
81

0.
00

21
56

15
80

4
#

0.
00

02
44

0.
00

91
16

!
0.

00
04

24
0

19
34

—4
0

10
!

0.
00

31
5

92
54

#
0.

00
03

71
0.

00
75

76
50

60
#

0.
00

00
13

0.
00

97
07

#
0.

00
03

59
10

19
39

—4
5

10
!

0.
02

73
0

36
90

#
0.

00
04

00
0.

01
06

61
91

37
#

0.
00

02
25

0.
00

78
80

#
0.

00
01

76
3

19
44

—5
0

10
#

0.
01

10
7

91
18

#
0.

00
04

74
0.

00
75

55
22

99
!

0.
00

05
80

0.
01

03
95

#
0.

00
10

54
9

19
49

—5
5

10
#

0.
01

09
6

82
51

#
0.

00
04

64
0.

00
80

59
18

57
!

0.
00

04
30

0.
00

91
73

#
0.

00
08

94
6

19
54

—6
0

8
#

0.
00

42
8

86
95

#
0.

00
02

90
0.

00
86

23
15

3
!

0.
00

10
43

0.
00

81
08

#
0.

00
13

32
7

258 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

19
59

—6
5

10
#

0.
03

58
10

60
94

#
0.

00
06

45
0.

00
81

51
14

96
!

0.
00

13
80

0.
01

14
91

#
0.

00
20

25
10

19
64

—7
0

10
!

0.
00

13
5

34
39

#
0.

00
08

16
0.

00
83

03
29

18
!

0.
00

02
87

0.
01

02
88

#
0.

00
11

03
10

19
69

—7
5

10
!

0.
05

11
0

27
04

#
0.

00
09

43
0.

00
83

55
23

91
!

0.
00

02
75

0.
01

00
66

#
0.

00
12

18
10

19
74

—8
0

10
!

0.
04

43
0

23
03

#
0.

00
08

41
0.

00
85

00
15

29
!

0.
00

02
96

0.
01

11
28

#
0.

00
11

37
10

A
ve

ra
ge

9.
8

!
0.

01
02

4.
1

53
56

#
0.

00
05

06
0.

00
77

94
42

64
!

0.
00

03
81

0.
00

97
35

#
0.

00
08

87
7.

5

P
an

el
C

:
¹

ra
ns

ac
ti
on

co
st

s
of

0.
5 %

19
29

—3
5

10
!

0.
02

94
0

32
30

#
0.

00
00

76
0.

00
23

63
12

58
7

#
0.

00
01

93
0.

00
73

20
!

0.
00

01
17

0
19

34
—4

0
10

!
0.

02
20

0
78

48
#

0.
00

02
58

0.
00

75
52

64
66

#
0.

00
01

22
0.

00
94

56
#

0.
00

01
36

8
19

39
—4

5
10

!
0.

03
16

0
52

76
#

0.
00

03
99

0.
01

09
40

75
50

#
0.

00
07

38
0.

00
79

93
!

0.
00

03
38

0
19

44
—5

0
5

!
0.

01
61

0
88

86
#

0.
00

03
92

0.
00

74
64

25
31

#
0.

00
00

31
0.

01
13

22
#

0.
00

03
60

3
19

49
—5

5
2

#
0.

00
35

1
94

89
#

0.
00

02
94

0.
00

80
85

61
9

!
0.

00
02

82
0.

01
24

93
#

0.
00

05
76

1
19

54
—6

0
6

!
0.

00
01

4
87

38
#

0.
00

02
85

0.
00

86
24

11
0

!
0.

00
11

68
0.

00
78

57
#

0.
00

14
53

4
19

59
—6

5
10

!
0.

01
54

2
68

81
#

0.
00

02
54

0.
00

84
25

70
9

#
0.

00
01

55
0.

01
25

07
#

0.
00

00
99

1
19

64
—7

0
0

19
69

—7
5

10
!

0.
05

12
0

19
3

#
0.

00
25

83
0.

01
07

19
49

02
#

0.
00

03
75

0.
00

91
65

#
0.

00
22

08
1

19
74

—8
0

10
!

0.
05

02
0

30
1

#
0.

00
00

37
0.

00
09

50
35

31
#

0.
00

04
04

0.
00

96
97

!
0.

00
03

67
0

A
ve

ra
ge

7.
3

!
0.

02
36

0.
7

56
49

#
0.

00
05

09
0.

00
72

36
43

34
#

0.
00

00
63

0.
00

97
57

#
0.

00
04

46
1.

8

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 259

average excess returns after transaction costs are negative for nine out of the ten
test periods. In most of the periods, there are only a few rules with positive excess
returns. Hence, the results are consistent with market efficiency. It is interesting
to note, however, that in seven out of the ten test periods, the average daily
return during ‘in’ periods is higher than the unconditional return, while the
return during ‘out’ periods is lower. The difference between ‘in’ and ‘out’ returns
is statistically significant for 36 rules out of the total of 89 (the t-statistic for the
difference is

t"(r
"
!r

4
)NAsS

1

N
"

#

1

N
4
B,

where s2 is the sample variance). Also, the standard deviation during ‘in’ days is
smaller than during ‘out’ days for most training periods. The volatility of the
annual trading rule returns is 10.0%, averaged over the trading rules and over
the different out-of-sample periods. The sample standard deviation of the
annual returns for the S&P 500 index during the same period is 14.7%. It is also
interesting that constructing a ‘portfolio’ of trading rules appears to diversify
risk in much the same way as adding companies to a stock portfolio. For
a composite trading strategy in which an equal amount of capital is allocated to
each of the rules from a particular trading period, the volatility drops to 8.7%,
averaged over the out-of-sample periods.

We investigate the impact of trading costs on the results by carrying out two
more sets of 100 trials, using transaction costs of 0.1% and 0.5% but holding the
other parameters fixed. Panel B of Table 2 summarizes the results for low
transaction costs (0.1%) and Panel C for high transaction costs (0.5%). With low
transaction costs, the trading frequency is high, with an average of 18 trades per
year. Average excess returns are negative for six out of the ten test periods, again
consistent with market efficiency. The difference between daily returns during
‘in’ and ‘out’ periods is positive for nine periods out of ten, and statistically
significant for almost all the rules. With high transaction costs, the trading
frequency drops to an average of 1.4 trades per year. The excess returns are
negative for nine periods out of ten. The difference between daily returns during
‘in’ and ‘out’ periods is positive for six periods out of ten, but statistically
significant in only a few cases. The pattern of reduced volatility during days long
in the market remains similar for different levels of transaction costs. The
proportion of days long in the market is around 56—57% regardless of the level
of transaction costs. These results indicate that while trading rules found using
unrealistically low transaction costs lead to higher returns and better forecasting
ability, the excess returns above the buy-and-hold strategy generally remain
negative. High transaction costs lead to diminished forecasting ability.

Overall, the out-of-sample results show that the rules found by the genetic
algorithm do not earn consistent excess returns after transaction costs. It is

260 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

interesting that in most of the training periods, the rules appear to have some
forecasting ability in the sense that the average daily return during days
in the market is higher compared to days out of the market, and the volatility
is generally lower during the days the rules are long in the market. Even
though the rules do not lead to higher absolute returns than a buy-and-hold
strategy, the reduced volatility might still make them attractive to some
investors on a risk-adjusted basis. Finally, there appears to be a diversification
benefit in using a number of trading rules in a portfolio, with the position to be
taken in each period determined as a weighted average of the trading rule
signals.

The finding that the trading rules tend to be long in low-volatility periods is
somewhat surprising, given that the fitness of the rules does not depend on the
volatility of the returns. However, it is possible to make the case that the
observed pattern is what one might expect based on economic theory. In most
equilibrium models, expected excess returns are positively related to risk as
measured by the expected volatility (Merton, 1980). French et al. (1987) find that
ex post stock market returns are negatively related to the unexpected change in
volatility, supporting the theoretical risk-return relation. For instance, when the
volatility turns out to be higher than expected, investors revise their volatility
forecasts upwards, requiring higher expected returns in the future, or lower
stock prices and hence lower realized returns at the present. Conversely, when
the volatility is lower than expected, investors revise their volatility forecasts
downwards, requiring lower expected returns and higher stock prices and
realized returns now. Applied to the present study, high ex post volatility when
the rules are out of the market would be consistent with the theory if the
high-volatility periods represent unexpected increases in risk. The trading rule
positions will change when the rules pick up subsequent higher realized returns.
Similarly, if the low volatility when the rules are long in the market were
unexpected, the trading rule signals would change when the downwards-revised
expected returns start to be realized.

3.6. Characterizing the trading rules

There are a number of interesting questions regarding the nature of the rules
found by the genetic algorithm. This section describes what the rules look like
and analyzes what kind of price behavior triggers the trading rule signals. We
analyze one rule for each level of transaction costs and for each training period.

The structure and complexity of the rules found by the algorithm vary across
different trials. The size of the rules varies from nine to 94 nodes, with a depth
between five and ten levels. While many of the rules appear to be quite
complicated at first sight, there is often a lot of redundant material in the form of
duplicated subtrees. If some of these subtrees are never visited when the rules are
evaluated, seemingly complex tree structures can be effectively similar to much

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 261

simpler ones. Consequently, measuring the complexity of the trading rules
cannot in general be done by inspection of the tree structures.

One measure of the complexity of the trading rules can be obtained by
comparing the behavior of the rules to a class of simple technical trading
rules. The simple rules are of the form illustrated in Fig. 1. These rules compare
one indicator to another and take a position in (out of) the market if the
value of the first indicator is greater than (less than or equal to) the value of the
second one. Each indicator is chosen from the set Mmax, min, averageN,
and the length of the time window for an indicator is chosen from the set M1, 2, 3,
4, 5, 10, 15, 20, 40, 60, 80, 100, 150, 200, 250N. In addition, we consider
rules that compare the normalized price to a constant in the range from 0.9 to
1.1 with increments of 0.01. For each rule, we retain the combination
of indicators that leads to the highest correlation between the daily positions,
after evaluating all the combinations during the appropriate out-of-sample
period.

With 0.25% transaction costs, most of the rules can be matched quite well
with a rule that compares the normalized price to a constant. These rules are
effectively similar to a 250-day moving average rule for unnormalized prices. In
two periods, there is no close match among the simple rules. With 0.1%
transaction costs, about half the rules are similar to a rule that compares the
normalized price to a constant, while the remaining rules resemble either
10-to-40-day moving average rules or a trading range break rule comparing
today’s price to a three-day minimum. With 0.5% transaction costs, rules from
the early training periods are similar to a rule comparing the normalized price to
a constant, while the rules from the late training periods match none of the
simple rules considered.

As an example of what the trading rules look like, let us first consider the best
rule from the training period 1964—1968, learned using transaction costs of
0.25%. The tree structure shown in Fig. 4 can be reduced to the expression
price]minimum(price)!0.0688]price'0.8943. This is roughly
equivalent to a rule that takes a position in the market when normalized prices
are above 0.89 and is out of the market otherwise. If we were to use unno-
rmalized prices, an equivalent rule would take a long position when the price
rises within 2% of the 250-day moving average or higher.

Fig. 5a illustrates the price behavior during the trades signaled by this rule.
Each line represents the cumulative market return (without transaction costs)
for a trade in a long position. When the rule returns a ‘buy’ signal this becomes
day 0 and the line represents the price pattern that is realized until the rule
returns a ‘sell’ signal, at which point the line ends. The lines for each trade are
superimposed on top of each other. Fig. 5a shows that once the rule takes a long
position, it can last up to several years. Fig. 5b shows the cumulative market
returns after rule 1 switches out of the market. Again each line represents
a particular trade. When the rule generates a sell signal this becomes day 0 and

262 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

Fig. 4. An example of the trading rules found by the genetic algorithm. The tree structure can be
reduced to the expression price]minimum (price)!0.0688]price'0.893. This is rough-
ly equivalent to a rule that takes a position in the market when normalized prices are above 0.89, and
out of the market otherwise.

the line shows the price path until the rule generates a buy signal. Positions out
of the market are usually covered well within a year.

As a more complicated example, consider the best rule from the same training
period (1964—1968) but learned using lower transaction costs (0.1%). After
simplification of the structure shown in Fig. 6, the rule is found to be equivalent
to the expression lag(price,/1)'average(price/Eprice!1.1727E). This
rule compares a moving average of past prices to the price lagged
by one day from the current date, with a nonlinear subexpression
(price/Eprice!1.1727E) determining the time window of the moving aver-
age. During bear markets, the rule looks for very short-term trends, with the
moving average time window varying between three and four days. In bull
markets, the length of the time window increases to 16 days at a normalized
price level of 1.1, and rises rapidly thereafter to soon use all the available price
history. Loosely speaking, this rule corresponds to a hypothesis that stock prices
are in general going up but are prone to corrections after prolonged bull

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 263

Fig. 5. a. The cumulative market return during each trade going long in the market for a rule found
in 1964—1970 using 0.25% transaction costs. Each line starts when the rule returns a ‘buy’ signal and
ends when the rule returns a ‘sell’ signal. The graphs for all the trades in the test period of 1971—1995
are superimposed on top of each other. b. The cumulative market return during each trade out of the
market for a rule found in 1964—70 using 0.25% transaction costs. Each line starts when the rule
returns a ‘sell’ signal and ends when the rule returns a ‘buy’ signal. The graphs for all the trades in the
test period of 1971—1995 are superimposed on top of each other.

markets. This rule is quick to take a long position in bear markets, but is
increasingly hesitant to do so when prices are high.

Fig. 7a and b show the price behavior during the trades signaled by this rule.
The trading frequency is much higher than for the medium-transaction-cost rule
from the same period. Fig. 7a shows that trades in a long position typically last

264 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

Fig. 6. An example of the trading rules found by the genetic algorithm. The tree structure is
equivalent to the expression lag(price,1)'average(price/Eprice!1.1727E). This rule com-
pares a moving average of past prices to the price lagged by one day from the current date, with
a nonlinear subexpression (price/Eprice!1.1727E) determining the time window of the moving
average.

for one to four weeks. Without transaction costs, most of the trades are
profitable. The rule switches out of the market after a large negative return,
consistent with its trend-following nature. Fig. 7b shows that after a sell signal
small negative returns tend to persist for a couple of weeks. The rule switches
back into the index after a large positive return.

3.7. Robustness of the results

The out-of-sample test results indicate that the trading rules do not earn
consistent excess returns after transaction costs. Nevertheless, they appear to
have some ability to forecast daily returns. In this section, we consider potential
explanations for this. It is well known that there is low-order serial correlation in
market indexes (see, e.g., Fisher, 1966; French and Roll, 1986; Lo and MacKin-
lay, 1990). We start by considering the effect of incorporating a lag of one day in
the implementation of trades. We then discuss the biases introduced by the
exclusion of dividends in our data set. We also address the effect of the 1987
stock market crash on the results.

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 265

Fig. 7. a. The cumulative market return during each trade going long in the market for a rule found
in 1964—1970 using 0.1% transaction costs. Each line starts when the rule returns a ‘buy’ signal and
ends when the rule returns a ‘sell’ signal. The graphs for all the trades in the test period of 1971—1995
are superimposed on top of each other. b. The cumulative market return during each trade out of the
market for a rule found in 1964—1970 using 0.1% transaction costs. Each line starts when the rule
returns a ‘sell’ signal and ends when the rule returns a ‘buy’ signal. The graphs for all the trades in the
test period of 1971—1995 are superimposed on top of each other.

To test whether the genetic algorithm exploits low-order serial correlation in
returns, the ex post best rules are retested with a one-day lag before the trading
signals are implemented. Panel A of Table 3 shows the test results without a lag
for 0.25% transaction costs. Panel B of Table 3 shows the results with a one-day

266 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

T
ab

le
3

T
es

t
re

su
lt
s

fo
r
th

e
ex

po
st

b
es

t
tr

ad
in

g
ru

le
s

fo
u
nd

b
y

th
e

ge
n
et

ic
al

go
ri
th

m
,u

si
ng

on
e-

w
ay

tr
an

sa
ct

io
n

co
st

s
o
f
0.

25
%

.P
an

el
A

sh
o
w

s
th

e
re

su
lt
s

w
it
h

tr
ad

in
g

si
gn

al
s
co

m
pu

te
d

an
d

im
p
le

m
en

te
d

us
in

g
th

e
sa

m
e

d
ay

’s
cl

o
si
n
g

p
ri
ce

.P
an

el
B

sh
o
w

s
th

e
re

su
lt
s
w

it
h

tr
ad

in
g

si
gn

al
s
d
el

ay
ed

by
o
n
e

da
y.

In
ea

ch
pa

ne
l,

th
e

fi
rs

t
co

lu
m

n
sh

ow
s
th

e
in

-s
am

p
le

tr
ai

ni
n
g

an
d

se
le

ct
io

n
p
er

io
d
,w

it
h

a
co

rr
es

po
n
d
in

g
o
ut

-o
f-
sa

m
pl

e
te

st
pe

ri
o
d

st
ar

ti
n
g

th
e

fo
llo

w
in

g
ye

ar
an

d
ex

te
nd

in
g

to
th

e
en

d
o
f

19
95

.
E
x
ce

ss
d
en

ot
es

th
e

av
er

ag
e

ye
ar

ly
ex

ce
ss

re
tu

rn
in

th
e

o
ut

-o
f-
sa

m
pl

e
p
er

io
d

ab
ov

e
th

e
b
uy

-a
n
d-

h
ol

d
st

ra
te

gy
af

te
r

tr
an

sa
ct

io
n

co
st

s.
E

ac
h

tr
ad

in
g

ru
le

d
iv

id
es

th
e

da
ys

in
to

p
er

io
d
s

‘in
’
(lo

ng
in

th
e

m
ar

k
et

)
an

d
‘o

u
t’

of
th

e
m

ar
ke

t
(e

ar
n
in

g
a

ri
sk

-f
re

e
ra

te
of

re
tu

rn
).

A
ve

ra
ge

d
ai

ly
re

tu
rn

s
du

ri
n
g

‘in
’a

nd
‘o

u
t’

p
er

io
d
s
ar

e
d
en

o
te

d
b
y

r "
an

d
r 4,r

es
p
ec

ti
ve

ly
,w

it
h

th
e

st
an

d
ar

d
de

vi
at

io
n

of
da

ily
re

tu
rn

s
d
en

ot
ed

b
y

p "
an

d
p 4

an
d

th
e

nu
m

be
r

o
f
d
ay

s
b
y

N
"

an
d

N
4.¹

-s
ta

ti
st

ic
s

ar
e

gi
ve

n
in

pa
re

n
th

es
es

In
-s

am
p
le

E
xc

es
s

N
"

r "
(t
)

p
N

4
r 4

(t
)

p
r "!

r 4
(t
)

P
an

el
A

:¹
es

t
re

su
lt
s

us
in

g
si
gn

al
s

co
m

pu
te

d
an

d
im

pl
em

en
te

d
us

in
g

th
e

cl
os

in
g

pr
ic

e

19
34

—4
0

!
0.

00
30

99
52

#
0.

00
03

88
(#

0.
96

6)
0.

00
73

90
43

62
#

0.
00

00
47

(!
1.

66
3)

0.
00

98
88

#
0.

00
03

40
(2

.2
77

)
19

39
—4

5
!

0.
01

88
62

44
#

0.
00

04
30

(#
1.

18
0)

0.
00

86
06

65
83

#
0.

00
01

34
(!

1.
13

9)
0.

00
80

61
#

0.
00

02
96

(2
.0

09
)

19
44

—5
0

#
0.

00
48

90
85

#
0.

00
04

10
(#

0.
96

6)
0.

00
78

05
23

32
!

0.
00

01
36

(!
2.

32
8)

0.
00

96
60

#
0.

00
05

47
(2

.8
64

)
19

49
—5

5
#

0.
01

07
85

66
#

0.
00

04
11

(#
1.

24
3)

0.
00

80
12

15
42

!
0.

00
05

95
(!

3.
71

0)
0.

01
03

10
#

0.
00

10
07

(4
.3

26
)

19
54

—6
0

#
0.

00
23

62
36

#
0.

00
03

93
(#

0.
88

9)
0.

00
76

54
26

12
!

0.
00

00
36

(!
1.

57
6)

0.
01

05
63

#
0.

00
04

29
(2

.1
37

)
19

59
—6

5
!

0.
01

78
65

58
#

0.
00

05
31

(#
1.

86
5)

0.
00

85
97

10
32

!
0.

00
15

39
(!

6.
02

3)
0.

01
07

63
#

0.
00

20
70

(6
.9

06
)

19
64

—7
0

#
0.

00
08

49
13

#
0.

00
03

87
(#

1.
86

5)
0.

00
77

51
14

44
!

0.
00

00
02

(!
1.

11
3)

0.
01

31
95

#
0.

00
03

89
(1

.4
02

)
19

74
—8

0
#

0.
00

52
29

06
#

0.
00

05
27

(#
0.

55
8)

0.
00

79
03

92
6

!
0.

00
00

21
(!

1.
17

6)
0.

01
37

45
#

0.
00

05
48

(1
.5

05
)

A
ve

ra
ge

!
0.

00
20

68
08

#
0.

00
04

35
0.

00
79

65
26

04
!

0.
00

02
69

0.
01

07
73

#
0.

00
07

03

P
an

el
B

:
¹

es
t

re
su

lt
s

us
in

g
si
gn

al
s

de
la

ye
d

by
on

e
da

y

19
34

—4
0

!
0.

00
69

99
51

#
0.

00
03

66
(#

0.
76

4)
0.

00
74

33
43

63
#

0.
00

00
97

(!
1.

31
4)

0.
00

98
16

#
0.

00
02

69
(1

.8
01

)
19

39
—4

5
!

0.
01

77
62

43
#

0.
00

04
39

(#
1.

25
0)

0.
00

86
73

65
84

#
0.

00
01

26
(!

1.
20

6)
0.

00
79

92
#

0.
00

03
13

(2
.1

27
)

19
44

—5
0

#
0.

00
10

90
84

#
0.

00
03

91
(#

0.
80

4)
0.

00
77

78
23

33
!

0.
00

00
64

(!
1.

93
8)

0.
00

97
49

#
0.

00
04

55
(2

.3
85

)
19

49
—5

5
#

0.
01

58
85

65
#

0.
00

02
88

(#
0.

24
2)

0.
00

79
64

15
43

#
0.

00
00

92
(!

0.
72

2)
0.

01
05

53
#

0.
00

01
96

(0
.8

42
)

19
54

—6
0

#
0.

00
40

62
35

#
0.

00
04

03
(#

0.
95

7)
0.

00
77

20
26

13
!

0.
00

00
59

(!
1.

69
7)

0.
01

04
45

#
0.

00
04

62
(2

.3
00

)
19

59
—6

5
!

0.
08

07
65

57
#

0.
00

02
43

(!
0.

04
3)

0.
00

85
74

10
33

#
0.

00
02

91
(#

0.
13

8)
0.

01
10

46
!

0.
00

00
47

(!
0.

15
8)

19
64

—7
0

!
0.

01
21

49
12

#
0.

00
03

22
(#

0.
13

1)
0.

00
84

20
14

45
#

0.
00

02
21

(!
0.

28
9)

0.
01

17
21

#
0.

00
01

01
(0

.3
64

)
19

74
—8

0
!

0.
01

72
29

05
#

0.
00

04
12

(#
0.

07
2)

0.
00

90
04

92
7

#
0.

00
03

41
(!

0.
15

1)
0.

01
14

31
#

0.
00

00
70

(0
.1

93
)

A
ve

ra
ge

!
0.

01
84

68
08

#
0.

00
03

58
0.

00
81

96
26

04
#

0.
00

01
31

0.
01

03
44

#
0.

00
02

27

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 267

lag. Using delayed signals, the average difference in returns during ‘in’ and ‘out’
days drops from seven to two basis points. The pattern of reduced volatility
during days long in the market is not affected by the delay. In the case of 0.1%
transaction costs, a one-day delay removes all the difference between returns
during ‘in’ and ‘out’ days. In the case of 0.5% transaction costs, there is little
difference between the returns with or without a one-day lag. These results,
together with simple characterizations of the rule obtained in the previous
section, indicate that with low or medium transaction costs, most of the
forecasting ability can be explained by low-order positive serial correlation in
stock index returns. It is interesting that the trading rules produced by the
genetic algorithm apparently exploit a well-known feature of the data.

The computation of the S&P 500 index ignores the payment of dividends on
the component stocks. Ignoring dividends affects the results in two ways. Any
seasonality can distort the results, if trading rules happen to pick periods to be
out of the market when a disproportionate number of stocks go ex-dividend.
There is, in fact, a rather pronounced yearly pattern in dividend payments,
which tend to be concentrated in February, May, August, and November
(Luskin, 1987, pp. 140,141). The clustering of dividends is unlikely to affect the
results, because the calendar dates are not part of the information set of the
genetic algorithm. However, ignoring the dividend yield leads to underestima-
tion of the buy-and-hold return. The trading rule returns are underestimated,
too, but to a lesser extent. Comparing the results for a subperiod using a value-
weighted index of NYSE and AMEX stocks with and without dividends shows
that the main effect of the dividends is to lower the annual returns as expected,
while the pattern in daily returns and volatility is not affected (the details are
available upon request).

Since the trading rules use daily data, the extreme market volatility around
the stock market crash in October 1987 crash could have a potentially large
impact on the results. We explore these effects by testing the rules on a data set
that excludes the crash. Since the level of the S&P 500 index at the end of 1986 is
roughly the same as at the start of 1988, a simple way to construct such a data
set is to exclude all of 1987. For the case of 0.25% transaction costs, the average
difference in daily returns during ‘in’ and ‘out’ days is generally within one basis
point of the results shown in Table 2. The rules from the training period of
1969—1975 lose their forecasting ability when the crash period is excluded from
the analysis. When 1987 is excluded, for most rules the volatility goes down
proportionally during both ‘in’ and ‘out’ periods. Averaged over the different
rules and over the out-of-sample periods, the sample standard deviation of daily
returns during ‘in’ days decreases from 0.007435 (from Table 2, Panel A) to
0.006308. The standard deviation during ‘out’ days decreases from 0.009566 to
0.008804. The pattern of reduced volatility during days long in the market is still
evident. With low transaction costs, the results are very similar to those in
Table 2, Panel B. For high transaction costs, the results are robust with respect

268 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

to the crash in all the training periods except 1969—1975, when any forecasting
ability is lost (the details are available upon request).

4. Concluding remarks

We use a genetic algorithm to learn technical trading rules rather than having
them exogenously specified as in previous studies. Out of sample, the rules do
not earn excess returns over a simple buy-and-hold strategy after transaction
costs. The rules take long positions when returns are positive and daily volatility
is low, and stay out of the market when returns are negative and volatility is
high. The results concerning daily returns are sensitive to transaction costs but
are robust to the impact of the 1987 stock market crash. The pattern in volatility
is robust to different levels of transaction costs, to the impact of dividends, and
to the 1987 crash. Introducing a one-day delay to trading signals removes most
of the forecasting ability, indicating that the rules exploit positive low-order
serial correlation in stock index returns.

The results raise the important question of why there appears to be a system-
atic relation between trading rule signals and volatility. One hypothesis is that
the trading rule results can be explained by investors’ reactions to changes in the
expected volatility. In most equilibrium models, expected excess returns are
positively related to risk as measured by the expected volatility of the market
(Merton, 1980). When volatility is lower (higher) than expected, expected returns
decrease (increase), and the corresponding upward (downward) revision of prices
is picked up by the trading rules. Given the negative excess returns after trading
costs and the lack of ability to forecast returns with delayed signals, markets
process the information about the expected volatility in an efficient way.

This paper studies a base case in which a genetic algorithm is applied to
a broad stock index, and finds little evidence of economically significant tech-
nical trading rules. Rules learned by evolutionary algorithms could also be
tested on liquid markets with low transaction costs, including financial futures,
commodities, and foreign exchange markets. One could also develop the meth-
odology further. The genetic algorithm we use is a relatively simple one, and the
parameters are not necessarily optimal. More importantly, the current algo-
rithm uses very limited information for its inputs. It would be interesting to
apply a similar technique to learn fundamental trading rules by changing the
building blocks to include the desired fundamental variables.

References

Alexander, S.S., 1961. Price movements in speculative markets: trends or random walks. Industrial
Management Review 2, 7—26.

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 269

Alexander, S.S., 1964. Price movements in speculative markets: trends or random walks. In: Cootner,
P. (Ed.), The Random Character of Stock Market Prices, vol. 2, MIT Press, Cambridge, pp.
338—372.

Bauer, R.J. Jr., 1994. Genetic Algorithms and Investment Strategies. Wiley, New York.
Beasley, D., Bull, D.R., Martin, R.R., 1993. An overview of genetic algorithms: part I, fundamentals.

University Computing 15, 58—69.
Booker, L.B., Goldberg, D.E., Holland, J.H., 1989. Classifier systems and genetic algorithms.

Artificial Intelligence 40, 235—282.
Brock, W., Lakonishok, J., LeBaron, B., 1992. Simple technical trading rules and the stochastic

properties of stock returns. Journal of Finance 47, 1731—1764.
Dorsey, R.E., Mayer, W.J., 1995. Genetic algorithms for estimation problems with multiple optima,

nondifferentiability, and other irregular features. Journal of Business and Economic Statistics
13, 53—66.

Fama, E.F., 1970. Efficient capital markets: a review of theory and empirical work. Journal of
Finance 25, 383—417.

Fama, E.F., Blume, M.E., 1966. Filter rules and stock market trading. Security prices: a supplement.
Journal of Business 39, 226—241.

Fisher, L., 1966. Some new stock-market indexes. Journal of Business 39, 191—225.
Fogel, L.J., Owens, A.J., Walsh, M.J., 1966. Artificial Intelligence Through Simulated Evolution.

Wiley, New York.
French, K.R., Roll, R., 1986. Stock return variances: the arrival of information and the reaction of

traders. Journal of Financial Economics 17, 5—26.
French, K.R., Schwert, G.W., Stambaugh, R.F., 1987. Expected stock returns and volatility. Journal

of Financial Economics 19, 3—29.
Gershenfeld, N.A., Weigend, A.S., 1993. The future of time series: learning and understanding. In:

Weigend, A.S., Gershenfeld, N.A. (Eds.), Time Series Prediction: Forecasting the Future and
Understanding the Past, Santa Fe Institute Studies in the Sciences of Complexity, Proceedings
vol. XV. Addison—Wesley, Reading, pp. 1—70.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison—Wesley, Reading.

Holland, J.H., 1962. Outline for a logical theory of adaptive systems. Journal of the Association for
Computing Machinery 3, 297—314.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor.

Holland, J.H., 1976. Adaptation. In: Rosen, R., Snell, F.M. (Eds.), Progress in Theoretical Biology,
vol. 4, Academic Press, New York, pp. 263—293.

Holland, J.H., 1980. Adaptive algorithms for discovering and using general patterns in growing
knowledge-bases. International Journal of Policy Analysis and Information Systems 4, 217—240.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge.

Lo, A.W., MacKinlay, A.C., 1990. An econometric analysis of nonsynchronous trading. Journal of
Econometrics 45, 181—211.

Luskin, D.L., 1987. Index Options and Futures. Wiley, New York.
Marimon, R., McGrattan, E., Sargent, T.J., 1990. Money as a medium of exchange in an economy

with artificially intelligent agents. Journal of Economic Dynamics and Control 14, 329—373.
Merton, R.C., 1980. On estimating the expected return on the market: an exploratory investigation.

Journal of Financial Economics 8, 323—361.
Neftci, S.N., 1991. Naive trading rules in financial markets and Wiener-Kolmogorov prediction

theory: a study of ‘technical analysis’. Journal of Business 64, 540—571.
Rechenberg, I., 1973. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der

Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart.

270 F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271

Schwefel, H.-P., 1981. Numerical Optimization of Computer Models. Wiley, New York.
Sweeney, R.J., 1988. Some new filter rule tests: methods and results. Journal of Financial and

Quantitative Analysis 23, 285—300.
Syswerda, G., 1989. Uniform crossover in genetic algorithms. In: Schaffer, D.J. (Ed.), Proceedings of

the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo,
pp. 2—9.

Vose, M.D., 1991. Generalizing the notion of a schema in genetic algorithms. Artificial Intelligence
50, 385—396.

Whitley, D., 1989. The GENITOR algorithm and selection pressure: why rank-based allocation of
reproductive trials is best. In: Schaffer, D.J. (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, pp. 116—121.

F. Allen, R. Karjalainen/Journal of Financial Economics 51 (1999) 245—271 271

