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Abstract

Most manufacturing systems are large and complex and operate in an uncertain environment. One
approach to managing such systems is that of hierarchical decomposition. This paper reviews the
research devoted to proving that a hierarchy based on the frequencies of occurrence of different types
of events in the systems results in decisions that are asymptotically optimal as the rates of some
events become large compared to those of others. The paper also reviews the research on stochas-
tic optimal control problems associated with manufacturing systems, their dynamic programming
equations, existence of solutions of these equations, and verification theorems of optimality for
the systems. Manufacturing systems that are addressed include single machine systems, dynamic
flowshops, and dynamic jobshops producing multiple products. These systems may also incorpo-
rate random production capacity and demands, and decisions such as production rates, capacity
expansion, and promotional campaigns. Related computational results and areas of applications
are also presented.
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1 Introduction

Most manufacturing firms are large, complex systems characterized by several decision subsystems,

such as finance, personnel, marketing, and operations. They may have a number of plants and

warehouses, and they produce a large number of different products using a wide variety of machines

and equipment. Moreover, these systems are subject to discrete events such as construction of new

facilities, purchase of new equipment and scrappage of old, machine setups, failures, and repairs,

and new product introductions. These events could be deterministic or stochastic. Management

must recognize and react to these events. Because of the large size of these systems and the

presence of these events, obtaining exact optimal policies to run these systems is nearly impossible

both theoretically and computationally.

One way to cope with these complexities is to develop methods of hierarchical decision making

for these systems. The idea is to reduce the overall complex problem into manageable approximate

problems or subproblems, to solve these problems, and to construct a solution for the original

problem from the solutions of these simpler problems.

There are several different (and not mutually exclusive) ways by which to reduce the complex-

ity. These include decomposing the problem into problems of smaller subsystems with a proper

coordinating mechanism; aggregating products and subsequently disaggregating them; replacing

random processes with their averages and possibly other moments; modeling uncertainties in the

production planning problem via diffusion processes; and so on. Development of such approaches

for large, complex systems was identified as a particular fruitful research area by the Committee

on the Next Decade in Operations Research (1988), as well as by the Panel on Future Directions

in Control Theory chaired by Fleming (1988). A great deal of research has been conducted in the

areas of Operations Research, Operations Management, Systems Theory, and Control Theory. For

their importance in practice, see the surveys of the literature by Libosvar (1988), Rogers et al.

(1991), Bitran and Tirupati (1993), and Cheng (1999), a bibliography complied by Bukh (1992),

and books by Stadtler (1988) and Switalski (1989). Some other references on hierarchical systems

are Simon (1962), Mesarovic et al. (1970), Smith and Sage (1973), Singh (1982), Saksena et al.

(1984), and Auger (1989). It should be noted, however, that most of them concern deterministic

systems.
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Each approach mentioned above is suited to certain types of models and assumptions. The

approach we shall first discuss is that of modeling uncertainties in the production planning problem

via diffusion processes. The idea is initiated by Sethi and Thompson (1981a, b) and Bensoussan et

al. (1984). Because controlled diffusion problems can often be solved (see Ghosh et al. (1993, 1997),

Harrison and Taksar (1983), and Harrison et al. (1983)), one uses the controlled diffusion models to

approximate stochastic manufacturing systems. Kushner and Ramachandran (1989) begin with a

sequence of systems whose limit is a controlled diffusion process. It should be noted that the traffic

intensities of the systems in sequence converge to the critical intensity of one. They show that the

sequence of value functions associated with the given sequence converges to the value function of the

limiting problem. This enables them to construct a sequence of asymptotic optimal policies defined

to be those for which the difference between the associated cost and the value function converges

to zero as the traffic intensity approaches its critical value. The most important application of

this approach concerns the scheduling of networks of queues. If a network of queues is operating

under heavy traffic, that is, when the rate of customers entering some of the stations in the network

is very close to the rate of service at those stations, the problem of scheduling the network can

be approximated by a dynamic control problem involving diffusion processes. The optimal policies

that are obtained for the dynamic control problem involving diffusion approximation are interpreted

in terms of the original problem. A justification of this procedure based on simulation is provided

in Harrison and Wein (1989, 1990), Wein (1990), and Kumar and Kumar (1994), for example;

see also the survey on fluid models and strong approximations by Chen and Mandelbaum (1994).

Furthermore, Krichagina et al. (1993) and Krichagina et al. (1994) apply this approach to the

problem of controlling the production rate of a single product using a single unreliable machine

in order to minimize the total discounted inventory/backlog costs. They imbed the given system

into a sequence of systems in heavy traffic. Their purpose is to obtain asymptotic optimal policies

for the sequence of systems that can be expressed only in terms of the parameters of the original

system.

It should be noted that these approaches do not provide us with an estimate of how much

the policies constructed for the given original system deviate from the optimal solution, especially

when the optimal solution is not known, which is most often the case. As we shall see later,

the hierarchical approach under consideration in this survey enables one to provide just such an
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estimate in many cases.

The next approach we shall discuss is that of aggregation-disaggregation. Bitran et al. (1986)

formulate a model of a manufacturing system in which uncertainties arise from demand estimates

and forecast revisions. They consider first a two-level product hierarchical structure, which is

characterized by families and items. Hence, the production planning decisions consist of determining

the sequence of the product families and the production lot sizes for items within each family, with

the objective of minimizing the total cost. Then, they consider demand forecasts and forecast

revisions during the planning horizon. The authors assume that the mean demand for each family

is invariant and that the planners can estimate the improvement in the accuracy of forecasts, which

is measured by the standard deviation of forecast errors. Bitran et al. (1986) view the problem

as a two-stage hierarchical production planning problem. The aggregate problem is formulated as

a deterministic mixed integer program that provides a lower bound on the optimal solution. The

solution to this problem determines the set of product families to be produced in each period. The

second-level problem is interpreted as the disaggregate stage where lot sizes are determined for the

individual product to be scheduled in each period. Only a heuristic justification has been provided

for the approach described. Some other references in the area are Bitran and Hax (1977), Hax and

Candea (1984), Gelders and Van Wassenhove (1981), Ari and Axs̊ater (1988), and Nagi (1991).

Lasserre and Mercé (1990) assume that the aggregate demand forecast is deterministic, while

the detailed level forecast is nondeterministic within known bounds. Their aim is to obtain an

aggregate plan for which there exists a feasible dynamic disaggregation policy. Such an aggregate

plan is called a robust plan, and they obtain necessary and sufficient conditions for robustness; see

also Gfrerer and Zäpfel (1994).

Finally we consider the approach of replacing random processes with their averages and possibly

other moments, see Sethi and Zhang (1994a, 1998) and Sethi et al. (2000e). The idea of the

approach is to derive a limiting control problem which is simpler to solve than the given original

problem. The limiting problem is obtained by replacing the stochastic machine capacity process

by the average total capacity of machines and by appropriately modifying the objective function.

The solution of this problem provides us with longer-term decisions. Furthermore, given these

decisions, there are a number of ways by which we can construct short-term production decisions.

By combining these decisions, we create an approximate solution of the original, more complex
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problem.

The specific points to be addressed in this review are results on the asymptotic optimality of the

constructed solution and the extent of the deviation of its cost from the optimal cost for the original

problem. The significance of these results for the decision-making hierarchy is that management

at the highest level of the hierarchy can ignore the day-to-day fluctuation in machine capacities, or

more generally, the details of shop floor events, in carrying out long-term planning decisions. The

lower operational level management can then derive approximate optimal policies for running the

actual (stochastic) manufacturing system.

While the approach could be extended for applications in other areas, the purpose here is to

review models of a variety of representative manufacturing systems in which some of the exogenous

processes, deterministic or stochastic, are changing much faster than the remaining ones, and to

apply the methodology of hierarchical decision making to them. We are defining a fast changing

process as a process that is changing so rapidly that from any initial condition, it reaches its

stationary distribution in a time period during which there are few, if any, fluctuations in the other

processes.

In what follows we review applications of the approach to stochastic manufacturing problems,

where the objective function is to minimize a total discounted cost, a long-run average cost, or a

risk-sensitive criterion. We also summarize results on dynamic programming equations, existence of

their solutions, and verification theorems of optimality for single/parallel machine systems, dynamic

flowshops, and dynamic jobshops producing multiple products. Sections 2 and 3 are devoted

to discounted cost models. In Section 2, we review the existence of solutions to the dynamic

programming equations associated with stochastic manufacturing systems with the discounted cost

criterion. The verification theorems of optimality and the characterization of optimal controls are

also given. Section 3 discusses the results on open-loop and/or feedback hierarchical controls that

have been developed and shown to be asymptotically optimal for the systems. The computational

issues are also included in this section. Sections 4 and 5 are devoted to average cost models. In

Section 4, we review the existence of solutions to the ergodic equations corresponding to stochastic

manufacturing systems with the long-run average cost criterion and the corresponding verification

theorems and the characterization of optimal controls. Section 5 surveys hierarchical controls for

single machine systems, flowshops, and jobshops with the long-run average cost criterion or the
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risk-sensitive long-run average cost criterion. Markov decision processes with weak and strong

interactions are also included. Important insights have been gained from the research reviewed

here, see Sethi (1997). Some of these insights are given where appropriate. Section 6 concludes the

paper.

2 Optimal Control with the Discounted Cost Criterion

The class of convex production planning models is an important paradigm in the operations man-

agement/operations research literature. The earliest formulation of a convex production planning

problem in a discrete-time framework dates back to Modigliani and Hohn (1955). They were inter-

ested in obtaining a production plan over a finite horizon in order to satisfy a deterministic demand

and minimize the total discounted convex costs of production and inventory holding. Since then

the model has been further studied and extended in both continuous-time and discrete-time frame-

works by a number of researchers, including Johnson (1957), Arrow et al.(1958), Veinott (1964),

Adiri and Ben-Israel (1966), Sprzeuzkouski (1967), Lieber (1973), and Hartl and Sethi (1984). A

rigorous formulation of the problem along with a comprehensive discussion of the relevant literature

appears in Bensoussan et al.(1983).

Extensions of the convex production planning problem to incorporate stochastic demand have

been analyzed mostly in the discrete-time framework. A rigorous analysis of the stochastic problem

has been carried out in Bensoussan et al. (1983). Continuous-time versions of the model that

incorporate additive white noise terms in the dynamics of the inventory process were analyzed by

Sethi and Thompson (1981a) and Bensoussan et al. (1984).

Earlier works that relate most closely to problems under consideration here include Kimemia

and Gershwin (1983), Akella and Kumar (1986), Fleming et al. (1987), Sethi et al. (1992a), and

Lehoczky et al. (1991). These works incorporate piecewise deterministic processes (PDP) either in

the dynamics or in the constraints of the model. Fleming et al. (1987) consider the demand to be

a finite state Markov process. In the models of Kimemia and Gershwin (1983), Akella and Kumar

(1986), Sethi et al. (1992a) and Lehoczky et al. (1991), the production capacity rather than the

demand for production is modeled as a stochastic process. In particular, the process of machine

breakdown and repair is modeled as a birth-death process, thus making the production capacity

over time a finite state Markov process. Feng and Yan (2000) incorporate a Markovian demand in
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a discrete state version of the model of Akella and Kumar (1986).

Here we will discuss the optimality of single/parallel machine systems, N -machine flowshops,

and general jobshops.

2.1 Single or parallel machine systems

Akella and Kumar (1986) deal with a single machine (with two states: up and down), single

product problem. They obtained an explicit solution for the threshold inventory level, in terms

of which the optimal policy is as follows: Whenever the machine is up, produce at the maximum

possible rate if the inventory level is less than the threshold, produce on demand if the inventory

level is exactly equal to the threshold, and not produce at all if the inventory level exceeds the

threshold. When their problem is generalized to convex costs and more than two machine states,

it is no longer possible to obtain an explicit solution. Using the viscosity solution technique, Sethi

et al. (1992a) investigate this general problem. They study the elementary properties of the value

function. They show that the value function is a convex function, and that it is strictly convex

provided the inventory cost is strictly convex. Moreover, it is shown to be a viscosity solution

to the Hamilton-Jacobi-Bellman (HJB) equation and to have upper and lower bounds each with

polynomial growth. Following the idea of Thompson and Sethi (1980), they define what are known

as the turnpike sets in terms of the corresponding value function. They prove that the turnpike

sets are attractors for the optimal trajectories and provide sufficient conditions under which the

optimal trajectories enter the convex closure in finite time. Also, they give conditions to ensure

that the turnpike sets are non-empty.

To more precisely state their results, we need to specify the model of a single/parallel ma-

chine manufacturing system. Let x(t), u(t), z, and m(t) denote, respectively, the surplus (inven-

tory/shortage) level, the production rate, the demand rate, and the machine capacity level at time

t ∈ [0,∞). We assume shortages to be backlogged. Here and throughout the paper, vectors will

be denoted by bold-faced letters. We assume that x(t) ∈ Rn, u(t) ∈ Rn
+, (i.e., u(t) ≥ 0), and z is

a constant positive vector in Rn
+. Furthermore, we assume that m(·) is a Markov process with a

finite space M = {0, 1, ..., p}. We can now write the dynamics of the system as

ẋ(t) = u(t)− z, x(0) = x. (2.1)

Definition 2.1. A control process (production rate) u(·) = {u(t) : t ≥ 0} is called admissible
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with respect to the initial capacity m if (i) u(·) is history-dependent or, more precisely, adapted

to the filtration {Ft : t ≥ 0} with Ft = σ{m(s) : 0 ≤ s ≤ t}, the σ-field generated by m(t);

(ii) 0 ≤ 〈r,u(t)〉 ≤ m(t) for all t ≥ 0 for some positive vector r, where 〈·, ·〉 between r and u(t)

represents inner product of vectors r and u(t).

Let A(m) denote the set of all admissible control processes with the initial condition m(0) = m.

Definition 2.2. A real-valued function u(x,m) on Rn ×M is called an admissible feedback

control, or simply a feedback control, if (i) for any given initial x, the equation ẋ(t) = u(x(t),m(t))−
z, x(0) = x, has a unique solution; (ii) u(·) = {u(t) = u(x(t),m(t)) : t ≥ 0} ∈ A(m).

Let h(x) and c(u) denote the surplus cost and the production cost functions, respectively. For

every u(·) ∈ A(m), x(0) = x, and m(0) = m, define the cost criterion

J(x,m, u(·)) = E

∫ ∞

0
e−ρt[h(x(t)) + c(u(t))]dt, (2.2)

where ρ > 0 is the given discount rate. The problem is to choose an admissible control u(·) that

minimizes J(x,m, u(·)). We define the value function as

v(x,m) = inf
u(·)∈A(m)

J(x,m, u(·)). (2.3)

We make the following assumptions on the cost functions h(x) and c(u).

(A.2.1) h(x) is nonnegative and convex with h(0) = 0. There are positive constants C21, C22, C23,

κ21 ≥ 0, and κ22 ≥ 0 such that C21|x|κ21 − C22 ≤ h(x) ≤ C23(1 + |x|κ22).

(A.2.2) c(u) is nonnegative, c(0) = 0, and c(u) is twice differentiable. Moreover, c(u) is either strictly

convex or linear.

(A.2.3) m(·) is a finite state Markov chain with generator Q, where Q = (qij), i, j ∈M is a (p + 1)×
(p + 1) matrix such that qij ≥ 0 for i 6= j and qii = −∑

i6=j qij . That is, for any function f(·)
on M,

Qf(·)(m) =
∑

6̀=m

qm`[f(`)− f(m)].

With these three assumptions we can state the following theorem concerning the properties of the

value function v(·, ·), proved in Fleming et al. (1987).

Theorem 2.1. (i) For each m, v(·,m) is convex on Rn, and v(·,m) is strictly convex if h(·) is

so; (ii) There exist positive constants C24, C25, and C26 such that for each m, C24|x|κ21 − C25 ≤
v(x,m) ≤ C26(1 + |x|κ22).
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We next consider the HJB equation associated with the problem. Let F (m,w) = inf{〈u−z, w〉 :

0 ≤ 〈u, r〉 ≤ m}, where r is given in Definition 2.1. Then, the HJB equation is written formally as

follows:

ρv(x,m) = F (m, v′x(x,m)) + h(x) + Qv(x, ·)(m), (2.4)

for x ∈ Rn, m ∈M, where v′x(x,m) is the partial derivative (gradient) of v(·, ·) with respect to x.

In general, the value function v(x,m) may not be differentiable. In order to make sense of the

HJB equation (2.4), we consider its viscosity solution, see Fleming and Soner (1992). To define

a viscosity solution, we first introduce the superdifferential and subdifferential of a given function

f(x) on Rn.

Definition 2.3. The superdifferential D+f(x) and the subdifferential D−f(x) of any function

f(x) on Rn are defined, respectively, as follows:

D+f(x) =

{
s ∈ Rn : lim sup

|r|→0

f(x + r)− f(x)− 〈r, s〉
|r| ≤ 0

}
,

D−f(x) =

{
s ∈ Rn : lim inf

|r|→0

f(x + r)− f(x)− 〈r, s〉
|r| ≥ 0

}
.

Definition 2.4. We say that v(x,m) is a viscosity solution of equation (2.4) if the following

holds: (i) v(x,m) is continuous in x and there exist C27 > 0 and κ23 > 0 such that |v(x, m)| ≤
C27(1 + |x|κ23); (ii) for all n ∈ D+v(x,m), ρv(x,m) − F (m, v′x(x,m)) + h(x) + Qv(x, ·)(m) ≤ 0;

and (iii) for all n ∈ D−v(x,m), ρv(x,m)− F (m, v′x(x,m)) + h(x) + Qv(x, ·)(m) ≥ 0.

Lehoczky et al. (1991) prove the following theorem.

Theorem 2.2. The value function v(x,m) defined in (2.3) is the unique viscosity solution to

the HJB equation (2.4).

Remark 2.1. If there is a continuously differentiable function that satisfies the HJB equation

(2.4), then it is a viscosity solution, and therefore, it is the value function. Furthermore, we have

the following result.

Theorem 2.3. The value function v(·,m) is continuously differentiable and satisfies the HJB

equation (2.4).

For its proof, see Theorem 3.1 in Sethi and Zhang (1994a). Next, we give a verification theorem.

Theorem 2.4. (Verification Theorem) Suppose that there is a continuously differentiable func-

tion v̂(x,m) that satisfies the HJB equation (2.4). If there exists u∗(·) ∈ A(m), for which the
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corresponding x∗(t) satisfies (2.1) with x∗(0) = x, w∗(t) = v̂′x(x∗(t),m(t)), and F (m(t), w∗(t)) =

〈u∗(t) − z,w∗(t)〉 + c(u∗(t)), almost everywhere in t with probability one, then v̂(x,m) = v(x,m)

and u∗(t) is optimal, i.e., v̂(x, m) = v(x,m) = J(x,m, u∗(·)).
For its proof, see Lemma H.3 of Sethi and Zhang (1994a). We now give an application of the

verification theorem. With Assumption (A.2.2), we can use the verification theorem to derive an

optimal feedback control for n = 1. From Theorem 2.4, an optimal feedback control u∗(x,m) must

minimize (u− z)v′x(x,m) + c(u). Thus,

u∗(x,m) =





0 if v′x(x,m) ≥ 0

(ċ)−1(−v′x(x,m)) if − ċ(m) ≤ v′x(x,m) < 0

m if v′x(x,m) < −ċ(m),

when the second derivative of c(u) is strictly positive, and

u∗(x, m) =





0 if v′x(x,m) > −c

min{z, m} if v′x(x,m) = −c

m if v′x(x,m) < −c,

when c(u) = cu for some constant c ≥ 0.

Recall that v(·,m) is a convex function. Thus, u∗(x, m) is increasing in x. From a result on

differential equations (see Hartman (1982)), ẋ(t) = u∗(x(t),m(t)) − z, x(0) = x, has a unique

solution x∗(t) for each sample path of the capacity process. Hence, the control given above is the

optimal feedback control. From this application, we can see that the points satisfying v′x(x,m) =

−ċ(z) are critical in describing the optimal feedback control. So we give the following definition.

Definition 2.5. The turnpike set G(m, z) is defined by G(m, z) = {x ∈ R : v′x(x,m) = −ċ(z)}.
Next we will discuss the monotonicity of the turnpike set. To do this, define i0 ∈M to be such

that i0 < z < i0 + 1. Observe that for m ≤ i0, ẋ(t) ≤ m − z ≤ i0 − z < 0. Therefore, x(t) goes to

−∞ monotonically as t →∞, if the capacity state m is absorbing. Hence, only those m ∈ M, for

which m ≥ i0 + 1, are of special interest to us.

In view of Theorem 2.1, if h(·) is strictly convex, then each turnpike set reduces to a singleton,

i.e., there exists an xm such that G(m, z) = {xm}, m ∈ M. If the production cost is linear, i.e.,

c(u) = cu for some constant c, then xm is the threshold inventory level with capacity m. Specifically,

if x > xm, u∗(x,m) = 0, and if x < xm, u∗(x,m) = m (full available capacity).
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Let us make the following observation. If the capacity m > z, then the optimal trajectory

will move toward the turnpike set xm. Suppose the inventory level is xm for some m and the

capacity increases to m1 > m; it then becomes costly to keep the inventory at level xm, since a

lower inventory level may be more desirable given the higher current capacity. Thus, we expect

xm1 ≤ xm. Sethi et al. (1992a) show that this intuitive observation is true. We state their result

as the following theorem.

Theorem 2.5. Assume h(·) to be differentiable and strictly convex. Then xi0 ≥ xi0+1 ≥ · · · ≥
xm ≥ cz, where cz = (ḣ)−1(−ρċ(z)).

2.2 Dynamic flowshops

We consider a dynamic flowshop that produces a single finished product using N machines in

tandem that are subject to breakdown and repair. In comparison to the single/parallel machine

systems, the flowshop problem with internal buffers and the resulting state constraints is much

more complicated. Certain boundary conditions need to be taken into account for the associated

HJB equation, see Soner (1986). Optimal control policy can no longer be described simply in terms

of some hedging points. Lou et al. (1994) show that the optimal control policy for a two-machine

flowshop with linear costs of production can be given in terms of two switching manifolds. However,

the switching manifolds are not easy to obtain. One way to compute them is to approximate them

by continuous piecewise-linear functions as done by Van Ryzin et al. (1993), in the absence of

production costs. To rigorously deal with the general flowshop problem under consideration, the

HJB equation in terms of the directional derivatives (HJBDD) at inner and boundary points are

introduced by Presman et al. (1993, 1995). They show that the value function corresponding to the

dynamic flowshop problem is a solution of the HJBDD equation. They also establish a verification

theorem. Presman et al. (1997b) extend these results to dynamic flowshops with limited buffers.

Because dynamic flowshops are special cases of dynamic jobshops reviewed in detail in the next

section, we will not discuss them in detail here separately.

2.3 Dynamic jobshops

Consider a manufacturing system producing a variety of products in demand using machines in a

general network configuration, which generalizes both the parallel and the tandem machine models.

Each product follows a process plan—possibly from a number of alternative process plans—that
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specifies the sequence of machines it must visit and the operations performed by them. A process

plan may call for multiple visits to a given machine, as is the case in semiconductor manufacturing;

Lou and Kager (1989), Srivatsan et al. (1994), Uzsoy et al. (1996), and Yan et al. (1994, 1996).

Often the machines are unreliable. Over time they break down and must be repaired. A manu-

facturing system so described will be termed a dynamic jobshop. Now we give the mathematically

description of a jobshop suggested by Presman et al. (1997a), as a revision of the description by

Sethi and Zhou (1994). First we give some definitions.

Definition 2.6. A manufacturing digraph is a graph (∆, Π), where ∆ is a set of Nb + 2 (≥ 3),

vertices, and Π is a set of ordered pairs called arcs, satisfying the following properties: (i) there is

only one source, labeled 0, and only one sink, labeled Nb + 1, in the digraph; (ii) no vertex in the

graph is isolated; and (iii) the digraph does not contain any cycle.

Remark 2.2. Condition (ii) is not an essential restriction. Inclusion of isolated vertices is

merely a nuisance. This is because an isolated vertex is like a warehouse that can only ship out

parts of a particular type to meet their demand. Since no machine (or production) is involved,

its inclusion or exclusion does not affect the optimization problem under consideration. Condition

(iii) is imposed to rule out the following two trivial situations: (a) a part of type i in buffer i gets

processed on a machine without any transformation and returns to buffer i, and (b) a part of type

i is processed and converted back into a part of type j, j 6= i, and is then processed further on a

number of machines to be converted back into a part of type i. Moreover, if we had included any

cycle in our manufacturing system, the flow of parts that leave buffer i only to return to buffer i

would be zero in any optimal solution. It is unnecessary, therefore, to complicate the problem by

including cycles.

Definition 2.7. In a manufacturing digraph, the source is called the supply node and the sink

represents the customers. Vertices immediately preceding the sink are called external buffers, and

all others are called internal buffers.

In order to obtain the system dynamics from a given manufacturing digraph, a systematic

procedure is required to label the state and control variables. For this purpose, note that our

manufacturing digraph (∆,Π) contains a total of Nb + 2 vertices including the source, the sink, d

internal buffers, and Nb − d external buffers for some integer d and Nb, 0 ≤ d ≤ Nb − 1, Nb ≥ 1.

The proof of the following theorem is similar to Theorem 2.2 in Sethi and Zhou (1994).
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Theorem 2.6. We can label all the vertices from 0 to Nb +1 in a way so that the label numbers

of the vertices along every path are in a strictly increasing order, that is, the source is labeled 0,

the sink is labeled Nb + 1, and the external buffers are labeled d + 1, d + 2, ..., Nb.

Definition 2.8. For each arc (i, j), j 6= Nb + 1, in a manufacturing digraph, the rate at which

parts in buffer i are converted to parts in buffer j is labeled as control uij . Moreover, the control

uij associated with the arc (i, j) is called an output of i and an input to j. In particular, outputs

of the source are called primary controls of the digraph. For each arc (i, Nb + 1), i = d + 1, ..., Nb,

the demand for products in buffer i is denoted by zi.

In what follows, we shall also set

ui,Nb+1 = zi, i = d + 1, ..., Nb,

ui,j = 0, for (i, j) 6∈ Π, 0 ≤ i ≤ Nb and 1 ≤ j ≤ Nb + 1,

for a unified notation suggested in Presman et al. (1997a). While zi and ui,j for (i, j) 6∈ Π are not

controls, we shall for convenience refer to ui,j , 0 ≤ i ≤ Nb, 0 ≤ j ≤ Nb +1, as controls. In this way,

we can consider the controls as an (Nb + 1)× (Nb + 1) matrix u = (uij) of the following form:

u0,1 u0,2 ... u0,i u0,i+1 ... u0,d u0,d+1 ... u0,Nb−1 u0,Nb
0

0 u1,2 ... u1,i u1,i+1 ... u1,d u1,d+1 ... u1,Nb−1 u1,Nb
0

... ... ... ... ... ... ... ... ... ... ... ...

0 0 ... ui−1,i ui−1,i+1 ... ui−1,d ui−1,d+1 ... ui−1,Nb−1 ui−1,Nb

0 0 ... 0 ui,i+1 ... ui,d ui,d+1 ... ui,Nb−1 ui,Nb
0

... ... ... ... ... ... ... ... ... ... ... ...

0 0 ... 0 0 ... ud−1,d ud−1,d+1 ... ud−1,Nb−1 ud−1,Nb
0

0 0 ... 0 0 ... 0 ud,d+1 ... ud,Nb−1 ud,Nb
0

0 0 ... 0 0 ... 0 0 ... 0 0 ud+1,Nb+1

... ... ... ... ... ... ... ... ... ... ... ...

0 0 ... 0 0 ... 0 0 ... 0 0 uNb,Nb+1

The set of all such controls is written as U , i.e., U = {u = (uij) : 0 ≤ i ≤ Nb, 1 ≤ j ≤ Nb +

1, uij = 0 for (i, j) 6∈ Π}. Before writing the dynamics and the state constraints corresponding

to the manufacturing digraph (∆, Π) containing Nb + 2 vertices consisting of a source, a sink, d

internal buffers, and Nb−d external buffers associated with the Nb−d distinct final products to be
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manufactured (or characterizing a jobshop), we give the description of the control constraints. We

label all the vertices according to Theorem 2.8. For simplicity in the sequel, we shall call the buffer

whose label is i as buffer i, i = 1, 2, ..., Nb. The control constraints depend on the placement of

the machines, and the different placements on the same digraph will give rise to different jobshops.

In other words, a jobshop corresponds to a unique digraph, whereas a digraph may correspond to

many different jobshops. Therefore, to uniquely characterize a jobshop using graph theory, we need

to introduce the concept of a placement of machines, or simply a placement. Let Nb ≤ π−Nb + d,

where π denotes the total number of arcs in Π.

Definition 2.9. In a manufacturing digraph (∆,Π), a set K = {K1, K2, ...,KN} is called a

placement of machines 1, 2, ..., N , if K is a partition of Π̂ = {(i, j) ∈ Π : j 6= Nb + 1}, namely,

∅ 6= Kn ⊂ Π̂, Kn ∩K` = ∅ for n 6= `, and ∪N
k=1Kk = Π̂.

A dynamic jobshop can be uniquely specified by a triple (∆, Π,K), which denotes a manufactur-

ing system that corresponds to a manufacturing digraph (∆, Π) along with a placement of machines

K = (K1,K2, ..., KN ). Consider a jobshop (∆,Π,K), let uij(t) be the control at time t associated

with arc (i, j), (i, j) ∈ Π. Suppose we are given a stochastic process m(t) = (m1(t), ..., mN (t)) on

the probability space (Ω,F , P ) with mn(t) representing the capacity of the nth machine at time t,

n = 1, ..., N . The controls uij(t) with (i, j) ∈ Kn, n = 1, ..., N , t ≥ 0, should satisfy the following

constraints: 0 ≤ ∑
(i,j)∈Kn

uij(t) ≤ mn(t) for all t ≥ 0, n = 1, ..., N, where we have assumed that

the required machine capacity pij (for unit production rate of type j from part type i) equals 1,

for convenience in exposition. The analysis can be readily extended to the case when the required

machine capacity for the unit production rate of part j from part i is any given positive constant.

We denote the surplus at time t in buffer i by xi(t), i ∈ ∆ \ {0, Nb + 1}. Note that if xi(t) > 0,

i = 1, ..., Nb, we have an inventory in buffer i, and if xi(t) < 0, i = d + 1, ..., Nb, we have a shortage

of finished product i. The dynamics of the system are, therefore,




ẋi(t) =
(∑i−1

`=0 u`i(t)−
∑Nb

`=i+1 ui`(t)
)

, 1 ≤ i ≤ d,

ẋi(t) =
(∑d

`=0 u`i(t)− zi

)
, d + 1 ≤ i ≤ Nb,

(2.5)

for some integer d and x(0) := (x1(0), ..., xNb
(0)) = (x1, ..., xNb

) = x. Since internal buffers provide

inputs to machines, a fundamental physical fact about them is that they must not have shortages.
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In other words, we must have




xi(t) ≥ 0, t ≥ 0, i = 1, ..., d,

−∞ < xi < +∞, t ≥ 0, i = d + 1, ..., Nb.
(2.6)

Let u`(t) = (u`,`+1(t), ..., u`,Nb
(t))′, ` = 0, ..., d, and ud+1(t) = (zd+1, ..., zNb

)′. The relation (2.5)

can be written in the following vector form:

ẋ(t) = (ẋ1(t), ..., ẋNb
(t))′ = Du(t), (2.7)

where D : RJ → RNb is the corresponding linear operator with J = (Nb − d) +
∑d

`=0(Nb − `), and

u(t) = (u0(t), ...,ud+1(t))′. Let S = Rd
+ × RNb−d. Furthermore, let Sb be the boundary of S, and

the interior So = S \ Sb.

We are now in the position to formulate our stochastic optimal control problem for the jobshop

defined by (2.5)-(2.7). For m = (m1, ..., mN ), let

U(m) = {u = (uij) : u ∈ U , 0 ≤
∑

(i,j)∈Kn

uij ≤ mn, 1 ≤ n ≤ N,

ui,Nb+1 = zi, d + 1 ≤ i ≤ Nb},

and for x ∈ S and m,

U(x,m) =
{
u : u ∈ U(m) and xn = 0 ⇒

n−1∑

i=0

uin −
Nb∑

i=n+1

uni ≥ 0, n = 1, ..., d
}
.

Definition 2.10. We say that a control u(·) ∈ U is admissible with respect to the initial

state vector x = (x1, · · · , xNb
) ∈ S and m ∈ M, if (i) u(·) is an Ft-adapted measurable process

with Ft = σ{m(s) : 0 ≤ s ≤ t}; (ii) u(t) ∈ U(m(t)) for all t ≥ 0; and (iii) the corresponding state

process x(t) = (x1(t), · · · , xNb
(t)) ∈ S for all t ≥ 0.

Remark 2.3. The condition (iii) is equivalent to u(t) ∈ U(x(t), m(t)), t ≥ 0.

Let A(x,m) denote the set of all admissible control with respect to the initial buffer level

x ∈ S and the initial machine capacity m. The problem is to find an admissible control u(·) that

minimizes the cost

J(x, m, u(·)) = E

∫ ∞

0
e−ρtH(x(t), u(t))dt, (2.8)

where H(·, ·) defines the cost of surplus and production, x is the initial state, and m is the initial

value of m(t). The value function is then defined as

v(x, m) = inf
u(·)∈A(x,m)

J(x, m, u(·)). (2.9)
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We impose the following assumptions on the random process m(t) = (m1(t), ...,mN (t)) and the

cost function H(·, ·) throughout this section.

(A.2.4) H(·, ·) is nonnegative and convex. For all x, x̂ ∈ S and u, û, there exist constants C28 and

κ25 ≥ 0 such that |H(x, u)−H(x̂, û)| ≤ C28(1 + |x|κ25 + |x̂|κ25)(|x− x̂|+ |u− û|).

(A.2.5) Let M = {m1, . . . ,mp} for some given integer p ≥ 1. The capacity process m(t) ∈ M,

t ≥ 0, is a finite state Markov chain with generator Q = (qkk̂) such that qkk̂ ≥ 0 if k 6= k̂ and

qkk = −∑
k̂ 6=k qkk̂. Moreover, Q is irreducible.

Presman et al. (1997a) prove the following theorem.

Theorem 2.7. The optimal control u∗(·) ∈ A(x, m) exists, and can be represented as a feedback

control. That is, there exists a function u∗(·, ·) such that for any x we have u∗(t) = u∗(x∗(t), m(t)),

t ≥ 0, where x∗(·) is the optimal state process – the solution of (2.7) for u(t) = u∗(x(t), m(t)) with

x(0) = x. Moreover, if H(x, u) is strictly convex in u, then the optimal feedback control u∗(·, ·) is

unique.

Now we consider the Lipschitz property of the value function. It should be noted that unlike

in the case without state constraints, the Lipschitz property in our case does not follow directly.

The reason for this is that in the presence of state constraints, a control which is admissible with

respect to x(0) = x ∈ S is not necessarily admissible for x(0) = x′ when x′ 6= x.

Theorem 2.8. The value function is convex, and satisfies the condition |v(x,m)− v(x̂, m)| ≤
C29(1 + |x|κ25 + |x̂|κ25)|x− x̂| for some positive constant C29 and all x, x̂ ∈ S.

Because the problem of the jobshop involves state constraints, we can write the HJBDD equation

for the problem as follows:

ρv(x,m) = inf
u∈U(x,m)

{∂v(x, m)/∂Du + H(x,u)}+ Qv(x, m). (2.10)

Theorem 2.9. (Verification Theorem) (i) The value function v(x, m) satisfies equation (2.10)

for all x ∈ S.

(ii) If some continuous convex function v̂(x, m) satisfies (2.10) and the growth condition given

in Theorem 2.8 with x̂ = 0, then v̂(x,m) ≤ v(x, m). Moreover, if there exists a feedback control

u(x,m) providing the infimum in (2.10) for v̂(x, m), then v̂(x, m) = v(x, m), and u(x,m) is an

optimal feedback control.
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(iii) Assume that H(x,u) is strictly convex in u for each fixed x. Let u∗(x,m) denote the

minimizer function of the right-hand side of (2.10). Then, ẋ(t) = Du∗(x(t),m(t)), x(0) = x, has

a solution x∗(t), and u∗(t) = u∗(x∗(t), m(t)) is the optimal control.

Remark 2.4. The HJBDD (2.10) coincides at inner points of S with the usual dynamic

programming equation for convex PDP problems. Here PDP is the abbreviation of piecewise

deterministic processes introduced by Vermes (1985) and Davis (1993). The HJBDD gives at

boundary points of S, a boundary condition in the following sense. Let the restriction of v(x, m)

on some l-dimensional face, 0 < l < J , of the boundary of S be differentiable at an inner point

x0 of this face. Note that this restriction is convex and is differentiable almost everywhere on this

face. Then there is a vector ∇̃v(x0, m) such that v′m(x0,m) = 〈∇̃v(x0, m), p〉 for any admissible

direction at x0. It follows from the continuity of the value function that

min
u∈U(x0,m)

{
〈∇̃v(x0, m), Du〉+ H(x0, u)

}
= min

u∈U(m)

{
〈∇̃v(x0, m), Du〉+ H(x0, u)

}
.

This boundary condition on v(·, ·) can be interpreted as follows. First, the optimal control policy on

the boundary has the same intuitive explanation as in the interior. The important difference is that

we now have to worry about the feasibility of the policy. What the boundary condition accomplishes

is to shape the value function on the boundary of S in such a way that the unconstrained optimal

policy is also feasible.

According to (2.10), optimal feedback control policies are obtained in terms of the directional

derivatives of the value function. Note now that the uniqueness of the optimal control follows

directly from the strict convexity of function H(·, ·) in u and the fact that any convex combination

of admissible controls for any given x is also admissible. For proving the remaining statements of

Theorems 2.8 and 2.9, see Presman et al. (1997a).

Remark 2.5. Presman et al. (1997a, b) show that Theorems 2.7-2.9 also hold when the

systems are subject to lower and upper bound constraints on work-in-process.

3 Hierarchical Controls with Discounted Cost Criterion

In this section the problems of hierarchical production planning with the discounted cost is dis-

cussed. We present asymptotic results for hierarchical production planning in manufacturing sys-

tems with machines subject to breakdown and repair. The idea is to reduce the original problem
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into simpler problems and to describe a procedure to construct controls, derived from the solution

to the simpler problems, for the original systems. The simpler problems turn out to be the limiting

problems obtained by averaging the given stochastic machine capacities and modifying the objec-

tive function in a reasonable way to account for the convexity of the cost function. Therefore, by

showing that the associated value function for the original systems converge to the value functions

of the limit systems, we can construct controls for the original systems from the optimal control of

the limit systems. The controls so constructed are asymptotically optimal as the fluctuation rate of

the machine capacities goes to infinity. Furthermore, error estimates of the asymptotic optimality

are provided in terms of their corresponding cost functions.

Here we will discuss hierarchical controls in single/parallel machine systems, flowshops, job-

shops, and production-investment and production-marketing systems. Finally, some computational

results are given.

3.1 Single or parallel machine systems

Sethi and Zhang (1994b) and Sethi et al. (1994b) consider a stochastic manufacturing system with

surplus xε(t) ∈ Rn and production rate uε(t) ∈ Rn
+ satisfying ẋε(t) = uε(t)− z, x(0) = x, where

z ∈ Rn
+ is the constant demand rate and x is the initial surplus xε(0).

Let m(ε, t) ∈ M = {0, 1, 2, · · · , p} denote the machine capacity process of our manufacturing

system, where ε is a small parameter to be specified later. Then the production rate uε(t) ≥ 0

must satisfy 〈r, uε(t)〉 ≤ m(ε, t) for some positive vector r. We consider the cost Jε(x,m, uε(·))
with m(ε, 0) = m and xε(0) = x defined by

Jε(x,m, uε(·)) = E

∫ ∞

0
e−ρt[h(xε(t)) + c(uε(t))]dt, (3.1)

where ρ > 0 is the discount rate, h(·) is the cost of surplus, and c(·) is the cost of production. The

problem is to find a control uε(·) ≥ 0 with 〈r, uε(t)〉 ≤ m(ε, t), that minimizes Jε(x,m, uε(·)).
We make the following assumptions on the machine capacity process and the cost function on

production rate and the surplus.

(A.3.1) c(u) and h(x) are convex. For all x, x̂, there exist constants C31 and κ31 such that 0 ≤
h(x) ≤ C31(1 + |x|κ31+1) and |h(x)− h(x̂)| ≤ C31(1 + |x|κ31 + |x̂|κ31)|x− x̂|.

(A.3.2) Let Qε = Q(1) + ε−1Q(2), where ε > 0 and Q(`) is an (p + 1) × (p + 1) matrix such that
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Q(`) = (q(`)
ij ) with q

(`)
ij ≥ 0 if i 6= j and q

(`)
ii = −∑

j 6=i q
(`)
ij , for ` = 1, 2. The capacity process

0 ≤ m(ε, t) ∈M is a finite state Markov process governed by Q(ε), i.e., Lψ(·)(i) = Qεψ(·)(i),
for any function ψ on M.

(A.3.3) The Q(2) is weakly irreducible, i.e., the equations νQ(2) = 0 and
∑p

j=0 νj = 1 have a unique

solution ν = (ν0, ν1, · · · , νp) > 0. We call ν to be the equilibrium distribution of Q(2).

Remark 3.1. Jiang and Sethi (1991) and Khasminskii et al. (1997) consider a model in which

the irreducibility assumption in (A.3.4) can be relaxed to incorporate machine state processes with

a generator that consists of several irreducible submatrices. In these models, some jumps are

associated with a fast process, while others are associated with a slow process; see Section 5.4.

Definition 3.1. We say that a control uε(·) = {uε(t) : t ≥ 0} is admissible if (i) uε(t) ≥ 0 is

a measurable process adapted to Ft = σ{m(ε, s), 0 ≤ s ≤ t} ; (ii) 〈r, uε(t)〉 ≤ m(ε, t) for all t ≥ 0.

We use Aε(m) to denote the set of all admissible controls with the initial condition m(ε, 0) = k.

Then our control problem can be written as follows:

Pε :





minimize Jε(x,m, uε(·)) = E
∫∞
0 e−ρt[h(xε(t)) + c(uε(t))]dt,

subject to ẋε(t) = uε(t)− z,xε(0) = x, uε(·) ∈ Aε(m),

value function vε(x,m) = infuε(·)∈Aε(m) Jε(x,m, uε(·)).
(3.2)

Similar to Theorem 2.1, one can show that the value function vε(x,m) is convex in x for each m.

The value function vε(·, ·) satisfies the dynamic programming equation

ρvε(x,m) = min
u≥0,r·u≤m

[〈(u− z), ∂vε(x,m)/∂x〉+ h(x) + c(u)] + Lvε(x, ·)(m),m ∈M, (3.3)

in the sense of viscosity solutions. Sethi et al. (1994b) consider a control problem in which the

stochastic machine capacity process is averaged out. Let A0 denote the control space

A0 = {U(t) = (u0(t), u1(t), · · · ,up(t)) : ui(t) ≥ 0, 〈r, ui(t)〉 ≤ i, 0 ≤ i ≤ p}.

Then we define the control problem P0 as follows:

P0 :





minimize J0(x, U(·)) = E
∫∞
0 e−ρt[h(x(t)) +

∑p
i=0 νic(ui(t))]dt,

subject to ẋ(t) =
∑p

i=0 νiu
i(t)− z, x(0) = x, U(·) ∈ A0,

value function v(x) = infU(·)∈A0 J0(x,u(·)).
(3.4)

Sethi and Zhang (1994b) and Sethi et al. (1994b) construct a solution of Pε from a solution of P0,

and show it to be asymptotically optimal as stated below.
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Theorem 3.1. (i) There exists a constant C32 such that |vε(x,m)− v(x)| ≤ C32(1+ |x|κ31)
√

ε.

(ii) Let U(·) ∈ A0 denote an ε-optimal control. Then, uε(t) =
∑p

i=0 I{m(ε,t)=i}ui(t) is asymp-

totically optimal, i.e.,

|Jε(x,m, uε(·))− vε(x,m)| ≤ C32(1 + |x|κ31)
√

ε. (3.5)

(iii) Assume in addition that c(u) is twice differentiable with (∂2c(u)
∂ui∂uj

) ≥ c0In×n, the function

h(·) is differentiable, and constants C33 and κ32 > 0 exist such that

∣∣h(x + y)− h(x)− 〈h′x(x), y〉∣∣ ≤ C33(1 + |x|κ32)|y|2.

Then, there exists a locally Lipschitz optimal feedback control U∗(x) for P0. Let

u∗(x,m(ε, t))) =
p∑

i=0

I{m(ε,t)=i}ui∗(x). (3.6)

Then, uε(t) = u∗(x(t),m(ε, t)) is an asymptotically optimal feedback control for Pε with the con-

vergence rate of
√

ε, i.e., (3.5) holds.

Insight 3.1. (Based on Theorem 3.1(i) and (ii).) If the capacity transition rate is sufficiently

fast in relation to the discount rate, then the value function is essentially independent of the initial

capacity state. This is because the transients die out and the capacity process settles into its

stationary distribution long before the discount factor e−ρt has decreased substantially from its

initial value of 1.

Remark 3.2. Part (ii) of the theorem states that from an ε-optimal open-loop control of the

limiting problem, we can construct an
√

ε-optimal open-loop control for the original problem. With

further restrictions on the cost function, Part (iii) of the theorem states that from the ε-optimal

feedback control of the limiting problem, we can construct an
√

ε-optimal feedback control for the

original problem.

Remark 3.3. It is important to point out that the hierarchical feedback control (3.6) can be

shown to be a threshold-type control if the production cost c(u) is linear. Of course, the value of

the threshold depends on the state of the machines. For single product problems with constant

demand, this means that production takes place at the maximum rate if the inventory is below

the threshold, no production takes place above it, and production rate equals the demand rate

once the threshold is attained. This is also the form of the optimal policy for these problems as

shown, e.g., in Kimemia and Gershwin (1983), Akella and Kumar (1986), and Sethi et al. (1992a).
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The threshold level for any given machine capacity state in these cases is also known as a hedging

point in that state following Kimemia and Gershwin (1983). In these simple problems, asymptotic

optimality is maintained as long as the threshold, say, θ(ε), goes to 0 as ε → 0. Thus, there is a

possibility of obtaining better policies than (3.6) that are asymptotically optimal. In fact, one can

even minimize over the class of threshold policies for the parallel-machines problems discussed in

this section.

Soner (1993) and Sethi and Zhang (1994c) consider Pε in which Q = 1
εQ(u) depends on the

control variable u. They show that under certain assumptions, the value function vε converges

to the value function of a limiting problem. Moreover, the limiting problem can be expressed in

the same form as P0 except that the equilibrium distribution νi, i = 0, 1, 2, · · · , p, are now control-

dependent. Thus, νi in Assumption (A.3.3) is now replaced by νi(u(t)) for each i; see also (3.22).

Then an asymptotically optimal control for Pε can be obtained as in (3.6) from the optimal control

of the limiting problem. As yet, no convergence rate has been obtained in this case.

An example of Q(u) in a one-machine case with two (up and down) states is

Q(u) =




−µ µ

λ(u) −λ(u)


 .

Thus, the breakdown rate λ(u) of the machine depends on the rate of production u, while the

repair rate µ is independent of the production rate. These are reasonable assumptions in practice.

3.2 Dynamic flowshops

For manufacturing systems with N machines in tandem and with unlimited capacities of the internal

buffers, Sethi et al. (1992c) obtain a limiting problem. Then they use a near-optimal control of the

limiting problem to construct an open-loop control for the original problem, which is asymptotically

optimal as the transition rates between the machine states go to infinity. The case of a limited

capacity internal buffer is treated in Sethi et al. (1992d, 1993, 1997c). Recently, based on the

Lipschitz continuity of the value function given by Presman et al. (1997b), Sethi et al. (2000d)

construct a hierarchical control for the N -machine flowshop with limited buffers.

Since many of the flowshop results have been generalized to the more general case of jobshops

discussed in the next section, we shall not provide a separate review of the flowshop results. How-

ever, results derived specifically for flowshops will be given at the end of the next section as special
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cases of the jobshop.

3.3 Dynamic jobshops

Sethi and Zhou (1994) consider hierarchical production planning in a general manufacturing system

given in Section 2.3. For the jobshop (∆, Π,K), let uε
ij(t) be the control at time t associated with

arc (i, j), (i, j) ∈ Π. Suppose we are given a stochastic process m(ε, t) = (m1(ε, t), ..., mN (ε, t)) on

the probability space (Ω,F , P ) with mn(ε, t) representing the capacity of the nth machine at time

t, n = 1, ..., N , where ε > 0 is a small parameter to be precisely specified later. The controls uε
ij(t)

with (i, j) ∈ Kn, n = 1, ..., N , t ≥ 0, should satisfy the following constraints:

0 ≤
∑

(i,j)∈Kn

uε
ij(t) ≤ mn(ε, t) for all t ≥ 0, n = 1, ..., N, (3.7)

where we have assumed that the required machine capacity pij (for unit production rate of type j

from part type i) equals 1, for convenience in exposition. The analysis in this paper can be readily

extended to the case when the required machine capacity for the unit production rate of part j

from part i is any given positive constant.

We denote the level at time t in buffer i by xε
i (t), i ∈ ∆ \ {0, Nb + 1}. Note that if xε

i (t) > 0,

i = 1, ..., Nb, we have an inventory in buffer i, and if xε
i (t) < 0, i = d+1, ..., Nb, we have a shortage

of finished product i. The dynamics of the system are, therefore,




ẋε
i (t) =

(∑i−1
`=0 uε

`i(t)−
∑Nb

`=i+1 uε
i`(t)

)
, 1 ≤ i ≤ d,

xε
i (t) =

(∑d
`=0 uε

`i(t)− zi

)
, d + 1 ≤ i ≤ Nb,

(3.8)

with xε(0) := (xε
1(0), ..., xε

Nb
(0)) = (x1, ..., xNb

) = x. Let uε
`(t) = (uε

`,`+1(t), ..., u
ε
`,Nb

(t))′, ` =

0, ..., d, and uε
d+1(t) = (zd+1, ..., zNb

)′. Similar to Section 2.3, we rewrite (3.8) in the vector form as

ẋε(t) = (ẋε
1(t), ..., ẋ

ε
Nb

(t))′ = Duε(t).

Definition 3.2. We say that a control uε(·) ∈ U is admissible with respect to the initial state

vector x = (x1, · · · , xNb
) ∈ S and m ∈ M, if (i) uε(·) is an Fε

t -adapted measurable process with

Fε
t = σ{m(ε, s) : 0 ≤ s ≤ t}; (ii) uε(t) ∈ U(m(ε, t)) for all t ≥ 0; and (iii) the corresponding state

process xε(t) = (xε
1(t), · · · , xε

Nb
(t)) ∈ S for all t ≥ 0.

Let Aε(x, m) denote the set of all admissible control with respect to x ∈ S and the machine

capacity vector m. The problem is to find an admissible control uε(·) that minimize the cost
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criterion

Jε(x, m, uε(·)) = E

∫ ∞

0
e−ρt[h(xε(t)) + c(uε(t))]dt, (3.9)

where h(·) defines the surplus cost, c(·) is the production cost, x is the initial state, and m is the

initial value of m(ε, t). The value function is then defined as

vε(x, m) = inf
uε(·)∈Aε(x,m)

Jε(x, m,uε(·)). (3.10)

We impose the following assumptions on the capacity process m(ε, t) = (m1(ε, t), ..., mN (ε, t))

and the cost functions h(·) and c(·) throughout this section.

(A.3.4) Let M = {m1, ...,mp} for some given integer p ≥ 1, where mj = (mj
1, ...,m

j
N ), with mj

k, k =

1, ..., N , denoting the capacity of the kth machine, j = 1, ..., p. The capacity process mε(t) ∈
M is a finite state Markov chain with the infinitesimal generator Q = Q(1) + ε−1Q(2), where

Q(1) = (q(1)
ij ) and Q(2) = (q(2)

ij ) are matrices such that q
(`)
ij ≥ 0 if j 6= i, and q

(`)
ii = −∑

j 6=i q
(`)
ij

for ` = 1, 2. Moreover, Q(2) is irreducible and, without any loss of generality, it is taken to be

the one that satisfies minij{|q(2)
ij | : q

(2)
ij 6= 0} = 1.

(A.3.5) Assume that Q(2) is weakly irreducible. Let ν = (ν1, ..., νp) denote the equilibrium distribution

of Q(2), that is, ν is the only nonnegative solution to the equations νQ(2) = 0 and
∑p

i=1 νi = 1.

(A.3.6) h(·) and c(·) are convex functions. For all x, x̂ ∈ S and u, û, there exist constants C34 and

κ32 ≥ 0 such that 0 ≤ h(x) ≤ C34(1 + |x|κ32), |h(x)− h(x̂)| ≤ C34(1 + |x|κ32 + |x̂|κ32)|x− x̂|,
and |c(u)− c(û)| ≤ C34|u− û|.

We use Pε to denote our control problem:

Pε :





min Jε(x, m,uε(·)) = E
∫∞
0 e−ρt[h(xε(t)) + cuε(t))]dt,

s.t. ẋε(t) = Duε(t), xε(0) = x, uε(·) ∈ Aε(x,m),

value fn vε(x, m) = infuε(·)∈Aε(x,m) Jε(x, m, uε(·)).
(3.11)

In order to obtain the limiting problem, we consider the deterministic controls defined below.

Definition 3.3. For x ∈ S, let A0(x) denote the set of the following measurable controls

U(·) = ((u1,0
0 (·), ...,u1,0

d+1(·)), ..., (up,0
0 (·), ...,up,0

d+1(·))) with
∑

(i,j)∈Kn
u`,0

ij (t) ≤ m`
n, ` = 1, ..., p, n =

1, ..., N , and the corresponding solution x(·) of the system




ẋj(t) =
∑j−1

`=0

∑p
i=1 νiu

i,0
`j (t)−∑Nb

`=j+1

∑p
i=1 νiu

i,0
j` (t), xj(0) = xj , 1 ≤ j ≤ d,

ẋj(t) =
∑d

`=0

∑p
i=1 νiu

i,0
`j (t)− zj , xj(0) = xj , d + 1 ≤ j ≤ Nb,

(3.12)
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satisfies x(t) ∈ S for all t ≥ 0.

The objective of the limiting problem is to choose a control U(·) ∈ A0 that minimizes

J0(x, U(·)) =
∫ ∞

0
e−ρt

[
h(x(t)) +

p∑

`=1

ν`c(u`,0(t))

]
dt.

We write (3.12) in the vector form ẋ(t) = D
∑p

`=1 ν`u
`,0(t), x(0) = x. We use P0 to denote the

limiting problem and derive it as follows:

P0 :





min J0(x, U(·)) =
∫∞
0 e−ρt[h(x(t)) +

∑p
`=1 ν`c(u`,0(t))]dt,

s.t. ẋ(t) = D
∑p

`=1 ν`u
`,0(t), x(0) = x, U(·) ∈ A0(x),

value fn. v(x) = infU(·)∈A0(x) J0(x, U(·)).

Based on the Lipschitz continuity of the value function given in Section 2.3, Sethi and Zhou

(1994) prove the following theorem which says that the problem P0 is indeed a limiting problem

in the sense that the value function vε(x,m) of Pε converges to the value function v(x) of P0.

Furthermore, the theorem also gives the corresponding convergence rate.

Theorem 3.2. For each δ ∈ (0, 1
2), there exists a positive constant C35 such that for all x ∈ S

and sufficiently small ε, we have |vε(x, m)− v(x)| ≤ C35(1 + |x|κ32)ε
1
2
−δ.

Insight 3.2. Comparison of Theorems 3.1 and 3.2 reveals that there is a slight loss in the

order of the error bound when going from a single/parallel machine system to a jobshop on account

of the state constraints inherent in a jobshop. The presence of the state constraints results in a

capacity loss phenomenon, because a machine, even while in the working order, cannot produce if

the output buffer provides an input to a failed machine.

Sethi et al. (2002) also show that Theorem 3.2 is true for a general jobshop system with limited

buffers. Similar to Theorem 3.1, for a given x ∈ S, they describe the procedure of constructing

an asymptotic optimal control uε(·) ∈ Aε(x, m) of the original problem Pε beginning with any

near-optimal control U(·) ∈ A0(x) of the limiting problem P0. We illustrate their procedure for the

special case of a flowshop with two-machine and single product, that is, (3.8) with m = 1, Nb = 2

and uε
02(t) ≡ 0. First we focus on the open-loop control. Let us fix an initial state x ∈ S. Let

U(·) = (u1,0(·), · · · , up,0(·)) ∈ A0, where uj,0(t) = (uj,0
01 (t), uj,0

12 (t)) is an ε
1
2
−δ-optimal control for P0,

i.e., |J0(x, U(·))− v(x)| ≤ ε
1
2
−δ. Because the work-in-process level must be nonnegative, unlike in

the case of parallel machine systems, the control
∑p

j=1 I{m(ε,t)=mj}uj,0(t) may not be admissible.

Thus, we need to modify it. Let us define a time t∗ ≤ ∞ as follows: t∗ = inf{t :
∫ t
0 [

∑p
j=1(m

j
1 −
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νju
j,0
01 (s) + νju

j,0
12 (s))]ds ≥ ε

1
2
−δ}. We define another control process Ũ(t) = (ũ1,0(·), · · · , ũp,0(·)) as

follows: for j = 1, · · · , p,

ũj,0(t) = (ũj,0
01 (t), ũj,0

12 (t)) =





(mj
1, 0) if t < t∗,

(uj,0
01 (t), uj,0

12 (t)) if t ≥ t∗.
(3.13)

It is easy to check that Ũ(·) ∈ A0(x). Let

wε(t) =
p∑

j=1

νjũ
j(t)I{m(ε,t)=mj}, (3.14)

and let yε(t) = (yε
1(t), y

ε
2(t)) be the corresponding trajectory defined as





yε
1(t) = x1 +

∫ t
0(wε

1(s)− wε
2(s))ds,

yε
2(t) = x2 +

∫ t
0(wε

2(s)− z2)ds.

Note that E|yε(t) − x̃(t)|2 ≤ C(1 + t2)ε. However, yε(t) may not be in S for some t ≥ 0.

To obtain an admissible control for Pε, we need to modify yε(t) so that the state trajectory

stays in S. This is done as follows. Let uε(t) = (uε
1(t), u

ε
2(t)) := yε(t)I{yε

1(t)≥0}. Then, for the

control uε(·) ∈ Aε(x,m) constructed (3.13)-(3.14) above, it is shown in Sethi et al. (1993) that

|Jε(x, m, uε(·))− vε(x,m)| = O(ε
1
2
−δ). Moreover, the case of more than two machines is treated

in Sethi et al. (1992c).

Next, we give explicitly an asymptotically optimal feedback control for a two-machine flowshop.

The problem is addressed by Sethi and Zhou (1996a, b), who consider Pε in (3.11) with

c(u) = 0 and h(x) = c1x1 + c+
2 x+

2 + c−2 x−2 , (3.15)

where c1, c
+
2 and c−2 are given nonnegative cost coefficients and x+

2 = max{x2, 0} and x−2 =

−min{x2, 0}. In order to illustrate their results, we choose a simple situation in which each of

the two machines has a capacity m when up and 0 when down, and has a breakdown rate λ > 0

and the repair rate µ > 0. Furthermore, we shall assume that the average capacity m̄ = mµ/(λ + µ)

of each machine is strictly larger than the demand z2.

The optimal control of the corresponding limiting (deterministic) problem P0 is:

u(x) =





(0, 0) if x1 ≥ 0, x2 > 0,

(0, z2) if x1 > 0, x2 = 0,

(0, m̄) if x1 > 0, x2 < 0,

(m̄, m̄) if x1 = 0, x2 < 0,

(z2, z2) if x1 = 0, x2 = 0.

(3.16)
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Insight 3.3. An optimal control is to get to (0, 0) in the cheapest possible way, and then stay

there.

From (3.16), Sethi and Zhou (1996a, b) construct the following asymptotically optimal feedback

control:

uε(x, m) =





(0, 0), x1 ≥ 0, x2 > θ2(ε),

(0,min{k2, z2}), x1 > θ1(ε), x2 = θ2(ε),

(0, k2), x1 > θ1(ε), x2 < θ2(ε),

(min{k1, k2}, k2), x1 = θ1(ε), x2 < θ2(ε),

(min{k1, k2, z2}, min{k2, z2}), x1 = θ1(ε), x2 = θ2(ε),

(k1, k2), 0 < x1 < θ1(ε), x2 < θ2(ε),

(k1, min{k2, z2}), 0 < x1 < θ1(ε), x2 = θ2(ε),

(k1, min{k1, k2, z2}), x1 = 0, x2 = θ2(ε),

(k1, min{k1, k2}), x1 = 0, x2 < θ2(ε),

(3.17)

where m = (k1, k2) with k1 ∈ {0,m} and k2 ∈ {0,m}, and (θ1(ε), θ2(ε)) → (0, 0) as ε → 0; see

Figure 1.

Note that the optimal control (3.16) of P0 uses the obvious bang-bang and singular controls to

go to (0, 0) and then stay there. In the same spirit, the control in (3.17) uses bang-bang and singular

controls to approach (θ1(ε), θ2(ε)). For a detailed heuristic explanation of asymptotic optimality,

see Samaratunga et al. (1997) and Sethi (1997); for a rigorous proof, see Sethi and Zhou (1996a,

b).

Remark 3.5. The policy in Figure 1 cannot be termed a threshold-type policy, since there

is no maximum tendency to go to x1 = θ1(ε), when the inventory level x1(t) is below θ1(ε) and

x2(t) > θ2(ε). In fact, Sethi and Zhou (1996a, b) show that a threshold-type policy, known also

as a Kanban policy, is not even asymptotically optimal when c1 > c+
2 . Also, it is known that the

optimal feedback policy for two-machine flowshops involve switching manifolds that are much more

complicated than the manifolds x1 = θ1 and x2 = θ2 required to specify a threshold-type policy.

This implies that in the discounted flowshop problems, one cannot find an optimal feedback policy

within the class of threshold-type policies. While θ1 and θ2 could still be called hedging points,

there is no notion of optimal hedging points insofar as they are used to specify a feedback policy.

See Samaratunga et al. (1997) for a further discussion on this point.
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3.4 Computational results

Connolly et al. (1992), Van Ryzin et al. (1993), Violette (1993), and Violette and Gershwin (1991)

have carried out a good deal of computational work in connection with manufacturing systems

without state constraints. Such systems include single or parallel machine systems described in

Sections 3.1, 3.2, and 3.3 as well as no-wait flowshops (or flowshops without internal buffers)

treated in Kimemia and Gershwin (1983). Darakananda (1989) developed a simulation software

called Hiercsim based on the control algorithms of Gershwin et al. (1985) and Gershwin (1989).

It should be noted that controls constructed in these algorithms have been shown under some

conditions to be asymptotically optimal by Sethi and Zhang (1994b) and Sethi et al. (1994b).

One of the main weaknesses of the early version of Hiercsim for the purpose of this review is

its inability to deal with internal storage, see also Violette and Gershwin (1991). Bai (1991) and

Bai and Gershwin (1990) developed a hierarchical scheme based on partitioning machines in the

original flowshop or jobshop into a number of virtual machines each devoted to single part type

production. Violette (1993) developed a modified version of Hiercsim to incorporate the method of

Bai and Gershwin (1990). Violette and Gershwin (1991) perform a simulation study indicating that

the modified method is efficient and effective. We shall not review it further, since the procedure

based on partitioning of machines is unlikely to be asymptotically optimal.

Sethi and Zhou (1996b) have constructed asymptotically optimal hierarchical controls uε(x, m),

given in (3.17) with switching manifolds depicted in Figure 1, for the two-machine flowshop defined

by (3.8) with d = 1, Nb = 1, and uε
02(t) ≡ 0, and (3.15). Samaratunga et al. (1997) have compared

the performance of these hierarchical controls (HC) to that of optimal control (OC) and of two other

existing heuristic methods known as Kanban Control (KC) and Two-Boundary Control (TBC). Like

HC, KC is a two parameter policy defined as follows:

uε
KC(x, m) =





(m1, 0) if 0 ≤ x1 < θ1(ε), x2 > θ2(ε),

uε(x,m) otherwise.
(3.18)

Note that KC is a threshold-type policy. TBC is a three-parameter policy developed by Lou

and Van Ryzin (1989). Because it is much more complicated than HC or KC and because its

performance is not significantly different from HC as can be seen in Samaratunga et al. (1997),

we shall not discuss it any further in this survey. In what follows, we provide the computational

results obtained in Samaratunga et al. (1997) for the problem (3.11) and (3.15) with λ = 1, µ =
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5,m = 2, c+
1 = 0.1, c+

2 = 0.2, and c−2 = 1.0. Then we discuss the results.

In Table 1, different initial states are selected and the best parameter values are computed for

these different initial states for HC and KC; note from Remark 3.6 that in general there are no

parameter values that are best for all possible initial states. In the last row, the initial state (2.70,

1.59) is such that the best hedging point for HC and KC are (2.70,1.59). Table 2 uses the parameter

values obtained in Table 1 in the row with the initial state (0,0). Samaratunga et al. (1997) analyze

these computational results and provide the following comparison of OC and KC.

HC vs. OC: In Tables 1 and 2, the cost of HC is quite close to the optimal cost, if the initial state

is sufficiently removed from point (0,0). Moreover, the further the initial (x1, x2) is from point

(0,0), the better the approximation HC provides to OC. This is because the hedging points are

close to point (0,0), and hierarchical and optimal controls agree at points in the state space that

are further from (0,0) or further from hedging points. In these cases, transients contribute a great

deal to the total cost and transients of HC and OC agree in regions far away from (0,0).

HC vs. KC: Let us now compare HC and KC in detail. Of course, if the initial state is in a

shortage situation (x2 ≤ 0), then HC and KC must have identical costs. This can be easily seen in

Table 1 or Table 2 when initial (x1, x2) = (0, -5), (0, -10), (0, -20), (5, -5), (10, -10) and (20, -20).

On the other hand, if the initial surplus is positive, cost of HC is either the same as or slightly

smaller than the cost of KC, as should be expected. This is because, KC being a threshold-type

policy, the system approaches θ1(ε) even when there is large positive surplus, implying higher

inventory costs. In Tables 1 and 2, we can see this in rows with initial (x1, x2) = (0, 5), (0, 10),

(0, 20), and (20, 20). Moreover, by the same argument, the values of θ1(ε) for KC must not be

larger than those for HC in Table 1. Indeed, in cases with large positive surplus, the value of θ1(ε)

for KC must be smaller than that for HC. Furthermore, in these cases with positive surplus, the

cost differences in Table 2 must be larger than those in Table 1, since Table 2 uses hedging point

parameters that are best for initial (x1, x2) = (0,0). These parameters are the same for HC and

KC. Thus, the system with an initial surplus has higher inventories in the internal buffer with KC

than with HC.

Note also that if the surplus is very large, then KC in order to achieve lower inventory costs

sets θ1(ε) = 0, with the consequence that its cost is the same as that for HC. For example, this

happens when the initial (x1, x2) = (0,50) in Table 1. As should be expected, the difference in cost
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for initial (x1, x2) = (0,50) in Table 2 is quite large compared to the corresponding difference in

Table 1.

3.5 Production-investment models

Sethi et al. (1992b) incorporate an additional capacity expansion decision in the model discussed

in Section 3.1. They consider a stochastic manufacturing system with the surplus xε(t) ∈ Rn and

production rate uε(t) ∈ Rn that satisfy ẋε(t) = uε(t) − z, xε(0) = x, where z ∈ Rn denotes the

constant demand rate and x is the initial surplus level. They assume uε(t) ≥ 0 and 〈r, uε(t)〉 ≤
m(ε, t) for some r ≥ 0, where m(ε, t) is the machine capacity process described by (3.20). The

specification of m(ε, t) involves the instantaneous purchase of some given additional capacity at

some time τ , 0 ≤ τ ≤ ∞, at a cost of K, where τ = ∞ means not to purchase it at all; see Sethi et

al. (1994a) for an alternate model in which the investment in the additional capacity is continuous.

For the model under consideration, the control variable is a pair (τ, u(·)) of a Markov time τ ≥ 0

and a production process u(·) over time. The cost criterion Jε is given by

Jε(x,m, τ,uε(·)) = E

[∫ ∞

0
e−ρtH(xε(t),uε(t))dt + Ke−ρτ

]
, (3.19)

where m(ε, 0) = m is the initial capacity and ρ > 0 is the discount rate. The problem is to find an

admissible control (τ, uε(·)) that minimizes Jε(x,m, τ,uε(·)).
Define m1(ε, ·) and m2(ε, ·) as two Markov processes with state spaces M1 = {0, 1, · · · , p1}

and M2 = {0, 1, · · · , p1 + p2}, respectively. Here, m1(ε, ·) ≥ 0 denotes the existing production

capacity process and m2(ε, ·) ≥ 0 denotes the capacity process of the system if it were to be

supplemented by the additional new capacity at time 0. Let F1(t) = σ{m1(ε, s) : 0 ≤ s ≤ t} and

F(t) = σ{m(ε, t) : 0 ≤ s ≤ t}.
Define the capacity process m(ε, t) as follows: For each F1(t)-Markov time τ ≥ 0,

m(ε, t) =





m1(ε, t) if t < τ,

m2(ε, t− τ) if t ≥ τ,
and m(ε, τ) = m2(ε, 0) := m1(ε, τ) + p2. (3.20)

Here p2 denotes the maximum additional capacity resulting from the investment in the new capacity.

We make the following assumptions on the cost function H(·, ·) and the process m(ε, t).

(A.3.7) G(x, u) is a nonnegative jointly convex function that is strictly convex in either x or u

or both. For all x, x̂ ∈ Rn and u, û ∈ Rn
+, there exist constant C35 and κ33 such that

|H(x,u)−H(x̂, û)| ≤ C35[(1 + |x|κ33 + |x̂|κ33)|x− x̂|+ |u− û|].
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(A.3.8) m1(ε, t) ∈ M1 and m2(ε, t) ∈ M2 are Markov processes with generators ε−1Q1 and ε−1Q2,

respectively, where Q1 = (q(1)
ij ) and Q2 = (q(2)

ij ) are matrices such that q
(`)
ij ≥ 0 if i 6= j and

q
(`)
ii = −∑

i6=j q
(`)
ij for ` = 1, 2. Moreover, Q1 and Q2 are both irreducible.

Definition 3.4. We say that a control (τ, uε(·)) is admissible if (i) τ is an F1(t)-Markov time;

(ii) uε(t) is F(t)-adapted and 〈r, uε(t)〉 ≤ m(ε, t) for t ≥ 0.

We use Aε(x,m) to denote the set of all admissible controls (τ, uε(·)). Then the problem is:

Pε :





min(τ,uε(·))∈Aε Jε(x,m, τ,uε(·)),
subject to ẋε(t) = uε(t)− z, xε(0) = x.

We use vε(x,m) to denote the value function of the problem and define an auxiliary value function

vε
a(x, m̂) to be K plus the optimal cost with the capacity process m2(ε, t) with the initial capacity

m̂ ∈ M2 and no future capital expansion possibilities. Then the dynamic programming equations

are as follows:

min { min
u≥0,〈r,u〉≤m

[〈(u− z), ∂vε(x,m)/∂x〉+ G(x, u)] + ε−1Q1v
ε(x, ·)(m)

−ρvε(x,m), vε
a(x,m + p2)− vε(x,m)} = 0, m ∈M1,

min
u≥0,〈r,u〉≤m

[〈(u− z), ∂vε
a(x, m)/∂x〉+ G(x, u)] + ε−1Q2v

ε
a(x, ·)(m)

−ρ(vε
a(x,m)−K) = 0, m ∈M2.

Let ν(1) = (ν(1)
0 , ν

(1)
1 , · · · , ν(1)

p1 ) and ν(2) = (ν(2)
0 , ν

(2)
1 , · · · , ν(2)

p1+p2
) denote the equilibrium distributions

of Q1 and Q2, respectively. We now proceed to develop the limiting problem. We first define

the control sets for the limiting problem. Let U1 = {(u0, · · · , up1) : ui ≥ 0, 〈r, ui〉 ≤ i} and

U2 = {(u0, · · · , up1+p2) : ui ≥ 0, 〈r, ui〉 ≤ i}. Then U1 ⊂ Rn×(p1+1) and U2 ⊂ Rn×(p1+p2+1).

Definition 3.5. We use A0(x) to denote the set of the following controls (admissible controls

for the limiting problem): (i) A deterministic time σ; (ii) A deterministic U(t) such that for t < σ,

U(t) = (u0(t), · · · ,up1(t)) ∈ U1 and for t ≥ σ, U(t) = (u0(t), · · · ,up1+p2(t)) ∈ U2.

Let

J0(x, σ, U(·)) =
∫ σ

0
e−ρt

p1∑

i=0

ν
(1)
i G(x(t), ui(t))dt

+
∫ ∞

σ
e−ρt

p1+p2∑

i=0

u
(2)
i G(x(t),ui(t))dt + e−ρσK,
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u(t) =





∑p1
i=0 ν

(1)
i ui(t) if t < σ,

∑p1+p2
i=0 νiu

i(t) if t ≥ σ.

We can now define the following limiting optimal control problem:

P0 :





min
(σ,U(·))∈A0

J0(x, σ, U(·))

subject to ẋ(t) = ū(t)− z, x(0) = x.

(3.21)

Let v(x) denote the value functions for P0, and va(x)) denote min(0,U(·))∈A0 J0(x, 0, U(·)). Let

(τ, U(·)) ∈ A0 denote any admissible control for the limiting problem P0, where

U(t) =





(u0(t), · · · , up1(t)) ∈ U1 if t < σ,

(u0(t), · · · , up1+p2(t)) ∈ U2 if t ≥ σ.

We take

uε(t) =





∑p1
i=0 ui(t)I{m1(ε,t)=i} if t < τ,

∑p1+p2
i=0 ui(t)I{m2(ε,t)=i} if t ≥ τ.

Then the control (τ, uε(·)) is admissible for Pε. The following result is proved in Sethi et al.

(1992b).

Theorem 3.3. (i) There exists a constant C36 such that |vε(x,m)−v(x)|+ |vε
a(x, m)−va(x)| ≤

C36(1 + |x|κ33)
√

ε.

(ii) Let (τ, U(·)) ∈ A0 be an ε-optimal control for the limiting problem P0 and let (τ, uε(·)) ∈ Aε

be the control constructed above. Then, (τ, uε(·)) is asymptotically optimal with error bound
√

ε,

i.e., |Jε(x,m, τ,uε(·))− vε(x,m)| ≤ C36(1 + |x|κ33)
√

ε.

3.6 Other multilevel models

Sethi and Zhang (1992b, 1995a) extend the model in Section 3.1 to incorporate promotional or

advertising decisions that influence the product demands. Zhou and Sethi (1994) demonstrate how

workforce and production decisions can be decomposed hierarchically in a stochastic version of

the classical HMMS model (see Holt et al. (1960)). Manufacturing systems involving preventive

maintenance are studied by Boukas and Haurie (1990), Boukas (1991), Boukas et al. (1993), and

Boukas et al. (1994). The maintenance activity involves lubrication, routine adjustments, etc.,

which reduce the machine failure rates. The objective in these systems is to choose the rate of
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maintenance and the rate of production in order to minimize the total discounted cost of surplus,

production, and maintenance.

In this section, we shall only discuss the model developed in Sethi and Zhang (1995a), who

consider the case when both capacity and demand are finite state Markov processes constructed

from generators that depend on the production and promotional decisions, respectively. In order

to specify their marketing-production problem, let m(ε, t) ∈ M as in Section 3.1 and z(δ, t) ∈
{z0,z1, · · · ,zp̂} for a given δ, denote the capacity process and the demand process, respectively.

Definition 3.6. We say that a control (uε(·), w(·)) = {(uε(t), wδ(t)) : t ≥ 0} is admis-

sible, if (i) (uε(·), wδ(·)) is right-continuous having left-hand limit (RCLL); (ii) (uε(·), wδ(·)) is

σ{(m(ε, s), z(δ, s)) : 0 ≤ s ≤ t}-adapted, and satisfies uε(t) ≥ 0, 〈r,uε(t)〉 ≤ m(ε, t), and

0 ≤ wδ(t) ≤ 1 for all t ≥ 0.

We use Aε,δ(x,m, z) to denote the set of all admissible controls. Then the control problem can

be written as follows:

Pε,δ :





maximize Jε,δ(x,m, z, uε(·), wδ(·))
= E

∫∞
0 e−ρtG(xε,δ(t), z(δ, t),uε(t), wδ(t))dt

subject to





ẋε,δ(t) = uε(t)− z(δ, t), xε,δ(0) = x

m(ε, t) ∼ ε−1Q(uε(t)), m(ε, 0) = m

z(δ, t) ∼ δ−1Q̂(w(t)), z(δ, 0) = z

(u(·), wδ(·)) ∈ Aε,δ(x.m,z).

value function vε,δ(x,m, z) = inf
(uε(·),wδ(·))∈Aε,δ(x,m,z)

Jε,δ(x, m,z,uε(·), wδ(·))

(3.22)

where by m(ε, t) ∼ ε−1Q(uε(t)), we mean that the Markov process m(ε, t) has the generator

ε−1Q(uε(t)). We use A0,δ to denote the admissible control space

A0,δ = {(U(t), w(t)) = (u0(t), u1(t), · · · ,up(t), w(t)) : ui(t) ≥ 0, 〈r,ui(t)〉 ≤ i, 0 ≤ w(t) ≤ 1,

(U(t), w(t)) is σ{z(δ, s) : 0 ≤ s ≤ t} adapted and RCLL},
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for the problem

P0,δ :





maximize J0,δ(x, z, U(·), w(·))

=
∫ ∞

0
e−ρt

p∑

i=0

νi(U(t))G(xδ(t), z(δ, t), ui(t), w(t))dt

subject to





ẋδ(t) =
p∑

i=0

νi(U(t))ui(t)− z(δ, t), xδ(0) = x

z(δ, t) ∼ 1
δ
Q̂(w(t)), z(δ, 0) = z

(U(·), w(·)) ∈ A0,δ.

value function v0,δ(x, z) = inf
(U(·),w(·))∈A0,δ

J0,δ(x, z, U(·), w(·)).

(3.23)

Let (U(·), w(·)) ∈ A0,δ denote an optimal open-loop control. We construct uε,δ(t) =
∑p

i=0 ui(t)I{m(ε,t)=i}

and wε,δ(t) = w(t). Then (uε,δ(t), wε,δ(t)) ∈ Aε,δ, and it is asymptotically optimal, i.e.,

lim
δ→0

|Jε,δ(x,m, z, uε,δ(·), wε,δ(·))− vε,δ(x,m, z)| = 0.

Similarly, let (U(x, z), w(x, z)) ∈ Aε,δ denote an optimal feedback control for P0,δ. Suppose that

(U(x,z), w(x, z)) is locally Lipschitz for each z. Let uε,δ(t) =
∑p

i=0 ui(xε,δ(t),m(ε, t), z(δ, t))I{m(ε,t)=i}

and wε,δ(t) = w(xε,δ(t), z(δ, t)). Then the feedback control (uε,δ(·), wε,δ(·)) is asymptotically opti-

mal for Pε,δ, i.e.,

lim
δ→0

|Jε,δ(x,m, z, uε,δ(·), wε,δ(·))− vε,δ(x,m, z)| = 0.

We have described only the hierarchy that arises from a large δ and a small ε. In this case,

promotional decisions are obtained under the assumption that the available production capacity is

equal to the average capacity. Subsequently, production decisions taking into account the stochastic

nature of the capacity can be constructed. Other possible hierarchies result when both δ and ε are

small or when ε is large and δ is small.

3.7 Single or parallel machine systems with risk-sensitive discounted cost cri-
terion

Consider the single/parallel machine system producing multiple products described in Subsection

3.1, but with the risk-sensitive discounted cost criterion defined by

Jε,
√

ε(uε(·)) =
√

ε log E

[
exp

{
1√
ε

∫ ∞

0
e−ρt[h(xε(t)) + c(uε(t))]dt

}]
. (3.24)

A motivation for choosing this risk-sensitive criterion is to incorporate the decision maker’s attitude

toward risk. In (3.24),
√

ε is called the risk-sensitivity coefficient. A positive coefficient indicates a
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risk-averse behavior, whereas
√

ε = 0 signifies risk neutrality. The problem is then as follows:

Pε,
√

ε :





minimize Jε,
√

ε(uε(·)),
subject to ẋε(t) = uε(t)− z, xε(0) = x, uε(·) ∈ Aε(m),

value function vε,
√

ε(x,m) = inf
uε(·)∈Aε(m)

Jε,
√

ε(uε(·)).

For this problem, Zhang (1995) establishes results similar to Theorem 3.1.

In the next two sections we focus on the long-run average cost criterion, which presents a stark

contrast to the discounted-cost criterion. The discounted-cost criterion considers near-term costs

to be more important than costs occurring in the long term. The long-run cost criterion, on the

other hand, ignores the near-term costs and considers only the distant future costs. In Section

4, we consider the theory of optimal control of stochastic manufacturing problems with the long-

run average cost criterion. We use the vanishing discount approach for this purpose. Section 5 is

concerned with hierarchical controls for long-run average cost problems, for risk-sensitive average

cost problems, and for Markov decision processes with weak and strong interactions.

4 Optimal Control with Long-Run Average Cost Criteria

Beginning with Bielecki and Kumar (1988), there has been a considerable interest in studying the

problem of convex production planning in stochastic manufacturing systems with the objective of

minimizing long-run average cost. Bielecki and Kumar (1988) dealt with a single machine (with

two states: up and down), single product problem with linear holding and backlog costs. Because

of the simple structure of their problem, they were able to obtain an explicit solution, and thus

verify the optimality of the resulting policy. They showed that the so-called hedging point policy is

optimal in their simple model. It is a policy to produce at full capacity if the surplus is smaller than

a threshold level, produce nothing if the surplus is higher than the threshold level, and produce as

much as possible, but no more than the demand rate when the surplus is at the threshold level.

Sharifnia (1988) dealt with an extension of the Bielecki-Kumar model with more than two

machine states. Liberopoulous and Caramanis (1995) showed that Sharifnia’s method for evaluating

hedging point policies applies even when the transition rates of the machine states depend on

the production rate. Liberopoulous and Hu (1995) obtained monotonicity of the threshold levels

corresponding to different machine states. Srivatsan and Dallery (1998) generalized the Bielecki-

Kumar problem to allow for two products. They limited their focus to only the class of hedging
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point policies and attempted to partially characterize an optimal solution within that class. Bai

and Gershwin (1990) and Bai (1991) use heuristic argument to obtain suboptimal controls in two-

machine flowshops. In addition to nonnegative constraints on the inventory levels in the internal

buffer, they also consider inventory level in this buffer to be bounded above by the size of the buffer.

Moreover, Srivatsan et al. (1994) apply their results to semiconductor manufacturing (jobshop). All

of these papers, however, are heuristic in nature, since they do not rigorously prove the optimality

of the policies for their extensions of the Bielecki-Kumar model.

Presman et al. (1998) extend the hedging point policy to the problem of two products by using

the potential function related to the dynamic programming equation of the two-product problem.

Using a verification theorem for the two-product problem, they prove the optimality of the hedging

point policy. Furthermore, Sethi and Zhang (1999) prove the optimality of the hedging point policy

for a general n-product problem under a special class of cost functions. For its deterministic version,

Sethi et al. (1996) provide explicit optimal control policies and the value function.

The difficulty in proving the optimality in general rather than for these special cases lies in the

fact that when the problem is generalized to include convex cost and multiple machine capacity

levels, explicit solutions are no longer possible. One then needs to develop appropriate dynamic

programming equations, existence of their solutions, and verification theorems for optimality. In

this section, we will review some works related to this.

4.1 Single or parallel machine systems

We consider an n-product manufacturing system given in Section 2.1. For any u(·) ∈ A(m), define

J̄(x,m, u(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))]dt, (4.1)

where x(·) is the surplus process corresponding to the production process u(·) with x(0) = x,

and h(·), c(·) and m(·) are as given in Section 2.1. Our goal is to choose u(·) ∈ A(m) so as to

minimize the average cost J̄(x,m, u(·)). In addition to Assumption (A.2.2) on the production cost

c(·), we assume the production capacity process m(·) and the surplus cost function h(·) to satisfy

the following:

(A.4.1) h(·) is nonnegative and convex with h(0) = 0. There are positive constants C41, C42, and

κ41 such that h(x) ≥ C41|x|κ41 − C42. Moreover, there are constants C43 and κ42 such that

|h(x)− h(x̂)| ≤ C43(1 + |x|k42−1 + |x̂)|κ42−1)|x− x̂|.
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(A.4.2) m(t) is a finite state Markov chain with generator Q, where Q = (qij), i, j ∈M is a (p+1)×
(p + 1) matrix such that qij ≥ 0 for i 6= j and qii = −∑

i6=j qij . We assume that Q is weakly

irreducible. Let ν = (ν0, ν1, ..., νp) be the equilibrium distribution vector of m(t).

(A.4.3) The average capacity m̄ =
∑p

j=0 jνj >
∑n

i=1 zi.

Definition 4.1. A control u(·) ∈ A(m) is called stable if limT→∞E|x(T )|κ42+1/T = 0, where

x(·) is the surplus process corresponding to the control u(·) with (x(0),m(0)) = (x,m) and κ42 is

defined in Assumption (A.4.1). Let B(m) ⊂ A(m) denote the class of stable controls.

It can be shown that there exists a constant λ∗, independent of the initial condition (x(0),m(0)) =

(x,m), and a stable Markov control policy u∗(·) ∈ A(m) such that u∗(·) is optimal, i.e., it minimizes

the average cost defined by (4.1) over all u(·) ∈ A(m), and furthermore,

lim
T→∞

1
T

E

∫ T

0
[h(x∗(t)) + c(u∗(t))]dt = λ∗, (4.2)

where x∗(·) is the surplus process corresponding to u∗(·) with (x(0), m(0)) = (x,m). Moreover,

for any other (stable) control u(·) ∈ B(m),

lim inf
T→∞

1
T

E

∫ T

0
[h(x(t)) + c(u(t))]dt ≥ λ∗. (4.3)

Since we use the vanishing discount approach to treat the problem, we provide the required

results for the discounted problem. First, we introduce a corresponding control problem with the

cost discounted at a rate ρ > 0. For u(·) ∈ A(m), we define the expected discounted cost as

Jρ(x,m,u(·)) = E

∫ ∞

0
e−ρt[h(x(t)) + c(u(t))] dt.

The value function of the discounted problem is defined as

V ρ(x, m) = inf
u(·)∈A(m)

Jρ(x, m,u(·)). (4.4)

In order to study the long-run average cost control problem using the vanishing discount ap-

proach, we must first obtain some properties of the value function V ρ(x,m). Sethi et al. (1997a)

prove the following properties.

Theorem 4.1. (i) There exists a constant ρ0 > 0 such that {ρV ρ(0, 0) : 0 < ρ ≤ ρ0} is bounded.

(ii) The function W ρ(x,m) = V ρ(x,m) − V ρ(0, 0) is convex in x. It is locally uniformly

bounded, i.e., there exists a constant C44 > 0 such that |V ρ(x,m) − V ρ(0, 0)| ≤ C44(1 + |x|κ42+1)

for all (x,m) ∈ R×M, ρ ≥ 0.
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(iii) W ρ(x,m) is locally uniformly Lipschitz continuous in x, with respect to ρ > 0, i.e., for any

X > 0, there exists a constant C45 > 0, independent of ρ, such that |W ρ(x,m) − W ρ(x̂,m)| ≤
C45|x− x̂| for all m ∈M and all |x|, |x̂| ≤ X.

The HJB equation associated with the long-run average cost optimal control problem as for-

mulated above takes the following form

λ = inf
u∈A(m)

{〈Wx(x,m), u− z〉+ c(u)}+ h(x) + QW (x, ·)(m), (4.5)

where λ is a constant, W (·,m) is a real-valued function, known as the potential function or the

relative value function defined on Rn ×M. Without requiring that W (·, m) is C1, it is convenient

to write the HJBDD equation for our problem as follows:

λ = inf
u∈A(m)

{∂W (x,m)/∂(u− z) + c(u)}+ h(x) + QW (x, ·)(m). (4.6)

Let G denote the family of real-valued functions W (·, ·) defined on R ×M such that W (·,m)

is convex and W (·,m) has polynomial growth, i.e., there are constants κ43 and C46 > 0 such that

|W (x,m)| ≤ C46(1 + |x|κ43+1), ∀x ∈ R.

A solution to the HJB or HJBDD equation is a pair (λ,W (·, ·) with λ a constant and W (·, ·) ∈ G.

The function W (·, ·) is called the potential function for the control problem, if λ is the minimum

long-run average cost. The following result directly follows from Theorem 4.1.

Theorem 4.2. For (x,m) ∈ Rn × M, ρV ρ(x,m) → λ and W ρ(x,m) → W 0(x,m) on a

subsequence of ρ → 0. Furthermore, (λ,W 0(·, ·)) is a viscosity solution to the HJB equation (4.5).

Using results from convex analysis, Sethi et al. (1997a) prove the following theorem.

Theorem 4.3. (λ, W 0(·, ·)) defined in Theorem 4.3 is a solution to the HJBDD equation (4.6).

Remark 4.1. When there is no cost of production, i.e., c(u) ≡ 0, Veatch and Caramanis (1999)

introduce the following differential cost function

Ŵ (x,m) = lim
T→∞

[
E

∫ T

0
h(x∗(t))dt− Tλ∗

]
,

where m = m(0), λ∗ is the optimal value, and x∗(t) is the surplus process corresponding to

the optimal production process u∗(·) with x = x∗(0). The differential cost function is used in

the algorithms to compute a reasonable control policy using infinitesimal perturbation analysis

or direct computation of average cost; see Caramanis and Liberopoulos (1992), and Liberopoulos

and Caramanis (1995). They prove that the differential cost function Ŵ (x,m) is convex and
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differentiable in x. If n = 1, h(x1) = |x1| and M = {0, 1}, we know from Bielecki and Kumar

(1988) that

Ŵ (x,m) = W 0(x,m). (4.7)

This means that the differential cost function is the same as the potential function given by Theorem

4.2. However, so far (4.7) has not been established in general. Now we state the following verification

theorem proved by Sethi et al. (1998a).

Theorem 4.4. Let (λ,W (·, ·)) be a solution to the HJBDD equation (4.6). Then the following

holds. (i) If there is a control u∗(·) ∈ A(m) such that

inf
u∈A(m(t))

{
∂W (x∗(t),m(t))

∂(u− z)
+ c(u)

}
=

∂W (x∗(t),m(t))
∂(u∗(t)− z)

+ c(u∗(t)) (4.8)

for a.e. t ≥ 0 with probability one, where x∗(·) is the surplus process corresponding to the control

u∗(·), and limT→∞W (x∗(T ),m(T ))/T = 0, then λ = J(x,m, u∗(·)).
(ii) For any u(·) ∈ A(m), we have λ ≤ J(x, m,u(·)).
(iii) Furthermore, for any (stable) control policy u(·) ∈ B(m), we have

lim inf
T→∞

(1/T )E
∫ T

0
[h(x(t)) + c(u(t))]dt ≥ λ.

In the remainder of this section, let us consider the single product case, i.e., n = 1. For this

case, Sethi et al. (1997a) prove the following result.

Theorem 4.5. For λ and W 0(x,m) given in Theorem 4.2, we have that W 0(x,m) is contin-

uously differentiable in x and (λ,W 0(·, ·)) is a classical solution to the HJB equation (4.5).

Let us define a control policy û(·, ·) via the potential function W 0(·, ·) as follows:

û(x, m) =





0 if ∂W 0(x,m)/∂x > −ċ(0),

(ċ)−1(−∂W 0(x,m)/∂x) if − ċ(m) ≤ ∂W 0(x,m)/∂x ≤ ċ(0),

m if ∂W 0(x,m)/∂x < −ċ(m),

(4.9)

if the function c(·) is strictly convex, or

û(x,m) =





0 if ∂W 0(x, m)/∂x > −c,

k ∧ z if ∂W 0(x, m)/∂x = −c,

m if ∂W 0(x, m)/∂x < −c,

(4.10)
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if c(u) = cu. Therefore, the control policy û(·, ·) satisfies (i) of Theorem 4.4. From the convexity

of the potential function W 0(·,m), there are xm, ym, −∞ < ym < xm < ∞, such that (xm,∞) =

{x : ∂W 0(x,m)/∂x > −ċ(0)} and (−∞, ym) = {x : ∂W 0(x,m)/∂x < −ċ(m)}. The control

policy û(·, ·) can be written as

û(x, m) =





0 if x > xm,

(ċ)−1(−∂W 0(x,m)/∂x) if ym ≤ x ≤ xm,

m if x < ym.

Then we have the following result.

Theorem 4.6. The control policy û(·, ·) defined in (4.9) and (4.10), as the case may be, is

optimal.

By Theorem 4.4, to get Theorem 4.6, we need only to show that limt→∞W 0(x̂(t),m(t))/t = 0.

But this is implied by Theorem 4.5 and the fact that û(·, ·) is a stable control.

Remark 4.2. When c(u) = 0, i.e., there is no production cost in the model, the optimal control

policy can be chosen to be the so-called hedging point policy, which has the following form: there

are real numbers xk, k = 1, ..., m, such that

û(x, k) =





0 if x > xk,

k ∧ z if x = xk,

k if x < xk.

In particular, if h(x) = c1x
+ + c2x

− with x+ = max{0, x} and x− = max{0,−x}, we obtain the

special case of Bielecki and Kumar (1988). This will be reviewed next. When c(u) 6= 0, just as in

Section 2.1 for the case with the discounted cost criterion, we can also get some properties related

to the turnpike set; see Sethi et al. (2001).

The Bielecki-Kumar Case: Bielecki and Kumar (1988) treated the special case in which

h(x) = c1x
+ + c2x

−, c(u) = 0, and the production capacity m(·) is a two-state birth-death Markov

process. Thus, the binary variable m(·) takes the value one when the machine is up and zero when

it is down. Let 1/q1 and 1/q0 represent the mean time between failures and the mean repair time,

respectively. Bielecki and Kumar obtain the following explicit solution:

û(x, k) =





0 if x > x∗,

k ∧ z if x = x∗,

k if x < x∗,
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where

x̂∗ =





0 if q1(c1+c2)
c1(1−z)(q0+q1) and 1−z

q1
> z

q0
,

1
(q0/z)−(q1/(1−z)) log

[
q1(c1+c2)

c1(1−z)(q0+q1)

]
otherwise.

Remark 4.3. When the system equation is governed by the stochastic differential equation

dx(t) = b(x(t), α(t), u(t))dt+ g(x(t), α(t))dξ(t), where b(·, ·, ·), g(·, ·) are suitable functions and ξ(t)

is a standard Brownian motion, Ghosh et al. (1993, 1997) and Basak et al. (1997) have studied

the corresponding HJB equation and established the existence of their solutions and the existence

of an optimal control under certain conditions. In particular, Basak et al. (1997) allow the matrix

g(·, ·) to be of any rank between 1 and n.

Remark 4.4. For n = 2 and c(u) = 0, Srivatsan and Dallery (1998) limit their focus to only

the class of hedging point policies and attempt to partially characterize an optimal solution within

this class.

Remark 4.5. Abbad et al. (1992) and Filar et al. (1999) consider the perturbed stochastic

hybrid system whose continuous part is described by the following stochastic differential equation

dx(t) = ε−1f(x(t), u(t))dt + ε−1/2Adξ(t), where f(·, ·) is continuous in both arguments, A is an

n × n matrix, and ξ(t) is a Brownian motion. The perturbation parameter ε is assumed to be

small. They prove that when ε tends to zero, the optimal solution of the perturbed hybrid system

can be approximated by a structured linear program.

Remark 4.6. Duncan el al. (2001) extend the model of Sethi et al. (1997a) to allow for a

Markovian demand. Feng and Xiao (2002) incorporate a Markovian demand in a discrete-state

version of the model of Bielecki and Kumar (1988).

4.2 Dynamic flowshops

For a dynamic flowshop with the long-run average cost criterion, Presman et al. (2000a) establish

a verification theorem similar to Theorem 4.4 in terms of the corresponding HJBDD equations.

Based on the verification theorem, they characterize the optimal solution. Furthermore, Presman

et al. (2000c) extend these results to the case of a two-machine flowshop with a limited buffer. All

these results are special cases of results on dynamic jobshops reviewed in the next section.
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4.3 Dynamic jobshops

We consider the dynamic jobshop given by (2.5)-(2.7) in Section 2.3, but here our problem is to

find an admissible control u(·) that minimizes the long-run average cost

J̄(x, m,u(·)) = lim sup
T→∞

1
T

E

∫ T

0
H(x(t), u(t))dt, (4.11)

where H(·, ·) defines the cost of surplus and production, x is the initial state, and m is the initial

value of m(t). In addition to Assumptions (A.2.4) and (A.2.5) in Section 2.4, we assume the

following:

(A.4.4) Let (ν1, ..., νp) be the stationary distribution of m(t). Let pn =
∑p

j=1 mj
nνj and n(i, j) =

arg{(i, j) ∈ Kn} for (i, j) ∈ Π. Here pn represents the average capacity of the machine

n, and n(i, j) is the number of machines placed on the arc (i, j). Let {pij > 0 : (i, j) ∈
Kn}(n = 1, ..., N) be such that

∑
(i,j)∈Kn

pij ≤ 1,
∑d

`=0 p`ipn(`,i) > zi, i = d + 1, ..., Nb, and
∑i−1

`=0 p`ipn(`,i) >
∑Nb

`=i+1 pi`pn(i,`), i = 1, ..., d.

Let λ(x, m) denote the minimal expected cost, i.e., λ(x,m) = infu(·)∈A(x,m) J̄(x,m, u(·)). In

order to get the HJB equation for our problem, we introduce some notation. Let G denote the

family of real-valued functions f(·, ·) defined on S ×M such that f(·, m) is convex for any m ∈M.

Let Ĉ(x) be such that for any m ∈M and any x, x̂ ∈ S, f(x, m)− f(x̂, m)| ≤ Ĉ(x)|x− x̂|.
Consider the equation

λ = inf
u∈U(x,m)

{∂f(x, m)/∂Du + G(x, u)}+ Qf(x, ·)(m), (4.12)

where λ is a constant, f(·, ·) ∈ G. We have the following verification theorem due to Presman et

al. (2000b).

Theorem 4.7. Assume (i) (λ, f(·, ·)) with f(·, ·) ∈G satisfies (4.12); (ii) there exists u∗(x, m)

for which

inf
u∈U(x,m)

{
∂f(x, m)

∂Du
+ H(x, u)

}
=

∂f(x, m)
∂Du∗(x, m)

+ H(x, u∗(x, m)), (4.13)

and the equation ẋ(t) = Du∗(x(t), m(t)), has for any initial condition (x∗(0), m(0)) = (x0, m0),

a solution x∗(t) such that limT→∞Ef(x∗(T ),m(T ))/T = 0. Then u∗(t) = u∗(x∗(t), m(t)) is an

optimal control. Furthermore, λ(x0, m0) does not depend on x0 and m0, and it coincides with λ.
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Moreover, for any T > 0,

f(x0, m0) = inf
u(·)∈A(x0,m0)

E

[∫ T

0
(H(x(t), u(t))− λ) dt + f(x(T ), m(T ))

]

= E

[∫ T

0
(H(x∗(t),u∗(t))− λ) dt + f(x∗(T ), m(T ))

]
. (4.14)

Next we try to construct a pair (λ,W (·, ·)) which satisfies (4.12). To get this pair, we use the

vanishing discount approach. Consider a corresponding control problem with the cost discounted

at a rate ρ > 0. For u(·) ∈ A(x, m), we define the expected discounted cost as

Jρ(x, m, u(·)) = E

∫ ∞

0
e−ρtG(x(t), u(t))dt.

Define the value function of the discounted cost problem as

V ρ(x,m) = inf
u(·)∈A(x,m)

Jρ(x,m, u(·)).

Theorem 4.8. There exists a sequence {ρk : k ≥ 1} with ρk → 0 as k → ∞ such that for

(x, m) ∈ S ×M, limk→∞ ρkV
ρk(x, m) = λ, and limk→∞[V ρk(x, m) − V ρk(0, m0)] = W 0(x, m),

where, W 0(x,m) ∈ G.

Theorem 4.9. In our problem, λ(x,m) does not depend on (x, m), and the pair (λ,W 0(·, ·))
defined in Theorem 4.8 is a solution to (4.12).

For the proof of Theorems 4.8 and 4.9, see Presman et al. (2000b).

Remark 4.7. Assumption (A.4.5) is not needed in the discounted case. But it is necessary for

the finiteness of the long-run average cost in the case when h(·, ·) tends to +∞ as xNb
→ −∞.

5 Hierarchical Controls with the Long-Run Average Cost Crite-
rion

In this section, the results on hierarchical controls with the long-run average cost criterion are

reviewed. Hierarchical controls for stochastic manufacturing systems including single/parallel ma-

chine system, the flowshops, and the general jobshops are discussed. For each model, the cor-

responding limiting problem is given, and the optimal value of the original problem is shown to

converge to the optimal value of the limiting problem. Also constructed is an asymptotic optimal

control for the original problem by using a near-optimal control of the limiting problem. The rate

of convergence and error bounds of the constructed control are provided.
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5.1 Single or parallel machine systems

Let us consider a manufacturing system whose system dynamics satisfy the differential equation

ẋε(t) = −diag(a)xε(t) + uε(t)− z, xε(0) = x ∈ Rn, (5.1)

where a = (a1, ..., an) with ai > 0. The attrition rate ai represents the deterioration rate of the

inventory of the finished product type i when xε
i (t) > 0, and it represents a rate of cancellation of

backlogged orders when xε
i (t) < 0. We assume symmetric deterioration and cancellation rates for

product i only for convenience in exposition. It is easy to extend our results when a+
i > 0 denotes

the deterioration rate and a−i > 0 denotes the order cancellation rate.

Let m(ε, t) ∈M = {0, 1, ..., m}, t ≥ 0, denote a Markov process generated by Q(1) + (1/ε)Q(2),

where ε > 0 is a small parameter and Q(`) = (q(`)
ij ), i, j ∈ M, is an (m + 1)× (m + 1) matrix such

that q
(`)
ij ≥ 0 for i 6= j and q

(`)
ii = −∑

j 6=i q
(`)
ij for ` = 1, 2. We let m(ε, t) represent the machine

capacity state at time t.

Definition 5.1. A production control process uε(·) = {uε(t) : t ≥ 0} is admissible, if (i) uε(t)

is a measurable process adapted to F (ε)
t ≡ σ(m(ε, s), 0 ≤ s ≤ t); (ii) uε

k(t) ≥ 0,
∑n

k=1 uε
k(t) ≤ m(ε, t)

for all t ≥ 0.

We denote by Aa,ε(m) to be the set of all admissible controls with the initial condition m(ε, 0) =

m.

Definition 5.2. A function u(x, m) defined on Rn × M is called an admissible feedback

control or simply a feedback control, if (i) for any given initial surplus and production capacity,

the equation ẋε(t) = −diag(a)xε(t) + u(xε(t), m(ε, t)) − z has a unique solution; (ii) the control

defined by uε(·) = {uε(t) = u(xε(t), m(ε, t)), t ≥ 0} ∈ Aa,ε(m).

With a slight abuse of notation, we simply call u(x, m) a feedback control when no ambiguity

arises. For any uε(·) ∈ Aa,ε(m), define the expected long-run average cost

J̄a,ε(x,m, uε(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))]dt, (5.2)

where xε(·) is the surplus process corresponding to the production process uε(·) in Aa,ε(m) with

xε(0) = x, and h(·) and c(·) are given as in Section 2.1. The problem is to obtain uε(·) ∈ Aa,ε(m)
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that minimizes J̄a,ε(x,m, uε(·)). We formally summarize our control problem as follows:

P̄a,ε :





min J̄a,ε(x,m, uε(·)) = lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))]dt,

s.t. ẋ(t) = −diag(a)xε(t) + uε(t)− z, xε(0) = x, uε(·) ∈ Aa,ε(m),

minimum average cost λε = inf
uε(·)∈Aa,ε(m)

J̄a,ε(x,m, uε(·)).

Here we assume that the production cost function c(·) and the surplus cost function h(·) satisfy

(A.3.1), and the machine capacity process m(ε, t) satisfies (A.3.2) and (A.3.3). Furthermore, similar

to Assumption (A.4.3), we also assume

(A.5.1)
∑p

j=0 jνj ≥
∑n

i=1 zi.

As in Fleming and Zhang (1998), the positive attrition rate a implies a uniform bound for

xε(t). In view of the fact that the control uε(·) is bounded between 0 and m, this implies that any

solution xε(·) to (5.1) must satisfy

|xε
i (t)| =

∣∣∣∣xie
−ait + e−ait

∫ t

0
eais(uε

i (s)− zi)ds

∣∣∣∣

≤ |xi|e−ait +
m + zi

ai
, i = 1, ..., n. (5.3)

Thus, under the positive deterioration/cancellation rate, the surplus process x(t) remains bounded.

The average cost optimality equation associated with the average-cost optimal control problem in

Pa,ε, as shown in Sethi et al. (1997), takes the form

λ̄ε = inf
ui≥0,

∑n

i=1
ui≤k

{
∂Wa,ε(x,m)

∂(−diag(a)x + u− z)
+ c(u)

}

+h(x) +
(

Q(1) +
1
ε
Q(2)

)
Wa,ε(x, ·)(m), (5.4)

where Wa,ε(x,m) is the potential function of the problem Pa,ε. The analysis begins with a proof

of the boundedness of λε. Sethi et al. (1997b) prove the following result.

Theorem 5.1. The minimum average expected cost λε of Pa,ε is bounded in ε, i.e., there

exists a constant C51 > 0 such that 0 ≤ λε ≤ C51 for all ε > 0.

In order to construct open-loop and feedback hierarchical controls for the system, one derives

the limiting control problem as ε → 0. As in Sethi et al. (1994b), consider the enlarged control

space

Aa = {U(·) = (u0(·),u1(·), ...,up(·)) : uk
i (t) ≥ 0, ∀i and

p∑

i=1

uk
i (t) ≤ k, t ≥ 0,

U(·) is a deterministic process}.
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Then, define the limiting control problem P̄a as follows:

P̄a :





J̄a(x, U(·)) = lim supT→∞
1
T

∫ T
0 [h(x(s)) +

∑p
k=0 νkc(uk(s))]ds,

s.t. ẋ(t) = −diag(a)x(t) +
∑p

k=0 νku
k(t)− z, x(0) = x, U(·) ∈ Aa,

minimum average cost λ = infU(·)∈Aa J̄a(x, U(·)).
The average-cost optimality equation associated with the limiting control problem P̄a is

λ̄ = inf
uk

i≥0,
∑n

i=1
uk

i≤k,k∈M

{
∂Wa(x)

∂(−diag(a)x +
∑p

k=0 νkuk − z)
+

p∑

k=0

νkc(uk)

}
+ h(x), (5.5)

where Wa(x) is a potential function for Pa. From Sethi et al. (1997b), we know that there exist

λ̄ and W̄a(x) such that (5.5) holds. Moreover, W̄a(x) is the limit of W̄a,ε(x, k) as ε → 0. Armed

with Theorem 5.1, one can derive the convergence of the minimum average expected cost λε as ε

goes to zero, and establish the convergence rate. The following two theorems are proved in Sethi

et al. (1997b).

Theorem 5.2. There exists a constant C52 such that for all ε > 0, |λε − λ| ≤ C52ε
1
2 . This

implies in particular that limε→0 λε = λ.

Theorem 5.3. (Open-loop control) Let Ū(·) = (ū0(·), ū1(·), ..., ūp(·)) ∈ Aa be an optimal

control for P̄a, and let uε(t) =
∑p

i=0 I{m(ε,t)=i}ūi(t). Then uε(·) ∈ Aa,ε(m(ε, 0)), and uε(·)
is asymptotically optimal for P̄a,ε, i.e., |λε − J̄a,ε(x,m(ε, 0), uε(·))| ≤ C53ε

1
2 for some positive

constant C53.

Remark 5.1. A similar averaging approach is introduced in Altman and Gaitsgory (1993,

1997), Nguyen and Gaitsgory (1997), Shi et al. (1998), and Nguyen (1999). They consider a class

of nonlinear hybrid systems in which the parameters of the dynamics of the system may jump

at discrete moments of time, according to a controlled Markov chain with finite state and action

spaces. They assume that the unit of the length of intervals between the jumps is small. They

prove that the optimal solution of the hybrid systems governed by the controlled Markov chain can

be approximated by the solution of a limiting deterministic optimal control problem.

Remark 5.2. Without deterioration and cancellation rates (a = 0), the system dynamics

equation is given by ẋε(t) = uε(t) − z. With the same cost function given by (5.2), we can still

obtain the convergence of the minimum average cost, see Sethi and Zhang (1998a). Furthermore,

Sethi et al. (2000a) obtain the optimal feedback control for the limiting control problem P̄a

with n = 2, c(u) = 0, and h(x) = c+
1 x+

1 + c−1 x−1 + c+
2 x+

2 + c−2 x−2 (see (3.15)). Consequently, an

asymptotically optimal feedback control for the original control problem P̄a,ε can be constructed.
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5.2 Dynamic flowshops

For dynamic flowshops, Sethi et al. (2000b) prove the convergence of the minimum average expected

cost in the hierarchical framework. Furthermore, they use the technique of partial pathwise lifting

and pathwise shrinking to construct an asymptotically optimal control. These will be reviewed in

the next section for the more general case of dynamic jobshops.

5.3 Dynamic jobshops

We consider the jobshop given in Section 3.3. The dynamics of the system are given by




ẋε
i (t) = −aix

ε
i (t) + (

∑i−1
`=0 uε

`i(t)−
∑Nb

`=i+1 uε
i`(t)), 1 ≤ i ≤ d,

xε
i (t) = −aix

ε
i (t) + (

∑d
`=0 uε

`i(t)− zi), d + 1 ≤ i ≤ Nb,

with xε(0) := (xε
1(0), ..., xε

Nb
(0)) = (x1, ..., xNb

) = x. We write this in the vector form as

ẋε(t) = (ẋε
1(t), ..., ẋNb

(t))′

= −diag(a)xε(t) + D(uε
0(t), ...,u

ε
d+1(t))

′, (5.6)

where a = (a1, ..., aNb
)′, uε

`(t) = (uε
`,`+1(t), ..., u

ε
`,Nb

(t))′, ` = 0, ..., d, and uε
d+1(t) = (zd+1, ..., zNb

)′, ` =

d + 1, ..., Nb. Our problem is to find an admissible control u(ε, ·) that minimizes the average cost

J̄ε(x, m) = lim sup
T→∞

1
T

E

∫ T

0
[h(xε(t)) + c(uε(t))]dt, (5.7)

where h(·) defines the cost of inventory/shortage, c(·) is the production cost, x is the initial state,

and m is the initial value of m(ε, t) = (m1(ε, t), ..., mN (ε, t)).

In addition to Assumptions (A.3.4)-(A.3.6) in Section 3.3 on the cost functions h(·) and c(·)
and the machine capacity process m(ε, t), we assume that m(ε, t) satisfies the following:

(A.5.2) Let pn =
∑p

j=1 mj
nνj , and n(i, j) = arg{(i, j) ∈ Kn} for (i, j) ∈ Π, that is, pn is the average

capacity of the machine n, and n(i, j) is the number of the machine located on the arc (i, j).

Let {pij > 0 : (i, j) ∈ Kn}(n = 1, ..., N) be such that
∑

(i,j)∈Kn
pij ≤ 1,

∑m
`=0 p`ipn(`,i) >

zi, i = d + 1, ..., Nb, and
∑i−1

`=0 p`ipn(`,i) >
∑Nb

`=i+1 pi`pn(i,`), i = 1, ..., d.

We use Aε(x, m) to denote the set of all admissible controls with respect to x ∈ S and m(ε, 0) =

m. Let λε(x, m) denote the minimal expected cost, i.e.,

λε(x, m) = inf
u(·)∈Aε(x,m)

J̄ε(x,m). (5.8)
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In the case of the long-run average cost criterion used here, we know, by Theorem 2.4 in Presman

et al. (2000b), that under Assumption (A.5.2), λε(x, m) is independent of the initial condition

(x, m). Thus we will use λε instead of λε(x, m). We use Pε to denote our control problem, i.e.,

Pε :





minimize Jε(x, m0) = lim supT→∞
1
T E

∫ T
0 h(xε(t)) + u(uε(t))dt,

subject to





ẋε(t) = −diag(a)xε(t) + Duε(t), xε(0) = x,

uε(·) ∈ Aε(x,m)

value function λε = infuε(·)∈Aε(x,m0) Jε(x,m).

(5.9)

As in Section 5.1, the positive attrition rate a implies a uniform bound for xε(t). Next we examine

elementary properties of the potential function and obtain the limiting control problem as ε → 0.

The HJBDD equation, as shown in Sethi et al. (1998b, 2000c), takes the form

λε = inf
u∈U(x,mj)

{
∂Wa,ε(x, mj)

∂(−diag(a)x + Du)
+ c(u)

}
+ h(x)

+
(

Q(1) +
1
ε
Q(2)

)
Wa,ε(x, ·)(mj), (5.10)

where Wa,ε(x, mj) is the potential function of the problem Pε. Moreover, following Presman et

al. (2000b), we can show that there exists a potential function Wa,ε(x, m) such that the pair

(λε,Wa,ε(x, m)) is a solution of (5.10), where λε is the minimum average expected cost for Pε.

First, we can get the boundedness of λε.

Theorem 5.4. There exists a constant M1 > 0 such that 0 ≤ λε ≤ M1 for all ε > 0.

For its proof, see Sethi et al. (2000c). Now we derive the limiting control problem as ε → 0.

As in Sethi and Zhou (1994), for x ∈ S, let A0(x) denote the set of measurable controls

U(·) = (u1(·), ...,up(·))

= ((u1,0
0 (·), ...,u1,0

d )(·), ..., (up,0
0 (·), ..., up,0

d )(·)),

with uj,0
k (·) = (uj,0

k,k+1(·), ..., uj,0
k,Nb

(·)), such that 0 ≤ ∑
(i,j)∈Kn

uj,0
ij (t) ≤ mj

n for all t ≥ 0, j = 1, ..., p,

and n = 1, ..., N , and the corresponding solutions x(·) of the system




ẋk(t) = −akxk(t) +
(∑p

j=1 γj
∑k−1

`=0 uj
`k(t)−

∑p
j=1 γj

∑N
`=k+1 uj

k`(t)
)

,

k = 1, ..., d, and

ẋk(t) = −akxk(t) +
(∑p

j=1 γj
∑d

`=1 uj
`k(t)− dk

)
, k = d + 1, ..., N,

with (x1(0), ..., xN (0)) = (x1, ..., xN ) satisfy x(t) ∈ S for all t ≥ 0.
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The objective is to choose a control U(·) ∈ A0(x) that minimizes

J̄(U(·)) = lim sup
T→∞

1
T

∫ T

0
[h(x(s)) +

p∑

j=0

γjc(uj(s))]ds.

We use P0 to denote the above problem, and regard this as our limiting problem. Then we define

the limiting control problem P0 as follows:

P0 :





J̄(U(·)) = lim supT→∞
1
T

∫ T
0

[
h(x(s)) +

∑p
j=0 γjc(uj(s))

]
ds,




ẋk(t) = −akxk(t) +
(∑p

j=1 γj
∑k−1

`=0 uj
`k(t)−

∑p
j=1 γj

∑N
`=k+1 uj

k`(t)
)

,

with xk(0) = xk, k = 1, ..., d, and

ẋk(t) = −akxk(t) +
(∑p

j=1 γj
∑d

`=0 uj
`m(t)− dk

)
,

with xk(0) = xk k = d + 1, ..., N,

U(·) ∈ A0(x),

minimum average cost λ = infU(·)∈A0 J̄(U(·)).

The average cost optimality equation associated with the limiting control problem P0 is

λ = inf
U0∈A0





∂Wa(x)
∂(−diag(a)x + DU0)

+
p∑

j=0

γjc(uj)



 + h(x), (5.11)

where Wa(x) is a potential function for P0 and U0 =
∑p

j=1 γju
j . From Presman et al. (2000b),

we know that there exist λ̄ and Wa(x) such that (5.11) holds. Moreover, Wa(x) is the limit of

Wa,ε(x, m) as ε → 0. The following convergence result for the minimum average expected cost

λε, as ε goes to zero, is established in Sethi et al. (2000c).

Theorem 5.5. For any δ ∈ [0, 1
2) there exists a constant Ĉ56 > 0 such that for all sufficiently

small ε > 0, |λε − λ| ≤ Ĉ56ε
δ. This implies in particular that limε→0 λε = λ.

5.4 Markov decision processes with weak and strong interactions

Markovian decision processes (MDP) have received much attention in recent years because of their

capability in dealing with a large class of practical problems under uncertainty. The formulation

of many practical problems, such as queueing and machine replacement, fits well in the framework

of Markov decision processes; see Derman (1970). In this section we present results that provide

a justification for hierarchical controls of a class of Markov decision problems. We focus on the

problem of a finite state continuous-time Markov decision process that has both weak and strong

interactions. More specifically, the state of the process can be divided into several groups such that
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transitions among the states within each group occur much more frequently than the transitions

among the states belonging to different groups. By replacing the states in each group by the

corresponding average distribution, we can derive a limiting problem which is simpler to solve.

Given an optimal solution to limiting problem, we can construct a solution for the original problem

which is asymptotically optimal. Proofs of results in this section can be found in Zhang (1996).

Let us consider a Markov decision process x(·) = {x(t) : t ≥ 0} and a control process u(·) =

{u(t) = u(x(t)) : t ≥ 0} such that u(t) ∈ U , t ≥ 0, where U is a set with finite elements. Let

Qε(u(t)) = (qε
ij(u(t))), t ≥ 0, denote the generator of x(·) such that Qε(u) =

1
ε
A(u) + B(u), where

A(u) = diag{A1(u), . . . , Ar(u)}, Ak(u) = (ak
ij(u))pk×pk

with ak
ij(u) ≥ 0 for j 6= i and

∑
j ak

ij(u) = 0,

B(u) = (bij(u))p×p with p = p1 + · · ·+ pr, bij(u) ≥ 0 for j 6= i and
∑

j bij(u) = 0, and ε is a small

parameter. For each k = 1, . . . , r, let Mk = {sk1, . . . , skpk
}, where pk is the dimension of Ak(u).

The state space of x(·) is given by M = M1 × . . .×Mr, i.e.,

M = {s11, . . . , s1p1 , s21, . . . , s2p2 , . . . , sr1, . . . , srpr}.

The matrix A(u) dictates the fast transition of the process x(·) within each group Mk, k =

1, . . . , r, and the matrix B(u) together with the average distribution of the Markov chain generated

by Ak(u) dictates the slow transition of x(·) between different groups. When ε is small, the process

x(·) has a strong interaction within any group Mk, k = 1, . . . , r, and has a weak interaction among

these groups. Let u = u(i) denote a function such that u(i) ∈ U for all i ∈ M. We call u an

admissible control and use Υ to denote all such functions. For each k = 1, . . . , r, let

Γk = {Uk := (uk1, . . . , ukpk) : such that ukj ∈ U, j = 1, . . . , pk}.

The control set for the limiting problem is defined as Γ = Γ1 × · · · × Γr, i.e.,

Γ = {U = (U1, . . . , U r) = (u11, . . . , u1p1 , . . . , ur1, . . . , urpr)

: such that Uk ∈ Γk, k = 1, . . . , r}.

We define matrices Āk, B̄, and Q̄ε as follows. For each U = (U1, . . . , U r) ∈ Γ, let Āk(Uk) =
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(ak
ij(ski, u

ki)), k = 1, . . . , r, B̄(U) = (b̄ij(U)) where

b̄ij(U) =





bij(u1i) if 1 ≤ i ≤ p1,

bij(u2(i−p1)) if p1 + 1 ≤ i ≤ p1 + p2,

· · · · · ·
bij(ur(i−p+pr)) if p− pr + 1 ≤ i ≤ p.

with p = p1 + · · ·+ pr, and

Q̄ε(U) =
1
ε
diag

{
Ā1(U1), . . . , Ār(U r)

}
+ B̄(U). (5.12)

For each Uk ∈ Γk, let νk(Uk) denote the average distribution of the Markov chain generated by

Āk(Uk) for k = 1, . . . , r. Define ν(U) = diag{ν1(U1), . . . , νr(U r)} and Ie = diag{ep1 , . . . , epr} with

epk
= (1, . . . , 1)′ being pk dimensional column vector. Using ν(U) and Ie, we define another matrix

Q̄(U) as a function of U ∈ Γ:

Q̄(U) = ν(U)B̄(U)Ie. (5.13)

Note that the kth row of Q̄(U) depends only on Uk. Thus, Q̄(U) = (q̄ij(U i))r×r. We write, with

an abuse of notation, Q̄(Uk)f(·)(k) =
∑

k′ 6=k q̄kk′(Uk)(f(k′) − f(k)) instead of Q̄(U)f(·)(k), for a

function f defined on {1, . . . , r}. We assume the following:

(A.5.3) For each U ∈ Γ, U is a finite set, Āk(Uk) is irreducible, k = 1, . . . , r, and for each ε > 0,

Q̄ε(U) is irreducible, where Q̄ε(U) is defined in (5.12).

We consider the following problem:

P̄ε :





minimize Jε(u) = lim sup
T→∞

1
T

E

∫ T

0
G(x(t), u(x(t)))dt,

subject to x(t) ∼ Qε(u(t)), x(0) = i, u ∈ Υ,

value function λε = inf
u∈Aε

Jε(u).

(5.14)

Note that the average cost function is independent of the initial value x(0) = i, and so is the value

function. The dynamic programming (DP) equation for P̄ε is

λε = min
u∈U

{G(i, u) + Qε(u)W ε(·)(i)} , (5.15)

where W ε(·) is a function defined on M.
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Theorem 5.6. (i) For each fixed ε > 0, there exists a pair (λε,W ε(·)) that satisfies the DP

equation (5.15).

(ii) The DP equation (5.15) has a unique solution in the sense that for any other solution

(λ̃ε, W̃ ε(·)) to (5.15), λ̃ε = λε and W̃ ε(·) = W ε(·) + K for some constant K.

(iii) Let u∗ε = u∗ε(i) ∈ U denote a minimizer of the right-hand side of (5.15). Then u∗ε(i) ∈ Aε

is optimal, i.e., Jε(u∗ε) = λε.

Motivated by Sethi and Zhang (1994a), we next define the limiting problem. For Uk ∈ Γk,

define Ḡ(k, Uk) =
∑mk

j=1 νk
j (Uk)G(skj , u

kj), k = 1, . . . , r, where νk(Uk) = (νk
1 (Uk), . . . , νk

mk
(Uk))

is the average distribution of the Markov chain generated by Ak(Uk). Let A0 denote a class of

functions U = U(k) ∈ Γk, k = 1, . . . , r. For convenience, we will call U = (U(1), . . . , U(r)) ∈ A0,

an admissible control for the limiting problem P̄0 defined below:

P̄0 :





minimize J0(U) = lim sup
T→∞

1
T

E

∫ T

0
Ḡ(x̄(t), U(x̄(t)))dt,

subject to x̄(t) ∼ Q̄(U(x̄(t))), x̄(0) = k, U ∈ A0,

value function λ0 = inf
U∈A0

J0(U).

(5.16)

It can be shown that Q̄(U) is irreducible for each U ∈ Γ. The DP equation for P̄0 is

λ0 = min
Uk∈Γk

{
Ḡ(k, Uk) + Q̄(Uk)W 0(·)(k)

}
, (5.17)

for some function W 0(·).
Theorem 5.7. (i) There exists a pair (λ0,W 0(·)) that satisfies the DP equation (5.17).

(ii) The DP equation (5.17) has a unique solution in the sense that for any other solution

(λ̃0, W̃ 0(·)) to (5.17), λ̃0 = λ0 and W̃ 0(·) = W 0(·) + K for some constant K.

(iii) Let U∗ ∈ Γ denote a minimizer of the right-hand side of (5.17). Then U∗ ∈ A0 is optimal,

i.e., J0(U∗) = λ0.

Remark 5.3. Note that the number of the DP equations for P̄ε is equal to p = p1 + · · ·+ pr,

while the number of those for P̄0 is only r. Since for each k = 1, . . . , r, pk ≥ 2, it follows that

p − r ≥ r. The difference between p and r could be very large for either large r or a large pk for

some k. Since the computational effort involved in solving the DP equations depends in part on

the number of the equations to be solved (see Hillier and Lieberman (1989)), the effort in solving

the DP equations for P̄0 is substantially less than that of solving P̄ε for (p− r) large.
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Insight 5.1. In the presence of states with weak and strong interactions, a near-optimal

control of the original problem can be constructed from the solution of an approximate problem

with reduced number of states, each of which is formed by aggregating the original states within

a group using the stationary distribution of these states given the reduced state corresponding to

the group.

We construct a control uε as follows:

uε = uε(x) =
r∑

k=1

pk∑

j=1

I{x=skj}u
kj
∗ , (5.18)

where IA is the indicator of a set A.

Theorem 5.8. Let U∗ ∈ A0 denote an optimal control for P̄0 and let uε ∈ Aε be the corre-

sponding control constructed as in (5.18). Then, uε is asymptotically optimal and with error bound

ε, i.e., Jε(uε)− λε = O(ε).

Remark 5.4. Filar et al. (1999) introduce diffusions in these models; see Remark 4.5. In

their model, all jumps are associated with a slow process, while the continuous part including the

diffusions is associated with a small parameter ε (see Remark 4.5) representing a fast process. As ε

tends to zero, the problem is shown to reduce to a structured linear program. Its optimal solution

can then be used as an approximation to the optimal solution of the original system associated

with a small ε.

5.5 Single or parallel machine systems with risk-sensitive average cost criterion

Consider a single product, single/parallel machine manufacturing system described in Subsection

5.1 with the objective of minimizing the risk-sensitive average cost criterion over an infinite horizon.

Then, the objective is to choose uε(·) ∈ Aa,ε(m) so as to minimize

Jε(uε(·)) = lim sup
T→∞

ε

T
log

[
E exp

(
1
ε

∫ T

0
[h(xε(t)) + c(uε(t))] dt

)]
, (5.19)

where xε(·) is the surplus process corresponding to the production process uε(·). Let λε =

infuε(·)∈Aa,ε(m) Jε(uε(·)). Fleming and Zhang (1998) establish the verification theorem in terms

of a viscosity solution, and give an asymptotically optimal control.
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6 Extensions and Concluding Remarks

In this paper, we have reviewed various models of manufacturing systems consisting of flexible

machines for which a theory of optimal control has been developed and for which hierarchical

controls that are asymptotically optimal have been constructed. We have examined systems with

random production capacity and/or demand under various configurations including jobshops and

multiple hierarchical decision levels. We have considered different performance criteria such as

discounted costs, long-run average costs, risk-sensitive controls with discounted costs, and risk-

sensitive controls with average costs.

While asymptotic optimal controls have been constructed for these systems under fairly general

conditions, many problems remain open. We shall now describe some of them.

All of the results on the hierarchical controls in this survey assume the costs of inventory/shortage

and of production to be separable. Lehoczky et al. (1991) assume a nonseparable cost and prove

that the value function of the original problem converges to the value function of the limiting

problem. Controls are constructed and are only conjectured to be asymptotically optimal.

With regards to systems with state constraints such as flowshops and jobshops discussed in

Sections 3 and 5, respectively, only asymptotic optimal open-loop controls are constructed in gen-

eral. Because of the absence of the Lipschitz property of the constructed feedback controls, their

asymptotic optimality is much harder to establish. It has only been done in Sethi and Zhou (1996a,

b) and Fong and Zhou (1996, 1997) for two-machine flowshops with a specific cost structure given

in (3.15). Generalization of their results to jobshops and to general cost functions represents a

challenging research problem.

When the Markov processes involved depend on control variables, as they do in Soner (1993),

Sethi and Zhang (1994c, 1995a), and Yin and Zhang (1997), no error bounds are available for

constructed asymptotic optimal controls. Estimation of these errors and extensions of the results

to Markov processes depending as well on the state variables remain open problems.

In the case of the long-run average cost criterion, with the exception of single/parallel machine

systems in Section 5.1, we have constructed open-loop hierarchical controls only in presence of an

attrition rate. Extensions of these results to systems without an attrition term remain open. No

hierarchical feedback controls that are optimal have been constructed. In case of optimal control

53



of these ergodic systems, verification theorems have been obtained, but the existence of optimal

controls is proved only in the single product case of Section 4.1. In other cases, even the existence

of optimal controls remains an open issue.

An important class of manufacturing systems consists of systems that have machines which

are not completely flexible, and thus involve setup costs and/or setup times, when switching from

production of one product to that of another. Such systems have been considered by Gershwin

(1986), Gershwin et al. (1988), Sharifnia et al. (1991), Caramanis et al. (1991), Connolly et

al. (1992), Hu and Caramanis (1992), and Srivatsan and Gershwin (1990). They have examined

various possible heuristic policies and have carried out numerical computations and simulations.

They have not studied their policies from the viewpoint of asymptotic optimality. Sethi and Zhang

(1995b) have made some progress in this direction.

Based on the theoretical work on hierarchical control of stochastic manufacturing systems,

Srivatsan (1993) and Srivatsan et al. (1994) have developed a hierarchical framework and describe

its experimental implementation in a semiconductor research laboratory at MIT. It is expected

that such research would lead to the development of real-time decision making algorithms suitable

for use in actual flexible manufacturing facilities; see also Caramanis and Sharifnia (1991).

Finally, while error bounds have been obtained only in some cases, they do not provide informa-

tion on how small ε, the rate of slow and fast rates, have to be for asymptotic hierarchical controls

to be acceptable in practice. This issue can only be investigated computationally, and that was

done by Samaratunga et al. (1997) only for a two-machine flowshop. From a practical viewpoint,

it is important to perform such investigations for dynamic jobshops.
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[70] Lasserre, J. B., C. mercé. 1990. Robust hierarchical production planning under uncertainty.

Annals of Operations Research. 26 73-87.

60



[71] Lehoczky, J., S. P. Sethi, H. M. Soner, M. I. Taksar. 1991. An asymptotic analysis of hier-

archical control of manufacturing systems under uncertainty. Mathematics Operations Research.

16 596-608.

[72] Liberopoulos, G., M. Caramanis. 1995. Dynamics and design of a class of parameterized man-

ufacturing flow controllers. IEEE Trans. Automatic Control. 40 201-272.

[73] Liberopoulos, G., J. Hu. 1995. On the ordering of optimal hedging points in a class of manu-

facturing flow control models. IEEE Trans. Automatic Control. 40 282-286.

[74] Libosvar, C. M.. 1988. Hierarchies in production management and control: a survey. Technical

Report, LIDS-P-1734, Lab. for Infor. and Decision Systems, MIT, Cambridge, MA.

[75] Lieber, Z. 1973. An extension of Modigliani and Hohn’s planning horizons results. Management

Science. 20 319-330.

[76] Lou, S., P. Kager. 1989. A robust production control policy for VLSI wafer fabrication. IEEE

Trans. on Semiconductor Manufacturing. 2 159-164.

[77] Lou, S., S. P. Sethi, Q. Zhang. 1994. Optimal feedback production planning in a stochastic

two machine flowshop. European Journal of Operational Research–Special Issue on Stochastic

Control Theory and Operational Research. 73 331-345.

[78] Lou, S., G. van Ryzin. 1989. Optimal control rules for scheduling job shops. Annals of Opera-

tions Research. 17 233-248.

[79] Mesarovic, M., D. Macko, Y. Takahara. 1970. Theory of Multilevel Hierarchical Systems. Aca-

demic, New York, NY.

[80] Modigliani, F., F. Hohn. 1955. Production planning over time and the nature of the expectation

and planning horizon. Econometrica. 23 46-66.

[81] Nagi, R. 1991. Design and Operation of Hierarchical Production Management Systems. PH.D.

Thesis, System Research Center, University of Maryland, Baltimore, MD.

61



[82] Nguyen, M. T. 1999. Singular Perturbations in Deterministic and Stochastic Hybrid Control

Systems: An Averaging Approach. Doctoral Dissertation, University of South Australia, Adelaide,

Australia.

[83] Nguyen, M. T., V. Gaitsgory. 1997. asymptotic optimization for a class of nonlinear stochastic

hybrid systems on infinite time horizon. Proceedings of the 1997 American Control Conference,

3587-3591.

[84] Presman, E., S. P. Sethi, W. Suo. 1997a. Optimal feedback production planning in stochastic

dynamic jobshops. Mathematics of Stochastic Manufacturing Systems, Proceedings of the 1996

AMS-SIAM Summer Seminar in Applied Mathematics, G. Yin and Q. Zhang(Eds.), Lectures in

Applied Mathematics, American Mathematical Society, Providence, RI, 235-252.

[85] Presman, E., S. P. Sethi, W. Suo. 1997b. Optimal feedback production planning in a stochastic

N -machine flowshop with limited buffers. Automatica. 33 1899-1903.

[86] Presman, E., S. P. Sethi, H. Zhang, Q. Zhang. 1998. Optimality of zero-inventory policies for

an unreliable manufacturing system producing two part types. Dynamics of Continuous, Discrete

and Impulsive Systems. 4 485-496.

[87] Presman, E., S. P. Sethi, H. Zhang. 2000a. Optimal production planning in a N -machine

flowshop with long-run average cost. Mathematics and Its Applications to Industry, Edited by S.

K. Malik, Indian National Science Academy, New Delhi, 121-140.

[88] Presman, E., S. P. Sethi, H. Zhang. 2000b. Optimal production planning in stochastic jobshops

with long-run average cost. Optimization, Dynamics, and Economic Analysis, Essays in Honor

of Gustav Feichtinger, E. J. Dockner, R. F. Hartl, M. Luptacik, and G. Sorger (Eds.), Physica-

Verlag, Heidelberg, New York, 259-274.

[89] Presman, E., S. P. Sethi, H. Zhang, A. Bisi. 2000c. Optimality in two-machine flowshop with

limited buffer. Annals of Operations Research. 98 333-351.

[90] Presman, E., S. P. Sethi, Q. Zhang. 1993. Optimal feedback production planning in a stochastic

N−machine flowshop. Proc. of 12th World Congress of International Federation of Automatic

Control, Sydney, Australia.

62



[91] Presman, E., S. P. Sethi, Q. Zhang. 1995. Optimal feedback production planning in a stochastic

N-machine flowshop. Automatica. 31 1325-1332.

[92] Rogers, D. F., J. R. Evans, R. D. Plante, R. T. Wong. 1991. Aggregation and disaggregation

techniques and methodology in optimization. Operations Research. 39 553-582.

[93] Saksena, V. R., J. O’Reilly, P. Kokotovic. 1984. Singular perturbations and time-scale methods

in control theory: survey 1976-1983. Automatica. 20 273-293.

[94] Samaratunga, C., S. P. Sethi, X. Y. Zhou. 1997. Computational evaluation of hierarchical

production control policies for stochastic manufacturing systems. Operations Research. 45 258-

274.

[95] Sethi, S. P. 1997. Some insights into near-optimal plans for stochastic manufacturing systems.

Mathematics of Stochastic Manufacturing Systems, G. Yin and Q. Zhang(Eds.), Lectures in

Applied Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 287-315.

[96] Sethi, S. P., H. M. Soner, Q. Zhang, J. Jiang. 1992a. Turnpike sets and their analysis in

stochastic production planning problems. Mathematics of Operations Research. 17 932-950.

[97] Sethi, S. P., W. Suo, M.I. Taksar, H. Yan. 1998a. Optimal production planning in a multi-

product stochastic manufacturing system with long-run average cost. J. Discrete Event Dynamic

Syst. 8 37-54.

[98] Sethi, S. P., W. Suo, M.I. Taksar, Q. Zhang. 1997a. Optimal production planning in a stochastic

manufacturing system with long-run average cost. Journal of Optimization Theory and Applica-

tions. 92 161-188.

[99] Sethi, S. P., M. I. Taksar, Q. Zhang. 1992b. Capacity and production decisions in stochastic

manufacturing systems: An asymptotic optimal hierarchical approach. Prod. & Oper. Mgmt. 1

367-392.

[100] Sethi, S. P., M. I. Taksar, Q. Zhang. 1994a. Hierarchical decomposition of production and

capacity investment decision in stochastic manufacturing systems. International Transactions in

Operations Research. 1 435-451.

63



[101] Sethi, S. P., G. L. Thompson. 1981a. Simple models in stochastic production planning. Applied

Stochastic Control in Econometrics and Management Science, Bensoussan, A., Kleindorfer, P.

and Tapiero, C. (eds.). North-Holland, Amsterdam, 295-304.

[102] Sethi, S. P., G. L. Thompson. 1981b. Optimal Control Theory: Applications to Management

Science. Martinus Nijhoff Publishing, Boston, MA.

[103] Sethi, S. P., H. Yan, H. Zhang, Q. Zhang, 2000e. ”Optimal and Hierarchical Controls in

Dynamic Stochastic Manufacturing Systems: A Review,” Interactive Transactions of OR/MS

(http://catt.okstate.edu/itorms/prevol/index.html), 3, 2.

[104] Sethi, S. P., H. Yan, H. Zhang, Q. Zhang. 2001. Turnpike Set Analysis in Stochastic Manufac-

turing Systems with Long-Run Average Cost. Optimal Control and Partial Differential Equations

in Honour of Professor Alain Bensoussans 60th Birthday, J.L. Menaldi, E. Rofman, and A. Sulem

(Eds.), IOS Press, Amsterdam, 414-423.

[105] Sethi, S. P., H. Yan, Q. Zhang, X. Y. Zhou. 1993. Feedback production planning in a stochastic

two machine flow shop: asymptotic analysis and computational results. Int. J. Production Econ.

30-31 79-93.

[106] Sethi, S. P., H. Zhang. 1998a. Hierarchical production planning in a stochastic manufactur-

ing systems with long-run average cost: Asymptotic Optimality. Stochastic Analysis, Control,

Optimization and Applications, A Volume in Honor of W. H. Fleming, eds. W. McEneany, Y.

Yin, and Q. Zhang, Birkhäuser, Boston.
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Initial Control Policy

State HC KC OC

(x1, x2) Cost Parameters Cost Parameters Cost

(0,50) 771.45 (0.00,1.00) 771.45 (0.00,1.00) 770.31

(0,20) 252.72 (3.51,1.52) 253.53 (0.00,3.00) 231.38

(0,10) 150.77 (3.00,2.00) 151.85 (0.00,3.22) 101.13

(0,5) 132.08 (2.34,2.06) 132.16 (2.29,1.81) 69.11

(0,0) 132.76 (2.75,1.58) 132.76 (2.75,1.58) 66.56

(0,-5) 288.17 (3.75,1.50) 288.17 (3.75,1.50) 239.45

(0,-10) 617.27 (4.25,1.25) 617.27 (4.25,1.25) 590.67

(0,-20) 1469.54 (1.00,0.00) 1469.54 (1.00,0.00) 1466.54

(20,20) 414.78 (1.00,1.00) 414.98 (0.50,2.50) 406.96

(10,10) 194.74 (2.33,2.36) 194.74 (2.33,2.35) 165.71

(5,5) 136.80 (2.79,1.64) 136.80 (2.49,1.79) 84.49

(5,-5) 267.87 (4.98,1.22) 267.87 (4.98,1.22) 214.46

(10,-10) 586.04 (6.41,0.72) 586.04 (6.41,0.72) 539.86

(20,-20) 1420.34 (1.00,0.00) 1420.34 (1.00,0.00) 1411.65

(2.70,1.59) 129.46 (2.70,1.59) 129.46 (2.70,1.59) 65.39

Note: Simulation Relative Error ≤ ± 2%, Confidence Level = 95%. Comparison is carried out for the
same machine failure breakdown sample paths for all policies. OC is obtained from a Markov decision
process formulation of the problem.

Table 1. Comparison of Control Policies with Best Threshold Values for Various Initial States.
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Initial Control Policy

Inventory HC KC OC

(x1, x2) Cost Cost Cost

(0,50) 771.45 794.96 770.31

(0,20) 252.78 269.12 231.38

(0,10) 150.94 156.79 101.13

(0,5) 132.31 132.31 69.11

(0,0) 132.76 132.76 66.56

(0,-5) 288.34 288.34 239.45

(0,-10) 617.85 617.85 590.67

(0,-20) 1471.18 1471.18 1466.54

(20,20) 415.03 415.03 406.96

(10,10) 194.83 194.83 165.71

(5,5) 136.82 136.82 84.49

(5,-5) 270.75 270.75 214.46

(10,-10) 583.85 583.85 539.86

(20,-20) 1426.58 1426.58 1411.65

Note: Simulation Relative Error ≤ ± 2%, Confidence Level = 95%. Comparison is carried out for the
same machine failure breakdown sample paths. Therefore, the relative comparison is free of statistical
uncertainty. Thresholds values used for HC as well as KC are (2.75,1.58) obtained from the (0,0) initial
inventory row of Table 1.

Table 2. Comparison of Control Policies with Threshold Values (2.75,1.58) for HC and KC.
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