Software
Engineerm
Hanabook

Jessica Keyes

A

AUERBACH PUBLICATIONS

A CRC Press Company
Boca Raton London MNew York Washington, D.C.

Software
Engineering
Hanabook

OTHER AUERBACH PUBLICATIONS

The ABCs of IP Addressing
Gilbert Held
ISBN: 0-8493-1144-6

The ABCs of TCP/IP
Gilbert Held
ISBN: 0-8493-1463-1

Building an Information Security
Awareness Program

Mark B. Desman

ISBN: 0-8493-0116-5

Building a Wireless Office
Gilbert Held
ISBN: 0-8493-1271-X

The Complete Book of Middleware
Judith Myerson
ISBN: 0-8493-1272-8

Computer Telephony Integration,
2nd Edition

William A. Yarberry, Jr.

ISBN: 0-8493-1438-0

Cyber Crime Investigator’s Field Guide
Bruce Middleton
ISBN: 0-8493-1192-6

Cyber Forensics: A Field Manual for
Collecting, Examining, and Preserving
Evidence of Computer Crimes

Albert J. Marcella and Robert S. Greenfield,
Editors

ISBN: 0-8493-0955-7

Global Information Warfare:

How Businesses, Governments, and
Others Achieve Objectives and Attain
Competitive Advantages

Andy Jones, Gerald L. Kovacich,

and Perry G. Luzwick

ISBN: 0-8493-1114-4

Information Security Architecture
Jan Killmeyer Tudor
ISBN: 0-8493-9988-2

Information Security Management
Handbook, 4th Edition, Volume 1
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-9829-0

Information Security Management
Handbook, 4th Edition, Volume 2
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-0800-3

Information Security Management
Handbook, 4th Edition, Volume 3
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-1127-6

Information Security Management
Handbook, 4th Edition, Volume 4
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-1518-2

Information Security Policies,
Procedures, and Standards:
Guidelines for Effective Information
Security Management

Thomas R. Peltier

ISBN: 0-8493-1137-3

Information Security Risk Analysis
Thomas R. Peltier
ISBN: 0-8493-0880-1

A Practical Guide to Security Engineering
and Information Assurance

Debra Herrmann

ISBN: 0-8493-1163-2

The Privacy Papers:

Managing Technology and Consumers,
Employee, and Legislative Action
Rebecca Herold

ISBN: 0-8493-1248-5

Secure Internet Practices:

Best Practices for Securing Systems in
the Internet and e-Business Age
Patrick McBride, Jody Patilla,

Craig Robinson, Peter Thermos,

and Edward P. Moser

ISBN: 0-8493-1239-6

Securing and Controlling Cisco Routers
Peter T. Davis
ISBN: 0-8493-1290-6

Securing E-Business Applications and
Communications

Jonathan S. Held and John R. Bowers
ISBN: 0-8493-0963-8

Securing Windows NT/2000:
From Policies to Firewalls
Michael A. Simonyi

ISBN: 0-8493-1261-2

Six Sigma Software Development
Christine B. Tayntor
ISBN: 0-8493-1193-4

A Technical Guide to IPSec Virtual Private
Networks

James S. Tiller

ISBN: 0-8493-0876-3

Telecommunications Cost Management
Brian DiMarsico, Thomas Phelps |V,

and William A. Yarberry, Jr.

ISBN: 0-8493-1101-2

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 ¢ Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Software
Engineering
Hanabook

Jessica Keyes

A

AUERBACH PUBLICATIONS

A CRC Press Company
Boca Raton London New York Washington, D.C.

This edition published in the Taylor & Francis e-Library, 2005.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

Library of Congress Cataloging-in-Publication Data

Keyes, Jessica, 1950-
Software engineering handbook / by Jessica Keyes.
p. cm.
Includes bibliographical references and index.
ISBN 0-8493-1479-8
1. Software engineering—Handbooks, manuals, etc. I. Title.

QA76.758 .K48 2002
005.1—dc21 2002031306

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the authors and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the Auerbach Publications Web site at www.auerbach-publications.com

© 2003 by CRC Press LLC
Auerbach is an imprint of CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1479-8
Library of Congress Card Number 2002031306

ISBN 0-203-97278-3 Master e-book ISBN

Dedication

This book is most appreciatively dedicated to
my clients and friends, old and new,
and particularly my family.

This page intentionally left blank

Contents

SECTION I
1

... 1
Introduction to Software Engineering................... 5
The Software Developer 6
The SDLC: Systems Development Life Cycle 8
The Feasibility Study: The FirstStep 9
Information-Gathering Channels 10
Diagramming or Modeling the System 12
Developmental Methodologies 14
System Design 20
Object-Oriented Methodologies 22
Testing. . ..o 25
Standards and Metrics i, 27
Procedure........ 29
Installation 30
Documentation.t 30
Maintenance. ...t 31
Training. e 32
Conclusion i 32
The Feasibility Study and Cost/Benefit Analysis.......... 35
Feasibility Study Components......................... 35
Cost/Benefit Analysis 38
Scheduling the Feasibility Study 40
The Feasibility Study Process 41
Conclusion i 45
Writing the ProjectPlan 47
Why Write a ProjectPlan? 47
Who Writes the ProjectPlan?. 48
What Goes into the ProjectPlan? 48
The Project Plan Unwrapped 49
IsltWorth It? i 58
Requirements Elicitation 61
Stakeholder Analysis. 61

vii

Software Engineering Handbook

viii

10

11

Elicitation Techniques..........
A Checklist for Requirements Management..............
Conclusion i

Designing User-Oriented Systems
Secretsof the Trade.
Tailoring the System to End Users’Needs
Drumming Up Enthusiasm
Methodologies
Distributing Data to Its Rightful Owner — the End User . ..
The Systems Choice
Conclusion i

The Outsourcing Decision
Phase 1: Analysis and Evaluation.
Phase 2: Needs Assessment and Vendor Selection
Phase 3: Implementation..............................
An Outsourcing Example

Questions to Ask Potential Outsourcing Companies
OutsourcingModels o ..
Conclusion i

Methodology Selection
A Brief Summary of Common Generic Methodologies
Rating Your Methodology..............
Determining Your Methodology’s Rating

Selecting and Integrating a Repository for Effective

Resource Management
Effective Information Resource Management
How to Use This Chapter
Scoring the Repository Workbench.

Structured Methodology Review
Rapid Applications Development (RAD).................
Joint Application Design (JAD)
Group Support Systems (GSS)
CASETOOIS . ..o
A Variety of Structured Methodologies.
Extreme Programming.
Conclusion

Extreme Programming Concepts.......................
The Rules of Extreme Programming
Conclusion

Development Before the Fact Technology

12

13

14

15

16

Contents

What Is Wrong with Systems 147
Development BeforetheFact.......................... 149
The Technology, 150
Integrated Modeling Environment. 152
Primitive Structures 154
Defined Structures. i 156
FMaps, TMaps, and Their Integration................... 159
Universal Primitive Operations 160
Performance Considerations 163
Inherent Integration with System-Oriented Objects. 164
The Design Specification 169
TheProcess 169
The Detailsof Design. 169
Logical and Physical Design........................... 175
The Systems Specification 178
A System Spec Walkthrough.......... 179
Conclusion i 179
Object-Oriented Design. 181
What Is OO0? 181
OO fromtheBottomUp 182
OOAD Methodologies 185
OOAD Simplified i 189
User Interface Design 199
User Interface (UI) Design Principles 199
The Ul Design Process. 202
Designing Effective Input and Output................... 203
Usability Testing i 207
SUMMArY. . ..o e 208
Software Re-Engineering. 211
What is Software Re-Engineering? 211
Why We Need Software Re-Engineering 211
Software Re-Engineering Strategies..................... 212
The Process of Re-Engineering 213
Forward Engineering.......... 218
Conclusion i i 220
Software Testing. 221
What I[s Software Testing?. 221
Software Testing Strategy............. 224
Test Automation i, 225
Practical Approach to Automated Software Testing. 227
Using Automated Testing Tools........................ 228
Conclusion 229

Software Engineering Handbook

17 The Process of EDP Auditing 231
Organizing Your Audit............ 231
Systemic Audit 234
Security and Quality i 236
Ergonomics. 241
Customer ServiCe. e 243
Legality 244
Conclusion i e 244

18 The Management of Software Maintenance 245
The Maintenance Process. 245
Types of Maintenance 247
Maintenance Costs. i 248
A Model for Maintenance 249
Managing Maintenance Personnel...................... 250
Measuring Effectiveness 250
Controlling Maintenance Requests 251
Conclusion i e 252

19 The Science of Documentation 255
What Exactly Is Documentation?....................... 255
Methods and Standards 258
Generating Documentation the Right Way 259
Maintaining Documentation........................... 268
Conclusion i e 269

20 Survey on IT Productivity and Quality 271
Planning for Quality............. 272
The Process of Measurement. 273
The Original Metric 275
The HPWay.o i 277
The Function Point Advantage. 278
The Quality Equation. 281
Conclusion i e 282

SECTIONIL. e e e 283

21 Putnam’s Software Equationand SLIM 287
Abstract. 287
Procedures/Issues/Policies. 287

22 The COCOMOIIModel 291
Abstract. 291
Application Composition Model 291
The Early Design Model 292
The Post-Architecture Model 293

23

24

25

26

27

28

29

30

31

32

Contents

Putnam’s Cost Estimation Model.
Abstract
Procedures/Issues/Policies

Malcolm Baldrige Quality Award
Abstract
Procedures/Issues/Policies

Zachman’s Framework
Abstract
Procedures/Issues/Policies

Linkman’s Method for Controlling Programs through

Measurementiuiniinin
Abstract
Procedure......

Kellner’s Nontechnological Issues in Software

Engineering.........
Abstract
Procedures/Issues/Policies

Martin and Carey’s Survey of Success in Converting

Prototypes to Operational Systems
Abstract
Procedures/Issues/Policies

Putnam’s Trends in Measurement, Estimation,

and Control.
Abstract
Procedures/Issues/Policies

Sprague’s Technique for Software Configuration
Management in a Measurement-Based Software
Engineering Program.
Abstract
Procedures/Issues/Policies
Procedures for Developing an SCM Process

Corbin’s Methodology for Establishing a Software

Development Environment.
Abstract
Procedures/Issues/Policies

Couger’s Bottom-Up Approach to Creativity

Improvement in IS Development
Abstract
Procedures/Issues/Policies

Xi

Software Engineering Handbook

Xii

33

34

35

36

37

38

39

40

41

42

43

44

Shetty’s Seven Principles of Quality Leaders.............
Abstract.
Procedures/Issues/Policies.

Simmons’ Statistics Concerning Communications’

Effect on Group Productivity
Abstract.
Procedures/Issues/Policies.

Gould’s Points on Usability.
Abstract.

Prescott’s Guidelines for Using Structured Methodology . ..
Abstract.
Procedures/Issues/Policies.

Kemayel’s Controllable Factors in Programmer

Productivity
Abstract.
Procedures/Issues/Policies.

AT&T’s “Estimeeting” Process for Developing Estimates. . .
Abstract.
Procedures/Issues/Policies.

Burns’ Framework for Building Dependable Systems.
Abstract.
Procedures/Issues/Policies.

Avison’s Multiview Meta-Methodology
Abstract.
Procedures/Issues/Policies.

Byrne’s Reverse Engineering Technique.................
Abstract.
Procedures/Issues/Policies.

Prieto-Diaz’ Reusability Model.........................
Abstract.
Procedures/Issues/Policies.

Farbey’s Considerations on Software Quality Metrics

during the Requirements Phase.
Abstract.
Procedures/Issues/Policies.

Redmill’s Quality Considerations in the Management
of Software-Based Development Projects................

45

46

47

48

49

50

51

52

53

54

55

Contents

Abstract
Procedures/Issues/Policies

Contel’s Software Metrics in the Process Maturity

Framework
Abstract
Procedures/Issues/Policies

Kydd’s Technique to Induce Productivity through

Shared Information Technology
Abstract
Procedures/Issues/Policies

Bellcore’s Software Quality Metrics
Abstract
Procedures/Issues/Policies

Keyes’ Value of Information
Abstract
Procedures/Issues/Policies

Pfleeger’s Method for CASE Tool Selection Based

on Process Maturity
Abstract
Procedures/Issues/Policies

McCabe’s Complexity Metric..................
Abstract
Procedures/Issues/Policies

Halstead’s Effort Measure.
Abstract
Procedures/Issues/Policies

DEC’s Overview of Software Metrics.
Abstract
Procedures/Issues/Policies

Hewlett Packard’s TQC (Total Quality Control)

Guidelines for Software Engineering Productivity
Abstract
Procedures/Issues/Policies

Motorola’s Six Sigma Defect Reduction Effort............
Abstract
Procedures/Issues/Policies

Lederer’s Management Guidelines for Better Cost
Estimating.
Abstract

Software Engineering Handbook

56 Kanter’s Methodology for Justifying Investment
in Information Technology 417
Abstract. 417
Procedures/Issues/Policies. 417
57 The “Make-Buy” Decision. 421
Abstract. 421
Procedures/Issues/Policies. 421
58 Software Selection from Multiple Packages 423
Abstract. 423
Procedures/Issues/Policies. 423
59 The Boehm COCOMO Model 425
Abstract. 425
Procedures/Issues/Policies. 425
60 IEEE Standard Dictionary of Measures to Produce
Reliable Software 427
Abstract. 427
Procedures/Issues/Policies. 427
61 IEEE Framework for Measures 435
Abstract. 435
Procedures/Issues/Policies. 435
62 Gillies’ Method for Humanization of the Software
Factory 439
Abstract. e 439
Procedure e 440
63 Pfleeger’s Approach to Software Metrics Tool
Evaluation.......... 443
Abstract. 443
Procedures/Issues/Policie 443
64 Maiden’s Method for Reuse of Analogous Specifications
through Human Involvement in Reuse Process........... 447
Abstract. 447
Procedures 448
65 Tate’s Approaches to Measuring Size of Application
Products with CASETools 451
Abstract. 451
Procedure 452
SECTIONIIL e e e e e 455
Appendices. 457

Xiv

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I

Appendix J
Appendix K
Appendix L
Appendix M
Appendix N
Appendix O
Appendix P
Appendix Q

Appendix R
Appendix S

Contents

System Service Request Form.................. 459
Project Statement of Work. 461
Feasibility Study Template 489
Sample Cost/Benefit Analysis Worksheets 499
Sample Business Use Case 509
Sample Project Plan 519
Sample SRS 535
Sample Survey. i 577
Sample Architectural Design................... 579
SampleSDS 593
Sample Data Dictionary....................... 639
Sample OOSDS i 643
Sample Class Dictionary 749
Control Sheet. 753
TestPlan i 755
QA Handover Document 795
Software Metrics Capability Evaluation
Questionnaires 797
IT Staff Competency Survey 819
Function Point Counting Guide. 825
... 859

XV

This page intentionally left blank

Foreword

In Soul of a New Machine, Tracy Kidder details the riveting story of a
project conducted at breakneck speed, under incredible pressure. Driven
by pure adrenaline, the team members soon became obsessed with trying
to achieve the impossible. For more than a year, they gave up their nights
and weekends — in the end logging nearly 100 hours a week each! Some-
where buried in the midst of Kidder’s prose, we find that, at the end of this
project, the entire staff quit. Not just one or two of them, but every single
onel!

The information technology field is ripe with stories such as this one.
Software development projects are usually complex and often mission crit-
ical. As a result, the pressure on staff to produce is great. Sometimes, as in
the Kidder example, even with success comes failure.

Successful software development projects (i.e., get the product done on
time without losing staff members) have something in common. Each of
these projects, in some way, shape, or form, followed one or more princi-
ples of applied methodology, quality, and productivity. Some of these prin-
ciples are clearly intuitive, but most are learned or culled from vast expe-
rience over a number of years and projects.

In today’s globally competitive environment, information technology is
a major partner with business units; because of this, the push is on for
enhanced software productivity and quality. Intuition just will not cut the
mustard any longer. An organization cannot wait until software developers
learn their quality lessons over so many projects in as many years.

This book was written to push the information technology industry up
that learning curve in one fell swoop. Collected here are 65 chapters, 191
illustrations, 19 appendices filled with practical (the keyword here is prac-
tical) techniques, policies, issues, checklists, and guidelines, and complete
“working” examples on methodology, quality, productivity, and reliability.
All of this information was culled from over 25 years of experience on the
front lines and experience as a professor of computer science as well.

xvii

This page intentionally left blank

Acknowledgments

This book would not have been possible without the help and encour-
agement of many people. First of all, I would like to thank my husband and
parents, without whose unwavering support this book would never have
been finished. I also thank my editors at Auerbach, who had great faith in
this project.

[would also like to thank the following students at Fairleigh Dickinson
and the University of Phoenix: Carol Neshat, Jing Xia, Qing Xue, David Gold-
man, Mark Reese, Susmitha S. Kancherla, Scott D. Reese, Steve Mann, Jyh
Ming Lin, Len Baker, Yu-Ju Wu, Kanoksri Sarinnapakorn, Rod Berglund, and
Gina Cobb, as well as all of my students at Virginia Tech.

These students acted as my research assistants and worked diligently
on providing research, outlines, and very rough drafts for some of the
chapters in this book. These shining lights also developed many of the
appendices found at the back of this book.

JESSICA KEYES

Xix

This page intentionally left blank

Preface

Much has been said and written about software engineering.

Unfortunately, much of it is written from an academic perspective that
does not always address everyday concerns that the software developer
and his or her manager must face. With decreasing software budgets and
increasingly demanding users and senior management, technology direc-
tors want and need a complete guide to the subject of software engineer-
ing. This is that guide.

This handbook is composed of three parts. Section [contains 20 chap-
ters on all facets of software engineering — from planning to object-
oriented design. In Section II, we change gears from method to metrics. In
this section of the handbook, we find all manner of productivity, quality,
and reliability methods, such as a technique for converting prototypes to
operational systems and a methodology for establishing a productivity-
enabling software development environment.

In Section Il — Appendices — using the principle that examples speak
louder than words, I have provided you with a set of “fully loaded” IT doc-
umentation including sample business-use cases, a test plan, a project
plan, and even a full systems requirement specification.

The content of the handbook is extensive and inclusive. In it you can find
everything from estimation methods to the seven principles of quality
leaders to guidelines for structured methodologies to productivity through
shared information technology.

And all of this is in the language of the software developer.

Note: 1 have made every attempt to acknowledge the sources of informa-
tion used, including copyrighted material. If, for any reason, a reference
has been misquoted or a source used inappropriately, please bring it to my
attention for rectification or correction in the next edition.

XXi

The Author

Jessica Keyes is president of New Art Technologies, Inc., a high-technology
and management consultancy and development firm started in New York in
1989. She is also a founding partner of New York City-based Manhattan
Technology Group.

Keyes has given seminars for such prestigious universities as Carnegie
Mellon, Boston University, University of lllinois, James Madison University,
and San Francisco State University. She is a frequent keynote speaker on
the topics of competitive strategy, productivity, and quality. She is former
advisor for DataPro, McGraw-Hill’'s computer research arm, as well as a
member of the Sprint Business Council. Keyes is also a founding board of
directors member of the New York Software Industry Association. She has
recently completed a two-year term on the Mayor of New York City's Busi-
ness Advisory Council. She is currently a professor of computer science at
Fairleigh Dickinson University's graduate center as well as the University of
Phoenix and Virginia Tech.

Prior to founding New Art, Keyes was managing director of research and
development for the New York Stock Exchange and has been an officer with
Swiss Bank Co. and Banker's Trust in New York City. She holds a Masters of
business administration from New York University where she did her
research in the area of artificial intelligence.

A noted columnist and correspondent with over 200 articles published,
Keyes is the author of 16 books on technology and business issues.

xXxii

Section I

This page intentionally left blank

THESE 20 CHAPTERS COVER the entire spectrum of software engineering activi-
ties. Topics covered include: information engineering, software reliability,
cost estimation, productivity and quality metrics, requirements elicitation,
engineering life cycle, object-oriented analysis and design, system model-
ing techniques, using UML, using DFDs, feasibility studies, project plan-
ning, the system requirements specification, the system design specifica-
tion, JAD, RAD, reverse engineering, re-engineering, the data dictionary,
the repository, the process specification, TQM, user interface design, the
test plan, use cases, methodologies, the class dictionary, outsourcing, soft-
ware maintenance, and documentation.

This page intentionally left blank

Chapter 1
Introduction to
Software Engineering

You must start somewhere so I have chosen to start this book at the begin-
ning — with a very brief introduction to software engineering. In this chap-
ter we are going to touch lightly on topics that we will cover in more depth
in later chapters. Reading this chapter will give you a sense of the intercon-
nectivity of the myriad of software engineering activities that we talk
about.

Computer systems come in all shapes and sizes. There are systems that
process e-mail and systems that process payroll. There are also systems
that monitor space missions and systems that monitor student grades. No
matter how diverse the functionality of these systems, they have several
things in common:

e All systems have end users. It is for these end users that the system has
been created. They have a vested interest in seeing that the system is
correctly and efficiently doing what it is supposed to be doing. You
might say that these end users have a “stake” in seeing that the system
is successful so sometimes they are referred to as “stakeholders.”
There are different types of stakeholders. A good systems analyst is
careful to make sure that he does not leave out stakeholders errone-
ously. This is indeed what happened when the post office started de-
veloping the automated system that you now see in use today at all
post offices. This system was developed “in a vacuum.” What this
means is that only higher level employees were involved in system de-
velopment. The clerks who actually man the windows were left out of
the process; when it came time for this system to be deployed, the
lack of involvement of this critical set of stakeholders almost led to an
employee mutiny.

e All systems are composed of functions and data. All of us like to get our
payroll checks. To create a payroll check requires us to define several
functions (sometimes called processes). For example, there might be
functions for: 1) obtaining employee information; 2) calculating pay-
roll taxes; 3) calculating other deductions; and 4) printing the check.
Systems analysts are not payroll clerks; nor are they accountants. A

5

SOFTWARE ENGINEERING HANDBOOK

typical systems analyst does not have the information at his fingertips
to create a payroll processing system without the involvement of
stakeholders. He needs to utilize several analytical techniques — in-
cluding interviewing and observation — to get the details on how to
perform these processes. Functions are only one half of the equation,
however. The other half is the data. Sometimes the data will already be
available to the systems analyst — i.e., via a corporate database or
file. Sometimes, however, the systems analyst will have to “create” a
new database for the application. For this particular task, he will usu-
ally work with a database administrator or data administrator. This
person has the expertise and authority to create or modify a database
for use with the new or enhanced application.

e All systems use hardware and software. A systems analyst has many de-
cisions to make. He must decide on which platform to run this system:
1) PC only; 2) mainframe only; 3) client/server (i.e., PC client and main-
frame or workstation server), etc. He also must decide whether or not
to use any third-party software (i.e., Excel, SAP, etc.); He may even
need to decide on which programming language and type of database
to use.

¢ All systems are written using programming languages. If the IT (informa-
tion technology) department is filled with COBOL programmers, it
might not be a wise decision to use Java. If Java is mandatory, then the
systems analyst needs to plan for this by training existing staff or out-
sourcing the development effort to a consulting firm. This information
is contained within the “requirements document,” which, in this hand-
book we will call the system requirements specification, or SRS.

e All systems should be designed using a methodology and proper docu-
mentory techniques. There are many developmental methodologies.
The two main generic categories are structured and object-oriented.
The tools and techniques surrounding these methodologies are part
and parcel of “software engineering.” A properly developed system is
carefully analyzed and then designed. The first step of this process is
the plan; the next step is the SRS, and the third step is the design doc-
ument. Finally implementation, testing, and then deployment take
place. These are some of the main steps in the software development
life Cycle or SDLC.

THE SOFTWARE DEVELOPER

[started out in this field as a programmer. In those days (several eons
ago) there were real boundaries between the different types of jobs one
could do. If you were a programmer you did not do analysis work and vice
versa. In fact, most analysts back then knew very little about programming.

That has all changed but, typically, you still start out as a programmer
but then the sky’s the limit. A programmer is a person who knows one or

6

Introduction to Software Engineering

more programming languages (e.g., Java, C++, etc.). His job is to read a pro-
gramming specification, which is usually written by the systems analyst,
and then translate that specification into program code.

In most companies the programmer works within project teams that are
managed by a project leader who, in turn, is managed by a project manager.
Each project team has one or more programmers and probably one or
more systems analysts. The programmer works on the code and seldom, if
ever, works with the end users. The systems analysts, on the other hand,
work directly with the end users to develop requirements and specifica-
tions for the system to be designed.

A programmer can lack all the social graces because few “outsiders”
deal with him, but the systems analyst is on the front lines. He needs to be
articulate, friendly, and a good listener. The systems analyst must also
have the capability to pay a great deal of attention to detail and be creative
in coming up with techniques for uncovering hidden information. For
example, when developing the FOCUS system, I needed to uncover hun-
dreds of mathematical formulas that could be used to analyze the financial
forms. I also had to design dozens of screens that could be utilized effi-
ciently by the end users. Instead of designing the screens (this was pre-
Internet days), [turned the end users loose with a word processing pro-
grammer and asked them to list the information they wanted to see and
where they wanted to see it. This is called JAD, or joint application devel-
opment.

When [first starting working for the New York Stock Exchange, I was
responsible for building a computer system that processed a series of
financial forms (like your tax forms) that were required to be filled out by
the various member firms (e.g., Merrill Lynch) of the Exchange. These
forms contained hundreds of financial items.

My job as an analyst was to work with the people in the regulatory
department who understood how to process these forms — these were the
end users. Our job was a hard one; the financial forms were complex. The
end users were accountant types with vast experience in interpreting these
forms. The reason for looking at these forms at all was to determine
whether the firm (i.e., Merrill Lynch) was financially healthy — a very
important job.

As the systems analyst on the job I had to meet regularly with these end
users to try to “pick their brains.” We met several times a week to work on
the project. There was lots of yelling and screaming and tons of pizza. In
the end, however, we developed a document that was quite detailed in
describing everything that the system — called FOCUS — was supposed to
do. Once this document was complete it was turned over to the program-
mers whose job it was to turn the document into a complete working

system.
7

SOFTWARE ENGINEERING HANDBOOK

As you can see from my description, | have left a few job titles out of the
picture because each organization is structured a bit differently. For the
most part, when one develops a system at least two departments are
involved. One is the end-user department (e.g., marketing, operations).
The end users have a “need” for a system to be developed or modified.
They turn to the computer department, sometimes called IS (information
systems), MIS (management information systems), or IT (information tech-
nology) to help them turn this need into a working system.

The end-user department is composed of experts who do a particular
task. Maybe they are accountants or maybe they are in marketing — they
still are experts in what they do. They are managed, just like IS people, by
managers. We can refer to these managers as business managers just like
we refer to a computer manager as an IS manager. Although most systems
analysts work directly with those that report to the business manager, the
business manager still plays a critical role. We need to turn to him if we
need some information from the entire department or we need to have
something done that only the business manager can direct.

THE SDLC: SYSTEMS DEVELOPMENT LIFE CYCLE

The development of computer systems has many moving parts. Each of
these parts has a name — i.e., analysis, design, etc. We call the entirety of
these steps a systems development life cycle.

Why do we call this a life cycle? A system has a life of its own. It starts
out as an idea and progresses until this idea germinates and then is born.
Eventually, when the system ages and is obsolete, it is discarded or “dies.”
So “life cycle” is really an apt term.

The idea phase of the SDLC is the point at which the end user, systems
analyst, and various managers meet for the first time. This is where the
scope and objectives of the system are fleshed out in a very high-level
document.

Next, a team composed of one or more systems analysts and end users
tries to determine whether the system is feasible. Systems can be NOT fea-
sible for many reasons: too expensive, technology not yet available, not
enough experience to create the system; these are just some of the reasons
why a system will not be undertaken.

Once the system is determined to be feasible, systems analysis is initi-
ated. This is the point when the analysts put on their detective hats and try
to ferret out all the rules and regulations of the system. What are the
inputs? What are the outputs? What kind of online screens will there be?
What kind of reports will be needed? Will paper forms be required? Will any
hook-ups to external files or companies be required? How shall this infor-
mation be processed? As you can see, much work needs to be done at this

8

Introduction to Software Engineering

point and many questions need to be answered. In the end, all of the
answers to these questions will be fully documented in a requirements
document.

Once all the unknowns are known and are fully documented, the sys-
tems analyst can put flesh on the skeleton by creating high-level and then
detailed designs. This is usually called a specification and can be hundreds
of pages long. This document contains flowcharts, file and database defini-
tions, and detailed instructions for the writing of each program.

All along the way, the accuracy of all of these documents is checked and
verified by having the end users and analysts meet with each other. In fact,
most approaches to system development utilize the creation of a project
team consisting of end users and IS staff. This team meets regularly to work
on the project and verify its progress.

Once a complete working specification is delivered to the programmers,
implementation can get underway. For the FOCUS system, we turned the
specification over to a team of about 20 programmers. The systems ana-
lyst, project leader, and project manager were all responsible for making
sure that the implementation effort went smoothly. Programmers coded
code and then tested that code. When this first level (unit testing) of test-
ing was done, there were several other phases of testing including systems
testing, parallel testing, and integration testing. Many companies have QA
(quality assurance) departments that use automated tools to test the
veracity of systems to be implemented.

Once the system has been fully tested, it is turned over to production
(changeover). Usually, just prior to this, the end-user departments (not
just the team working on the project) are trained and manuals distributed.
The entire team is usually on call during the first few weeks of the system
after changeover because errors often crop up and it can take several
weeks for the system to stabilize.

After the system is stabilized, it is evaluated for correctness. At this
point a list of things to correct as well as a “wish list” of things that were not
included in the first phase of the system is created and prioritized. The
team, which consisted of technical and end-user staff, usually stays put
and works on the future versions of the system.

THE FEASIBILITY STUDY: THE FIRST STEP (See Chapter 2)

It never pays to jump into developing a system. Usually, it is a good idea
to conduct a feasibility study first. The easiest part of the feasibility study
is determining whether the system is technically feasible. Sometimes, how-
ever, it might not be feasible because the company does not have the tech-
nical expertise to do the job. A good systems analyst will go one step fur-
ther and see if it is feasible to outsource (i.e., let someone else do it) the

9

SOFTWARE ENGINEERING HANDBOOK

project to people who can do the job. Sometimes, the technology is just not
robust enough. For example, many years ago | wanted to deliver voice rec-
ognition devices to the floor of the New York Stock Exchange. The technol-
ogy at that time was just too primitive so the entire project was deemed not
feasible.

Discovering that the project is feasible from a technical perspective but
would require vast organizational changes (e.g., creation of new end-user
departments) adds a layer of complexity to the problem. This, then, would
make the project organizationally not feasible.

Finally, the project just might cost too much money. To figure this out
will require you to perform a cost/benefit analysis (take out those spread-
sheets). To do this, you must figure out an estimated cost for everything
you wish to do, including cost of hardware, cost of software, cost of new
personnel, cost of training, etc. Then you need to calculate the financial
savings for creating the new system: reduce staff by one third; save 5 hours
a day. Sometimes the benefits are intangible; for example, allowing us to
compete with our major competitor.

Once it has been determined that the project is feasible, a project plan
is created that plots out the course for the entire systems development
effort — i.e., budget, resources, schedule, etc. The next step, then, is to
start the actual analytical part of systems development. For that we need
to collect some information. (See Chapter 2 for more information on feasi-
bility studies.)

INFORMATION-GATHERING CHANNELS

One of the first things you will do when starting a new project is to
gather information. Your job is to understand everything about the depart-
ment and proposed system you are automating. If you are merely modify-
ing an existing system, you are halfway there. In this case you will review
all of the system documentation and the system itself, as well as interview
the end users to ferret out the changed requirements.

How can you make sense out of a department and its processes when you
do not know anything about it? One of the things you do is to act like a detec-
tive and gather up every piece of documentation you can find. When I built
the FOCUS system, [scrounged around and managed to find policy manuals
and memos that got me part of the way toward understanding what these
people did for a living. Other sources of information include: reports used
for decision making; performance reports; records; data capture forms; Web
sites; competitors’ Web sites; archive data. Passive review is seldom
enough, however. The next step is to be a bit more active and direct.

The first thing you can do is to interview end users. For our FOCUS
project, I had already created a project team consisting of tech people and

10

Introduction to Software Engineering

end users; however, [decided that it would be worthwhile to interview a
representative sampling of people working in different jobs that “touched”
the process to be automated.

You cannot interview someone without preparation. This consists first
of understanding all that you can about the job and person being inter-
viewed and then preparing a set of questions for this person. However,
sometimes an interview is insufficient to meet your needs. Your subject
may not be able to articulate what he or she does. The next step, then, is
to observe the person at his job.

I've done much work in the artificial intelligence arena where observa-
tion is a large part of the systems analysis process. One of the case histo-
ries people in the field often talk about is one concerning building a tax
expert system.

At one end of a large table sat a junior accountant. A large number of tax
books were piled in front of the junior accountant At the other end sat
some of the most senior tax accountants at the firm. Nothing was piled in
front of them. In the center of the table sat the systems analyst armed with
a video recorder. This person was armed with a script that contained a
problem and a set of questions. The task at hand was for the junior accoun-
tant to work through the problem guided by the experts. The experts had
nothing to refer to but what was in their memories. Thus they were able to
assist the junior accountant to solve the problem while the video camera
recorded the entire process.

Observation can only be done selectively — a few people at the most.
Another technique, which will let you survey a broad number of people at
one time, is the questionnaire. Building a questionnaire requires some skill.
There are generally two types of questions:

Open-ended:
1. What are the most frequent problems you have in buying books
from a book store?
2. Of the problems listed above, what is the single most trouble-

some?
Closed:
1. The tool is used as part of the program development cycle to
improve quality 1 2 3 4 5

(circle appropriate response, where 5 is the highest score)

A good questionnaire will probably be a combination of both types of
questions (hybrid). It is also important to make sure that you format your
questionnaire for easy readability (lots of white space and even spacing),
put all the important questions first (in case the respondents do not finish
the survey), and vary the type of question so that participants do not sim-
ply circle 5s or 1s all the way down the page.

11

SOFTWARE ENGINEERING HANDBOOK

See Chapter 4 for more details on information-gathering channels.

DIAGRAMMING OR MODELING THE SYSTEM (See Appendices G and I)

You can use a wide variety of techniques to describe your problem and
its solution diagrammatically as well as a wide variety of tools that can
assist you in drawing these diagrams. One of the diagrammatic techniques
is flowcharting and the tool of choice is Microsoft Visio, as shown in
Exhibit 1-1.

One of the most practical of tools is the DFD, or data flow diagram, as
shown in Exhibit 1-2. DFDs are quite logical, clear, and helpful when build-
ing systems — even Web-based systems. All inputs, outputs, and processes
are recorded in a hierarchical fashion. The first DFD (referred to as DFD 0)
is often the system from a high-level perspective. Child DFDs get much
more detailed. Exhibit 1-2 is a snippet of a real online test system — a
rather complicated system that lets people take tests online. This particu-
lar DFD shows the data flow through the log-in process. The rectangular
boxes (i.e., D5) are the data stores. Notice that D5 is an online cookie; D1,
on the other hand, is a real database. It is a relational database and this is
one particular table. The databases and their tables are defined in a data
dictionary. The square box is the entity (i.e., test taker) and can be a per-
son, place, or thing; the other boxes are process boxes. Process 1.1 is the
process for Get Name. There will be a child DFD labeled 1.1 Get Name. 1.1
Get Name will also appear in a process dictionary that will contain a
detailed specification for how to program this procedure.

Other modeling tools include:

e Entity relationship diagram. An ERD is a database model that describes
the attributes of entities and the relationships among them. An entity
is a file (table). Today, ER models are often created graphically, and
software converts the graphical representations of the tables into the
SQL code required to create the data structures in the database as
shown in Exhibit 1-3.

e State transition diagram. An STD describes how a system behaves as a
result of external events. In Exhibit 1-4 we see the effects of a person
reporting a pothole.

e Data dictionary. The data dictionary is a very organized listing of all
data elements that pertain to the system. This listing contains some
very specific information as shown in Exhibit 1-5. It should be noted
that there are many variations in the formats of data dictionaries.

e Process specification. The PSPEC describes the “what, when, where,
and how” of the program in technical terms. It describes just how the
process works and serves to connect the DFD to the data dictionary.
It uses pseudocode (sometimes called structured English or Program

12

Introduction to Software Engineering

Review soccer
camp Web site

l—b 2-week camp

Beginner

Determine
skill level

Advanced

I—b 2nd week only

Download Web
application form

List previous

camps attended

Yes
A 4
Preview
Complete i
iy Championzone
application attendee?
No
Submit coach
— » reference
Accepted?

l Yes No l

Send payment by

(date) Apply next season

Exhibit 1-1. A Flowchart Created Using Visio

13

SOFTWARE ENGINEERING HANDBOOK

D1

Registration
Table
User Name Password
A
User Name [A
User Name
Test taker 1.1 1.2
Get Name Check Password

Password Password

—

D5
Cookie

Exhibit 1-2. The Data Flow Diagram (DFD)

Definition Language — PDL) to explain the requirements for program-
ming the process to the programmer. An example is shown in
Exhibit 1-6. Other ways of representing process logic are:
— A decision table
— A decision tree
— A mathematical formula
— Any combination of the above

¢ Class diagrams.Analysts working on an OO (object-oriented system)
will utilize OO tools and diagrammatic techniques. One of these is a
class diagram drawn using UML or unified modeling language. A class
diagram is shown in Exhibit 1-7.

DEVELOPMENTAL METHODOLOGIES (See Chapters 7, 9, 11, and 13)

The Software Engineering Institute, which is part of Carnegie Mellon, in
Pittsburgh, Pennsylvania, is famous for a framework that describes soft-
ware process maturity. A summary of the five phases appears in
Exhibit 1-8. Read this while keeping in mind that most organizations, sadly,
are at stage 2 or 3.

Companies that have achieved a stage 2 process maturity or higher
make use of methodologies to ensure that the company achieves a repeat-
able level of quality and productivity. Many methodologies are available for
use. Some of these are vendor driven — i.e., they are used in conjunction
with a software tool set. In general, methodologies can be categorized as

14

Introduction to Software Engineering

— L P

File Edt Client Server Report Option Help

customer employee 1+
custnum emp_id
nams emp_fname
address emp_Iname
city dept_id (FK
| places state (FK)
street
city
zip_code
ordnum phone
salesperson (FK)| makes_sale_using, |status
custnum (FK) B----=--=-- = ss_number
duedate salary
balance start_date
termination_daty
[contains birth_date
bene_health_ins
order_item bene_life_ins
pe— bene_day_care
itemnum
patname ! partname (FK)
quantity
description

picture

FK stands for foreign key.
It is afield (attribute)in one
table that is indexed in ancther.

; Foreign keys are the building
Erwin turns blocks for relating tables.
the graphic
L‘:’:{;’se”‘a"”"‘ CRERTE TABLE cust order

(oxdram CHRR (10) NOT NULL
CUST_—ORDER salesperson INTEGER, ‘
table into this custnum CHRER (11) NOT NULL,
SQlcode... duedate CHMR (8),

balance FLOART
) :

CRERTE UNIQUE INDEX XPKcust oxder
ON cust oxderx
(
oxdoam ASC
)

Exhibit 1-3. The ERD

15

SOFTWARE ENGINEERING HANDBOOK

Displaying <
Initial Page

User Selected Action

Login Failed Login Initiated (Exit)
Invoke Initial Page Invoke Login Process I

Invoke Initial Page

Processing
Login

Login Successful
Invoke Read Request

User Selected Action v User Selected Action
(Modify) (Query)
Modifying | ¢ Invoke Modify Database Reading User Invoke Process Query Processing
Database L Request Queries
Iy -
T Matches Complete

Invoke Read Request

Query Complete
Invoke Process Matches

Modification Complete
Invoke Read Request

User Selected Action Report Complete

{Reports) Invoke Read Request
Invoke Generate Report

> Generating
Report

Exhibit 1-4. The STD

Processing
Matches

follows. It should be noted that a methodology can be used in conjunction
with another methodology:

e System development life cycle (SDLC). This is a phased, structured ap-
proach to systems development. The phases include requirements
feasibility, analysis, system design, coding, testing, implementation,
and testing. Please note that there are variations of these stated phas-
es. Usually, each phase is performed sequentially, although some po-
tential for overlap exists. This is the methodology used most often in
industry.

e [terative (prototyping). Most of this approach is used to replace several
of the phases in the SDLC, in which the “time to market” can be
months (sometimes years). During this time, requirements may
change; therefore the final deliverable might be quite outmoded. To
prevent this from happening, it is a good idea to try to compress the
development cycle to shorten this time to market and provide interim
results to the end user. The iterative model consists of three steps:

16

Introduction to Software Engineering

Name: Membership Database [D2]
Aliases: None
Where Used by the Database Management System to process requests and
Used/ How | return results to the Inquiry and Administration Subsystems
Used
Content Attributes associated with each asset including:
Description: e Membership Number = 10 Numeric Digits
e Member Since Date = Date
e Last Name = 16 Alphanumeric Characters
e First Name = 16 Alphanumeric Characters
e Address = 64 Alphanumeric Characters
e Phone Number = 11 Numeric Digits (1, area code, phone
number)
e Assets on Loan = Array containing 10 strings each
containing 64 Alphanumeric Characters
e Assets Overdue = Array containing 10 strings each
containing 64 Alphanumeric Characters
e Late Fees Due = 10 Numeric Digits
e Maximum Allowed Loans = 2 Numeric Digits
Name: Member Data [D3]
Aliases: None
Where A file used to validate username and passwords for members,
Used/ How | librarians, and administrator when attempting to access the system.
Used The username and password entered is compared with the username
and password in this file. Access is granted only if a match is found.
Content Attributes associated with each asset including:
Description: e Member Username = 16 Alphanumeric Digits
e Member Password = 16 Alphanumeric Digits

Exhibit 1-5. The Data Dictionary

1) listen to the customer; 2) build or revise a mock-up; 3) enable cus-
tomer to test drive the mock-up and then return to step 1.

® Rapid application development (RAD). This is a form of the iterative
model. The key word here is “rapid.” Development teams try to get a
first pass of the system out to the end user within 60 to 90 days. To ac-
complish this, the normal seven-step SDLC is compressed into the fol-
lowing steps: business modeling; data modeling; process modeling;
application generation and testing and turnover. Note the term “appli-
cation generation.” RAD makes use of application generators, former-
ly called CASE (computer assisted software engineering) tools.

e Incremental model. The four main phases of software development are
analysis, design, coding, and testing. If we break a business problem
into chunks, or increments, then we can use an overlapping, phased
approach to software development. For example, we can start the
analysis of increment one in January, increment two in June, and

17

SOFTWARE ENGINEERING HANDBOOK

Exhibit 1-6. Pseudocode Example.

Process #1
Name Logon

Number: 1
Name: Logon

Description: Registered test takers will logon to their account
with their username and password through this process. Once they
register, they will be able to take the test.

Input data: User name from the test taker, password from the test
taker, user name from the registration tale, password from the
registration table

Output data: User name to the cookie
Type of process: Validation
Process logic:

Get user name and password from the user
If correct then
Allow the user to take the test

else
Produce an error
endif

1

ApplicationControllerUl:: IUserInterfaceI «subsystem»
Application C

pay

ResourceManagementUl:: ResourceUl
LD : Long

-swingAttributes : Collection Resource:: ResourceUsage]
[+showCreate(in tOption : String) - *
-ID : Long 0. 1

+showEdit(in tOption : String)
[+showSearch(in tOption : String) -percentUsed : Percent Service:: Appointment
-appointmentID : Long

+showList(in tOption : String, in oCollection : Collection) resourcelD : Long

+ResourceUsage()
1
0.*
Resource:Resource
-ID : Long
-name : String
|-description : String 1
-unitCost : Money

-costUnit : String
-resourceTypelD : Long
-serviceProviderID : Long
+getID()

* 1
:S;E%ﬁ{éi(s)t() %'Serviceﬁovider:: ServiceProvider
1 H+getUnitCost() : Money
H+setCostUnit()
H+getCostUnit() : String
+getResourceType() : String
[+setResourceType()
H+getDescription() : String
+setDescription()
+getName() : String
H+setName()
+getServiceProvider() : ServiceProvider

Exhibit 1-7. A Class Diagram

18

Introduction to Software Engineering

Exhibit 1-8. Summary of the Five Phases of the Software Process Maturity
Framework

Stage 1: Initial is characterized by processes:

e That are ad hoc
e That have little formalization
e That have tools informally applied

Key actions to get to the next step:

e [nitiate rigorous project management; management oversight; quality
assurance

Stage 2: Repeatable is characterized by processes:

e That have achieved a staple process with a repeatable level of statis-
tical control

Key actions to get to next step:

e Establish a process group
e Establish an SW-development process architecture
¢ Introduce software engineering methods and tech

Stage 3: Defined is characterized by processes:
e That have achieved foundation for major and continuing progress
Key actions to get to next step:

e Establish a basic set of process managements to identify quality and
cost parameters

e Establish a process database

¢ Gather and maintain process data

¢ Assess relative quality of each product and inform management

Stage 4: Managed is characterized by processes:

e That show substantial quality improvements coupled with compre-
hensive process measurement

Key actions to get to next step:

e Support automatic gathering of process data
e Use data to analyze and modify the process

Stage 5: Optimized is characterized by processes:
e That demonstrate major quality and quantity improvements
Key actions to get to next step:

¢ Continue improvement and optimization of the process

19

SOFTWARE ENGINEERING HANDBOOK

increment three in September. Just when increment three starts up,
we are at the testing stage of increment one, and coding stage of incre-
ment two.

e Joint application development (JAD). JAD is more of a technique than
a complete methodology. It can be utilized as part of any of the other
methodologies discussed here. The technique consists of one or more
end users who are then “folded” into the software development team.
Instead of an adversarial software-developer-end-user dynamic, the
effect is to have the continued, uninterrupted attention of the persons
who will ultimately use the system.

® Reverse engineering. This technique is used, first, to understand a sys-
tem from its code and, second, to generate documentation based on
the code and then make desired changes to the system. Competitive
software companies often try to reverse engineer their competitors’
software.

® Re-engineering. Business goals change over time. Software must
change to be consistent with these goals. Re-engineering utilizes many
of the techniques already discussed in this chapter. Instead of building
a system from scratch, the goal of re-engineering is to retrofit an exist-
ing system to new business functionality.

¢ Object-oriented. Object-oriented analysis (OOA), object-oriented de-
sign (OOD), and object-oriented programming (OOP) are very differ-
ent from what we have already discussed. In fact, you will need to
learn a new vocabulary as well as new diagramming techniques.

SYSTEM DESIGN

Most of the models we have discussed fall under the structured rubric
(except for the OO model). The requirements document, or SRS (systems
requirement specification), is written for a broad audience (see Appendix
G) and reflects this structured technique. Usually it is provided not only to
IT staff but also to end users. In this way, the end users are able to review
what they have asked for as well as the general architecture of the system.
Once approved, the system now must be designed. The system specifica-
tion, here called the SDS (systems design specification), contains a very
finite level of detail — enough so that programmers will be able to code the
entire system (See Appendices J and L for sample SDS and OOSDS, respec-
tively). This means that the SDS must contain:

¢ Information on all processes
¢ Information on all data
¢ Information about the architecture

You must start somewhere. That “somewhere” is usually the very high-
est level of a design. There are three logical ways to do this:

20

Introduction to Software Engineering

e Abstraction. This permits you to concentrate at some level of general-
ization without regard to irrelevant low-level details. This is your high-
level or logical design.

e Stepwise refinement. This is a successive decomposition or refinement
of the specifications. In other words, you move from the high level to
the detailed, from the logical to the physical.

® Modularity. This means that you know a good design when you see a
compartmentalization of data and function.

Look again at the DFD in Exhibit 1-2; it was not the first in the series. The
very first DFD would have been DFD 0, which is equivalent to the high level
of detail that it is recommended you start from. Here you can see the logi-
cal components of the system. Underneath the 0 level we start to get more
detailed and more physical. At these lower (or child) levels we start spec-
ifying files and processes.

The design document that you create will rarely look the same from one
organization to another. Each has its own template and its own standard
diagramming tool (i.e., Visio versus SmartDraw) and its own diagramming
format (i.e., flowcharts versus UML (uniform modeling language) versus
DFDs).

When the requirements document is high level, the specification is
much more detailed; it is, after all, a programming specification. For the
most part, the specification document for the testing system discussed
included: 1) a general description of the system; 2) its users; 3) its
constraints (i.e., must run on a PC); 4) the DFDs or other format; 5) the
data dictionary; 6) the process dictionary; 7) a chart showing the tasks
that need to be done (Gantt). The purpose of this specification (usually
called a “spec” by those in the field) is to give the programmers a manual
from which they can code. If it is a good spec the programmers should not
need to come back to you time after time to get additional information.
Chapters 12 through 14 have more information on this subject.

Design Strategies

Part of the process of designing a system is to make a bunch of deci-
sions. For example, in creating an online testing system, [had to answer the
following questions:

1. What platform should the testing software run on? PC? Internet?
Both?

2. If it was going to run on the Internet, should it be compatible with all
browsers or just one specific one?

3. What kind of programming language should be used? Should the cli-
ent use VBScript? JavaScript? Should all process be on the backend?
If so, which language should be used — Perl or Java?

21

SOFTWARE ENGINEERING HANDBOOK

4. What kinds of servers do I need? Do I run Microsoft NT, or UNIX, or
Linux? Do I need an e-commerce server? How about a RealMedia
server?

5. What kind of network am I going to use? VPN (virtual private net-
work)? Internet? Intranet? LAN?

[had to answer hundreds of other questions before we were able to pro-
ceed. Answering these questions required much research. For example, if
you were going to design a medical claims processing system, you would
probably decide in favor of using an optical scanning system to process the
thousands of medical claims that came in every day. There are many ven-
dors of optical scanning equipment. Part of your job would be to make a
list of the vendors, meet with them, and then perhaps beta one or two of
the competitive products.

Essentially, the job of a systems analyst is to be an explorer — go out
and wander the world and find the best combination of technologies to cre-
ate the most cost-effective system. To do this may require a combination of
strategies:

1. Program the whole thing in house.

2. Find out if there is a software package you can buy and use.
3. Let someone else program it (outsource).

4. Put together a combination of any of these items in any order.

OBJECT-ORIENTED METHODOLOGIES (See Chapter 13)

Object-oriented systems development follows the same pattern as
structured systems development. First, you must analyze your system
(object-oriented analysis or OOA). Next, you design the system using
object-oriented design or OOD. Finally, you code the system using object-
oriented (OOP) programming techniques and languages (i.e., C++, Java).

0O techniques may have some similarity to traditional techniques but
the concept of OO is radically different from what most development peo-
ple are used to. This methodology revolves around the concept of an
object, which is a representation of any information that must be under-
stood by the software. Objects can be:

e External entities: printer, user, sensor

e Things: reports, displays

e Occurrences or events: alarm, interrupt
e Roles: manager, engineer, salesperson

e Organizational unit: team, division

e Places: manufacturing floor

e Structures: employee record

22

Introduction to Software Engineering

The easiest way to think of an object is just to say it is any person, place,
or thing. One of the important features of OO is the reusability of its
objects. A well-coded object is often thought of as a “black box.” What this
means is that the programmer should be able to glue together several
objects to create a working system. He should not need to know too much
about any of these objects. Does anyone remember playing with Lego
blocks as a child? It was easy to create incredible things such as bridges
and building because each of the blocks was easily connected to all other
blocks. It is the same with objects (see encapsulation below).

First some OO definitions:

¢ (lass: in object technology, a user-defined data type that defines a col-
lection of objects that share the same characteristics. An object, or
class member, is one instance of the class. Concrete classes are de-
signed to be instantiated. Abstract classes are designed to pass on
characteristics through inheritance.

¢ Object: a self-contained module of data and its associated processing.
Objects are the software building blocks of object technology.

e Polymorphism: meaning many shapes. In object technology, the ability
of a generalized request (message) to produce different results based
on the object that it is sent to.

e Inheritance: in object technology, the ability of one class of objects to
inherit properties from a higher class.

e Encapsulation: in object technology, making the data and processing
(methods) within the object private, which allows the internal imple-
mentation of the object to be modified without requiring any change
to the application that uses it. This is also known as information
hiding.

Take a look at Exhibit 1-9. Here we have a class, called automobile, that
has several common attributes. One is that this thing has a motor. Another
attribute is the fact that an automobile (usually) has four wheels. In an OO
system you can create derived classes from the parent class. Notice the
nice, shiny red sportscar. This is the derived class called “sports car.” It
also has a motor and four wheels that it inherits from the parent class.
However, in this derived class we have some additional attributes: fast rpm
and sleek design. The sports car is the child of the parent class named
automobile. So we can say, “Every convertible is an automobile but not
every automobile is a convertible.”

To develop an OO application one must define classes. If you know any-
thing about OO programming languages such as C++, all variables within a
program are defined as some “type” of data. For example, in C and C++, a
number is defined as a type called “integer.” When we define a class in a
programming language, it is defined as a type of class as shown below:

23

SOFTWARE ENGINEERING HANDBOOK

The class called automobile
* Motor
¢ Four wheels

PARENT

Inheritance v Derived class

The class called sports car
* Inherits motor

¢ Inherits four wheels

¢ Fast RPM

¢ Sleek design

CHILD (extra features)

Exhibit 1-9. The Class Automobile.

//Program to demonstrate a very simple example of a class
called DayOfYear.

#include <iostream.h>

//This is where we define our class. We’ll call it
DayOfYear//It is a public class. This means that there are
no//restrictions on use. There are also private classes.

//The class DayOfYear consists of two pieces of data: month
and//day and one function named output ()

class DayOfYear

{

public:
void output () ;
int month;
int day;

Yi

Designing OO systems requires the use of different modeling and defini-
tional techniques that take into account the idea of classes and objects.
Unified modeling language (UML) is an emerging standard for modeling OO
software. Exhibit 1-7 shows a sample class diagrammed using UML and
Appendix L contains a complete SDS for an OO system. Contained within
this SDS are numerous diagrams (models): 1) class diagrams, 2) object
models, 3) package diagrams that show how the classes are grouped
together, and 4) collaboration diagrams, which show how the classes “col-
laborate” or work with each other. (See Chapter 13 for more on object-
oriented methodologies.)

24

Introduction to Software Engineering

TESTING (See Chapter 16)

When you tie many programs together you have a system. It is not
uncommon for a system to have thousands of lines of code, all of which
must be tested. The very first level of testing is at the programmer’s desk.
Here he works with whatever tools he is using to make sure that everything
works.

Many applications are built using a Microsoft product called Visual
Basic. Exhibit 1-10 shows what the debugger looks like. For those of you
who do not know the derivation of the term, debug means to take the
“bugs” out of a program. A bug is an error, but the term actually stems from
an incident with one of the first computers in the early 1950s. A real bug
crawled into the computer, which stopped working. Ever since, we use the
term debugging to describe the process of ridding a program of its
problems

The debugger will run only if your code “compiles and links” first. When
you compile a program it goes through a syntax checker that checks for
obvious errors (i.e., referencing a variable that does not exist).

oft Visual Basic [design] - [Form1 [Code]]

roject Format |gebug Run Query Diagram Tools Add-Ins Window Help

6=
&) E¥Estepinto B & R & neo,cols
i Iﬁﬂi Step Over Shift+F8 .
bbbl < -) ChrlShiftHrs] cie
Dim £ Run To Cursor Ctrl+F8
size(
'Msgl AddWatch...
EditWatch),, CEH
Dim (g ouick watch... Shift-+F9
For (
t 4™ Toggle Breakpoint F9 {Countl)
NexXt ' Clear All Breakpoints Ctrl+Shift+F9
Dim (8 Setlext Statement Gir|$EY
Cour S8 Show et Statement
For TS S ToIoeo T oIoC 3 0 Step -1
& List2.List (Countl) = theNames (Count2)
Countl = Countl + 1
Next
| End Sub

Exhibit 1-10. Visual Basic’s Debugger.

25

SOFTWARE ENGINEERING HANDBOOK

When a group of programmers work together, their project manager
might think it a good idea that a “walkthrough” be held. This is when the
team gets together and examines the code as a group to find flaws and dis-
cuss better ways to do things. Usually this is not done. One reason is that
programmers do not like to do this; another reason is that it is very time
consuming.

You can consider the testing the programmer does at his own desk unit
testing — meaning testing a unit of work (a program). When several pro-
grams must interact together, another type of test that you might want to
perform is integrating testing. This test determines if the separate parts of
the system work well together. For example, program 1 creates a file that
contains a student file and program 2 processes that student file. If pro-
gram 1 makes a mistake and creates the student file incorrectly, then pro-
gram 2 will not work.

A system test tests the complete system — soup to nuts. All of the inputs
are checked, all of the outputs are checked, and everything in between is
checked. If there is an existing system, a parallel test is done. “Parallel” is
a good term for this because you must run both systems in tandem and
then check the results for similarities and differences.

Finally, acceptance testing is done. This means that you run a test and
the end user agrees or disagrees with the test and approves or disap-
proves it.

In any case, testing is a lot of work that involves many people, including
end users and, usually, a quality assurance (QA) department. QA people
spend all of their time writing testing scripts (i.e., a list of things to test for)
and then running those scripts. If they find an error they send a report to
the programmer, who then fixes it. QA usually uses testing tools to assist
with these massive jobs. These tools assist with the creation of scripts and
then automatically run them. This is especially helpful when conducting
stress testing — testing to see how well the system works when many peo-
ple are using it at the same time.

Testing is usually not performed in a vacuum. An analyst or manager
prepares a test plan that details exactly what must be tested and by whom
(see Appendix A). The test plan contains the testing schedule as well as the
intricate details of what must be tested. These detailed plans are called
“test cases” and form the basis for the test scripts used by the programmer
or QA staff member, usually in conjunction with a testing tool.

A sample test case that could appear in a test plan appears in
Exhibit 1-11. This would be turned into a script for use by the testers. For
more details of testing, see Chapter 16.

26

Introduction to Software Engineering

Exhibit 1-11. Sample Test Case.

1.1.1. Accounting: Payment
1.1.1.1. Description

The purpose of this test is to determine if a representa-

tive of the service care provider can enter a payment

receipt within the accounting subsystem.
1.1.1.2. Required Stubs/Drivers

The accounting subsystem will be invoked with partic-

ular attention to the payment class.

1.1.1.3. Test Steps

1. The service care provider must successfully log into
the system.

2. The service care provider must invoke the account-
ing user interface to enter the payment receipt.

3. The service care provider must enter a payment
receipt and press the button to commit the transac-
tion.

1.1.1.4. Expected Results

Test Success

1. A subsequent query indicates the customer’s bal-
ance reflecting the recent payment.

2. A successful message is displayed.

Test Failure

1. The customer’s balance does not reflect the pay-
ment receipt.

2. The customer’s balance reflects an incorrect
amount that is a result of faulty logic within the
program.

STANDARDS AND METRICS

When you build a house you must adhere to certain standards; other-
wise, the homeowner’s lamp will not fit into the electrical outlet. The size
of the outlet is consistent with a standard used throughout the building
industry. Those who travel know that they must bring an adaptor because
a hair dryer brought from the United States into Italy will not fit into Italian
outlets. This is because many standards in America are different from the
standards in other countries.

Standards are an important fact of life; without them we would be living
in chaos. This is especially true in the IT industry. The American National
Standards Institute, which is located in New York (www.ansi.org), was
founded in 1918 to coordinate the development of U.S. voluntary national
standards in the private and public sectors. It is the U.S. member body to

27

SOFTWARE ENGINEERING HANDBOOK

ISO and IEC. Information technology standards pertain to programming
languages, EDI, telecommunications and physical properties of diskettes,
cartridges, and magnetic tapes. The IEEE (Institute of Electrical and Elec-
tronics Engineers — www.ieee.org) is another membership organization
that develops standards.

For example, IEEE 1284 is an IEEE standard for an enhanced parallel port
that is compatible with the Centronics port commonly used on PCs.
Instead of just data, it can send addresses, allowing individual components
in a multifunction device (printer, scanner, fax, etc.) to be addressed inde-
pendently. [EEE 1284 also defines the required cable type that increases
distance to 32 feet.

Your company might well adhere to ISO 9000 and 9001. As I mentioned,
ANSI is the U.S. member body to ISO. The International Organization for
Standardization is a Geneva-based organization that sets international
standards. ISO 9000 is a family of standards and guidelines for quality in the
manufacturing and service industries from the International Standards
Association; it defines the criteria for what should be measured. ISO 9001
covers design and development, ISO 9002 covers production, installation
and service, and ISO 9003 covers final testing and inspection.

If you live by the rule of standards you need to have a way to measure
whether or not those standards are adhered to. In our field, we use metrics
(measurements). The most prevalent metric used is lines of code, which is
the number of lines of code a programmer can program in an hour. There
are many more metrics. The second half of this handbook provides details
on a variety of metrics that are in use (or should be in use) today. Appendix
P is a software metrics capability evaluation guide that will be useful prior
to starting on a measurement program.

A controlled development and maintenance program is essential for
bringing down the cost associated with software development life cycle.
The control mechanism can be implemented by setting up specific goals
and then selecting the right set of metrics for measurements against those
goals. Goals must be tangible and balanced or they will be too remote to be
considered achievable. Intermediate targets are needed for monitoring the
progress of the project and making sure that it is on the right track. Project
data collection and analysis should also be part of the control mechanism.

A four-step procedure (Linkman and Walker, 1991) is outlined for estab-
lishing targets and means for assessment. The procedure is not focused on
any particular set of metrics; rather, it believes that metrics should be
selected on the basis of goals. This procedure is suitable for setting up
goals for the entire project’s deliverables or for any partial product created
in the software life cycle. (More information on standards and metrics can
be found in Section II.)

28

Introduction to Software Engineering

PROCEDURE

1. Define measurable goals. The project goals establishment process is
similar to the development process for project deliverables. Soft-
ware projects usually start with abstract problem concepts and the
final project deliverables are obtained by continuously partitioning
and refining the problem into tangible and manageable pieces. Final
quantified goals can be transformed from initial intangible goals by
following the same divide-and-conquer method for software deliver-
ables. Three sources of information are helpful to establishing the
targets:

— Historical data under the assumptions that data is available, de-
velopment environment is stable, and projects are similar in
terms of type, size, and complexity

— Synthetic data such as modeling results if models used are cali-
brated to the specific development environment

— Expert opinions

2. Maintain balanced goals. The measurable goals are usually estab-
lished on the basis of cost, schedule, effort, and quality. It is feasible
to achieve a single goal, but it is always a challenge to deliver a
project with the minimum staff and resource, on time, and within
budget. It needs to be kept in mind that trade-off is always involved
and all issues should be addressed to reach a set of balanced goals.

3. Set up intermediate goals. A project should never be measured only
at its end point. Checkpoints should be set up to provide confidence
that the project is running on course. The common practice in-
volves setting up quantifiable targets for each phase, measuring the
actual values against the targets, and establishing a plan to make
corrections for any deviations. Cost, schedule, effort, and quality
should be broken down into phase or activity for setting up interme-
diate targets. Measurements for cost and effort can be divided into
machine and human resources according to software life-cycle
phase so that expenditures can be monitored to ensure the project
is running within budget. Schedule should always be defined in
terms of milestones or check points to ensure intermediate prod-
ucts can be evaluated and final product will be delivered on time.
Quality of intermediate products should always be measured to
guarantee the final deliverable will meet its target goal.

4. Establish means of assessment. Two aspects are involved in this
activity:

— Data collection. Based on the project characteristics such as size,
complexity, level of control, etc., a decision should be made in
terms of whether a manual data collection process or an automat-
ed data collection process should be used. If a nonautomated way

29

SOFTWARE ENGINEERING HANDBOOK

is applied, then the availability of the collection medium at the

right time should be emphasized.

— Data analysis. The following two types of analyses should be con-
sidered:

e Project analysis, a type of analysis consisting of checkpoint
analysis and continuous analysis (trend analysis), is concerned
with verifying that intermediate targets are met to ensure that
the project is on the right track.

e Component analysis is a type of analysis that concentrates on
the finer level of details of the end product and is concerned
with identifying those components in the product that may re-
quire special attention and action. The complete process in-
cludes deciding on the set of measures to be analyzed,
identifying the components detected as anomalous using mea-
sured data, finding out the root cause of the anomalies, and tak-
ing actions to make correction.

INSTALLATION

When you have a very small system you can just put it online (direct). If
your system is larger then there are several ways to approach installing
(implementing) the system. If you are going to replace an existing system,
then you can install the new system in a parallel mode. This means that you
run both systems at the same time for a period of time. Each day the end
users check the outputs and, when they feel comfortable, turn the old sys-
tem off.

Many companies run multiple servers with the same system running on
each server. One good way to install a system is to install it on a single
server first, see how it runs, and then install it on another server. This is
called a phased approach.

DOCUMENTATION

One day all of the programmers who wrote the original system will
leave. If documentation is not adequate then the new programmers will not
understand how to work on the system. I recently worked on a project
(Internet gambling for a foreign country) where the programmer did not
have any documentation at all. The system was written in C++ and ASP and
there were hundreds of programs. It was almost impossible to figure out
which program ran first. So, you really do need system documentation.

It is also critical to have some documentation for the end users. You
have seen the manuals that come with software that runs on your PC. Look
at the manual that comes with Visio; you are the end user for this software.
So, if you write a system, you will need to write a manual for your end users.

30

Introduction to Software Engineering

Finally, you will need to train your end users to use the system. When |
worked for the New York Stock Exchange, we brought in a tool that permit-
ted our end users to use a fourth generation language (4GL) to do their own
queries against the system’s database. We needed to train these end users
to use the 4GL productively. Instead of writing and teaching a course our-
selves, we hired an expert who did it for us (outsource). (See Chapter 19 for
more on documentation.)

MAINTENANCE

Many, many years ago I worked with a project leader who wanted to play
with a new toy. At the time databases were just coming into vogue, so the
project leader decided to create a database for a new system. The problem
was that this particular system did not need this particular database. The
system was written but, as a result of the horrid choice of databases, it
never ran well. In fact, it “bombed” out all the time.

After a year of problems, management decided that the system needed
to be fixed, and fix it we did. This is called corrective maintenance — mod-
ifying an existing system so that it works correctly. Maintenance is done for
lots of reasons.

One reason we are all familiar with is because of security and viruses.
Systems people frequently make modifications to software because of
problems such as this. The casino gaming programmers mentioned previ-
ously had to suspend programming new features into the system to take
care of the “Code Red” worm. This is an example of preventative mainte-
nance. Most often the reason for maintenance is simply to improve the sys-
tem. If the casino end users decide to add a new game to the system or a
new data field is added to a database or a new report is required — these
are examples of maintenance for improvement purposes.

Some organizations have two types of programmers; one type usually
works on new software and the other is stuck with maintenance. This is not
often done anymore because maintenance programmers are usually an
unhappy lot and, therefore, their turnover rate is quite high.

All systems need to be managed. You cannot make changes to a system
willy-nilly. The way you control what happens to a system is to continue
holding meetings with your end users and developing a prioritized list of
changes and additions that need to be made. Occasionally, a change might
come in from a person who is not on the end-user committee. To handle
these requests, system personnel usually make use of a standard change
request form. This form contains information such as desired change, rea-
son for change, screen shots of the existing screen that needs to be
changed, if applicable, and more, depending on the organization. Usually

31

SOFTWARE ENGINEERING HANDBOOK

these changes must be authorized by the end user’s management before it
is sent to the computer department.

Once the change request comes to the computer department, if it is sim-
ple and there is some spare time, the modification is scheduled immedi-
ately. Usually, however, it is added to a prioritized list of things to do. When
it reaches the top of the list, the same SDLC steps used during development
are used during maintenance. In other words, you need to determine
whether the modification is feasible, determine its cost, develop a specifi-
cation, etc. (Chapter 18 provides additonal discussion on maintenance.)

TRAINING

After the system is installed the end users will require some training.
The various ways to achieve this include in-house training to CAI (com-
puter assisted instruction).

Once the end-users are trained they will need some support on a day-to-
day basis. First, as already discussed, they will need a manual so they can
look up answers to questions. Some systems do not use paper manuals;
instead, everything is embedded in a Help file. If the manuals are insuffi-
cient then the company might want to do what most companies are doing
and fund and staff a Help Desk. Sometimes people in end-user departments
rely on a person within their department who has become quite expert at
using the system. This person is usually referred to as the resident expert.

CONCLUSION

In this introductory chapter we have covered a broad array of systems
development issues and methodologies. We started our grand tour by dis-
cussing the SDLC (systems development life cycle) that identifies the dif-
ferent steps IT team members take when developing a computer system
using the traditional structured approach. These steps include, but are not
limited to, feasibility study, analysis, design, testing, and implementation.

It is very important that an IT team use a methodology to build a system.
Although systems can certainly be built without such a methodology, the
resulting systems are usually quite flawed and inefficient, and cost too
much money to build and maintain. One would not build a house without
blueprints; therefore, it makes sense that one should not build a computer
system without a blueprint for building it (the requirement document and
design specification).

We have seen some of these “building tools” in action in the form of
DFDs (data flow diagrams) and PSPECs (process specifications). There are
many other diagrammatic techniques such as State transition diagrams,
E-R diagrams (entity-relationship), and control flow diagrams. These tools
are used by the analyst to lay out exactly what the system is going to do,

32

Introduction to Software Engineering

how the system will interact with its data, how the databases will be laid
out, and how the system will interface with other systems.

Of course, none of this is possible without first figuring out what the end
user wants and needs for his or her system. The process of determining
these requirements is usually called requirements elicitation and it is the
information uncovered in this process that the analyst uses to model the
system.

Once the system is deemed feasible and its requirements determined, it
is now time to physically design the system. This is when the analyst or
designer gets into the “bits and bytes” of the system: exactly what func-
tions will be programmed, the logic of these functions, what data will be
used, what network architecture should be used, etc. In this step, an
extremely detailed design specification is created — so detailed that the
programmers have all the information they need to write their programs.

The system is then tested (unit testing by the programmer, acceptance
testing by the end users, system testing by the team, etc.). After the system
has been thoroughly tested, it is time to implement the system; this is often
called “putting it into production” by those in the field. Just prior to this,
the IT team documents the system and trains the end users.

Finally, the system is in production and it is time to support it (help
desk, training, etc.) and make changes (maintenance) as required.

References

1. Linkman, S.G. and Walker, J.G. (1991). Controlling programs through measurement,
Inf. Software Technol., 33, 93-102.

33

This page intentionally left blank

Chapter 2
The Feasibility Study

and Cost/Benefit
Analysis

A feasibility study is a detailed assessment of the need, value, and practi-
cality of a proposed enterprise, such as systems development (Burch,
2000). Simply stated, it is used to prove that a project is either practical or
impractical. The ultimate deliverable is a report that discusses the feasibil-
ity of a technical solution and provides evidence for the steering commit-
tee to decide whether it is worth going on with any of the suggestions.

At the beginning of every project, it is often difficult to determine if the
project will be successful, if its cost will be reasonable with respect to the
requirements of building certain software, or if it will be profitable in the
long run.

In general, a feasibility study should include the following information:

e Brief description of proposed system and characteristics

e Brief description of the business need for the proposed system
¢ A cost/benefit analysis

e Estimates, schedules, and reports

Considerable research into the business and technical viability of the
proposed system is necessary in order to develop the feasibility study.

FEASIBILITY STUDY COMPONENTS

There are actually three categories of feasibility.

Financial Feasibility

A systems development project should be economically feasible and
provide good value to the organization. The benefits should outweigh the
costs of completing the project. The financial feasibility also includes the
time, budget, and staff resources used during all the stages of the project
through completion.

35

SOFTWARE ENGINEERING HANDBOOK

A feasibility study will determine if the proposed budget is enough to
fund the project to completion. When finances are discussed, time must
also be a consideration. Saving time and user convenience has always been
a major concern when companies develop products. Companies want to
make sure that services rendered will be timely. No end user wants to wait
for a long time to receive service or use a product, however good it is, if
another product is immediately available.

Key risk issues include: 1) the length of the project’s payback (the
shorter the payback, the lower the risk), 2) the length of the project’s
development time (the shorter the development time, the less likely objec-
tives, users, and development personnel will change and, consequently,
the lower the risk), and 3) the smaller the differences people make in cost,
benefit, and life cycle estimates, the greater the confidence that the
expected return will be achieved.

Technical Feasibility

A computer system should be practical to develop and easy to maintain.
It is important that the necessary expertise is available to analyze, design,
code, install, operate, and maintain the system. Technical feasibility
addresses the possibility and desirability of a computer solution in the
problem area. Assessments can be made based on many factors — for
example, knowledge of current and emerging technical solutions, availabil-
ity of technical personnel on staff, working knowledge of technical staff,
capacity of the proposed system to meet requirements, and capacity of the
proposed system to meet performance requirements.

Developing new technology will need to take into account the current
technology. Will today’s technology be able to sustain what we plan to
develop? How realistic is the project? Do we have the knowledge and tools
needed to accomplish the job? Emerging technology is getting more and
more advanced with each passing day; somehow we need to know if our
objectives can be realized. It is not enough to note if the product in devel-
opment is technologically feasible, we also must make sure that it is at par
with or more advanced than technology in use today.

Key risk issues:

e Project staff skills and clarity of project design requirements — tech-
nical risk is reduced where similar problems have been solved or
where the design requirements are understandable to all project par-
ticipants.

e Proven and accepted equipment and software — tried and tested
hardware and software components carry lower risk. Projects that are
novel or break new ground carry higher risk.

36

The Feasibility Study and Cost/Benefit Analysis

¢ Project complexity — a project that requires a high degree of technical
skills and experience will be a higher-risk undertaking than one that is
not as sophisticated and can be handled by less specialized people.

Organizational or Operational Feasibility

A systems development project should meet the needs and expecta-
tions of the organization. It is important that the system be accepted by the
user and be operational. The following requirements should be taken into
consideration in determining if the system is operationally feasible: staff
resistance or receptiveness to change, management support for a new sys-
tem, nature or level of user involvement, direct and indirect impact of new
system on current work practices, anticipated performance and outcome
of the new system compared to the old system, and viability of develop-
ment and implementation schedule. The following issues should also be
addressed:

¢ Does the organization for which the information system is to be sup-
plied have a history of acceptance of information technology or has
past introduction led to conflict?

e Will personnel within the organization be able to cope with operating
the new technology?

e [s the organizational structure compatible with the proposed informa-
tion system?

Key risk issues:

e User acceptance — the more strongly the users support the project,
the less risk of failure.

e Changes to organizational policies and structure — the more a project
influences changes to relationships within an organization or modifies
existing policies, the greater the risk.

e Changes to method of operation, practices, and procedures — the
more a project necessitates major changes or modifications to stan-
dard operating procedures in an organization, the greater the likeli-
hood of risk.

Depending upon the scope of the software to be developed, organization
feasibility might require the following analyses, particularly if the software
being developed is a product that will be introduced to the marketplace:

e Competitive analysis refers to the study of the current trends and dif-
ferent brand names available in today’s market to enforce competitive
advantage in product development.

e New product development analysis is a key factor in feasibility studies;
it studies the need for and uniqueness of a product, justifying further
study, development, and subsequent launching.

37

SOFTWARE ENGINEERING HANDBOOK

¢ Performance tracking analysis evaluates how well a product will per-
form technically and financially in relation to its features and require-
ments.

Competitive Analysis. How does your product or service measure up to
the competition? What is your market share? Is there room for growth?
Web sites can be visited, marketing literature reviewed, and financial
reports analyzed. Surveys can be developed to figure out the competition
and how the product will be needed.

Surveys are an important source of information on market needs and
user expectations. In competitive analysis, the market is evaluated as well
as the market standing value of existing products. Quantitative research is
also useful in anticipating market changes and foreseeing how the compe-
tition will react.

New Product Development. The first goal in launching a new product is
to identify a need. What will the software offer that is not offered right now
in existing products? Are businesses, schools, or personal consumers
interested in such a product? A feasibility study will allow an organization
to find the right niche for products. The feasibility study also helps evalu-
ate the market for growth, cost, and longevity of the product. This gives the
company a chance to tweak a product before it is manufactured and sub-
sequently launched.

Performance Tracking. There are many factors to consider when evalu-
ating the market share of a product. Profits and sales certainly reflect cus-
tomer acceptance, but true results can be known only when you evaluate
brand awareness as well as consumer attitudes and satisfaction. Equally
important to a healthy business are the people who make it happen. What
is the morale within your company? Are your employees performing at
their best? It is important to evaluate a company’s internal and external
behavior vis-a-vis the prospective end users of the product. If it is internal,
will employees see the need to implement totally new software and thus
relearn operations or will it hinder them from cooperating for fear that
technology might replace them?

COST/BENEFIT ANALYSIS

One of the major deliverables of the feasibility study is the cost/benefit
analysis. In this document the organizational, financial, and technical
aspects of creating the software are put into a dollars and cents format.
Appendix D (sample cost/benefit analysis worksheets) provides a good
framework for this analysis.

38

The Feasibility Study and Cost/Benefit Analysis

The purpose of this analysis is to determine whether the costs exceed
the benefits of the new or modified system. Costs associated with a com-
puter project can be categorized as follows:

¢ Systems analysis and design

e Purchase of hardware

e Software costs

¢ Training costs

e [nstallation costs

¢ Conversion and changeover costs

e Redundancy costs

e Operating costs, including people costs

Many specific costs are subcategorized within these categories; for
example: analyst calculations of total cost of project, alternatives to pur-
chasing hardware, staff needed to train users, maintenance costs for hard-
ware and software, costs of power and paper, and costs associated with
personnel to operate the new system. A more detailed list includes:

e Fquipment — disk drives, computers, telecommunications, tape
drives, printers, facsimiles, voice and data networks, terminals, mo-
dems, data encryption devices, physical firewalls (leased or pur-
chased)

e Software — application programs, operating systems, diagnostic pro-
grams, utility programs, commercial off-the-shelf (COTS) software
such as word processors and graphics programs, database manage-
ment software, communications software, server software (leased or
purchased)

e Commercial services — teleprocessing, cell phones, voice mail, on-
line processing, Internet access, packet switching, data entry, legal
services

e Support services — systems analysis and design, programming, train-
ing, planning, project management, facilities management, network
support

e Supplies — CDs, tapes, paper, pens, pencils, CD-ROMs, etc.

e Personnel — salary and benefits for all staff involved, usually calculat-
ed at a rate of 30 percent of the base salary

It is important that the benefits outweigh the costs. Some of the benefits
cannot necessarily be measured, but nevertheless should be taken into
consideration. Some of those benefits are intangible such as savings in
labor costs, benefits due to faster processing, better decision making, bet-
ter customer service, and error reduction. It may be difficult to determine
benefits and costs in advance.

39

SOFTWARE ENGINEERING HANDBOOK

Cost information can be obtained from:

e Experiences from the past. Old documents and information will be use-
ful in getting some ideas about the cost of software, hardware, and
each service. Invoices for expenses for resources purchased for prior
projects are particularly useful.

e Costs from the market. It is also important to get the price from the cur-
rent market for your software system.

¢ Publishing. Business and trade publications and the Internet are an-
other source of price information as well as product functionality.

e Personal experience. End users and system staff might have relevant
information on costs and product feature sets.

SCHEDULING THE FEASIBILITY STUDY

Creating a schedule for the feasibility study is very important in that it
puts into perspective the amount of time required, people involved, poten-
tial consumers, and competition that will provide the relevant information.
Tasks include selecting a team, assigning appropriate tasks to each team
member, and estimating the amount of time required to finish each task.
Some of the scheduling tools that can be utilized are diagrams showing rel-
evant work scheduling in relation to the tasks required to finish the feasi-
bility study. Some of these use a table as shown below, a Gantt chart
(Exhibit 2-1), or a PERT diagram (Exhibit 2-2), which is represented by a
network of nodes and arrows that are evaluated to determine the project’s
critical activities. Precedence of activities is important in determining the
length of the project when using a PERT diagram.

Exhibit 2-1. Figuring the time schedule in relation to the related activity
may also be accomplished using a two-dimensional Gantt

chart.

Feasibility Study Tasks Detailed Activity Weeks Required

Data gathering Conduct interviews 3
Administer questionnaires 4
Read company reports 4
Introduce prototype 5
Observe reactions to prototype 3

Data ﬂoYv and decision Analyze data flow 3

analysis

Proposal preparation Perform cost/benefit analysis 3
Prepare proposal 2
Present proposal 2

40

K = Ken, J = Jon, M = Matt, B = Bill
< = See next chart

The Feasibility Study and Cost/Benefit Analysis

2-Jan

16-Jan

30-Jan

Tl B

slmll |w|r |f |s

slmlt |w|r |f |s

LT

EanEED

sl [w]r]

Requirements Spec. & Design
Requirements specification

Engine architecture design
Interface layout and design

Interface Task Breakdown
Level Editor

New Project wizard

New Sprite wizard

Database (DB) construction
DB communication w/ interface
Exporting game files ability
Exporting .cpp files ability

Engine Task Breakdown
Object Handler

Sprite Handler

Image Handler (DDraw)
Sound Handler (DSound)
Input Handler (DInput)
Text Handler

Logic Handler

Attribute Handling

Unit Pathing

File I/O Parser

Help Task Breakdown
Interface Help

Engine Help

FAQ

Game building tutorials
Manual

Testing Task Breakdown
Unit testing

Integration testing
Validation testing
Performance testing
In-house Alpha testing
Outside beta testing

Documentation

System Requirements Specification
Software Requirements Specification
Software Quality Assurance Plan
Risk Management Plan

Software Configuration Mgmt.
Project Plan

=

A X X &«

Exhibit 2-2. A PERT (Program Evaluation and Review Techniques) Diagram

THE FEASIBILITY STUDY PROCESS

A feasibility study should follow a certain process. It should analyze the
proposed project and produce a written description, define and document
possible types of systems, and develop a statement of the probable types
of systems. The feasibility study should analyze the costs of similar

41

SOFTWARE ENGINEERING HANDBOOK

systems, produce a rough estimate of the system size, costs, and sched-
ules, and define the benefits of the system. It should produce an estimate
of the next stage of the life cycle. Analysis of the current system is neces-
sary in order to establish feasibility of a future technical system. This will
provide evidence for the functions that the new system will perform.
Finally, a report should be written containing suggestions, findings, and
necessary resources (Sauter, 2000).

A feasibility report will be written and submitted to management con-
taining all relevant information, including financial expenses and expected
benefits as shown in Exhibit 2-3. Based on this report, management will
make its determination about the future of the project. Much of the infor-
mation will come from the analyst and the systems investigation. The
report should include information on the feasibility of the project, the prin-
cipal work areas for the project, any needs for specialist staff that may be
required at later dates, possible improvements or potential savings, costs
and benefits, as well as recommendation. Charts and diagrams relative to
the project, such as Gantt and Pert charts, should be included in the feasi-
bility report. Obviously, the project cannot proceed until the feasibility
report has been accepted.

Determining Feasibility

A proposal may be regarded as feasible if it satisfies the three criteria
discussed at length earlier: financial, technical, and operational. Schedul-
ing and legal issues must also be considered (Burch, 2000). It is possible to
proceed with the project even if one or more of these criteria fail to be met.
For example, management may find that it is not possible to proceed with
the project at one point in time but that the project can commence at a
later date. Another option would be for management to make amendments
to the proposed agenda and agree to proceed upon those conditions. Con-
versely, a project that may have been determined feasible may later be
determined infeasible due to changes in circumstances.

Other Considerations

When dealing with many kinds of projects, costs and benefits are usually
the main concerns. Other concerns, however, should be considered.
Project timeframes should also be addressed in the feasibility study; real-
istic estimates should be made detailing staff resources and time required
to complete the different phases of the project.

In dealing with the project, it is also important to consider all legal or
regulatory issues that may occur throughout the feasibility or any stage of
the project. It may be wise to conduct a preliminary investigation of any
obligations and regulatory or legal issues prior to commencement of the
initial project stages.

42

157

Exhibit 2-3. Expected Benefits Compared to Expenses

Interest Rate 10.00%
NPV $1,450,582.94
IRR 103%
Payback 2.0 years (payback manually calculated)
Assumptions Expenses
Year 1
IT Related
Initial hardware plus additional yearly capacity Hardware $304,000
Solution software and licensing costs for upgrades Software $111,000
Project-related design and implementation costs People $90,000
Training, policies, and procedures Training/Materials $250,000
Costs associated with potential unknown factors Variance $75,000
User Related
Human resources for the project Hardware
Software
People $300,000
Training for developers on application rollback Training/Materials
Lost Opportunity $10,000
TOTAL $1,140,000

Year 2 Year 3
$50,000 $50,000
$50,000 $50,000

Year 4

$50,000

$50,000

Year 5

$50,000

$50,000
(continued)

SISAIpuy 1yauag/1so) pup Apmis A1qisna.f a1y

44

Exhibit 2-3. (continued) Expected Benefits Compared to Expenses

Benefits

IT Related
Gains achieved from buying fewer servers Hardware
Software
1 man less spent managing storage People

Gains from more efficient use of storage Productivity Gains

User Related
Improved development efficiency, based on company Hardware
growth
Software
People

Improved profit margins on projects, based on com-

pany growth Productivity

Gains

TOTAL
TOTAL PMT

$83,300

$0
$50,000
$75,000

$0

$0
$150,000

$200,000

$558,300
($581,700)

$83,300

$50,000
$100,000

$175,000

$225,000

$633,300
$583,300

$83,300

$50,000
$125,000

$200,000

$250,000

$708,300
$658,300

$83,300

$50,000
$150,000

$225,000

$275,000

$783,300
$733,300

$83,300

$50,000
$175,000

$250,000

$300,000

$858,300
$808,300

AOOIANVH DONIIAANIONAT TIVM.LAOS

The Feasibility Study and Cost/Benefit Analysis

Activity Needs Conceptual Use Case
’_’ Analysis | 2| Analysis || Modeling [| Modeling
Define
Project Scope ¢
Identify .
| »| Nonfunctional > Iodet?ot'rf])é
Requirements P
I
L Select Plan Develop Package
Obtion > Acquisition >| Business >| Feasibility
P Strategy Case Study

Exhibit 2-4. The Stages of a Feasibility Study

Stages of Feasibility Study

Robinson (2002) has neatly summarized the stages of a feasibility study
(Exhibit 2-4):

Define project scope

Perform activity analysis

Perform needs analysis

Conduct conceptual modeling
Use case modeling

Identify nonfunctional requirements
Identify options

Select options

Plan acquisition strategy

Develop business case

Conduct package feasibility study

—

mFeYL XN WN

—

CONCLUSION

The primary goal of the feasibility study is to evaluate the risks, benefits,
and potential of a proposed project. We also know that the study should
aid in producing a solid plan for the research stage and stages to follow so
that the project will be given careful consideration and be properly funded.
According to Burch (2000), a feasibility study will help you make informed
and transparent decisions at crucial points during the developmental pro-
cess to determine whether it is operationally, economically, and techni-
cally realistic to proceed with a particular course of action. It should
provide a means of minimizing risks, clarifying issues and expectations,
and improving the decision making process and the stages to follow.

45

SOFTWARE ENGINEERING HANDBOOK

References and Further Reading
Allen, G.W. (1998). The position of the feasibility study in project management, (Online) Avail-
able: http://www.dis.port.ac.uk/~allangw/papers/feas-stu.htm.

Anonymous. (1996). Feasibility study and initial assessment, (Online) Available: http://cyg-
nus.uwa.edu.au/~belle/ScafEng/feasibil.htm.

Burch, J. G. (2000). Designing and implementing record keeping systems, (Online). Available:
http://www.records.nsw.gov.au/publicsector/DIRKS/exposure_draft/feasibility_analysis.htm.

Curtis, G., Hoffer, J., George, J., and Valacich, J. (2000). Introduction to Business Systems Anal-
ysis, Pearson Custom Publishing, Boston, 17, 19, 23, 25-229.

Kendall, K.E. and Kendall, J.E. (1999). Systems Analysis and Design, 4th ed., Prentice Hall, New
York, 54-68.

Putnam, L. and Myers, W. (1997). How solved is the cost estimation problem? IEEE Software,
14(6), 105-107.

Pressman, R.S. (2001). Software Engineering: a Practitioner’s Approach, 5th ed., McGraw Hill,
New York, 117-118.

Robinson, P. (2002). Lyonsdale systems. Feasibility study, (Online) Available: http://mem-
bers.iinet.net.au/~lonsdale/bm/bm21.htm.

Sauter, V. (2000). The feasibility study, (Online) Available: http://www.umsl.edu/~sauter/anal-
ysis/deliverables.htm.

46

Chapter 3
Writing the Project
Plan

In the beginning there was just code and nothing but code. The art of soft-
ware engineering was just a blip on the horizon and project planning did
not even have a name. In the early days of software development, one per-
son could carry out the whole process of requirement collection, analysis,
designing, development, testing, and maintenance by himself. Of course,
he did not recognize these processes as independent steps with the names
[have used.

As computers became ubiquitous software engineering, the “policies
and procedures” of developing computer systems became an important —
and organized — discipline. Project planning became an indispensable
part of software engineering.

The project plan is the roadmap that details all of the components of a
software engineering effort. It is a work product generated by the planning
tasks in a software engineering process that contains detailed information
about budgets, schedules, and processes. It necessarily addresses a broad
audience, including management, staff, and customers. For this purpose it
should be comprehensive but concise.

WHY WRITE A PROJECT PLAN?

Projects often go awry. A China Airlines Airbus took off from Taipei Inter-
national Airport on April 26, 1994, and continued flying according to its
flight plan. While approaching Nagoya Airport for landing, the aircraft
crashed. On board were 271 persons: 256 passengers (including 2 infants)
and 15 crew members, of whom 264 persons (249 passengers including 2
infants and 15 crew members) were killed and 7 seriously injured. The air-
craft ignited and was destroyed.

While the aircraft was making an approach under manual control by the
flight officer, he inadvertently activated the GO lever, which caused the FD
(flight director) to GO AROUND mode and caused a thrust increase. This
made the aircraft deviate above its normal glide path, which, in turn led to

47

SOFTWARE ENGINEERING HANDBOOK

the chain of events that ultimately caused the airplane to stall and then
crash.

Computers are increasingly being introduced into safety-critical sys-
tems and, as a consequence, have been involved in more than a few acci-
dents. Some of the most widely cited software-related accidents in safety-
critical systems have involved a computerized radiation therapy machine
called the Therac-25. Between June, 1985, and January, 1987, six known
accidents involved massive overdoses by the Therac-25 — with resultant
deaths and serious injuries. They have been described as the worst series
of radiation accidents in the 35-year history of medical accelerators.

Software disasters like these could have been avoided had the software
been designed and tested properly. Productivity and quality oriented soft-
ware design cannot be accomplished without adequate project planning.

A realistic project plan must be developed at the beginning of a project.
It must be monitored during the project and modified, if necessary. Ulti-
mately, a project plan is a vehicle and focal point that enables the project
manager to carry out all sorts of project management activities. It provides
a roadmap for a successful software project.

WHO WRITES THE PROJECT PLAN?

The project manager or team leader normally writes the project plan,
although experienced consultants are often called in for this aspect of the
project. In truth, there are as many ways to write a project plan as there are
companies that write them. If the project is large, the proposed system
might be divided into subsystems — each with its own team. Each team
leader may need to write his own part of the project plan. The project man-
ager then compiles each subplan into a plan for the whole project.

Another alternative is to divide the project plan into discrete tasks and
parcel out the effort to team members. Appendix F contains a sample
project plan. As you can see from its table of contents, it is easily divisible.

WHAT GOES INTO THE PROJECT PLAN?

Pressman (2001) has defined the prototypical project plan. A student
implementation of this guideline can be found in Appendix F; the reader is
directed there for a concrete example of how a project plan is orchestrated.

The first section introduces the system and describes its purpose. The
project scope and objectives need to be defined here. This subsection con-
tains a formal statement of scope, description of major functions, concerns
on performance issues, and a list of management and technical constraints.

The second section discusses project estimates and resources. Histor-
ical data used for estimates needs to be specified, as do estimation

48

Writing the Project Plan

techniques. As a result of the estimation process, the estimates of effort,
cost, and duration need to be reported here. Resources are required to be
discussed in terms of people and minimal hardware and software
requirements.

The third section discusses risk management strategy. A risk table
needs to be created at first, followed by more detailed discussions on risks
to be managed. Based on that, a risk mitigation, monitoring, and manage-
ment (contingency) plan needs to be created for each risk that has been
addressed.

The fourth section is an actual project schedule in terms of deliverables
and milestones. A project work breakdown structure, or WBS, needs to be
created, followed by a task network and a timeline chart (Gantt chart). In
addition, a resource table describes the demand for and availability of
resources by time windows. In a WBS the total task is broken down into
series of smaller tasks. The smaller tasks are chosen based on size and
scope to fit in the management structure of the project. Therefore, efficient
planning and execution are possible.

The fifth section discusses staff organization. Usually a project is carried
out by a group of people and therefore a team structure needs to be defined
and a management reporting relationship specified.

The sixth section lays out a picture on tracking and control mecha-
nisms. It can be divided into two subsections: quality assurance and con-
trol and change management and control.

At the end of the project plan, all supporting materials that do not fit into
the body of the document can be attached in the appendices section.

Most project managers have a difficult time writing a project plan
because it is often required at project inception, which, unfortunately, is
when information is most scarce. The project manager must choose a pro-
cess model most appropriate for the project, and then define a preliminary
plan based on the set of common process framework activities. The possi-
ble models include linear sequential model, prototyping model, RAD model
(Mantei, 1991), incremental model (McDermid and Rook, 1993), spiral
model, etc. — many of which are described in other chapters of this hand-
book. Afterward, process decomposition (partitioning) is carried out, gen-
erating a complete plan reflecting the work tasks required to populate the
framework activities.

THE PROJECT PLAN UNWRAPPED

Software Scope

Determination of software scope needs to be ascertained first. One
establishes software scope by answering questions about context,

49

SOFTWARE ENGINEERING HANDBOOK

information objectives, function, performance, and reliability. The context
usually includes hardware, existing software, users, and work procedures.
Normally a system specification developed by a system analyst supplies
the information necessary to bound the scope.

Techniques like question and answer sessions and FAST (facilitated
application specification techniques) can be used to gather requirements
and establish project scope (Zahniser, 1990).

The following is a minimum that needs to be ascertained:

® Major functions are the customers’ requirements as to what the soft-
ware should be able to do.

e Performance issues are about speed, response time, and other perfor-
mance-related requirements. They can have serious impacts on the re-
quirement of effort and therefore should be clarified here.

¢ Management and technical constraints should be listed as foundation
for the next section’s estimation.

Project Estimates

Estimation is the one activity that lays a foundation for all other project
planning activities. However, a project manager should not be overly manic
in estimation. If an iterative process model is adopted, it is possible to
revisit and revise the estimates when customer requirements change.

Historical Data Used for Estimates. Historical data is key to a good esti-
mation. The availability of reliable historical software metrics from previ-
ous projects assists the project planner in translating the product size esti-
mation into effort, time and cost estimations. Baseline productivity
metrics (e.g., LOC (lines of code) or FP (function points)) should be stored
by project domain for use in future estimation efforts.

Estimation Techniques. If similar projects have already been completed,
estimates can easily be based on that available data. Otherwise, a decom-
position technique or an empirical model can be used. There are also soft-
ware tools that automate the process using the two preceding approaches.
At least two estimation methods should be used, with the final estimation
a triangulation of the two. Even so, common sense and experience should
be the ultimate judge.

In the example provided in Appendix F two estimation methodologies
are used:

® Process based where the system is decomposed into discrete tasks
such as analysis of the user interface and design of the user interface
with an estimated amount of time allocated to each. For the online

50

Writing the Project Plan

resource scheduling system the process-based estimate was 7.5 per-
son months.

e LOC, or line of code, estimation is much harder to estimate manually.
Atool such as COCOMO (an abbreviation of cost construction model)
makes the effort much easier. A wealth of information as well as a free
version of the COCOMO automated tool can be found on the CSE cen-
ter for software engineering web site (http://sunset.usc.edu/re-
search/COCOMOIl/index.html).

COCOMO II is a model that allows one to estimate the cost, effort, and
schedule when planning a software developmental activity. It is based on
the original COCOMO model devised by Dr. Barry Boehm in 1981. The
COCOMO II model is actually derived from the following original mathe-
matical formula that is described in the second half of this book:

m = ¢; * KLOC2*PROD(f;]

COCOMO II permits the estimator to estimate a project cost in terms of
LOC or function points (FP). FP calculation is quite complex; a chapter
explaining function points can be found in this section.

Exhibit 3-1 shows the COCOMO Il tool set in action. Although a bit cum-
bersome — the nonfree COCOMO tools are much more user friendly — the
free version is quite functional. In this real-world example, used COCOMO
to estimate the cost of building an Internet gaming system using the LOC
option (see module size). If you look down at the bottom of the screen shot,
you will notice three estimates: optimistic, most likely and pessimistic. The
COCOMO tool set has many features. I would recommend that you down-
load this tool and try it out.

Thus, the planner first needs to estimate the size of the product to be
built, and then translate the size estimate into human effort, calendar time,
and dollars.

Decomposition Techniques

According to Putnam and Myers (1992), several approaches can be used
to handle the project sizing problem: “fuzzy-logic” sizing, which uses
approximate reasoning technique as in the art of “guestimating,” function
point sizing, standard component sizing (i.e., modules, screens, reports,
etc.), and change sizing, which is used in estimating the size of an effort to
modify an existing system.

Problem-based estimation techniques include FP- and LOC-based esti-
mation, which we just discussed. Both require the project planner to
decompose the software into problem functions that can be estimated indi-
vidually. Then the project planner estimates LOC or FP (or other estima-
tion variable) for each function and applies the baseline productivity

51

SOFTWARE ENGINEERING HANDBOOK

ﬂC:EeIOUZS\games.esl - USC-COCOMO 11.1999.0

File Edt View Parameters Calibrate Phase Maintenance Help

D3| 6] &% E% 2

S5cale Factor | Schedule |

Project Name: |Gam‘es |

Development Model: |Ear1y Design L!

Uz s:3000] sooo.oo] 1.00] s.g] s.s .6|] s9ss4.92] 13.93] 0.7 0.0
Game Server $:1000 snoo.oa] 1.00f 3.3] =3.3] =01.8] 1s834.97] 13.8] o0.2] 0.0
Backoffice 5:10000 snau.on] 1.00| s3.2| 33.2| s01.6] 158945.73] 1s.8] 2.3 o.0
Pay Tables $:3000 snun.nn] 1.00] 9.3 s.s] s01.8] ssesa.sz] 13.3] o0.7] 0.0
Poker $:5000 suun.ou] 1.00| 16.8] 16.8| =01.8] 99474.87] 13.8] 1.1] 0.0
Roulette $: 5000 soon.ao] 1.00f 16.6] 16.6] 3016 99474.87 13.9] 1.1 0.0
Estimated Effort Sched PROD COST INST Staff RISK
Total Lines : s ati % T |
Taeal Kt 27000| Optimistic 60.0| iz.8 450.1| 359900. 05 .1.3.3! 4.7
Most Likely | 89.5| 14.5| 301 6| sa71e4.28] 15.s] 6.2[00|
Pessimistic J._aq__.':sl 16.4 ZD.L.I.I 20574641 zs.s_! 8.2
Project File : C:\s22002s\games.est Is Loaded

Exhibit 3-1. Using COCOMO for Estimation

metrics to derive the cost of or effort for the function. Finally, these func-
tion estimates are combined to produce the overall estimate for the whole
project. Alternatively, a process-based estimation is commonly used. Here
the process is partitioned into a relatively small set of activities (i.e., the
large project is decomposed or segmented into more manageable tasks) or
tasks and the effort required to accomplish each is estimated.

Empirical Model

A variety of empirical models are available to calculate the effort
required based on the size estimation in FP or LOC. Other than COCOMO
(Boehm, 1981), the most widely used model is the software equation (Put-
nam and Myers, 1992).

Putnam’s cost estimation model is a macro-estimation model. The
model recognizes the relationship between cost and the amount of time
available for the development effort. The Putnam model supports the
mythical man-month idea first put forth by Frederick Brooks that states
that people and time are not always interchangeable. The software equa-
tion is explained in the second half of this book.

52

Writing the Project Plan

The results of these estimation techniques are estimates of effort, cost,
and duration. They, in turn, are used in other sections of the project plan.

Risk Management Strategy

A proactive risk strategy should always be adopted. It is better to plan
for possible risk than to need to react to it in a crisis. Software risks include
project risks, technical risks, and business risks; they can also be catego-
rized as known, predictable, or unpredictable risks. First, risks need to be
identified. One method is to create a risk item checklist. The sample
project plan in Appendix F lists the following risks:

e Customer will change or modify requirements
¢ Lack of sophistication of end users

e Users will not attend training

¢ Delivery deadline will be tightened

¢ End users resist system

¢ Server may not be able to handle larger number of users simultaneously
e Technology will not meet expectations

e Larger number of users than planned

e Lack of training of end users

¢ [Inexperienced project team

e System (security and firewall) will be hacked

Then risks need to be projected in two dimensions: likelihood and con-
sequences. This section can be a separate RMMM (risk, mitigation, moni-
toring, and management) plan and used as part of the overall project plan.

Risk Table. A risk table is a simple tool for risk projection. First, based
on the risk item checklist, list all risks in the first column of the table. Then
in the following columns fill in each risk’s category, probability of occur-
rence, and assessed impact. Afterward, sort the table by probability and
then by impact, study it, and define a cut-off line.

Discussion of Risks to Be Managed. All risks above the cut-off line must
be managed and discussed. Factors influencing their probability and
impact should be specified.

RMMM Plan for Each Risk. A risk mitigation plan is a tool that can help in
avoiding risks. Causes of the risks must be identified and mitigated. Risk
monitoring activities take place as the project proceeds and should be
planned early. Risk management — i.e., the contingency plan — is a list of
activities that are put into action in the event a risk is realized. A plan
should be created well before that.

53

SOFTWARE ENGINEERING HANDBOOK

Schedules

Before drafting a schedule several things need to be done. The project
manager needs to first decide the type of the project from four choices:
concept development, new application development, application enhance-
ment, and re-engineering projects. Then the project manager needs to com-
pute a task set selector value (Pressman, 2001) by: 1) grading the project
for a set of adaptation criteria including its size, requirements, and con-
straints, 2) assigning weighting factors to each criterion, 3) multiplying the
grade by weighting factors and by the entry point multiplier for the type of
the project, and 4) computing the average of all results in the previous
step. Based on this average value, the project manager can choose the
degree of rigor required for the project from four options: casual, struc-
tured, strict, and quick reaction. Afterward, the task set can be decided and
distributed on the project time line based on the process model choice: lin-
ear sequential, iterative, or evolutionary.

A sample from the schedule created for use in Appendix F appears in
Exhibit 3-2.

Project tasks, also known as project work breakdown structure (WBS)
are now defined as shown in Exhibit 3-3.

Alternatively, a textual WBS can be created as shown in Exhibit 3-4.

Task Network. Interdependencies among tasks are defined using a task
network as shown in Exhibit 3-5. A task network is also known as an activity
network because it shows all of the activities for the project — and each
activity’s dependencies. In Exhibit 3-5, task 1.1 must be completed prior to
initiation of task 1.2, and so on. A variety of automated tools implementing
program evaluation and review technique (PERT) and critical path method
(CPM) (Moder et al., 1983) can be used for project scheduling.

DuPont developed the CPM for use in chemical plants. The objective is
to determine the trade-off between project duration and the total project
cost, which is accomplished by identifying the critical path through activity
network. The critical path can help management to change the duration of
the project. In CPM, an activity time is assumed to be known or predictable.

Project evaluation and review technique was developed by the Navy
when the Polaris missile was designed. When accurate time estimates are
not available, PERT is an ideal tool for Project Planning since it uses prob-
ability theory.

Exhibit 3-2. Project Work Breakdown Structure

Activities Deliverable From Date To Date Milestone

Meetings Weekly meetings 02/04/02 05/07/02 05/07/02

54

Writing the Project Plan

| shruary | March |
D @ TaskName 2 | 2no [2n7 [224 | 33 |30 | 307 | 34 |
1 Fd Meetings |
2 | Requirements
3 Assess functional requirements
4 | Number of versions
5 |4 Hardware analysis
B ic | Language specification
7 Select database
8 | Define functions
9 [Demonstrating system
10 Evaluation of testing needs
" | Define activilies
12 | Define responsible persan
13 Define schedule
14 [Assess non-functional requirements ;
15 | Final requirements specification | [Jason,Susan Kristina

Exhibit 3-3. Our Student Project Plan Uses Microsoft Project to Create a
WBS.

Eventually CPM and PERT merged into a single technique. Events are
shown as nodes and activities are shown as arrows that connect events.
Arrows represent the effort required for achieving the next event; direc-
tion specifies the order in which events must occur. There are two types
of times for each event. One is the “earliest time,” the earliest possible
time at which the event can be achieved. The other is the “latest time,”
which is the latest time the event can occur without delaying subsequent
events and completion of the project. For an event, the slack time can be
obtained or calculated by the difference between the latest and the earli-
est times.

Timeline Chart (Gantt Chart). Usually the timeline chart is generated
using automated tools after inputting the task network or task outline and
each task’s effort, duration, start date, and resource assignment. This
chart is visual and usually the most used part of a project plan. However,
it is also possible to create a viable Gantt chart using Microsoft Excel as
shown in Exhibit 3-6.

Resource Table. This is another output generated by the automated
tool, with a focus on the workload for and utilization of the project
resources, particularly human resources. Once a proper project schedule
is developed, its tasks and milestones should be tracked and controlled as
the project proceeds.

55

SOFTWARE ENGINEERING HANDBOOK

Exhibit 3-4. Textual WBS

Phase I: Proposal

TASK START FINISH
Create budget Thu 6/20/02 Fri 6/21/02
Define project team Thu 6/20/02 Fri 6/21/02
Define material resources Mon 6/24/02 Wed 6/26/02
Identify management team Thu 6/27/02 Thu 6/27/02

Phase II: Planning

Determine performance goals Thu 6/20/02 Thu 6/20/02
Conduct stakeholder interviews Thu 6/20/02 Thu 6/20/02
Analyze current architecture Thu 6/20/02 Fri 6/21/02
Produce operational metrics Mon 6/24/02 Wed 6/26/02
Problem analysis Thu 6/27/02 Fri 6/28/02
Problem resolution Mon 7/1/02 Fri 7/12/02
Determine future needs Mon 7/15/02 Tue 7/16/02

Phase III: Design

Produce topology maps Wed 7/17/02 Tue 7/23/02
Determine capacity allocations Wed 7/24/02 Thu 7/25/02
Determine backup requirements Fri 7/26/02 Mon 7/29/02
Determine specific hardware req. Tue 7/30/02 Tue 7/30/02
Determine specific software req. Wed 7/31/02 Wed 7/31/02

Phase IV: Implementation

Install new SAN hardware Wed 7/31/02 Tue 8/20/02
Install necessary supporting software Thu 8/22/02 Thu 8/22/02
Verify SAN to topology maps Fri 8/23/02 Fri 8/23/02
Perform system testing Wed 8/21/02 Tue 8/27/02
Migrate hardware to SAN Wed 8/28/02 Tue 9/3/02
Testing and verification Wed 9/4/02 Tue 9/10/02
Collect operational metrics Wed 9/11/02 Thu 9/12/02
Compare to existing system Fri 9/13/02 Fri 9/13/02

Phase V: Support

Prepare training materials Wed 7/31/02 Tue 8/13/02
Perform testing against materials Wed 8/14/02 Wed 8/14/02
Training Wed 8/14/02 Tue 8/20/02
Establish support needs Mon 9/16/02 Tue 9/17/02
Implement tracking methodology Wed 9/18/02 Thu 9/19/02
Determine additional follow-up needs Wed 9/25/02 Wed 9/25/02

56

Writing the Project Plan

Project Resources

Estimation of resources required is an important component of software
planning. For each resource the planner needs to specify with these char-
acteristics: description, statement of availability, and time window.

e People: the planner needs to specify the organizational position and
specialty of human resources required by the project. Only after esti-
mating the development effort can we define the number of people
required.

¢ Hardware and software: hardware and software form the foundation of
the software engineering environment (Naur and Randall, 1969). The
project planner must determine its time window and verify its avail-
ability. Reusable software components should also be specified, alter-
natives evaluated, and acquisition made early.

e Special resources: any other resources not covered in the previous two
sections should be listed here.

e Staff organization: people are the critical factor in a software develop-
ment effort. In a typical software project, the players fall into five cat-
egories: senior managers, project (technical) managers, practitioners,
customers, and end users. A good team leader should be able to moti-
vate other players, organize the process, and innovate or encourage
people to be creative.

e Team structure (if applicable): a project manager should decide on the
organizational structure for the team. According to Mantei (1981),
these three generic team organizations exist: democratic decentral-
ized (DD), controlled decentralized (CD), and controlled centralized
(CC). The factors that influence the team structure decision include:
difficulty of the problem, size of the resultant programs, team lifetime,
problem modularity, criticality of the solution, rigidity of timeline, and
communications required. Generally speaking, a DD structure is best
for difficult problems and a CC or CD structure is best for very large
projects.

® Management reporting: coordination and communication issues, in-
cluding management reporting relationships, should be addressed
here.

Tracking and Control Mechanisms

This may be the last section, but not the least important. Errors and
changes are inevitable, and we need to plan ahead to stay prepared for
when they actually happen.

® Quality assurance and control: software quality assurance activities
(SQA) happen at each step of the software process and are carried out
by software engineers and an SQA group. Software engineers assure
quality by applying rigorous technical methods and measures, and

57

SOFTWARE ENGINEERING HANDBOOK

conducting formal technical reviews and well-planned testing. SQA
group assists software engineers through a set of activities that ad-
dress quality assurance planning, oversight, record keeping, analysis,
and reporting. We need to plan these activities in this subsection.

* Change management and control: the later the changes happen in a
project, the higher the cost. Change control combines human proce-
dures and automated tools to provide a mechanism for the control of
changes that, if uncontrolled, can rapidly lead a large project to chaos.
The change control process begins with a change request, leads to a
decision to make or reject the request, and culminates with a con-
trolled update of the software configuration item to be changed. This
part of the activities should be planned here.

Appendices

Any supporting materials to the preceding sections should be attached
in this section.

IS IT WORTH IT?

Like any other software engineering task, project planning and writing a
detailed project plan take time and costs money. Therefore a natural ques-
tion arises: is it worth it? The answer is yes. If you want a system that is
cost effective, does not go over budget, and actually works, a project plan
is mandatory.

More than a few people in this field use the “roadmap” metaphor to
describe the role of a project plan; however, it is also a “compass.” Its esti-
mation and scheduling part may be like a rough roadmap (never precise
enough at the beginning of a project), but its risk management, organiza-
tion plan, tracking, and control part are definitely a compass. It guides the
project team in handling unpredictable risks or undesired events.

A good project plan benefits not only the project, but also the domain as
whole by its measures and metrics, which can be historical data for later
projects.

References

Boehm, B. (1981). Software Engineering Economics, Prentice-Hall, New York.
Kerr, J. and Hunter, R. (1994). Inside RAD, McGraw-Hill, New York.

Mantei, M. (1981). The effect of programming team structures on programming tasks, CACM,
24,106-113.

McDermid, J. and Rook, P., Eds. (1993). Software development process models, in Software En-
gineer’s Reference Book, CRC Press, Boca Raton, FL, 28-66.

Moder, J.J., Phillips, C.R., and Davis, E.W. (1983). Project Management with CPM, PERT and Pre-
cedence Diagramming, 3rd ed., Van Nostrand Reinhold, New York.

58

Writing the Project Plan

Naur, P. and Randall, B., Eds. (1969). Software Engineering: a Report on a Conference Sponsored
by the NATO Science Committee, NATO.

Pressman, R. (2001). Software Engineering, a Practitioner’s Approach, 5th ed., McGraw Hill, New
York.

Putnam, L. and Myers, W. (1992). Measures for Excellence, Yourdon Press, New York.

59

This page intentionally left blank

Chapter 4
Requirements
Elicitation

Without proper information it is difficult, if not impossible, to define or
start a systems development project. Information gathered in this process
is called requirements elicitation; it will enable the project manager or ana-
lyst to create a blueprint of current systems and allow definition of objec-
tives, description of processes, and deployment of objectives for the new
system. In addition, if the systems analyst is careful, he can lay the founda-
tion of efficient and effective communications with stakeholders that will
lead to a higher likelihood of a successful project.

STAKEHOLDER ANALYSIS

Stakeholders are the people needed to ensure the success of the
project, for example, daily users and their managers, as well as technical
support people. It is important to find all the stakeholder groups and
determine their interests and needs. The first step, then, in requirements
elicitation is stakeholder analysis in which you try to find answers to the
following questions:

e Who are the stakeholders?

e What goals do they see for the system?

¢ Why would they like to contribute?

e What risks and costs do they see?

e What kind of solutions and suppliers do they see?

Stakeholders could be:

¢ The sponsor who pays for the development of the product

¢ People who will be using the product on a daily basis

e Managers of departments looking to increase work force efficiency

¢ The company’s customers (clients of the system), without whose sup-
port there will be no business advantages

e Business partners: suppliers, carriers, and banks that also need to in-
teract with the system

e [T people and hotline staff in case the product is to be developed with-
in the company

e [T people at the client’s site

61

SOFTWARE ENGINEERING HANDBOOK

Stakeholders should be carefully interviewed (Curtis et al., 2000) to:

¢ Define financial constraints

¢ Define the current and proposed information systems

¢ Define current and proposed development process

¢ Define current and proposed hardware assets and availability

¢ Define current and proposed software assets and availability

¢ Define current and future goals and objectives of the stakeholders

Information gathered from the financial constraints will allow examina-
tion of realistic designs and eliminate unnecessary expenditures of
resources on unrealistic approaches. One must also know the current
information systems in place and hardware assets as well as the current
software assets available within the company. It is also critical that the
development team fully understand the current development methodolo-
gies and tool sets that the company utilizes. The goals and objectives of the
information gathering process are to be able to accumulate enough infor-
mation to define all of these items as well as the goals of the stakeholders.

ELICITATION TECHNIQUES

Various methods can be used to obtain the information necessary to
prepare a project plan. These methods include interviewing, question-
naires, observation, participation, documentation, research, business
intelligence (BI), competitive intelligence (CI), reverse engineering, and
benchmarking.

Interviewing

The most common method of gathering information is by interviewing
people. Interviewing can serve two purposes at the same time. The first is
a fact-finding mission to discover what each person’s goals and objectives
are with respect to the project; the second is to begin a communications
process that enables one to set realistic expectations for the project.

A wide variety of stakeholders can and should be interviewed. Stake-
holders are those with an interest in seeing this project successfully com-
pleted —i.e., they have a “stake” in the project. As discussed earlier, stake-
holders include employees, management, clients, and partners.

Employees. It is amazing to me that some analysts develop systems
without ever interviewing those whose jobs will be affected the most. This
occurred most notably at the U.S. Post Office when the clerical staff was
automated in the 1980s. So little information was shared about what the
new system was going to do that the clerks got the misimpression that they
were soon to be replaced.

62

Requirements Elicitation

The number and type of employees that will need to be interviewed will
depend on the type of system being developed. Systems generally fall into
two categories: tactical and strategic. Tactical systems are usually transac-
tional-based systems such as check processing, student registration, and
medical billing where data volumes are high and staff members accessing
those systems are clerical. Strategic systems support the decision making
process and are utilized by middle and senior managers. It is possible for
a system to be a hybrid of both these system types. An example of this
would be a transactional back end that collects data for analysis by man-
agers at the front end.

Interviews can have some major obstacles to overcome. The inter-
viewee may resist giving information out of fear, may relate his perception
of how things should be done rather than how they are really done, or may
have difficulty in expressing himself. On the other hand, the analyst’s own
mindset may also act as a filter. The interviewer sometimes needs to set
aside his own technical orientation and make a strong effort to put himself
in the position that the interviewee is in. This requires that the analyst
develop a certain amount of empathy.

An interview outline should contain the following information:

e Name of interviewee

e Name of interviewer

e Date and time

¢ Objectives of interview — i.e., what areas you are going to explore and
what data you are going to collect

e General observations

¢ Unresolved issues and topics not covered

e Agenda — i.e., introduction, questions, summary of major points,
closing

Recommended guidelines for handling the employee interview process
include:

¢ Determine the system type (tactical, strategic, hybrid).

e Make a list of departments affected by the new system.

¢ For each department, request or develop an organization chart that
shows the departmental breakdown along with the name, extension,
and list of responsibilities of each employee.

e Meet with the department head to request recommendations and then
formulate a plan that details which employees are the best interview
prospects. The “best” employees to interview are those: 1) who are
very experienced (i.e., senior) in performing their job functions;
2) who may have come from a competing company and, thus, have a
unique perspective; 3) who have had a variety of positions within the
department or company.

63

SOFTWARE ENGINEERING HANDBOOK

¢ Plan to meet with employees from all units of the department. In other

words, if you are automating the marketing function and interviewing
the marketing department, you will want to meet with employees from
the marketing communications unit, marketing research unit, public
relations group, etc. In some cases, you may find that interviewing sev-
eral employees at a time is more effective than dealing with a single
employee because interviewing a group of employees permits them to
bounce ideas off each other.

If a departmental unit contains many employees, it is not optimum to
interview every one. It would be wrong to assume that the more peo-
ple in a department, the higher the number of interviewees should be.
Instead, sampling should be used. Sampling is used to: 1) contain
costs; 2) improve effectiveness; 3) speed up the data-gathering pro-
cess; 4) reduce bias. Systems analysts often use a random sample;
however, calculating a sample size based on population size and your
desired confidence interval is more accurate. Rather than provide a
formula and instructions on how to calculate sample size here, [direct
the reader to the sample size calculator located at http://www.survey-
system.com/sscalc.htm.

Carefully plan your interview sessions. Prepare your interview ques-
tions in advance. Be familiar with any technical vocabulary your inter-
view subjects might use.

No meeting should last longer than an hour. A half hour is optimum.
There is a point of diminishing returns with the interview process.
Your interviewees are busy and usually easily distracted. Keep in
mind that some of your interviewees may be doing this against their
will.

Customers. If the new or modified system will be affecting customers in

any way, one should interview several customers to obtain their impres-
sions of the current process and what features would be desirable. This
information can be very enlightening. Often customers just live with the
frustrations and never mention them to anyone at the company. Custom-
ers often have experiences with other vendors or suppliers and can offer
insight into the processes that other companies use or that they have
experienced.

64

Guidelines for interviewing customers include:

e Work with the sales and marketing departments to select knowledge-

able and cooperative customers.

e Prepare an adequate sample size as discussed in the prior section.
e Carefully plan your interview sessions. Prepare your interview ques-

tions in advance.

Requirements Elicitation

Companies and Consultants. Another source of potentially valuable
information is other companies in the industry and consultants who spe-
cialize in the areas that will change with the new processes. Consultants
can be easily located and paid for their expert advice, but it is wise to tread
slowly when working with other companies who are current or potential
competitors.

Guidelines for interviewing other companies include:

e Work with senior management and marketing to create a list of poten-
tial companies to interview. This list should contain the names of trad-
ing partners, vendors (companies that your company buys from), and
competitors.

¢ Attend industry trade shows to meet and mingle with competitor em-
ployees and listen to speeches made by competitive companies.

e Attend trade association meetings; sit on policy and standards
committees.

Suppliers. Suppliers of the products you are considering are also an
important source of ideas for the problem you are facing. These suppliers
know a great deal about how their product has been used and how prob-
lems have been overcome in different systems. They can also give you a
long list of features they provide.

Types of Questions. When interviewing anyone it is important to be
aware of how to ask questions properly. Open-ended questions are best for
gaining the most information because they do not limit individuals to pre-
defined answers. Other benefits of using open-ended questions are that it:
puts the interviewee at ease, provides more detail, induces spontaneity,
and is far more interesting for the interviewee. Open-ended questions
require more than a yes or no answer (Yate, 1993). An example of an open-
ended question is “What types of problems do you see on a daily basis with
the current process?” These questions allow individuals to elaborate on
the topics and potentially uncover the hidden problems at hand that might
not be discoverable with a question that requires a yes or no answer.

Often one starts a systems development effort with the intention of solv-
ing a problem that turns out to be a symptom of a larger problem. If the
examination of problems leads to the underlying issues, the resolution of
those issues will be more valuable to the company in the end. Many symp-
toms are a result of the same problem, and a simple change can fix many
issues at once. One disadvantage of open-ended questions is that they cre-
ate lengthier interviews. Another is that it is easy for the interview to get
off track and it takes an interviewer with skill to maintain the interview in
an efficient manner (Yates, 1993).

65

SOFTWARE ENGINEERING HANDBOOK

Closed-ended questions are, by far, the most common questions in inter-
viewing. They are questions that have yes and no answers and are utilized
to elicit definitive responses.

Past-performance questions can be useful to determine past experi-
ences with similar problems (Yates, 1993). Often interviewees are reluctant
to discuss problems so questions about past-performance can allow the
person to discuss an issue with similar problems. An example of how a
past-performance question is used is, “In your past job how did you deal
with these processes?”

Reflexive questions are appropriate for closing a conversation or mov-
ing forward to a new topic (Yates, 1993). Reflexive questions are created
with a statement of confirmation and adding a phrase such as: Don’t you?
Couldn’t you? Wouldn’t you?

Mirror questions are a subtle form of probing and are useful in obtaining
additional detail on a subject. After the interviewee makes a statement,
pause and repeat the statement with an additional or leading question: “So,
when this problem occurs, you simply move on to more pressing issues?”

Often answers do not give the interviewer enough detail so one follows
the question with additional questions to prod the interviewee to divulge
more details on the subject. For example:

¢ Can you give some more details on that?
e What did you learn from that experience?

Another, more subtle, prodding technique can be used by merely sitting
back and saying nothing. The silence will feel uncomfortable causing the
interviewee to expand on his or her last statement.

Questionnaires and Surveys

If large numbers of people need to be interviewed, one might start with
a questionnaire and then follow up with certain individuals that present
unusual ideas or issues in the questionnaires. Survey development and
implementation is composed of the following tasks, according to Creative
Research Systems, makers of a software solution for survey creation (sur-
veysolutions.com):

e Establish the goals of the project — what you want to learn.
e Determine your sample — whom you will interview.

¢ Choose interviewing methodology — how you will interview.
¢ Create your questionnaire — what you will ask.

¢ Pretest the questionnaire, if practical — test the questions.

e Conduct interviews and enter data — ask the questions.

¢ Analyze the data — produce the reports.

66

Requirements Elicitation

Similar to interviews, questionnaires may contain closed-end or open-
ended questions or a combination of the two.

Appendix H contains a survey that was created for a Y2K software prod-
uct. This survey demonstrates the use of a hybrid questionnaire. Although
most of the questions are quite specific, and thus closed-ended, there are
at least two open-ended questions. Questions 6 and 8 under the heading of
“management aspects” permit the respondent to reply to an essay type of
question.

Survey creation is quite an art form. Guidelines for creation of a survey
include:

¢ Provide an introduction to the survey. Explain why it is important to
respond to it. Thank participants for their time and effort.

e Put all important questions first because it is rare that all questions
will be responded to. Those filling out the survey often become tired
of or bored with the process.

¢ Use plenty of “white space.” Use an appropriate font (i.e., Arial) and
font size (i.e., at least 12), and do skip lines.

¢ Use nominal scales if you wish to classify things (i.e., What make is
your computer? 1 = Dell, 2 = Gateway, 3 = IBM).

¢ Use ordinal scales to imply rank (i.e., How helpful was this class?
3 = not helpful at all, 2 = moderately helpful, 1 = very helpful).

¢ Use interval scales when you want to perform some mathematical cal-
culations on the results; i.e.:

How helpful was this class?
Not useful at all Very useful
1 2 3 4 5

Tallying the responses will provide a “score” that assists in making
a decision that requires the use of quantifiable information. When
using interval scales, keep in mind that not all questions will carry
the same weight. Hence, it is a good idea to use a weighted average
formula during calculation. To do this, assign a “weight” or level of
importance to each question. For example, the preceding question
might be assigned a weight of 5 on a scale of 1 to 5, meaning that
this is a very important question. On the other hand, a question
such as “Was the training center comfortable” might carry a
weight of only 3. The weighted average is calculate by multiplying
the weight by the score (w * s) to get the final score. Thus the for-
mula is

*

S =W "S.

new

Several problems might result from a poorly constructed questionnaire.
Leniency is caused by respondents who grade nonsubjectively — in other

67

SOFTWARE ENGINEERING HANDBOOK

Exhibit 4-1. Different Approaches to Surveys

Speed E-mail and Web page surveys are the fastest methods, fol-
lowed by telephone interviewing. Mail surveys are the
slowest.

Personal interviews are the most expensive, followed by
telephone and then mail. E-mail and Web page surveys are
the least expensive for large samples.

Web page and e-mail surveys offer significant advantages,

Internet Usage but you may not be able to generalize their results to the
population as a whole.

Illiterate and less-educated people rarely respond to mail
surveys.

People are more likely to answer sensitive questions when

Sensitive Questions interviewed directly by a computer in one form or

another.
A need to get reactions to video, music, or a picture limits

Video, Sound, Graphics your options. You can play a video on a Web page, in a

computer-direct interview, or in person. You can play
music when using these methods or over a telephone. You
can show pictures in the first methods and in a mail
survey.

Cost

Literacy Levels

words, too easily. Central tendency occurs when respondents rate every-
thing as average. The halo effect occurs when the respondent carries his
good or bad impression from one question to the next.

Several methods can be used to deploy a survey successfully. The easi-
est and most accurate is to gather all respondents in a conference room
and hand out the survey. For the most part, this is not realistic, so other
approaches would be more appropriate. E-mail and traditional mail are two
methodologies that work well, although you often must supply an incen-
tive (i.e., prize) to get respondents to fill out those surveys on a timely
basis. Web-based surveys (Internet and Intranet) are becoming increas-
ingly popular because they enable the inclusion of demos, audio, and
video. For example, a Web-based survey on what type of user interface is
preferable could have hyperlinks to demos or screen shots of the choices.

Creative Research Systems summarizes the different approaches to sur-
veys in the table shown in Exhibit 4-1.

Observation

Observation is an important tool that can provide a wealth of informa-
tion. There are two forms of observation: silent and directed. In silent
observation, the analyst merely sits on the sidelines with pen and pad and
observes what is happening. If it is suitable, a tape recorder or video

68

Requirements Elicitation

recorder can record what is observed. However, this is not recommended
if the net result will be several hours of random footage.

Silent observation is best used to capture the spontaneous nature of a
particular process or procedure. For example:

e When customers will be interacting with staff
e During group meetings

¢ On the manufacturing floor

¢ In the field

Directed observation provides the analyst with a chance to microcon-
trol a process or procedure so that it is broken down into its observable
parts. At one accounting firm a tax system was being developed. The ana-
lysts requested that several senior tax accountants be coupled with a jun-
ior staff member. The group was given a problem as well as all of the man-
uals and materials needed. The junior accountant sat at one end of the
table with the pile of manuals and forms while the senior tax accountants
sat at the other end. A tough tax problem was posed. The senior tax
accountants were directed to think through the process and then direct
the junior member to follow through on their directions to solve this prob-
lem. The catch was that the senior members could not walk over to the jun-
ior person or touch any of the reference guides. This whole exercise had to
be verbal and use just their memories and expertise. The entire process
was videotaped. The net result was that the analyst had a complete record
of how to perform one of the critical functions of the new system.

Participation

The flip side of observation is participation. Actually becoming a mem-
ber of the staff and thereby learning exactly what it is that the staff does, so
that it might be automated, is an invaluable experience.

Documentation

It is logical to assume that a wide variety of documentation will be avail-
able to the analyst. This includes, but is not limited to, the following:

e Documentation from existing systems, including requirements and de-
sign specifications, program documentation, user manuals, and help
files. (This also includes whatever “wish” lists have been developed
for the existing system.)

e Archival information

e Policies and procedures manuals

e Reports

e Memos

e Standards

¢ F-mail

69

SOFTWARE ENGINEERING HANDBOOK

e Minutes from meetings

¢ Government and other regulatory guidelines and regulations

¢ Industry or association manuals, guidelines, and standards (e.g., ac-
countants are guided not only by in-house “rules and regulations” but
also by industry and other rules and regulations)

Competitive Intelligence

Competitive intelligence (CI) is business intelligence that is limited to
competitors and how that information affects strategy, tactics, and opera-
tions (Brock, 2000b). 4Sight partners (2000) define competitive intelligence
as “a systematic and ethical program for gathering, analyzing, and manag-
ing external information that can affect your company’s plans, decisions,
and operations.” 4Sight goes on to state that utilization of the Internet as
the method of gathering information on individuals and companies has
become widespread and automatic. CI enables management to make
informed decisions about everything from marketing, R & D, and investing
tactics to long-term business strategies (SCIP, 2002).

CI data can be gathered from the following sources:

e Internet discussion groups (listservs) and news groups (Usenet). Sim-
ple searches on the Internet can obtain expert discussions on issues
in listservs and Usenet (Graef, 2002). Often a quick form of Cl is to
search these Internet postings for discussions of similar issues. The
level of detail contained in these discussions is beneficial for things to
do and also things that will not work (Graef, 2002). This is one of the
quickest and most cost-effective methods of obtaining information
about a project (Graef, 2002).

e Former employees of your competitors often are invaluable in provid-
ing information about your competitors’ operations, products, and
plans.

e Your competitors’ Web sites usually contain marketing information
about products and services offered as well as press releases, white
papers, and even product demos. Product demos enable the analyst
and business manager to effectively “reverse engineer” the competi-
tive product (i.e., see how it ticks).

e [f your competitor is a public company then its investor relations Web
page will contain a wealth of financial information such as annual re-
ports. An alternative source of financial filings can be found at
www.sec.gov. A company’s 10Q (quarterly) and 10K (annual) reports
contain information on products, services, products, budgets, etc.

Normally, it is the role of the business or marketing manger to perform
competitive intelligence. However, when this is obviously not being done,
a proactive systems analyst will take the lead.

70

Requirements Elicitation

Brainstorming

In a brainstorming session you gather together a group of people, create
a stimulating and focused atmosphere, and let people come up with ideas
without risk of being ridiculed. Even seemingly stupid ideas may turn out
to be “golden.”

Focus groups

Focus groups are derived from marketing. These are structured sessions
where a group of stakeholders are presented with a solution to a problem
and then are closely questioned on their views about that solution.

Prototyping

A prototype is a simplified version of part of the final system. Develop-
ers experiment with the prototype to get an idea of how it would work in
real life and what its problems and plus points are.

A CHECKLIST FOR REQUIREMENTS MANAGEMENT

The requirements management checklist shown in Exhibit 4-2 is used by
the U.S. Department of the Navy.

CONCLUSION

Information gathering is a very intensive process with many aspects.
The more information one has about a project from the start, the better
prepared one will be to complete the project. Successful project manage-
ment demands that enough information be known at the beginning of a
project to anticipate potential problems in the systems development life
cycle (Keogh, 2000). The role of a systems analyst in information gathering
is to gain knowledge and interpret it to the benefit of the project plan.
Anthony Smith said that turning information into knowledge is the creative
skill of our age (ASH, 2002).

71

SOFTWARE ENGINEERING HANDBOOK

Exhibit 4-2. Requirements Management Checklist U.S. Department
of the Navy

Commitment Planning:
1. Were all stakeholders identified?

2. Was the acceptance criteria defined?

3. Were nontechnical requirements identified and documented?

4. Has the project plan been developed or updated?

5. Has the project’s risk been assessed?

6. Has the requirements management policy been reviewed?

7. Have the metric collection points and schedule for requirements
management been identified?

8. Has the project plan been reviewed?

9. Did senior management review the project plan?
10. Was commitment to the project plan obtained?

Elicitation:
1. Was information concerning the problem’s domain, open issues,
and resolution identified?
2. Were the candidate technical requirements captured?
3. Were nontechnical requirements captured?

Analysis:
1. Were the requirements decomposed?
Were the quality attributes for each requirement determined?
Was traceability of the requirements established?
Was a reconciliation of the requirements performed?
Was the rationale for any decisions captured?
Were modifications to the requirements reflected in the project
plan?

Sk wN

Formalization:
1. Were the informal requirements and supporting information
documented?
2. Were formalized work products developed?
3. Were formalized work products placed under configuration
management?

Verification:
1. Were the formalized requirements inspected for the quality
attributes?
2. Were inconsistencies among the requirements identified and
corrected?
(continued)

72

Requirements Elicitation

Exhibit 4-2. (continued) Requirements Management Checklist U.S. Depart-
ment of the Navy

3. Were redundant requirements identified and corrected?

4. Were deficiency reports generated and placed under configuration
management?

5. Was the project plan updated to reflect changes made as a result of
deficiency report resolution?

6. Are the formalized requirements traceable?

7. Have the stakeholders examined the formalized engineering arti-
facts and verified that they represent customer and end-user
requirements?

8. Were the formalized engineering artifacts placed under CM?

Commitment Acceptance:
1. Were requirements metrics presented to the customer?
Was the project status presented to the customer?
Did the stakeholders approve the baselined requirements?
Did the customer provide approval to proceed?
Were periodic or event-driven reviews of the requirements held
with project management?
6. Did QA audit the activities and products of requirements
management?

Gl Wi

References
4Sight Partners. (2000). Battleground: information gathering versus user privacy, (Online.)
Available: http://www.4sightpartners.com/insights/watch082300.htm.

ASH (Action on Smoking and Health). (2002). Olympic questions, (Online) Available: ht-
tp://www.teachers.ash.org.au/researchskills/questions.htm.

Bock, W. (2000a). Frequently asked questions about business intelligence, (Online.) Available:
http://www.bockinfo.com/docs/bifaq.htm.

Bock, W. (2000b). Peter Drucker on information and information systems, (Online.) Available:
http://www.bockinfo.com/docs/drucker.htm.

Creative Research Systems. Survey Design. http://www.surveysystem.com/sdesign.htm.

Curtis, G., Hoffer, J., George, J., and Valacich, J. (2000). Introduction to Business Systems Analy-
sis, Pearson Custom Publishing, Boston.

Graef, J. (2002) Using the Internet for competitive intelligence, (Online) Available: ht-
tp://www.cio.com/CIO/arch_0695_cicolumn.html.

Keogh, J. (2000). Project Planning and Implementation, Pearson Custom Publishing, Boston.
SCIP. (2002) What is CI? (Online) Available: http://www.scip.org/ci/index.asp.
Yate, M. (1997). Hiring the Best, 4th ed., Adams Media, Avon, MA.

73

This page intentionally left blank

Chapter 5
Designing
User-Oriented
Systems

Developers of system software need to involve users in the design process
from the start. Until now, developers have kept the secrets of their trade
to themselves. At the same time, they have failed to take an interest in the
work of the business for which they are producing a tool. Users frequently
share in the development process only through beta tests of products
long after they have been designed. Users can frequently be a constant
source of data on work habits, loads, and performance requirements.
Developers can keep up with user needs the same way they are required
to keep up with changes in technology. Maintaining a good relationship
between the development and user communities ensures a healthy devel-
opment process.

SECRETS OF THE TRADE

During the last few decades while automation of the business world has
proceeded at an ever-accelerating pace, the practitioners of the black art
of systems development have jealously guarded the secrets of their trade.
Members of today’s computer cult, who talk among themselves in tongues
of Java, C++, and all things Internet, have forgotten the sounds of the
human language — so much so that it is often necessary to hire a translator
to explain the systems developer’s work to the confused customer, the
actual user of the cult’s handiwork.

This translator would not be needed if companies would design their
systems with the user in mind. That means involving end users at the start
of the systems development process. To accomplish this, the technical
staff must take some time away from studying the nuts and bolts of new
tools to learn the tricks of the users’ trades.

It also means that the end users need to be encouraged to get involved
in the entire systems development effort, from the specification stage to
actual application testing. Their involvement will help ensure that the

75

SOFTWARE ENGINEERING HANDBOOK

finished system meets their needs and, in turn, the information needs of
the corporation.

Today, under traditional systems analysis methods, the user is fre-
quently left out of the loop. During the standard requirements definition
phase, representatives from the user department are interviewed. Then a
work flow analysis may be performed to determine the relationships
between functions within that department. Finally, several months after
the requirements definition, some customer testing is conducted — testing
that unfortunately constitutes the sum total of user involvement. So it is
not surprising that a plethora of changes must be made after the user
finally reviews the test results.

TAILORING THE SYSTEM TO END USERS’ NEEDS

The systems staff can avoid this last-minute retrofit by building a system
tailored to specific end-user needs. To do that tailoring, the IT team should
apply the same quick-study principle used in keeping up with new technol-
ogy to learning end-user job functions. In fact, systems designers should
know these functions at least as well as a six-month employee who is doing
that work.

The necessary knowledge, however, is not always easy to come by
because, all too often, systems gurus balk at attending user meetings. A big
price tag may be attached to such behavior, as the New York Stock
Exchange (NYSE) found out during my tenure there. During the mid-1980s,
a series of user meetings was held to determine the rules and regulations
of an important regulatory system that the Exchange wanted to develop.
The NYSE'’s IT group found these critical meetings boring and, as a conse-
quence, the finished system ended up incomplete; much money had to be
spent adding enhancement features.

A thorough immersion in the customer’s culture also negates the “we”
versus “them” attitude that exists between many end users and the sup-
porting IT staff. Top managers in the IT division at a major New York-based
Swiss Bank learned this lesson the hard way. The bank’s foreign exchange
trading group was adamant about needing a foreign exchange trading sys-
tem. The head of the Swiss Bank’s IT department disagreed, so the trading
group brought in an outside consultant who spoke their language and care-
fully listened to what they had to say.

As a result, the consultant was able to develop a usable, mostly error-
free system that the users proudly showed off to other departments at the
bank. At the next IT status meeting, users demanded to know why the IT
staff could not or would not deliver systems as fast and as good as the one
built by the foreign exchange group. Needless to say, the management of
Swiss Bank’s IT group was soon replaced.

76

Designing User-Oriented Systems

DRUMMING UP ENTHUSIASM

Once you have a user-friendly IT staff, then you need to drum up enthu-
siasm and interest among the user community so that it will want to be
involved every painful step of the way. “Community” is the operative word
here because as many users as is feasible should be involved in the sys-
tems development process. In today’s systems world, however, the norm is
to have only one user who serves as the liaison for the entire group and
assists the IT team as it develops specifications and tests the application.

Can one person adequately represent an entire user group? The answer
is almost always no if you want a system worth its development dollars.
Although involving many users can cause giant headaches, if the process is
properly handled, the resulting system will be superior.

That was the experience [had at the NYSE when faced with the challeng-
ing chore of devising a system for over 150 professional users spread
through five separate departments.

Despite the fact that each of the five departments did the exact same
job, the diversity of opinion among the people in these units was nearly
overwhelming. It took the great organizational skills of a talented analyst to
pull all the heterogeneous information together into one cohesive specifi-
cation. What resulted was far more complex, but a much more accurate
and usable system that covered all the bases.

To cover all those bases, the NYSE IT team formed a working committee
of users made up of one very verbal representative from each of the five
departments. For roughly three months prior to the start of the specifica-
tion stage, this working group would sometimes meet as often as two or
three times a week.

The meetings were spent discussing actual use cases upon which the
system would be based. In this way, the users were able to come up with all
of the criteria that would ultimately be used in developing the system. It
was during this conceptual phase of system definition that NYSE’s IS staff
and the departmental end users were able to reach a meeting of the minds
in terms of desired inputs and outputs.

Determining the users’ real information needs is indeed the stickiest
wicket of the entire specification process. If all you do is translate the
paper avalanche to the tube, then the ultimate system will not be much
better than the former manual one. In fact, many of these paperwork clone
systems actually decrease productivity.

The key to pinpointing the users’ actual information needs is not to
present more data, but to present less, but more meaningful or relevant,
data. To date, IT has applied the pitch-hit-and-run theory to most systems

77

SOFTWARE ENGINEERING HANDBOOK

development. Little, if any, consideration has been given to the differing
information requirements of the various decision-making levels within an
organization. As a result, you end up with fancy applications that spit out
a kludge of irrelevant information.

METHODOLOGIES

To avoid that systems scenario and to present the optimum mix of detail
and composite data to users, the developer can follow several time-tested
methods. All of the methods recognize a relationship between the type of
user and the level of detail needed to do the job or make a decision.

The three types of users — technical, tactical, and strategic — corre-
spond to the three levels of workers in today’s typical corporation. The
technical users are generally the paper pushers in the corporate hierarchy.
These employees —check processors and complaint takers, for example
— are the people who need to see all the data. They input and review a
wealth of data, normally in rote fashion.

At the opposite end of the spectrum are the senior managers, who use
information gathered at the lower rungs for strategic purposes. A whole
range of executive information and decision support systems is now avail-
able to help this corporate vanguard. These wares feature flashy colors on
touch screens notable for the scarcity of data displayed. The data is likely
to show sales projections, profitability numbers, and comparisons with the
competition.

In the middle, between the strategic users and the technical users, are
the tactical users. These are the middle managers, the poor unfortunates
buried under the paper avalanche. It is these professionals who therefore
need the most careful balance of data.

As always, users’ needs dictate the data representation discipline used.
Human resources or utility users, for example, are good candidates for
descriptive models in the form of organization charts or floor plans. Mod-
eling is also a good mode for operations management students who want
to apply game theory to problems that lack supporting information. On the
other hand, a normative representation of data is an apt choice for budget
personnel, who need the best answer to a given problem.

Deciding on the type of information and how to present it to a particular
group of users is the job of IT personnel. Sometimes they get carried away
with their mission. At the NYSE, for example, the systems staff realized
they had gone too far when a display for a large customer exceeded 91
screens of information. Going back to the drawing board, they came up
with a plan to make the 91-screen monster more manageable. What they
did was use graphics to tame the tangle of numbers displayed, coupled
with embedded expert systems that enabled users to navigate quickly and

78

Designing User-Oriented Systems

more effectively through the data. In this filtering process, the systems
developer sifts through the data, displaying only what is relevant at any
point in time.

One way to do the filtering is by using the monitoring method, which
serves up data to the user on an exception basis. This can take the form of
variance reporting, in which the system produces only exceptions based
on a programmatic review of the data. After reviewing credit card pay-
ments, a system can, for instance, display only those accounts where the
payment is overdue or below the minimum. The monitoring method can
also be used in programmed decision-making applications, in which case
the system makes all of the technical decisions and many of the tactical
ones as well.

American Express made the decision to go with a monitoring method
that simplified its complex credit authorization chores. An expert system,
aptly named Authorizer Assistant, helped Amex reduce the percentage of
bad credit authorizations. It also reduced the number of screens needed to
review customer data from a high of 12 to a manageable 2.

The advent of fourth generation languages (4GLs), which enabled end
users to access corporate databases with an easy-to-use query syntax, has
made interrogative methods of systems design more popular today.
Implicit in this approach is the understanding that on many occasions
users in complex decision-making environments cannot identify the infor-
mation they need to perform ad hoc analyses. In these cases, all of the data
elements must be resident in an accessible database. There must also be a
tool that allows users to easily develop queries and variations on these
queries against the data.

The ease-of-use factor provided by a 4GL came in very handy when
Bankers Trust in New York (now Deutsche Bank) opted to leave the retail
business. The data processing effort required to achieve this feat was
enormous. With the help of Focus, the 4GL product from Information
Builders in New York (www.ibi.com), the bank was able to ensure a smooth
transfer of accounts from Bankers to many other far-flung financial institu-
tions. Some accounts were spun off to a bank in Chicago and some to
Albany, New York, while a few high rollers were retained as privileged
Bankers Trust customers.

Once users are certain about the correct way to handle the data, the IT
squad can then translate this information into the specification that spells
out how the system should run. In many IT shops, how a system should run
is a function of what is available in-house. This means that user require-
ments are forcibly fit into an existing tool set and — just like a bad shoe fit
— a bad system fit causes users great pain.

79

SOFTWARE ENGINEERING HANDBOOK

Some of that pain was felt at the Securities Industry Automation Corp.
(SIAC), which originally cramped its users by limiting itself to just one
database product. SIAC began using Total from Cincom Systems Inc.,
Cincinnati, back in 1977, when few database tools were on the market.
There was absolutely nothing wrong with Total; what was wrong was the
implicit order to use it for all systems. Use it SIAC did — for everything!

Total is now gone from SIAC (Cincom has since retired the Total data-
base and folded its functionality into the Supra product), replaced by a bet-
ter stocked tool chest that includes a wide variety of database and 4GL tool
sets. SIAC learned that a greater selection of software arms the designer
with the options needed to tailor a system to specific user demands.

Good tailoring is particularly crucial when it comes to designing the
external component of a system that the users see. Although users are not
exposed to internal intricacies like utilities and overnight updating, they
routinely work with external features such as on-line updates and reports,
and PC uploading and downloading.

DISTRIBUTING DATA TO ITS RIGHTFUL OWNER — THE END USER

Most IT shops today design superbly efficient systems — for batch and
transaction-based systems. Unfortunately, these systems are then jury-
rigged for the part of the system visible to the user. Such technology tink-
ering often leaves the user out on a limb.

That is exactly where some end users at the NYSE found themselves
when a billing system using a hierarchical production database was
defined to a 4GL. The database, which was composed of numerous seg-
ments of data keyed by a brokerage firm number, ran very fast during over-
night update processing due to its efficient design, specifically labored
over for this purpose.

Meanwhile, some NYSE users were anticipating a new system with the
extra added attraction of ad hoc inquiry. By a happy coincidence — or so
it was originally thought —a 4GL had just been brought into the Exchange
for end-user computing. The hierarchically defined database was dutifully
defined to RAMIS; the users were trained and then let loose. RAMIS came
up empty.

The problem was that bane of logic, the JOIN. Although the internal
database was segmented into a logical structure for efficiencies, the data
on every brokerage house was dispersed throughout, making it difficult for
the users to get to it without understanding a bit more than they wanted to
know about information processing.

There are as many ways of designing systems as there are people to use
them. Most systems are designed out of prejudice: John Doe, the database

80

Designing User-Oriented Systems

administrator at the Widget Corp., is expert at Microsoft Access; therefore,
all systems at the company are designed using Microsoft Access. Most
corporate systems are designed around some sort of heavy-duty database.
There are several types of database architectures: hierarchical, as in IBM
IMS; networked, as in Computer Associates’ IDMS, which has lately mor-
phed into a combination networked and relational database; relational, as
in Microsoft’s SQL Server; and object oriented, as in Objectivity’s Objectiv-
ity/DB. The proper choice depends upon many factors, not the least of
which should be ease of access by the user.

Serious decisions must also be made regarding the system platform. In
aworld of mainframes, PCs, minicomputers, advanced workstations, Inter-
net, and Intranets, the endless possibilities boggle the systems developer’s
mind. Solutions run the gamut from pure mainframe to a cluster of con-
nected micros and minis to web-based distributed. In vogue today is an
any-to-any environment where a user with a smart workstation has easy
access to various mainframes, minis, or PCs across an Intranet.

THE SYSTEMS CHOICE

Choosing hardware and software is truly the fun part of systems design.
Visits to vendors and trips to trade shows where you can play with test
equipment transport you into an IT Disneyland. But while you are out there
high-teching it up, at some point you had better come down to earth and
get the user involved. If not, your dream machine will turn into an expen-
sive nightmare. So, no matter what platform or program you pick, the user
variables in making your selection must be examined at every technologi-
cal turn. Among those user considerations are cost, ease of use, access to
corporate data, graphics requirements compatibility with current environ-
ment, and particular preferences.

Ease of use was the major criterion that caused some equipment the
NYSE was considering to be scuttled. Bar code readers for use in the field
were the equipment under investigation. The technical group at the
Exchange, who thought they had found the perfect solution, promptly
ordered sample equipment and found that it worked like a charm. How-
ever, in order for it to work properly, the credit-card size readers had to be
held at a certain angle. It was a good thing the users were consulted
because it turned out that they were not able to hold the devices at that
precise angle.

The lesson here is that just because you find it easy to use does not
mean the user will necessarily agree with you. Also, keep in mind that just
because it is state of the art and your technical staff adores it does not
mean the user will concur. It all adds up to input: the user needs to have a
say in the selection process.

81

SOFTWARE ENGINEERING HANDBOOK

This lesson is particularly pertinent when it comes to developing the
specification for online screens and reports — the most visible part of any
system. What frequently happens is that the IS people gather information
and create a specification. After six to twelve months, they are ready to
demo the system they developed to the users. With so much time interven-
ing, the users have invariably changed their minds about or forgotten what
they want.

At Bankers Trust, when it was developing an equipment leasing system,
that time was not allowed to elapse without user feedback. Instead, the
bank decided to rapid-prototype (RAD) the system for users. During the
specification stage, a series of screens were put up on the system within a
matter of days. Users were given an ID into the system so they could play
with the prototype. They got the feel for the system and were able to voice
their opinions and objections immediately.

An even more daring user approach was taken by the NYSE. Certain
Exchange users were given an online editor and told to develop the screens
utilizing a JAD (joint application development) methodology. IT staffers
held their breath for many days, fearing the outcome of this experiment.
They need not have feared; users know what they want to see and how they
want to see it. Therefore, forget about textbook cases of good screen
design and give your users a paintbrush.

Far more control is necessary in the system testing phase, however.
Users are notorious for their lax standards when they are involved in test-
ing. Therefore, the IT group must carefully oversee a test plan that covers
all facets of the system, using as many test cases and as many users as
possible.

In one company the systems squad exercised both caution and control
in testing a very large financial system that was distributed across a group
of seven users. The users were asked to compare test results with raw
data and to annotate screen printouts or reports as appropriate. Because
the users were given very specific tasks and very specific instructions
(not the usual “take a look at the system and let me know if you see any-
thing wrong”), the system was 99 percent debugged before it went into
production.

Once the system has been tested, it is time to go live. Ideally, the users
have been involved every step of the way in the design process, and pains
have been taken to keep all those who will ultimately use the system
informed of its progress.

Several years ago, the Securities & Exchange Commission stirred up
user interest by running a contest to name their system and giving out
awards to the winner — a move that would qualify as good user PR.
Another tried-and-true PR ploy is to stage glitzy system demos complete

82

Designing User-Oriented Systems

with refreshments. After show time, it is important to keep the name of the
system in front of the potential users. NYSE developers who designed a
system named Force did just that by distributing pens inscribed with the
slogan “May the FORCE be with you.”

CONCLUSION

The points I have mentioned are all quite obvious, but they are often
overlooked by harried IT staffs. This results in installed systems that are
deemed successful by technicians but are dubbed flops by users. Thus, to
design a system for all-around success, “May the USER be with you.”

83

This page intentionally left blank

Chapter 6
The Outsourcing
Decision

Outsourcing is a three-phased process:

Phase 1. Analysis and evaluation
Phase 2. Needs assessment and vendor selection
Phase 3. Implementation and management

PHASE 1: ANALYSIS AND EVALUATION

In order to understand the services that need to be outsourced, organi-
zational goals need to be identified — particularly the core competencies.
Once the goals and core competencies are identified, information related
to these activities is gathered to compare the cost of performing the func-
tions in-house with the cost of outsourcing them. This enables the com-
pany to answer nonfinancial questions such as “How critical are these
functions and activities?” or “What depends on these activities?” or “Will
this activity become a ‘mission critical’ activity?” This will help organiza-
tions reach decisions about whether or not to outsource. Long-term cost
and investment implications, work morale, and support should also be
considered (see Appendix D for sample cost-benefit analysis worksheets).

PHASE 2: NEEDS ASSESSMENT AND VENDOR SELECTION

The objective of this phase is to develop a detailed understanding of
the needs of the organization and the capabilities of possible solution
providers.

In this phase a “request for a proposal” (RFP) is developed and delivered
to applicable vendors. RFPs need to be structured in a manner to facilitate
assessment and comparison of the various vendors. They should contain
the complete requirements, problem that needs to be resolved, desires,
etc. A clearly structured and documented RFP also helps vendors under-
stand and evaluate what a company is looking for and assists them in
assessing whether they can provide the required service.

When evaluating the vendor proposals, the organization should look not
only at the technological capability of the vendor but also at factors such

85

SOFTWARE ENGINEERING HANDBOOK

as the vendor’s financial stability, track record, and customer support rep-
utation. Contacting vendor’s existing and previous clients would give the
organization a good idea about the vendor’s abilities.

Once a vendor is selected, the organization needs to make sure that a
fair and reasonable contract, beneficial to the organization, is negotiated.
It is imperative to define service levels and the consequences of not meet-
ing them clearly. Both parties should make sure that they understand the
performance measurement criteria (see Appendix Q for a software metrics
capabilities guide).

PHASE 3: IMPLEMENTATION

The final phase in the outsourcing decision process is the implementa-
tion. During this phase a clear definition of the task needs to be identified,
so establishing a time frame would be very helpful. Mechanisms need to be
established to monitor and evaluate performance during the vendor’s
developmental process. This is important even after implementation to
make sure that the outsourced tasks are being delivered by the vendor as
agreed upon. Ability to identify, communicate, and resolve issues promptly
and fairly will help the company achieve mutual benefits and make a rela-
tionship successful.

Depending on the size of the outsourcing contract, the manager respon-
sible for the program’s delivery and integration may be responsible for all
of the process, or only some. These are the horizontal and vertical factors
of outsourcing management. A manager of the horizontal process is often
involved in the decision to outsource, and is then responsible for defining
the work, selecting and engaging the vendor, and managing the delivery
and completion of the program. This manager normally handles all day-to-
day negotiations. With larger programs, particularly those on a global
scale, a decision is often made at senior levels to outsource. A negotiation
team is appointed to work through the complex agreements, usually under
strict confidentiality, until the agreement is finalized and announced. It is
then the role of the manager of the vertical component to implement and
manage the ongoing program. Part of this role is the interpretation of the
agreement and identification of areas not covered by the agreement.

AN OUTSOURCING EXAMPLE

In this chapter we will break down the outsourcing decision-making pro-
cess using an e-business system as an example. Since the Internet opened
for business just a short ten years ago and despite the boom-bust cyclical
nature of the market, few companies have not jumped into the foray by
building a corporate Internet presence. The Internet is the one thing most
companies have in common.

86

The Outsourcing Decision

Visit Gateway.com and wander over to their accessory store
(http://www.gtwaccessories.com). Here you can buy everything from digi-
tal cameras to software to printers. Sounds like quite an operation does it
not? The store might have the Gateway logo on it, but you will not find it on
any Gateway corporate computer. Where you will find it is at Vcom-
merce.com — a company that is in the business of putting other compa-
nies in the e-commerce business. According to Gateway, by outsourcing
the entire function, it is able to sell products and grow revenues while
focusing its attention on its core competencies.

In other words, Gateway, no slouch in the computer expertise depart-
ment, has decided that even they do not have the expertise or desire to run
a sophisticated e-commerce site. Instead, they decided to give the problem
to someone else — someone with the expertise. What, then, does this say
about the rest of us?

Outsourcing Issues

It is important to understand the ramifications of systems development
in the world of high-risk interconnected computers. In order to make an
ROI-enhancing decision, the CIO must gather much information from a
diversity of areas:

e Legal issues. It is amazing how many Web sites are without benefit of
legal counsel. This stems from the days when the Web had the reputa-
tion of the “Wild, Wild West.” Today, the CIO must be concerned about
issues such as copyright infringement of images and text, the use of
online warranties, licensing, contracts, and spamming.

® Regulatory issues. Right now purchases on the Web are not taxed but
expect that this reprieve will not last forever. Other taxation issues to
consider include the effect of telecommuting Web developers on the
jurisdictional exposure of the corporation. Of course, we all know by
now that online gambling is prohibited, but what about lotteries and
contests — even if you offer them as a promotional gimmick? Then
consider First Amendment issues, pornography issues — et cetera, et
cetera, et cetera.

e Security. Once you open your doors you will probably be letting in
more than customers. Hackers, crackers, and other malevolent crea-
tures of the night seem to spend all of their waking hours figuring out
new ways to wreak havoc on unsuspecting organizations. Top this off
with a veritable plague of new viruses, concerns about fire, sloppy
data entry, and attacks by internal employees and security becomes a
full-time job. Things you need to understand are uses of firewalls, en-
cryption, and authentication — ultracomplex technologies not for the
technologically faint of heart. Even the most sophisticated of preven-
tive measures will not ward off all attacks. Think back to the massive

87

SOFTWARE ENGINEERING HANDBOOK

88

denial of service attacks on sites such as Yahoo and eTrade in Febru-
ary, 2000, and the various klez viruses that plagued us in 2002.
Staffing issues. Do you have the staff to implement an e-business initia-
tive successfully? E-business is hard work; it is 24 x 7 x 52. Also keep
in mind that new bells and whistles are invented almost daily. You will
need to invest a substantial sum to keep your staff trained so that they
can take advantage of these new technologies.

System usability. Long gone are the days when you could throw up a
Web site and expect kudos. With a plethora of tool sets such as Mac-
romedia Flash, Web conferencing, instant chat, etc., the stakes for a
usable Web site have gotten a lot higher — and much more expensive.
Given the size of many Web sites, ergonomics and navigability issues
must be explored. Would GM ever release a new kind of car without
some sort of driver-acceptance testing?

System functionality. It was so much easier just five years ago to throw
up a Web site and have it considered novel. Today all things novel
probably have already been done so you will not be able to lure new
web visitors to your site with the promise of the “newest and the great-
est.” Instead you must focus on your site’s functionality. For example,
a small golf Web site named swapgolf.com offers a wide variety of func-
tions: a golf shopping mall, ability to swap golf tee times, a bulletin
board, and even golf puzzles. Notice all the functionality is related to
the golf theme. CNBC.com, on the other hand, is a large site with many
more financial resources than swapgolf so it is no wonder that this site
is loaded with functionality. Note too that CNBC.com offers theme-
related functionality. Because CNBC is a financial news service,
Web site functionality includes financial-related services such as
MoneyTalk, Quote Box, and Markets. Also keep in mind that a Web site
is a high maintenance project that needs to be fed constantly.

System reliability. Perhaps the most irritating problem Web surfers en-
counter is sites that have bad links, databases that decline to work,
and general overall system development sloppiness. It is almost as if
many sites were thrown online without any testing whatsoever.
Netslaves is a most intriguing Web site that takes delight in shooting
down what they consider to be myths and outright lies about all things
Internet. Self-professed Netslave media assassin Steve Gilliard has this
to say about the Net myth that “things move fast online and we have
to stay ahead.” He explains, “It takes time to develop a reliable busi-
ness. The faster you move, the more likely you are to screw up. It takes
time, years, to get things right, develop trust in key employees and sta-
bilize. Moving fast in many cases is an excuse for incompetence.”
System integration. Web-based systems should never operate in a vac-
uum. Instead, they should be fully integrated into your current corpo-
rate systems. For example, your marketing and sales systems need
information about who is visiting your site, what they are looking at,

The Outsourcing Decision

and what they are buying. Only a solid integrative infrastructure will
accomplish this. Real synergy occurs when internal and external sys-
tems are effectively linked together, creating more efficient ways to
market, sell, and process and deliver orders. This translates to inte-
grating a whole spate of disparate systems, including inventory, order-
ing, and invoicing, along with supply-chain data from business
partners — in other words, the organization’s ERP (enterprise re-
source planning) resource.

® Meaningful metrics. It really does not pay to spend $5 million to build
an e-commerce system if you will never know how it affects the bot-
tom line. Will it increase sales by 10 percent or boost customer reten-
tion by 15 percent? Before you ever do the technology planning for an
e-business, you should decide just what it is you are hoping to accom-
plish (i.e., your business strategy plan) and then develop meaningful
metrics to measure your progress.

¢ Costs. Even if you plan carefully, there will always be those hidden and
unexpected costs for hardware, software, communications, and even
new staff.

What Does It Cost?

Back in 1995, Tom Vassos, an instructor at the University of Toronto, was
part of an IBM team that created IBM’s Web site. It had 10,000 documents
spread across 30 Web servers around the world. Their requirements
included everything from translation into multiple languages, download-
able documents, demonstration tools, contents of entire IBM magazines
and publications, graphics images, audio clips, and fulfillment mechanisms
for other deliverables such as CD Roms.

The site cost several million dollars initially, with an IBM commitment to
spending several more to maintain and expand the site.

Some experts estimate that a large site should cost $6 million over two
years, a medium site $2 million, and $500,000 for a small site over two
years. These numbers include many costs for site and product promotion
and content upkeep.

The Gartner Group surveyed 100 leading companies operating e-com-
merce sites and found that the average firm had spent three-quarters of a
million dollars on the technology (i.e., hardware/software/peopleware)
alone. Add to that the cost of marketing that site and you may need a bud-
get as high as amazon.com, which now spends upward of $40 million per
quarter to market itself.

Using an ISP (Internet Service Provider)

With the rise of Web-hosting companies, today the organization has a
wide variety of less expensive alternatives. For example, a small business

89

SOFTWARE ENGINEERING HANDBOOK

using a typical ISP such as VeriSign would pay about $376 per month for
monthly service, file storage and data transfer fees, and a shopping cart.
An even smaller business can get away with a bare-bones site for about $10
per month at Schogini.com. In neither of these cases does Web design fig-
ure into the equation. That is a separate cost.

Web site design costs vary considerably among web design firms. One
company I have worked with charged $2,000 for a 10-page site and $10,000
for a 25-page site. A high-end site for a mid-sized business I worked with set
the company back around $50,000. This got them about 50 pages and
assorted add-ons such as user tracking, image maps, frames, Shockwave or
Quicktime animation, audio, database, shopping cart, SSL (secure transac-
tion server), creative illustrations, CGI, and database programming. Host-
ing charges were separate. For a mid-sized business low end costs about
$100 to $160 a month, mid level $160 to $350 a month and high end about
$350 a month. Add $1,500 a month for a T-1 communications line.

A good place to start doing comparative research is www.thelist.com,
which provides a list of virtually all of the ISPs in the world and the services
and price structures they offer. As mentioned, you will find wide variation
in prices.

Rolling Your Own

The other choice, one that only very large companies seem to take
today, is to roll your own. Rough estimates for a start-up configuration for
a small to mid-sized company are as follows:

e Computer. Keep in mind that the IBM site described previously had 30
Web servers. Just one of them can cost you between $5,000 and
$25,000, which includes only the hardware. This is a one-time cost al-
though maintenance upgrades will need to be figured into the
equation.

e OS/server software. This can cost anywhere from $0 if you run a free
version of Linux to over $10,000. Usually either UNIX or Win-
dows/NT/2000 is used, with Linux quickly gaining ground. You may
also need to buy multiple Web servers. First there is the Web server
that runs the actual Web site. Add an additional Web server if you are
running an e-commerce server. Add a third server if you need to run
something like RealAudio. Again, this is a one-time cost requiring
maintenance upgrades.

e Modems. Modem pricing varies, depending upon how many you need
and their capabilities. Modems, in case you did not know, are used for
those people who might need to dial into your system. This is a one-
time cost.

90

The Outsourcing Decision

¢ Connectivity hardware. Hardware or software devices such as routers
and couplers will run you anywhere from $1000 to $5000+. This is a
one-time cost.

e Communications. You cannot simply hook up your PC to a slow modem
and expect to be able to use that as your Web site. Connecting your PC
to the Net will require you to lease a high-speed telephone line. A T-1
will cost you about $1500 a month. A T-3, which has a higher speed,
will cost you even more.

Labor Costs

As is true for most labor costs, the price of labor is all across the board.
Staff salaries for technology experts are rather high, with an average cost
of about $60,000 a year for someone with several years of experience.

Hiring consultants will bring a variety of proposals to your doorstep.
Web page authors charge anywhere from $30 to $150 an hour with the
higher-end price going to those that can build you a database or write you
a custom script using Perl or Java.

The Gartner Group has estimated that, through 2004, IT contractors and
other outside resources will be used to complete 50 percent of the e-busi-
ness work in large enterprises.

Costs Depend on What You Put on the Site

Whether you outsource or not, figuring out what your Web site will cost
is alengthy, complicated process. The first thing to do is to make a list (see
Exhibit 6-1) of exactly what you expect to put on this site, how often you
will update it, and the site’s expected functionality.

Once this list is made, you can send out RFPs (requests for proposal) to
various Web-hosting companies to determine their cost structure to
develop your site. Your IT department should be given a chance to bid as
well.

SHOULD YOU OUTSOURCE?

Moving to an e-business model requires an enormous commitment. Ask
yourself whether you are up to it. Also ask yourself whether your company
is up to it.

There are many good reasons to outsource as Gateway discovered when
it decided to outsource many of its own e-business functions. Deciding
whether or not to outsource is a very individual decision based on many
corporate factors:

91

SOFTWARE ENGINEERING HANDBOOK

Exhibit 6-1. Figuring Out What Your Web Will Cost

Feature

IT Dept
Price

Competitor 1
Price

Competitor 2
Price

Number of pages of text?

a. Provide names and location of
this text.

Number of images?

a. Provide name and location of
each image file.

b. Do any of these images need to be
altered?

Number of animations required?

a. Provide name and location of
each.

b. If new ones must be designed,
provide design information.

Number of documents you wish to
store on the Web?

a. PDF files (name and location of
each)

b. Doc files (name and location of
each)

c. Powerpoint files (name and loca-
tion of each)

d. Wav or other audio files (name
and location of each)

e. Avi or other video file (name and
location of each)

f. Other files — list

Will you be using RealAudio or
video?

a. Are media files already available
or do they need to be created or
digitized?

Will you require SSL connectivity?
This is secure server capability so
that people can do things like enter
private information online.

a. Do you require encryption?

b. Do you require digital certifi-
cates?

c. What level of security do you
need?

92

(continued)

The Outsourcing Decision

Exhibit 6-1. (continued) Figuring Out What Your Web Will Cost

Feature

IT Dept
Price

Competitor 1
Price

Competitor 2
Price

How many e-mail accounts do you
need?

a. Will you need e-mail routing?

b. Will you need autoresponders?

Will you need a shopping cart ser-
vice for online purchases?

a. Do you already have product
information for those products
you wish to sell, including images
and text information? Provide file
name and location for each.

Will you need a chat room?

Will you need a bulletin board?

Will you need a guestbook?

Will you need feedback forms?

Will you need activity reports? What
periodicity?

Will you need banner creation?

To which other sites do you wish to
link?

Do you need database lookup?

Do you need a visitor registration
program?

Will you outsource or do it inter-
nally? If done internally, add costs
for:

a. Hardware

b. Servers

c. Modems

d. Connectivity

e. Tl

Will your company require Internet
fax?

Will the company require virtual pri-
vate networks (VPNs)? (These are
private networks between one or
more locations, i.e., partners.)

93

SOFTWARE ENGINEERING HANDBOOK

Here are some reasons why outsourcing might be a good idea for your
company.

Price. Rolling your own is often much more expensive than outsourc-
ing to a reputable service provider.

Expertise. Few companies have the level of expertise in-house that
building a sophisticated Web site requires.

Obsolescence. Hardware and software turn obsolete within six months
and upgrades are often expensive. Outsourcing makes this someone
else’s problem. For the outsourcer to stay in business, it must stay at
the most current release and use the most sophisticated equipment. It
does this so you do not need to.

Security. As mentioned earlier, encryption, virus protection, and all of
the other security paraphernalia such as site backup and disaster re-
covery are quite expensive to perform on your own.

Complete solution. If you select a reputable hosting company with lots
of experience you benefit from this experience and its expertise. It can
provide you with everything from hosting to design to maintenance,
all in one place.

Scalability. 1t is likely that your site will grow in complexity and func-
tionality. A Web-hosting company will be able to scale up without ser-
vice interruptions.

¢ Of course, there are disadvantages to outsourcing as well:

Hidden charges. If you exceed your quotas (i.e., data transfer, disk
space) you will be charged an additional premium.

Their rules and not yours. The Web hosting company makes the rules
and not you. You will need to modify your own corporate policy to ac-
commodate the outsourcer.

Timeliness. Say the Web hosting company runs an advertising blitz to
get new customers — and it works. Your request for modifications
might need to wait a while.

Mergers and acquisitions. The Net world moves fast and is on an acqui-
sition binge. What happens if the company you are using is acquired?

QUESTIONS TO ASK POTENTIAL OUTSOURCING COMPANIES

A company cannot choose a hosting company out of a hat. Ask the fol-
lowing questions:

94

What capabilities do you offer and at what prices? Can you provide us
with everything on our list of requirements?

What is your level of expertise? Demonstrate by showing a portfolio of
Web sites developed at different levels of sophistication.

How long have you been in business?

What are your sales?

Provide three references.

The Outsourcing Decision

¢ How quickly do you respond to telephone and e-mail customer service
questions?

e What measures do you have in place to secure our data on your
servers?

e Are you 24 x 7?7

e What type of disaster recovery services do you provide?

¢ How often do you upgrade your hardware and software?

¢ [f some of your staff are using dial-up lines to access your outsourced
servers, can they get online without busy signals? Can staff members
use local phone numbers to dial into the network?

e What are the speed and capacity of the hosting company’s link to the
Internet? (This is called throughput.)

e Will the hosting company accept large file transfers?

e Will the hosting company permit e-mail broadcasting?

OUTSOURCING MODELS

Outsourcing does not need to be an all or nothing proposition; several
models are available:

e In-house. If you are a large company with a significant existing technol-
ogy infrastructure with commensurate expertise, this approach might
be the most cost-beneficial to you. Of course, you will not know wheth-
er this is the right approach unless you cost out the other alternatives.

e Full outsource. Turn over the entire spectrum of development to an
outsourcing company or combination of outsourcing companies and
consulting firms.

e Partial outsource. Possible alternatives are hosting your own servers
but hiring a consultancy to program them; outsourcing your server
hosting but programming it in-house, and hosting your servers but
purchasing third-party software packages to run on those servers.

CONCLUSION

Whether to outsource or not is a difficult decision and involves the anal-
ysis of many variables. Ultimately the success — and bottom line — of the
organization rests on making the right decision.

95

This page intentionally left blank

Chapter 7
Methodology
Selection

It is surprising how few IT organizations utilize a formal methodology.
Although the vast majority employ a wide variety of automated tool sets to
assist their programmers in developing and testing complex code, the “pro-
cess” of systems development is still largely chaotic in most organizations.

A systems methodology guides the activities of developing and evolving
systems starting from the initial feasibility study and culminating only
when the system is finally retired. Use of a methodology assures the orga-
nization that its process of developing and maintaining systems is sustain-
able and repeatable.

Life would be simple if there were only one methodology. Unfortunately,
or fortunately depending upon your perspective, you can choose from
hundreds of methodologies (http://www.wwweb.org/smo/bmc/). Some are
industry standard and some are proprietary to a particular consulting
organization. Given this vast choice, it is important that you are able to
determine whether a systems methodology will meet the specific needs of
your organization. The way to do this is by evaluating the methodology.
This is the focus of this chapter.

A BRIEF SUMMARY OF COMMON GENERIC METHODOLOGIES

There is a wide variety of methodologies. Organizations will select the
ones most appropriate for their mode of development. It is not unusual for
an organization to utilize more than one methodology. Typically, a struc-
tured and an object-oriented approach can peacefully co-exist within one
company.

e System development life cycle (SDLC). This is a phased, structured ap-
proach to systems development. The phases include requirements
feasibility, analysis, system design, coding, testing, implementation,
and testing. Please note that there are variations of these stated phas-
es. Usually, each phase is performed sequentially, although some po-
tential for overlap exists. This is the methodology that is used most
often in industry.

97

SOFTWARE ENGINEERING HANDBOOK

98

e [terative (prototyping). This approach is used to replace several of the

phases in the SDLC. In the SDLC approach the “time to market,” so to
speak, can be months (sometimes years). During this time, require-
ments may change and the final deliverable, therefore, might be quite
outmoded. To prevent this from happening it is a good idea to try to
compress the development cycle to shorten the time to market and
provide interim results to the end user. The iterative model consists of
three steps: 1) listen to customer; 2) build and revise a mock-up; 3)
have customer test drive the mock-up and then return to step 1.

e Rapid application development (RAD). This is a form of the iterative

model. The key word here is “rapid.” Development teams try to get a
first pass of the system out to the end user within 60 to 90 days. To ac-
complish this, the normal seven-step SDLC is compressed into the fol-
lowing steps: business modeling; data modeling; process modeling;
application generation, and testing and turnover. Note the term “appli-
cation generation”; RAD makes use of application generators, former-
ly called CASE (computer-assisted software engineering) tools.

e Incremental model. The four main phases of software development are

analysis, design, coding, and testing. If we break a business problem
into chunks — or increments — then we can use an overlapping,
phased approach to software development as shown below:

Increment 1

Analysis Design Code Test

— Delivery of first increment
Increment 2

Analysis Design Code Test

— Delivery of second increment, etc.

e Joint application development (JAD). JAD is more of a technique than

a complete methodology and can be utilized as part of any of the other
methodologies discussed here. The technique consists of “folding”
one or more end users into the software development team. Instead of
an adversarial software developer-end-user dynamic, the effect is to
have the continued, uninterrupted attention of the persons who will
ultimately use the system.

® Reverse engineering. This technique is used, first, to understand a sys-

tem from its code, second, to generate documentation base on the
code, and, third, make desired changes to the system. Competitive
software companies often try to reverse engineer their competitors’
software.

® Re-engineering. Business goals change over time. Software must

change to be consistent with these goals. Re-engineering utilizes many
of the techniques already discussed here. Instead of building a system
from scratch, the goal of re-engineering is to retrofit an existing system
to new business functionality.

Methodology Selection

¢ Object-oriented (00). OO primarily consists of object-oriented analy-
sis (OOA), object-oriented design (OOD), and object oriented pro-
gramming (OOP). These methodologies are radically different from
traditional, more structured methodologies.

RATING YOUR METHODOLOGY

1. Does the methodology identify the steps necessary to produce each
deliverable of a systems development effort?

Methodologies are necessarily very “step” oriented. One cannot and
should not proceed to step two without adequately completing step one.
A person using a particular methodology should be provided with a clear
delineation of all steps as well as what initiates and terminates each of
these steps. A good methodology will define answers to the following
questions:

e What must be done?

e How long will it take?

e Why is the step done?

e How should it be done?

e What is produced?

e Who will do it?

e When should it be done?

e Which tools are to be used?

Rate this attribute:

Low High
0 1 2 3 4
| |
Poor Adequate Excellent

2. Does the methodology simplify the systems development process?

Some methodologies are so complicated that they are impossible to use.
If it is not clear to the user of the methodology how to use that particular
methodology, the systems development effort will fail.

Rate this attribute:

Low High

0 1 2 3 4

| | |
Poor Adequate Excellent

99

SOFTWARE ENGINEERING HANDBOOK

3. Does the methodology encourage and provide the means to
implement a standard and repeatable approach to systems
development?

The Software Engineering Institute (http://www.sei.cmu.edu/sei-
home.html) in Pittsburgh is the creator of the well-known capability matu-
rity model (CMM). The framework consists of several levels of maturity
that an IT department goes through on its way to becoming completely
optimized and productive:

e [nitial. This level is ad hoc and chaotic.

e Repeatable. Basic project management processes are established to
track cost, schedule, and functionality.

e Defined. Management and engineering activities are documented,
standardized, and integrated into the organization.

¢ Quantitatively managed. This level uses detailed measures.

e Optimizing. Continuous process improvement is enabled by quantita-
tive feedback and from testing innovative ideas and technologies.

An often quoted statistic is that 80 percent of us are sitting on top of
level one. Use of a methodology implies that the organization is at level
three — defined. A methodology enables the organization to implement a
standardized procedure for the development of systems so that the pro-
cess of developing these systems is standardized and can be repeated eas-
ily by one or more project teams.

Rate this attribute:

Low High

0 1 2 3 4

| | |
Poor Adequate Excellent

4. Can the methodology be customized to meet the specific requirements
of the organization or is it unyielding and uncustomizable?

Every organization is unique in terms of its policies and procedures,
industry, and standards it applies to its practices. It makes sense, there-
fore, that any methodology selected needs to be flexible so that it can
accommodate the way the organization works today — as well as the way
the organization will work tomorrow. The very best methodologies are
those that permit the organization full customization capabilities in
terms of:

e Can the names of methodology components be changed to those the
organization is more familiar with?

e Can the descriptions of methodology components be changed?

e Can new components be added and related to existing components?

e Can component definitions (designs) be altered, extended, or deleted?

100

Methodology Selection

¢ Can new paths be defined to describe unique uses of the methodology?
¢ Can the underlying methods and deliverables be changed?

Rate this attribute:

Low High
0 1 2 3 4
| |
Poor Adequate Excellent

5. Is the methodology “state of the art?”

Each month brings new innovations to the IT industry. The Internet has
been with us for less than a decade. Flat file systems have morphed into
relational database systems that have morphed into object-oriented data-
bases.

Because the tools and techniques of developing systems are continually
improving, it makes sense that the methodology chosen needs to have the
capability of interacting with these newer tools and techniques — in case
the methodology becomes as obsolete as the tools it thinks you are using.
Tools that your methodology should support include:

e Computer-assisted systems engineering (CASE), as well as visual de-
velopment tools such as Visual Basic, Visual C++, etc.

e Data dictionaries, repositories, and data warehouses

¢ Java and XML

e Relational databases and object-oriented databases

e Client-server

e Cooperative and collaborative processing

¢ Internet and Intranet

e Accelerated and user-centered development such as JAD (joint appli-
cation development) and RAD (rapid application development)

e Integration (across business area, system data, and function sharing)

Rate this attribute:

Low High
0 1 2 3 4
| |
Poor Adequate Excellent

6. Is the methodology complete?

Most formal systems development activities are based around several
steps collectively known as the SDLC or systems development life cycle.
The SDLC consists of:

¢ Planning. In this step we uncover the mission and goals of the project
and ascertain the resources required to implement the system.

101

SOFTWARE ENGINEERING HANDBOOK

e Feasibility. This step determines whether or not the project is econom-
ically or technically feasible.

e Analysis. In this step the business and technical requirements of pro-
posed systems are uncovered, modeled, and documented.

¢ Design. During this phase system high-level as well as low-level archi-
tectures are crafted that are traceable back to the business require-
ments uncovered in the analysis phase.

e Implementation. In this phase programs are coded and tested.

¢ Production. Once the programs have been written and tested, this
phase will oversee the introduction of the system into the business.

® Maintenance. No system is ever complete. During the maintenance
phase, modifications are made to the system to fix errors and to en-
hance the system per new requirements.

Some methodologies pertain only to the latter phases of the SDLC. A pre-
ferred methodology will encompass the entire range of SDLC activities.

Rate this attribute:

Low High
0 1 2 3 4
| |
Poor Adequate Excellent

7. Can the methodology be broken down into components?

Although the methodology should cover all phases of the SDLC, the pre-
ferred methodology will be object oriented in nature. For example, it
should be possible to extract the piece of the methodology relevant to the
feasibility study easily.

Rate this attribute:

Low High

0 1 2 3 4

| | |
Poor Adequate Excellent

8. Is the methodology adaptable across industries?

Organizations across industry boundaries exhibit different attributes. A
preferred methodology is adaptable to all industries, across all boundaries.

Rate this attribute:

Low High

0 1 2 3 4

| | |
Poor Adequate Excellent

102

Methodology Selection

9. Does the methodology produce documentation?

A formal process necessitates the creation of deliverables at certain pre-
designated milestones. For example, upon completion of the analysis
phase it is typical that a requirements specification be created. The partic-
ular methodology will specify the format and timeliness of the document.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

10. Does the methodology have discrete methods for each step in each
phase of the SDLC?

A formal methodology breaks down the systems development process
into phases (e.g., SDLC). Each phase, in turn, has its own unique steps. A
good methodology will supply methods that will instruct the developer in
applying that segment of the methodology to the particular step in ques-
tion. For example, a unique step of the analysis phase is to interview end
users. A good methodology will provide instructions on:

e Who performs this task

e How to perform this task

e What tools to use to perform this task
e What deliverable, if any, is required

Rate this attribute:

Low High
0 1 2 3 4
| |
Poor Adequate Excellent

11. Does the methodology provide techniques that describe how to
conduct its methods?

For a methodology to be usable it must detail the techniques of perform-
ing the tasks outlined within it. For example, for the task “interview end
users” techniques should include:

e How to select the end users

e What sampling techniques to use

¢ How to devise questionnaires and surveys

e How to use a tape or video recorder effectively

103

SOFTWARE ENGINEERING HANDBOOK

Rate this attribute:

Low High
0 1 2 3 4
| |
Poor Adequate Excellent

12. Will the methodology incorporate standards and practices of the
organization?

All organizations are different. Each publishes its own set of policies
and procedures (i.e., naming conventions, tool usage guidelines, etc.),
which may or may not be consistent within the industry. A good method-
ology enables the organization to maintain its unique set of standards and
practices.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

13. Does the methodology identify roles played by various members of
the project team?

A wide variety of people constitutes a typically project team.

® Project manager — manages one or more projects.

e Project leader — manages a specific project.

e Systems analyst — handles the analytical aspects of the system.

¢ Designer — designs the systems (might be the same person as the
analyst).

e Network administrator — is responsible for implementing the network
aspects of the system.

e Database administrator — designs the database and file systems.

e Web designer — handles the front end of any Internet or Intranet
systems.

An effective methodology links required skills with each method in
order to identify appropriate roles.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

104

Methodology Selection

14. Does the methodology identify support tools appropriate for
execution of each method?

A wide variety of tools on the market will automate many of the tasks
delineated in the methodology (i.e., survey generation, program code gen-
eration, model building).

It should be noted that many methodologies were developed by soft-
ware vendors for the express purpose of supporting a particular tool set.
In other words, the methodology was developed as a marketing vehicle for
the tool set.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

15. Is the methodology verifiable?

A formal methodology must have a visible model. This model must be
able to be verified for correctness and completeness and modified as
needs dictate. Only methodologies that are coupled with automated tool
sets are capable of this.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

16. Can the methodology be searched?

Methodology is the road map to the development of a system. As dis-
cussed, the methodology contains information on how to approach each
phase in the SDLC along with techniques and tools for executing the meth-
ods specified for that particular phase. From the perspective of the sys-
tems developer, the methodology is a knowledge base that instructs him or
her on the “how-tos” as well as the “why tos” and “when tos” of systems
development. It makes sense, therefore, that the system developer be per-
mitted to search through this methodology knowledge base to retrieve
specific information.

Because it is a knowledge base, the information contained there should
be navigable from multiple perspectives. The systems developer should be
able to forward chain through the knowledge base from top to bottom, as
well as backward chain upward from the lowest level to the highest level of
abstraction.

105

SOFTWARE ENGINEERING HANDBOOK

The methodology knowledge base should exhibit all of the features of an
end-user-oriented, windows- or browser-based system, including search,
print, save, edit, view, and help.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

17. Does the methodology maintain standard industry interfaces?

Although it is expected that the methodology chosen will be coupled
with one or more automated tools, a very strong possibility is that the orga-
nization will already be using a wide variety of other tool sets that the
methodological tool set should be able to interface with. These interfaces
include:

¢ Project management software

e CASE and application development tool sets

e Report writers

e Desktop publishing and word processing software
e Spreadsheets and databases

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

18. Is adequate training available for the methodology?

Whether the training is vendor oriented, in-house oriented or consult-
ant/training company oriented, it is imperative that staff be fully trained on
use of the methodology, as well as any tool sets, prior to use.

Rate this attribute:

Low High

0 1 2 3 4

| |
Poor Adequate Excellent

19. Has the vendor demonstrated that the methodology/tool suite is used
at an organization similar to your organization?

Seeing the methodology and tool set, if applicable, in use at a compara-
ble organization is reassuring and demonstrates the full range of the

106

Methodology Selection

methodology’s capabilities. Additionally, it demonstrates the capabilities
of the vendor in terms of training, implementation, and support.

Rate this attribute:

Low High
0 1 2 3 4
|
Poor Adequate Excellent

DETERMINING YOUR METHODOLOGY’S RATING

Our questionnaire contained 19 questions or attributes. With a top
score of 4 points for each question or attribute, the highest rating a meth-
odology can receive is 76 points. An adequate rating, a point score of at
least 2 per question, would be 36 points. Obviously, the higher the score is,
the better the methodology.

References and Further Reading

Holcman, S. (1993). A systems methodology: a rating and evaluation guide, in Software Engi-
neering Productivity Handbook, Keyes, J., Ed., McGraw-Hill, New York.

107

This page intentionally left blank

Chapter 8

Selecting and
Integrating a
Repository for
Etfective Resource
Management

The corporation of the future will be run with a vast mesh of interacting com-
puters and data-based systems. It will be impossible to manage and build the pro-
cedures to take advantage of this technology without some form of information
engineering, appropriately automated. The encyclopedia, which is the heart of
information engineering, will be a vital corporate resource.

— James Martin (1989)

EFFECTIVE INFORMATION RESOURCE MANAGEMENT

There are many roads to productivity. The one least traveled, but perhaps
most profitable, is the one where software tools are integrated in a manner
producing accessible and timely information.

The three keywords here are information, tools, and integration. Infor-
mation is really the most important asset a company owns. With proper
utilization, information becomes a potent competitive force. In today’s
very global — and very competitive — economy, information may, in fact,
be the deciding factor in determining the color of the organization’s
bottom-line.

Understanding that information is a resource to be valued, organiza-
tions have made a heavy investment in information technology. This
investment, to the tune of billions of dollars, included development of new
systems as well as purchase of a variety of software tools.

109

SOFTWARE ENGINEERING HANDBOOK

Software tools are decidedly two-flavored. On the one hand are the end
user-oriented tools, which include report writers and 4GLs; on the other
hand are tools that specifically target the development function. These
tools run the gamut from compilers to data administration tools to visual
development tools. Common among all of these tools has been the decided
lack of interconnectivity, or integration.

Lack of integration is a subtle defect with a powerfully negative impact
on the productivity and competitiveness of an organization. It translates to
an inability to manage information in a consistent and nonredundant fash-
ion. Because software tools have seams, information cannot flow easily
from one tool to anther, forcing organizations to move the information
manually between tools — or worse, to create redundant and conflicting
information stores.

Recognizing the ramifications of these problems, the industry has begun
to move in the direction of development frameworks. The goal of these
frameworks is to provide a boundaryless environment to spur the free flow
of information through the use of standards and guidelines for develop-
ment of software tools.

Metadata repositories, the focus of this chapter, have historically
focused on application development and data warehousing. Recently this
mission has been extended to support component middleware frame-
works and business objects. In the near future, knowledge management
and enterprise information portal environments will be supported as well.

A metadata repository, which I will call a repository workbench, has
three functions. It is a repository, it provides tools, and it forms the “con-
necting glue” of the development framework — in other words, integration.

A short and standard definition of a repository is “an organized refer-
ence to the data content of something. That something could be a system,
a database, or a collection of all the files, program databases, and manual
records maintained by a large organization.” Although the definition of
tools should be self-evident, in this context it is not.

Tools in a repository workbench environment encompass a broad spec-
trum of functionality that goes beyond what is commonly available. The last
component of the repository workbench equation is integration; this com-
ponent meshes the repository and the repository-based tools into an orga-
nization’s environment. The net sum of the repository equation is the abil-
ity to better leverage the skill set of a wide range of the organization’s staff
— from data administrators to programmers to analysts and end users.
This leveraging of skill sets leads to a dramatic increase in productivity.

110

Selecting and Integrating a Repository for Effective Resource Management

The remainder of this chapter assists the reader in three areas: evaluat-
ing the benefits of a repository workbench solution, planning for its imple-
mentation, and measuring it.

HOW TO USE THIS CHAPTER

In the first section — Evaluating the Repository Workbench — a quanti-
tative approach is taken to assist the reader in understanding the features
of a repository workbench and comparing these features across competi-
tive products. Twenty-three distinct criteria are divided into three catego-
ries: repository, integration, and tools; each criterion is presented in the
form of a set of features. To quantify the assessment, each should be rated
in terms of its importance to the organization. A rating, or weight, of 1 to 3
should be used (1 = not important to the organization, 2 = required by the
organization, 3 = of high importance to the organization).

Each of the features describing the criteria should next be rated accord-
ing to how well the vendor fulfills the requirement. A scale of 1 through 5
should be used: (1 = fails, 2 = weak, 3 = adequate, 4 = good, 5 = excellent).

After you finish rating all 23 criteria, your scores can be transferred to
the charts at the end of this chapter. These charts allow you to add up
repository scores and to make overall evaluations and comparisons.

In the second section — Preparing for the Repository Workbench — a
series of checklists is provided to assist the reader in deciding whether or
not a repository workbench solution is desirable and in developing a plan
for repository workbench implementation.

In the third section — Repository Metrics — a series of measurements
is provided to assist the reader in determining how well the repository is
utilized.

Evaluating the Repository workbench

Selecting a repository workbench is not a simple process. Repository
workbench software is quite complex and the selection process mirrors
this complexity. Because a repository workbench offers a composite of
functionality, the evaluation team needs to review three discrete levels of
functionality: the repository component, the workbench component, and
the integrative component. What follows is a set of categories that will
assist in this process; each represents a different level of functionality that
a product of this type should have.

The repository is the heart of the repository workbench. It is much more
than a data dictionary or a data warehouse. It stores information about
objects — whether those objects are file definitions or process rules. The

111

SOFTWARE ENGINEERING HANDBOOK

sections below itemize the major attributes of a repository. An effective
and robust repository should meet the objects presented in this section:

1. Initial Data Capture:

For the most part, objects required to be entered into the repository
already reside in catalogs, files, databases, and CASE encyclopedias, or as
part of a program (i.e., working storage as well as the procedure division).
Scanning enables an organization to populate the repository quickly
through the importation of objects from a pre-existing source. Among the
facilities that a robust repository product provides are:

Weighting: 1 2 3 Rating
Scan program source — file sections 12345
Scan program source — working storage sections 1 2 3 4 5
Scan program source — procedure divisions 12345
Scan copybooks 12345
Scan multiple copybooks 12345
Scan database catalogs 12345
Scan CASE encyclopedias 12345
Scan databases 12345
Provide the ability to repopulate the repository

as many times as necessary through versioning 1 2 3 4 5
Provide collision resolution 12345
Multilevel impact analysis 12345
Scan data dictionaries 12345
Scan class dictionaries 12345

2. Tracking: A repository should have the ability to keep detailed infor-
mation about objects. The repository defines an object as more than the
traditional data definition; an object may be a field, file, procedure, or sys-
tem. Because the repository maintains detailed information about objects,
the organization has an excellent opportunity to track the status of many
of the formal processes that form the underpinnings of IT. A robust repos-
itory should be able to:

Weighting: 1 2 3 Rating

Keep track of jobs 12345
Keep track of programs/objects 12345
Document data content of files and databases 12345

Document data processed by programs, jobs,
systems

Document reports and screens

Document schedules

Document backup and retention

Document maintenance responsibilities

—_— e
NN DN DN
W wwww
B e
U1 01 U1 U1 G

112

Selecting and Integrating a Repository for Effective Resource Management

3. Source and Use: All organizations are different in the policies, meth-
ods, and procedures of their IT processes. The repository workbench must
integrate itself as well as act as an integrator of these policies, methods,
and procedures. The repository workbench must be flexible enough to:

Weighting: 1 2 3 Rating

Support data model

Support object model

Support information center usage

Support application generator

Support life cycle methodology

Support distributed processing

Document communications network

Maintain hardware inventory

Support data security planning

Support forms control

Support change and problem control

Support procedures and standards for repository
update and maintenance 12345

— e e e e e e e e
NNNDMNMDDNMNDNDNDNDNDDNDDNDN
WWWWWwWwwwwwww
e e R G e
U101 U1 U101 U101 OO OOl

4. User Access: Studies on productivity have shown that the user inter-
face has the greatest impact on the usability of the system. For the function
of data administration, a flexible user interface is mandatory if the organi-
zation is to leverage the resources of skilled professionals. The repository
workbench product should offer the following features:

Weighting: 1 2 3 Rating
Mainframe-based:
Easy to use
Contextual help facility
SAA/CUA compliant
Customizable
Pull-down menus
Pop-up windows
Fast-path commands
Client/Server based:
GUI
Graphical representation of E-R model
Point and click
Multiple platforms
CPI-C
XML
Online
Batch
Internet/Intranet

— e e e
NN DNDNDN
W wWwWwwwww
R BR R
[$2 3192 I&) BIV) I, IS, IS,]

— = e e e e e
NN DNDNDDNDDN
WWWwWwWwwwwww
R R R R R R R
U1 O1O1 U1 U1 O1O1 U1 O

113

SOFTWARE ENGINEERING HANDBOOK

5. Dialog: A robust repository dialog should provide a simple, intuitive
means for maintaining and querying information assets, as well as access-
ing tools. Features should include:

Weighting: 1 2 3

Contextual menus

Menus rebuilt automatically as tools are added
Self-maintaining

E-R rule-based data entry screens
Project-based menus
Context-sensitive feedback
Reusable panels

Scrollable panels
Spreadsheet-like displays
Customize forms

End-user SQL queries
Project-defined SQL queries
Multilevel impact analysis
Attribute anchoring

Meaningful labels for DB names
Multiple text types

— e e e e e e e e e e e e e e

Rating

DNDINDNDNDNDNDNDNDNDNDDNDDNDDNDDNDDNDN
WWWWWWWWWWwwwwwww
AR AR B AR R AR RSB SN
(52 I, IS, I &) B BYS) BIS) BN, BIS) RIE) BNV, BN S) I) B) BN) G, |

6. Extensibility: A robust repository workbench is not rigid; it should
support growth. This growth should not be limited merely to data defini-
tions. In an object-based environment a repository workbench should have
the flexibility to add new sources of information as well as new tools,
reports, and procedures. Each of these is defined as an object. Extensibility
features should include:

114

Weighting: 1 2 3

Dialog assistance

Automatic rebinding

Automatic creation of repository table spaces
(Re)creation of repository indices
Reorg

Error handling and correction
(Re)granting of table privileges
Integration with repository tools
Ability to add on in-house tools
Ability to add on third party tools
Ease in defining migration rules
Ease in defining security

Ease in defining validation rules
Ease in defining integrity rules

Ease in defining derivation rules
Ease in defining domain constraints

— e e e e e e e e e e e e e e

Rating

NDNNNDNNDNDNDDNMNDNMNDNMDDNMDDNDDNDDNDDNDDN
WWWWWWWWWwWwWwwwwww
(52 WS IS) I S) IS) BES) IES) IiS) IiS) IiG) iG) BN B BG) B BN, |

AR R BR BB BB R RS SESESS

Selecting and Integrating a Repository for Effective Resource Management

7. Project Control: A repository workbench must provide facilities to
automate the enforcement of corporate and project standards and proce-
dures, and to control distribution of repository resources. Capabilities
should include:

Weighting: 1 2 3 Rating

Project-oriented security requirements 12345
Clone function for rapid project definition 12345
Access/update/migrate privileges 12345
Ability to subset E-R types 12345
Life cycle phase authorization 12345
Project parameterization 12345

8. Versioning: The repository workbench must provide a comprehen-
sive set of facilities for supporting, monitoring, and auditing the evolution
of repository definitions. This feature makes it possible to plan and imple-
ment the maintenance procedures that become necessary as systems
mature and require modifications. A robust repository workbench pro-
vides the following capabilities:

Weighting: 1 2 3 Rating
Use of variation name attribute 12345
Unlimited number of variations 12345
Support of revision number attribute 12345
Ability to perform set-level operations
Set-rename 12345
Set-delete 12345
Set-copy 12345
ANSI IRDS support 12345
12345

Alias support

9. Life Cycle Phase Management: Supporting an organization’s meth-
odologies is an essential role of a repository. A robust repository work-
bench provides an organization-extensible means for defining the various
stages of object evolution. These stages are referred to as life cycle phases.
Transition rules define the movement of an object from one phase to
another. Relationships between entities based upon their respective life
cycle phases should be verified to ensure proper migration results. Manag-
ing life cycle phases and object migration is a vital function within a repos-
itory if it is to control and participate in an organization’s development and
maintenance methodology. Features should include:

Weighting: 1 2 3 Rating

Customizable controls 12345

Ability to add or remove life cycle definitions 12345
(continued)

115

SOFTWARE ENGINEERING HANDBOOK

Weighting: 1 23 (continued) Rating

Transition rules 12345
Migration paths 12345
Relationship-state rules 12345
Project-controlled life cycle phases 12345
Versioning within life cycle phase 12345

Integration. Developmental frameworks like AD/Cycle are philoso-
phies. For the most part, software engineering tools such as CASE maintain
key positions within this framework but do little to integrate effectively
with other tools in other quadrants of the framework — or even other tools
within the same quadrant. The objectives in this section, if met by the tool
being evaluated, will assure the organization that the repository will be
seamlessly integrated with repository tools as well as in-house-developed
and third-party tools.

10. Architecture: A repository workbench is a unique hybrid of reposi-
tory, tools, and an integrative vehicle. In order to support this threefold
functionality, the underlying architecture of a repository workbench prod-
uct must provide openness and an extensible framework. The organization
must be able to easily integrate into and expand upon the framework. The
architectural features of a robust architectural framework include:

Weighting: 1 2 3 Rating

Object-based approach 12345
Extensible 12345
Easily configurable 12345
Easily modifiable 12345
Easy integration 12345
Underlying meta—meta model 12345
Vendor-supplied meta model 12345
Security, backup, and recovery 12345
Referential integrity 12345

11. Standards: The basis of any open framework is the standards that it
rests on. For this framework to be fully integrative with an organization’s
environment, the framework must conform to and support the standards
and guidelines that the industry has embraced. Additionally, the reposi-
tory workbench must provide the organization with the ability to support
the standards that it has developed as part of its policies and procedures.
This might includes where applicable:

Weighting: 1 2 3 Rating

XML 12345

Web services 12345
(continued)

116

Selecting and Integrating a Repository for Effective Resource Management

Weighting: 1 23 (continued) Rating
ANSI SQL

UML

Java community process

Internet engineering task force

OAG (open applications group)

OMG (object management group)

Business objects

Organizational naming conventions
Organizational keywords and abbreviations
Organizational custom rules

Other

e e e e
DNDNDNDNDDNDDNDNDDNDDNNDN
WWWWWwwwwww
AR R R BB R AR R
[9) JG; IS, I 5) G, BN, INS) B, BNS) BIS)) |

12. Gateways: The basis of a repository product is information; how-
ever, information is not confined to a single source. A repository product
must provide the organization with a series of gateways that allow the
organization to export and import information among these information
sources (e.g., application development tools, various databases, and files).
Because the organization is expected to have multiple requirements for
gateways, the most robust repository workbenches will generically define
a gateway bridge that provides a commonalty of approach across diverse
products. Features should include:

Weighting: 1 2 3 Rating
Generic bridge architecture
Bi-directional bridge
Upload/download facilities
Check in/check out

Collision resolution

Impact analysis

Import/export capabilities
Bulk population ability
Repopulate through versioning
Default rules

Variable name mapping
Catalog import

Source import from multiple catalogs
Flat file import

Obsolete file import

IMS bridge:

w

e e e e e T o N U R =Y
NN DNDDNDNNDDNDNDDNDDNDND DN N
WWWWWWWWwwWwwwwww

R R R R R R R BB BB AR BSDS
(S22 IS I&)) IS, IS IS, I) I S) I&) I) I JS) BNy

Store and manage IMS objects 12345
Generate copybooks, PSBs, DBDs 12345
Impact analysis across objects 12345
IMS SQL reporting writing 12345

117

SOFTWARE ENGINEERING HANDBOOK

13. CASE Bridge: CASE (application development) tools require a very
specific gateway that allows CASE objects to be integrated into the reposi-
tory with the goal of permitting CASE users to have a more efficient way of
controlling, securing, reporting, and distributing specifications captured in
their workstations. A robust repository can be thought of as a clearing-
house between workstations and CASE products. The repository work-
bench should provide management tools that enable the organization to
share data resources. This includes:

Weighting: 1 2 3 Rating
Shared model between different tools 12345
Support change control 12345
Report on design and analysis 12345
Upload CASE product Encyclopedia

Reporting 12345

Rehearsal 12345
Extend the definition of CASE objects 12345
Reusability 12345

14. Services: A product is only as good as the service provided by the
product vendor. Toward this end, the following features should be
evaluated:

Weighting: 1 2 3 Rating
Continuous support

Toll-free hotline

Timely assistance

Trial period provided
Customer references provided
Support during trial

Quality of staff

Maintenance program
Product improvement schedule
Responsiveness

Track record

Tailored training program
Online documentation
Manuals

Newsletter

User groups

w

i e e e e e
NN NMNNNDNDNMDDNMNDDNNDNDNDDNDDNNDN
WWWWWWWwWwWwwwwwww

B A e e T i Tl S >
U101 U1 U101 U1 U1 O1OUTOL OO O OO O

15. Workbench Integration: The repository workbench creates a pro-
ductive environment where repository information is integrated with an
extensible tool set. This approach offers you the flexibility to incorporate

118

Selecting and Integrating a Repository for Effective Resource Management

your existing tools as well as those you may consider in the future. Tool
integration capabilities include:

Weighting: 1 2 3 Rating

Ability to integrate user-defined tools 12345
Ability to integrate third-party packages 12345
All tools accessible through online dialog 12345
Extensible end-user interface 12345
Well-documented API 12345
Easy incorporation into menuing system 12345
User security 12345
Customizable help dialogs and messages 12345

Tools. A robust repository workbench needs to supply a series of tools
that take advantage of the repository and its integrative prowess. The fea-
tures described in this section are those of a robust environment.

16. Tool Integration: The ability to integrate tools to the workbench is
only one side of the coin. The other side is to have the facilities to develop
in-house tools. A tool development environment should possess the fol-
lowing capabilities:

Weighting: 1 2 3 Rating
Vendor-supplied shell programs
Vendor-supplied subroutine libraries
Comprehensive assistance
Encapsulation

Tools developed in-house invoked through dialog
Vendor-supplied tools reusable

— e e e
DD DN DN
W wwww

B A
U1 01 U1 U101 Ol

17. Groupware: Productivity is greatly enhanced when a facility is pro-
vided for project teams and users to communicate with each other. This is
often referred to as groupware. Within a repository environment, this can
be accomplished through the use of electronic mail. Features available
should include:

Weighting: 1 2 3 Rating
Electronic mail available
Messaging to project members
Messaging to users

Batch output messaging

Edit output and resend
Reusable method

e
NDNDDNDDNDDNDN
W wwww

B
U1 01 U1 U1 U1 Gl

18. Reporting: Various levels of the organization require access to the
repository for reporting. On one level, the end users require access to find

119

SOFTWARE ENGINEERING HANDBOOK

out the types of information available within the organization. On another
level, data administration staff has a real need to control the transition of
information within the repository. Both levels of user access need to be
supported. Reporting features include:

Weighting: 1 2 3 Rating
QMF reporting interface 12345
FOCUS reporting interface 12345
Canned reports should include:
Repository detail 12345
Catalog detail 12345
Repository/catalog comparison 12345
Table column cross reference 12345
Table structure/element cross reference 12345
Logical/physical element reference 12345
Logical entity cross reference 12345
Structure circular references 12345
Catalog statistical and action summary 12345
Repository/catalog comparison 12345
Repository content detail 12345
Catalog content detail 12345

19. Impact Analysis: In nonrepository systems, a large percentage of
nonproductive time is spent in determining the impact of change. Analysts
and programmers must manually review documentation and program
source listings to evaluate the extent of change necessary as well as the
length of time required to make those changes. This can be a lengthy pro-
cess. A repository-based system automates this process through the func-
tion of impact analysis. Automatic impact analysis deconstructs the repos-
itory to determine the level of change required. The impact analysis
function should include the following capabilities:

Weighting: 1 2 3 Rating

Multiple level 12345
Nested impact analysis 12345
Interactive as well as batch 12345
Immediate maintenance capabilities 12345
“Uses” and “where-used” displayed concurrently 1 2 3 4 5

20. Scripting: Database administrative procedures are extraordinarily
complex. The complexity of many of these tasks implies that the staff mem-
ber involved must have the highest degree of skill and exercise the utmost
level of care. Organizations that wish to leverage the skill set of the average
user, increase the speed at which a task may be completed, or deploy vast
functionality across differing layers of the organization require the means

120

Selecting and Integrating a Repository for Effective Resource Management

to decrease the complexity level of the activity and thereby reduce the risk
of error. A repository-based scripting facility provides this functionality.
Capabilities should include:

Weighting: 1 2 3 Rating

Recursive script development

Ability to invoke any vendor-supplied tool

Ability to invoke any vendor-supplied report

Ability to invoke any vendor-supplied script

Ability to invoke any in-house tool

Ability to invoke any in-house report

Ability to invoke any in-house script

Batch mode

Commit points and breakpoints

Script status feedback

Parameterized

Vendor-supplied base start-up scripts

Cut and paste facility

Invoked by electronic mail

i e e
NNNMNDMNMNMNNDNDNDMNMDDNDDNDNDNDNDN
WWWWWWwWwwwwwwww
B L e e T s R T S SN N A
U101 U1 U101 U101 UL OL OO OO

21. Forms: Forms provide the ability to establish external layout defini-
tions that present a modified view of the objects within the repository
without altering the object itself. Although the definitions of objects in the
repository are not altered, the user view can be modified to afford the
greatest expediency in utilization of the repository without needing to
write code. Features should include:

Weighting: 1 2 3 Rating
Project-level modification

Order of presentation

Alteration of the prompt label
Alteration of the annotation
Modification of display rules
Modification of item length
Customization of the default values
Object-orientation of form
Maintainable via a method
Accessible through dialog menus
Accessible via scripting

i e e
NNDMNMDDNMNDNDNDNDNDDNDNDN
WWWWWwwwwwww
e e T e i e
U101 U1 U101 U101 OO OO

22. Generation: The repository acts as the central clearinghouse for
corporate information resource management, so it must have the ability to
act in concert with definitions used by application development and end-
user tools. To enhance productivity, consistency, and security, the reposi-
tory workbench must have the ability to generate syntax. This includes the
ability to:

121

SOFTWARE ENGINEERING HANDBOOK

Weighting: 1 2 3 Rating
Use DDL, DML syntax including:
Create
Drop
Grant
Revoke
Bind
Rebind
Free
Generate and execute mode
Generate and save mode
Copybook generation
DBD, PSB for IMS
DCLGENs

e e
NNNDMNMNMNMNDNDNDNDNDDNDNDN
WWWWWWwWwwwwww
R I S
U1 U1 U1 U101 U101 OO O OO

23. Managing Relational Tables: A repository workbench needs to be
more than just a repository. Facilities to manage the underlying database
should be fully integrated into the tool set. These tools should provide the
ability to:

Weighting: 1 2 3 Rating

Unload/reload databases 12345
Create and drop objects 12345
Referential integrity support 12345
Grant and revoke commands 12345
Bind, rebind, and free commands 12345
Reorg, runstats and copy commands 12345

Preparing for the Repository Workbench

Preparing for any software implementation requires careful planning
and control. In the case of a repository workbench, where information, sys-
tems, and integration factors must be considered, even more care is urged
for a successful implementation. A series of checklists is provided for this
purpose.

Preplanning Action Items:

1. Standardize the names, definitions, and physical descriptions of

data elements used in all programs.

Document which data is kept in which files or databases or schemas.

3. Document which reports and screens are produced by which pro-
grams jobs and systems.

4. Document which programs, jobs, and systems access and update
which data elements in which files or databases or schemas.

N

122

Selecting and Integrating a Repository for Effective Resource Management

Document which modules and subprograms are included in which
programs.

Document processing schedules, file back-up and retention, and re-
sponsibilities for program and jobstream maintenance.

Questions to ask for sizing of data collection effort:

1.

w N

21.
22.

23.
24.
25.

26.

How many systems are there?

What is the quality of system documentation?

If documentation is inadequate, can the required data be obtained
from the original developers or from users?

How many programs are in each system?

How good are the run books and program documentation?
Have these been kept up to date as changes have been made?
Are job control statements kept in a single file or library?

Are program source statements kept in a single file or library?
Is some type of source library maintenance system in use?

[s library content really kept up to date?

. How many FILEs, DATABASEs, and SCHEMAs are in each system?

. How many different record types are there?

. How many different relational tables are there?

. Are standard record descriptions used?

. Are they kept in a central library?

. Are data element names standardized?

. Are the names meaningful?

. Are good definitions available?

. Is there documentation of coding structures?

. How well are reports, display screens, and input transactions docu-

mented?

Can the data content be obtained from user manuals?

If the information above is not readily available, how will it be ob-
tained? Who will compile it?

Who will do the actual work of preparing repository input?

How will it be done?

Can part of the data be obtained by scanning source programs or
copy libraries?

Who will review edit lists and resolve naming discrepancies and oth-
er problems?

Questions to ask concerning technical and operational issues:

1.

2.

Will the repository always be running? System initialization must be
amended to include this.

Will reports be produced automatically on some predetermined
schedule? Will they be triggered by specific events, such as the im-
plementation of a new system? Will they be on a run-on-request

123

SOFTWARE ENGINEERING HANDBOOK

basis? Who will initiate the jobs to produce the reports? How will

they be distributed? How will special requests be handled?

How will repository problems be reported and resolved?

4. Will computer operations think of the repository as a production
system?

5. Will procedures for the turnover of new systems or system changes
incorporate steps that will ensure that the repository has been cor-
rectly updated?

w

Questions to ask about security:

1. Who should be allowed to access what? Can project teams alter data
that they think of as their own?

2. Will passwords be controlled and changed from time to time? Will
they be changed when employees resign or are discharged?

3. Does repository software provide a mechanism to prevent access to
the repository via means other than the repository software?

Questions to ask concerning redundant and inconsistent data:

1. Can you identify all occurrences of the same information?

2. Can you determine which elements are calculated or derived and

how?

Will you know the original sources of all elements?

Will you know the uses of the elements?

Can the repository implementation help to determine whether there

are procedures or programs to ensure consistency?

6. Will the repository implementation provide for validation rules and

criteria?

Does it provide for data consistency and integrity rules?

8. What about procedures to ensure that such rules are entered in the
repository?

w

A

~

Questions to ask about complexity and interdependence:

1. Does the repository help us determine who actually uses the re-
ports or screens?

2. Does it help identify screens and reports that contain the same in-
formation?

3. Does it help the user identify the tasks and procedures that require
use of the information contained in the reports and screens?

4. Will it help improve documentation?

5. Will it decrease complexity by providing reusability?

Repository Metrics

These criteria measure how well a repository or data dictionary col-
lects, maintains, and retrieves information about data. The objectives of

124

Selecting and Integrating a Repository for Effective Resource Management

these measures are to offer users cost-effective means of retrieving rele-
vant information and reducing information overload. Five criteria are pro-
posed to evaluate data dictionaries and repositories: relevance, consis-
tency, common use among information systems, degree of automation, and
degree of security:.

DBA Objective Metrics. The following criteria measure how well each
commercial repository/repository product fulfills DBA objectives.

Relevance. This criterion measures the effectiveness of retrieving cor-
rect information in response to a request. It is measured by two factors:
recall and precision.

Recall = Number of matching data elements retrieved by a product
Maximum number of matches possible

Number of matching data elements retrieved by a product
Number of data elements retrieved by a product

Precision =

Consistency. This criterion measures the performance of the product in
removing redundancies and storing the minimum number of elements from
which all other elements can be derived. The result will be what James
Martin (1990) refers to as a canonical data repository — a minimal and non-
redundant representation of data elements in an enterprise.

B Number of elements in the final repository
Number of elements in the original data dictionaries

Consistency = 1

Common use among different IS: This criterion measures whether the
product can be consistently applied to standardize IS in different depart-
ments and operations within an IS organization. Current trends toward
integrating networks and information systems to build integrated reposi-
tory-network management environments make it important that reposito-
ries handle multiple environments. Deciding which repository to use as the
central repository may depend on its flexibility in handling a variety of soft-
ware and hardware. The common use criterion measures this flexibility:

Number of elements standardized using particular product
Number of elements standardized in the organization

Common Use =

Degree of automation. An active repository uses substantially less man-
power than a passive one. In response to an inquiry, an active repository
can locate the elements and find out who has access to them; it then
directs the database management system to obtain those data elements.
On the other hand, passive data dictionaries have no tie-ins to the operat-
ing system and require the user to write programs to gain access to the ele-
ments. This criterion measures the extent to which a product makes it easy
for a DBA to standardize and store elements.

125

SOFTWARE ENGINEERING HANDBOOK

Time spent in training and using product
Total time available

Degree of automation = 1 —

Degree of security: Overall security depends on managing the access
controls to various data elements. Access control limits must be defined
for each user and violations acted upon.

Number of security failures

Degree of security = 1 — -
& Y Number of attempts to breach security

Repository Workbench Metrics. The following metrics measure addi-
tional attributes of the repository workbench.

¢ Redundancy: One of the objectives of a repository solution is to act as
the single source for all information flows. To measure how successful
the repository implementation is requires knowledge concerning the
number of objects stored in the repository versus the number of ob-
jects stored, simultaneously, in different sources.

redundant objects

Redund =
edundancy Total # objects

e Intuitive access: One of the most important, but underrated, features of
arepository workbench is its user interface. The more intuitive the di-
alog is, the more the repository workbench will be used. Frequency of
use translates into higher productivity; a low rating implies need for
tuning or training.

users requiring manual

Intuitiveness = 1 —
Total number of users

e Level of impact analysis. This metric measures how well the impact
analysis function is utilized.

levels being accessed

Level of impact analysis = .
Total # levels in E-R model

e Integration. This metric determines the progress of the tool integration
effort. Because a repository workbench enables complete tool inte-
gration, the level of integration implies progress — or lack of it.

tools integrated

Integration = ————S——
Total # tools in use

SCORING THE REPOSITORY WORKBENCH

The chart in Exhibit 8.1 provides a means to conduct a quantitative eval-
uation of several repository products. To use this chart, simply transfer
the scores from each of the rating scales under the 23 criteria. To transfer
the score, multiply the rating (1 through 5) by the weighting (1 through 3).

126

Selecting and Integrating a Repository for Effective Resource Management

Exhibit 8-1. Evaluation of Products
Product A Product B

1. Initial data capture

2. Tracking

3. Source and use

4. User access

5. Dialog

6. Extensibility

7. Project control

8. Versioning

9. Life cycle

10. Architecture
11. Standards

12. Gateways
13. CASE bridges

14. Services

15. Workbench integration

16. Tool development

17. Groupware

18. Reporting

19. Impact analysis

20. Scripting

21. Forms

22. Generation

23. Table management

References

Martin, J. (1989). Information Engineering, Book I: Introduction, Prentice Hall, Englewood Cliffs,

Martin, J. (1990). Information Engineering, Book II: Planning and Analysis, Prentice Hall, Engle-
wood Cliffs, NJ.

127

This page intentionally left blank

Chapter 9
Structured
Methodology Review

A variety of methodologies is available to the systems analyst. Many are
proprietary methodologies utilized in conjunction with a software
application development tool set (CASE — computer assisted software
engineering).

The original and still frequently used systems development construct
dictates that systems are developed through a series of distinct stages. It
is necessary for each stage to be completed before going to the next. This
is a linear progression of system development, hence the name “waterfall”
method. Waterfall design methods are a one-way flow from the require-
ments process toward the working system (Coffee, 2001).

Once a stage of the project is complete, it is sent to the next stage with
a “deliverable,” which is evidence or documentation that the stage has
been completed and the project is ready for the next process. There are
eight generally accepted stages of a systems development life cycle tech-
nique (see Exhibit 9-1):

e Determination of scope and objectives — overall scope of the project is
agreed upon.

e Systems investigation and feasibility study — a report on the feasibility
of a technical solution to the problem is prepared.

e Systems analysis —a logical model of the existing system is built.

e System design — the analyst develops two or three alternative designs.

e Detailed design — detailed physical specifications are made so that
the system can be built.

e Implementation — the system is physically created.

e Changeover — the old system is replaced by the new system.

¢ Evaluation and maintenance —hardware and software are maintained.

A real benefit of this approach is the division of a lengthy project into
stages, which makes it more manageable. This is realized throughout the
project in terms of better project control and communication, and during
the working life of the system in terms of its meeting user requirements and

129

SOFTWARE ENGINEERING HANDBOOK

Stage

Documentation of
scope and
objectives

A
Systems
investigation and
feasibility study

A

System analysis

A

System design

A

Detailed design

A

Implementation

.

Changeover

|

Evaluation and
maintenance

Exhibit 9-1. The Traditional SDLC

the ease with which it can be modified to take into account changes in
these requirements (Curtis, 2000).

However, many in the field feel that the traditional waterfall method is
outdated. The problem is that the waterfall models a one-way flow from
requirements. You must be able to paddle upstream and take a different
path if the one you first choose turns out to be too long — to practice

130

Structured Methodology Review

white-water kayaking, rather than just going over the waterfall and hoping
you will like where you land (Coffee, 2001). Today’s business is fast paced
and systems need to be developed as quickly as possible to meet organiza-
tional needs, with early delivery of the easy portions of an application for
on-the-job testing and comments (Coffee, 1994).

Fast-changing requirements and shorter lead times might require the
use of different methodologies.

RAPID APPLICATIONS DEVELOPMENT (RAD)

It is no longer adequate to take two or three years to build a system. More
than ever, businesses are in a race against time (Glen, 1993). Directly
opposed to the traditional and lengthy life cycle approach is rapid applica-
tions development, or RAD for short. RAD is a loosely used term (like many
other design terms) that describes any approach to a fast-designed system.

RAD has been described as a set of tactics and techniques to minimize
development time — a radical departure from the traditional waterfall
method (Glen, 1993). Essentially, RAD uses time boxing to control develop-
ment time for each phase of the project. If a deadline is in danger of being
missed, lower-priority requirements are moved back to a later time box or
the next phase of an incremental delivery (Tudhope, 2000). RAD requires
management to accept consensus management and joint application
design (JAD). Specialists with advanced technology (SWAT teams) work
closely with the users to define and refine applications.

SWAT (also referred to by Glen as “slaves without any time”) is an effec-
tive tactic in many RAD projects in that small, multidisciplined IT teams
work with users directly. This fosters team building. SWAT members are
not confined to separate floors or buildings. This approach is different than
assembling many systems specialists with inch-wide and mile-deep knowl-
edge in specific areas to build applications in IT ghettos (Glen, 1993).

RAD has four phases, as shown in Exhibit 9-2 (Curtis et al., 2000):

1. Requirements planning — joint requirements planning (JRP), estab-
lishes high-level objectives

2. Applications development — JAD follows JRP, involves users in work-
shops

3. Systems construction — design specifications, used to develop de-
tailed and generate code

4. Cutover — users trained and the system tested

According to Tudhope (2000), the majority of developers who are aware
of RAD tend to select elements of the methodology rather than following it
strictly. Others use generally similar techniques without identifying them
as RAD.

131

SOFTWARE ENGINEERING HANDBOOK

Requirements

Planning

Appli i
. R A D Cutover
Development

Systems

Construction

Four Phases of Rapid Application
Development

Exhibit 9-2. The Four Phases of RAD

Proponents of the RAD design methodology say that business needs can
change substantially during long development times, and meeting current
needs when the system comes into operation is a better aim than meeting
a “long-frozen” specification (Tadhope, 2000). However, others say you
should never let developers write a line of code until the specifications are
approved by all parties. Prudent managers might therefore follow the
“waterfall” model, in which requirements are completed and flow down-
stream to design (Coffee, 1994).

A variation of the RAD technique dictates that design technique is to be
deliberate in the systems foundation, but one should design some parts
ahead of time. The foundation is the data model, which should be designed
in partnership with the business side of the organization. A logical data or

132

Structured Methodology Review

JAD

Technical experts-
programmers, designers,
project managers.

Bring together groups of people

FaCiIitator Business Experts-User reps,

department mgt. people,
controller or CIO

- J

Exhibit 9-3. The JAD Process

object design process allows definition of how business is currently con-
ducted and plans for future changes. RAD is used for screens, reports, busi-
ness rules, and communications, but only after the database or object
model is in place. Involving users in the process that takes the longest
makes development time less of an issue; end users see the prototype in
days or hours once the foundation is laid (Boyer, 1995). Boyer recom-
mends that we build the walls of the application and roof as quickly as pos-
sible, but to make sure the foundation is in place first.

JOINT APPLICATION DESIGN (JAD)

In joint application design, analysts work with groups during the devel-
opment of the system; they integrate groups of technical and business
experts (Exhibit 9-3). These groups may include programmers, designers,
and project managers, as well as user reps, department management peo-
ple, and the controller or CIO. These JAD sessions are usually run by a
trained facilitator.

The JAD process has four stages: framework presentation, project scop-
ing, preliminary definitions development, and detailed requirements devel-
opment (Dodson, 1994).

In the framework presentation stage the facilitator sets the tone for the
project, explaining the JAD approach. Usually this stage involves a core
team of business experts and will last between one half to a full day. Project
scoping involves the same group of people identifying project priorities
across department lines. This should take a total of 6 to 12 hours. The pre-
liminary definitions stage produces the context diagram; the entire core
team participates in this phase. The context diagram shows the system’s
place in the flow of the organization’s information, which should take about
one day. The detailed requirements stage should take five to ten days in
session; however, the detailed requirements can take weeks to develop.

Attending all of these sessions is the “scribe” responsible for document-
ing all the information gathered during each meeting and providing it to the

133

SOFTWARE ENGINEERING HANDBOOK

team as needed. This relieves other participants from taking notes, which
diverts their attention from the matters at hand.

GROUP SUPPORT SYSTEMS (GSS)

One of the problems with meetings in the JAD approach is that only a
limited number of people can participate effectively before the meeting
becomes inefficient (Dennis et al., 1999). Nevertheless, it is important to
receive input from all the experts because no one expert usually has the
expertise to document business processes completely. Another problem
with JAD sessions is that only one person can speak at a time. This creates
a problem in that experts blocked from contributing their ideas while
another is speaking may forget or suppress them because they seem less
relevant later. Also, many times a group session is dominated by just a few
people. This could lead to a model that favors the dominating participants.

In recent years computer technology called group support systems has
been designed to provide same-time, same-place interactions in which par-
ticipants use computers to interact and exchange ideas (Dennis et al.,
1999). This is designed to reduce group interaction problems and may help
to improve meetings by using parallel communication, anonymity, and
group memory.

GSS also reduces meeting time and allows group members to share their
ideas simultaneously through the use of the collaborative software. Partic-
ipants can also remove themselves from the discussion to pause and think
without worrying about remembering what the other members have said.

Of course electronic meetings also have their negative effects. It is said
that this type of communication is often “less rich” than verbal communi-
cation and that resolving differences with electronic meetings is more dif-
ficult. The effectiveness of GSS greatly depends on the size of the group.
GSS was found to produce greater gains with larger groups; however, ver-
bal meetings are more effective where differences of opinion need to be
resolved (Dennis et al., 1999).

CASE TOOLS

The broadest definition of a CASE tool is any software tool that provides
automated assistance for software development, maintenance, or project
management activities (McMurtrey et al., 2000). CASE tools are not end-
user oriented; they are used by professionals for carrying out part of the
design and helping to speed the development process.

They have been trumpeted as the “silver bullet” of applications develop-
ment but have not necessarily lived up to that name because they are not
a “fix-all” solution to systems design. However, they are a feasible option
for practitioners of systems development.

134

Structured Methodology Review

Case tools assist in (Curtis et al., 2000):

¢ Corporate planning of info systems — used to track relationships be-
tween various components.

¢ Creating specification requirements — information system is analyzed
into its data requirements.

* Creating design specifications —tools are used to specify a design for
the system.

¢ Code-generation tools — accept output of the design specification and
produce code for direct execution.

e Information repository — stores information on entities, processes,
data structures, business rules, source code, and project management.

¢ Development methodology — provides automated diagramming facili-
ties for data-flow diagrams.

The many benefits of CASE include increased productivity, restructuring
of poorly written code, decrease of application development time, and aid
in project management. However, with benefits there are usually draw-
backs, and CASE is no exception. Some of the drawbacks are a reliance on
structured methodologies, a lengthy learning curve, possible user resis-
tance, limited functions, and a required working knowledge of the underly-
ing methodology.

A VARIETY OF STRUCTURED METHODOLOGIES

As mentioned, a wide variety of systems development methodologies
can be chosen from, some accompanied by CASE tools and some without
them. Most are based on the methodologies discussed previously. A list of
references to some of the most common structured methodologies follows:

1. Yourdon, E.E. and Constantine L.L. (1977). Structured Design: Funda-
mentals of a Discipline of Computer Program and System Design, Your-
don Press

2. DeMarco, T. (1979). Structured Analysis and Systems Specification,
Prentice Hall, Englewood Cliffs, NJ.

3. Gane, G. and Sarson, T. (1979). Structured Systems Analysis, Prentice
Hall, Englewood Cliffs, NJ.

4. Jackson, M. (1975). Principles of Program Design, Academic Press,
New York.

5. Jackson, M. (1983). System Development, Prentice Hall, Englewood
Cliffs, NJ.

6. Martin, J. (1988). Information Engineering: Book 1 Introduction, Book
2 Planning and Analysis, Book 3 Design and Construction, Prentice
Hall, Englewood Cliffs, NJ.

James Martin worked with Clive Finkelstein in designing information
engineering. Interestingly, two models were actually derived from this

135

SOFTWARE ENGINEERING HANDBOOK

exercise. Martin’s model is IT-driven while Finkelstein’s model is enter-
prise, or business, driven. I find Finkelstein’s the more useful of the two and
have included a brief summary here.

Finkelstein Information Engineering

Clive Finkelstein’s (1989) version of information engineering starts with
a business strategic planning exercise to identify important information
systems required by the business. Then it develops chosen priority sys-
tems through successively detailed analysis and design, through to imple-
mentation.

Strategic planning consists of the following stages:

e Stage 1. Identifying the current plan. Use any existing strategic or tac-
tical statements that may exist or a management questionnaire to
gather information about business strategy

e Stage 2. Evaluation of current status consists of eight steps:

1. Analyze mission and purpose to identify major data subjects
that are represented in a high level mission model

Identify potential goals (critical success factors)

Define goals

Identify issues

Define strategies to deal with each issue

Identify current functions (e.g., personnel, finance, etc.)

Allocate strategies to functions

Define functional responsibility (a detailed functional specifica-

tion for each functional manager)

e Stage 3. Setting strategic direction consists of three steps: (1, 2) inter-
nal, and external appraisal: analysis of business, and business envi-
ronment (3) strategic evaluation: create the strategic agenda; devise
proactive strategic options and select; define strategic statement: for-
mal documentation of strategic decisions, rational, assumptions, con-
clusions and alternatives.

NS U wN

Once we complete the strategic plan we can proceed to the develop-
ment of more detailed data models and process models. These are built up
in three successive levels:

e Strategic modeling: a high-level schematic data model, of interest to se-
nior managers. Steps involve:

Identifying data subjects

Identifying data entities from mission

Identifying preliminary functions

Identifying data entities from strategies

Identifying potential functions

Identifying strategic attributes

S Uk LN

136

Structured Methodology Review

7. Defining purpose descriptions

¢ Tactical modeling: the strategic model is refined into areas of more de-
tail to describe data of more interest to middle managers. Typically ap-
proximately 20 of these tactical areas exist for any one strategic
model.

¢ Operational modeling: any one tactical area may have typically three
operational systems that need to be developed. Operational modeling
develops the data and process models for a particular operational
area to a level of detail to enable implementation.

¢ The final phase of the Finkelstein methodology is implementation. Im-
plementation is technology dependent and is carried out using suit-
able DBMS, CASE, and other development tools. The major techniques
used are:

¢ Business data modeling: a “business oriented” version of data modeling

® Process modeling: modeling of processes acting on “data,” especially
generic, reusable processes such as: Verify, Add, Read, Display,
Change, Delete.

¢ Dynamic performance monitoring: the use of a generic approach to per-
formance monitoring (a common requirement for most systems).

EXTREME PROGRAMMING

Extreme programming (XP) is a new programming methodology that is
getting fairly heavy notice these days. Kent Beck (1999) is one of its main
proponents and seems to have coined the term, so it seems reasonable to
treat his book as the defining standard of the field. XP is the application of
a group of practices to software development projects:

® The planning game: collaboration of business and programming pro-
fessionals to estimate the time for short tasks (called “stories” in XP)

e Small releases: a ship cycle measured in weeks rather than years

e Metaphor: “a single overarching metaphor” to guide development sub-
stitutes for a formal architectural specification

¢ Simple design: no provision in the code for future changes or flexibility

¢ Testing: every piece of code exercised by unit tests when written, and
the full suite of tests when integrated

® Refactoring: any piece of code subject to rewriting to make it simpler

¢ Pair programming: all production code jointly written by two developers

e Collective ownership: the right of any developer to change any piece of
code on the project

e Continuous integration: code integrated to the main line every few
hours

¢ 40-hour week: no overtime

e On-site customer: a business person dedicated to the project

¢ Coding standards: one standard per project

137

SOFTWARE ENGINEERING HANDBOOK

XP amounts to abandoning the traditional “waterfall model” of develop-
ment entirely in favor of what has often been called “cowboy coding.” Beck
argues that it is no longer vastly more expensive to fix problems in produc-
tion than in planning; as a result, it is not necessary to plan. Instead, let
your programmers program, trust them to solve problems as they come
up, and plan and ship frequently so that you get feedback from the cus-
tomer on a regular basis.

CONCLUSION

In this handbook’s chapter on OO methodologies you will find a com-
pletely different take on the topic of methodologies. OO is a newer, fast
method for creating software. In spite of OO’s increasing popularity, it is
not expected that the more traditional methodologies discussed in this
chapter will fade into oblivion any time soon.

References

Beck, K. (1999). Extreme Programming Explained, Addison-Wesley, Reading, MA.
Boyer, P. (1995). Is RAD all wet? Datamation, 41(16), 84.
Coffee, P. (2001). Coding over the waterfalls, eWeek, 18(13), 39.

Coffee, P. (1994). The development dilemma: figuring out how to use contradictory tech-
niques is the only safe bet in programming your C/S apps, PC Week, 11(36), 32.

Dennis, A.R., Hayes, G.S., and Daniels, Jr., R.M. (1999). Business process modeling with group
support systems, J. Manage. Inf. Syst., 15(4), 115.

Dodson, W.R. (1994). Secrets of a high performing teams: joint application design (JAD), Data
Based Advisor, 12(12), 46.

Finkelstein, C. (1989). An Introduction to Information Engineering, Addison-Wesley, Reading,
MA.

Glen, R. (1993). RAD requires radical thinking, . 7. Mag., 25(11), 36.

McMurtrey, M.E., Teng, J.T.C., Grover,V., and Kher, H.V. (2000). Current utilization of CASE
technology: lessons from the field, Industrial Manage. Data Syst., 100(1/2), 22.

Tudhope, D. (2000). Prototyping Praxis, constructing computer systems and building belief,
Hum.—Comput. Interaction, 15(4), 353.

138

Chapter 10
Extreme
Programming
Concepts

Extreme programming is a software methodology developed by Kent Beck
to help software developers to design and build a system more efficiently
and successfully. Extreme programming is a disciplined and well-planned
approach to software development. What makes this programming so pop-
ular is that it is one of the first lightweight methodologies. A lightweight
methodology has only a few rules and practices or ones that are easy to fol-
low. Extreme programming does not require any additional paperwork and
programmers do not need to go through tons of methods. It stresses cus-
tomer satisfaction and can be used when the customer is not certain of his
requirements or when new technology is to be introduced.

THE RULES OF EXTREME PROGRAMMING

Extreme programming applies four rules in developing the software
project:

e Communication. The programmer must communicate with the cus-
tomer and elicit his requirements, thus the emphasis on customer sat-
isfaction. The programmer also needs to communicate with fellow
workers, thus the emphasis on team work.

e Simplicity. The design is maintained as simply as possible.

e Feedback. The software is tested from its early stages, feedback is ob-
tained, and changes are made. This is a cyclical process.

e Courage. The programmer can make changes even at the last stages
and implement new technologies as and when they are introduced.

Extreme programming is a process of project development, as shown in
Exhibit 10-1. Customer requirements are obtained in the form of user sto-
ries; the programmer selects the user stories to be implemented first with
help from the customers. A plan is released that indicates how many user
stories can be implemented in a single iteration, thus starting iterative
development. The user stories are broken down into programming tasks

139

SOFTWARE ENGINEERING HANDBOOK

Learn and communicate
A

Pair Programming
Iteration Unfinished Refactor Mercilessly Funtionality
plan Tasks Move People Around
Share CRC Cards
Tasks Too much 100% Unit
To do

Tests Passed

Stand up————®{ Collective code
Meeting Next Task ownership

Failed or Failed
Acceptance Acceptance Test
Tests Acceptance
Test Passed
» Bug Fixes
Day by Day

Exhibit 10-1. The Extreme Programming Process of Software Development

and assigned to programmers. The time required to complete these tasks
is estimated first; these initial estimates are referred to as uncertain esti-
mates. By using feedback, the programmer can adjust the estimates and
make them more certain.

Once these programming tasks have been implemented, they are sent
for acceptance testing. If these tasks produce an error or indicate a bug,
they are sent back to be recoded in the next iteration. Once the program-
ming tasks are approved by the customer, a small release of the tasks is
made to check functionality.

The components of extreme programming include:

e User stories. User stories are written by the customer and describe the

140

requirements of a system. The customer need not specify his require-
ments using any particular format or technical language; he merely
writes these in his own words. Aside from describing what the system
must be, the user stories are used to calculate the time estimates for
release planning. At the time of the implementation of the user stories
the developer obtains detailed information from the customer. The
time estimate is usually in the form of ideal development time — de-
fined as how long it would take to implement the story in code if there
were no distractions, no other assignments, and the programmer
knew exactly what to do. Typically, each story will get one to three
weeks. The user stories are also used to produce test scenarios for ac-
ceptance testing by the customer as well as to verify that the user sto-
ries have been implemented correctly.

Extreme Programming Concepts

® Release planning. Release planning produces the release plan followed
during development of the system; it is also called the “planning
game.” During release planning a meeting is set up with the customers
and the development team. During this meeting a set of rules is set up
by the customers and developers to which all agree. A schedule is
then prepared. A development team is selected to calculate each user
story in terms of ideal programming weeks, which is how long it would
take to implement that story if absolutely nothing else needed to be
done.

Release planning is guided by four values:

e Scope — how much needs to be done?

e Resources — how many people are available?

e Time — when will the project or release be done?

¢ Quality — how good and how well tested will the software be?

Candidate systems for XP are those that are reusable, testable, and have
good business values.

Iteration

At the beginning of every iteration, an iteration planning meeting is held
at which the user stories to be implemented during that iteration are cho-
sen; the customer selects the user stories. The selected stories are broken
down into discrete programming tasks during the planning session. The
programming tasks are specified in the programmer’s language.

The number of selected user stories or programming tasks increases or
decreases the project velocity. Each programming task is estimated based
on ideal programming days, which are the number of days it would take to
program a task if no distractions or interruptions occurred.

After these programming tasks have been developed, they are tested. If
bugs are found, the offending programming tasks are added back into the
release plan to be handled by the next iteration.

During each iteration (see Exhibit 10-2), the plan is checked to detect
duplicate programming tasks. If such tasks are found, they are removed or
consolidated. If a single iteration has too much to do, several user stories
are dropped; if the iteration has too little to do, a few are added.

Development

During the development phase, stand-up meetings are held every morn-
ing to discuss the problems faced during the development effort, to devise
a solution to these problems, and, perhaps most importantly, to promote
focus. No individual programmer owns his or her code. Instead, the code is

141

SOFTWARE ENGINEERING HANDBOOK

New User Story,
Project Velocity
A
Learn and
Communication
Release User Stories New Functionality
Plan Unfinished Tasks ,
Project
Next Velocity Iteration Bugs Fixes Latest
Iteration Planned Development . Version
Iteration
Failed Acceptance Plan T
Tests | Day by Day

Bugs

Exhibit 10-2. The Iterative Nature of XP

collectively owned and collaboratively worked upon. The focus of develop-
ment is on small, manageable releases that can be thoroughly tested.

CRC Cards

CRC stands for class, responsibilities, and collaboration. CRC cards
(Exhibit 10-3) contain information about the class, responsibilities and col-
laboration for designing the system as a team. CRC cards allow all the mem-
bers of the project team to contribute to the project which will provide a
number of good ideas which can then be incorporated in the design.

CLS025

Class Name: ResourceUsage

Class Type:

Class Characteristics:

Responsibilities: Collaborations:
Receive Usage Information Order

Store Usage Information Resource
Provide Usage Information Service Schedule

Authors: Jane Doe

Exhibit 10-3. CRC Card

142

Extreme Programming Concepts

Each CRC card is used to represent an object. The class name of the
object can be written at the top of the CRC card; the responsibilities of the
class are written on the left side of the card and the collaborating classes
are written to the right of each responsibility. A CRC session consists of a
person simulating the system by speaking about the relationships between
the objects and the process. In this way, weaknesses and problems can be
easily discerned and the various design alternatives can be explored
quickly by simulating the proposed design.

System Metaphor

Classes, objects, and methods coded by the programmer can be reused.
Instead of writing the code for a class, object, or method that already
exists, it is important to name the objects in a standardized manner that
enables other programmers to seek and reuse these objects. Thus, a com-
mon system or common system description is used by all programmers.

Collective Code Ownership

Collective code ownership is a contribution of the programmers to the
project in the form of ideas to any segment of the project. Any programmer
can add or change code, fix bugs, or refactor — i.e., reuse the code. The
entire team is responsible for the system’s architecture. Although it is hard
to believe that a whole team can have authority over the entire project, it
is actually possible. Each developer creates unit tests for his or her code as
the code is developed. Code is released into a source code repository after
being thoroughly tested.

Unit Test

Unit tests are written by the programmer before he starts coding. Writ-
ing the unit tests first gives the programmer a better understanding of the
requirements specified by the customer. In addition, writing unit tests
prior to coding helps programmers write the code more easily and faster.

Acceptance Test

Within the XP methodology, “functional” tests have been renamed
“acceptance” tests to indicate that the system is accepted by the customer.
The customer specifies the test scenarios during specification of the user
stories; each story will have one or more acceptance tests. The acceptance
tests are the expectation of the customer for the system. These acceptance
tests are black box system tests, which enable the programmer to derive
sets of input conditions that will fully exercise all functional requirements
for a program. The user reviews the results of the acceptance tests and
determines the priorities of the test failures. The team schedules time to fix
the failed test for every iteration.

143

SOFTWARE ENGINEERING HANDBOOK

Project Velocity

The project velocity is used to measure how much work is being com-
pleted on the project; it is obtained by adding up the estimates of user sto-
ries completed during the iteration. Project velocity can also be obtained
by adding up the estimates for tasks during the iteration. If the project
velocity shows significant variations, a release planning meeting is con-
ducted and a new plan is released. Project velocity is a measure of accu-
racy. How accurately are we able to produce results on time? How well are
we able to make estimates?

Small Releases

The development team releases small iterative versions of the system to
the customer. It is essential to get customer feedback on time instead of
waiting until the last moment, which results in making changes at the last
minute as well.

Simple Design

The design is kept as simple as possible. A complex design is hard to
understand when changes are to be made in the future.

Coding Standard

Programmers follow a specific set of standard rules in writing code. This
helps in communication among teams and enables a programmer to under-
stand the code written by any other programmer easily.

Refactoring

Refactoring is the art of removing any duplicate code — i.e., the reuse of
code that is already present. This helps in keeping the system design sim-
ple. Refactoring also saves a lot of time and increases the quality of the
system.

Pair Programming

Pair programming specifies that a pair of programmers work collabora-
tively on a task. This helps assess the code as it is written. Pair program-
ming increases software quality and takes the same time to deliver the sys-
tem as a single programmer working on a single machine.

Continuous Integration

Coding is done by dividing big projects into small, manageable program-
ming tasks. After coding, the discrete programming tasks are joined
together; however, each of these tasks is tested individually for bugs. Dur-
ing integration of the programming tasks, it is quite possible that new bugs

144

Extreme Programming Concepts

will arise. Therefore, after every integration, the integrated code is retested
for bugs.

Changes may be made on the request of the customer. All the changes
made to the code are integrated at least daily. The tests are then run before
and after the changes. The code is not released if any bugs are found.

40-Hour Week

Each programmer works for only 40 hours per week. This helps the pro-
ductivity of the project in the long term. No programmer is overloaded
with work and no overtime is allowed. Overtime usually exhausts the pro-
grammer and chances are he or she will make mistakes.

On-Site Customer

A single customer or a group of customers is available at all times for the
programmers. This helps in resolving the ambiguities that developers
encounter during development of the project, in setting priorities, and in
providing live scenarios.

CONCLUSION

Extreme programming can be stated as a fast and highly organized pro-
cess for development of a software system. XP emphasizes communica-
tion, which is essential in order to encourage new ideas. Because pair pro-
gramming is stressed in this method, the fear of losing any programmer in
the middle of the project is substantially decreased. Theoretically, XP
reduces competition among programmers by insisting that they all work as
a single team.

Extreme programming can be used where the requirements change rap-
idly and the customer is not sure of those requirements. Feedback is inte-
gral to this process; thus, the end product will be developed according to
customer requirements.

References

Beck, K. (1999). Extreme Programming Explained, Addison-Wesley, Reading, MA.

http://www.extremeprogramming.org. Extreme programming: a gentle introduction.

145

This page intentionally left blank

Chapter 11
Development Before
the Fact Technology

I met Margaret Hamilton a little over a decade ago. At the time [was writing
articles on software engineering for Software Magazine. | interviewed
Hamilton for one of these articles. This is when I became intrigued by her
radically different developmental technology called Development Before
the Fact (DBTF).

Hamilton had run the software engineering division of the Charles Stark
Draper Labs at MIT where the onboard flight software was being created
under her direction for the Apollo and Skylab missions. As you can well
imagine, software had to be developed to send people up into space and
then to bring them safely home. It was critical, therefore, to develop soft-
ware without any flaws. In her study of software developed for these mis-
sions, Hamilton tracked a variety of causes of software error — most nota-
bly interface errors. From her findings she developed the technology that
is the topic of this chapter.

DBTF (and its associated 001 tool set) is quite unique. System models
are visually created and then virtually bug-free code is automatically gen-
erated by the tool set, which generates the documentation as well. Aston-
ishingly, the 001 tool set actually generated itself.

WHAT IS WRONG WITH SYSTEMS

Today's traditional system engineering and software development envi-
ronments support their users in “fixing wrong things” rather than in “doing
them the right way in the first place.” Things happen too late, if at all. Sys-
tems are of diminished quality and an unthinkable amount of dollars is
wasted. This becomes apparent when analyzing the major problems of sys-
tem engineering and software development.

In defining requirements, developers rely on many different types of mis-
matched methods to capture aspects of even a single definition. In fact, the
universal modeling language (UML) resurrects and supports this very
practice. Among other things, data flow is defined using one method, state
transitions another, dynamics another, data types another, and structures

147

SOFTWARE ENGINEERING HANDBOOK

using still another method. Once these aspects of requirements are
defined, there is no way to integrate them. Designers are forced to think
and design this way because of limitations of technologies available to
them.

This leads to further problems. Integration of object to object, module
to module, phase to phase, type of application to type of application, or
systems to software become even more of a challenge than solving the
problem at hand. This is compounded by a mismatch of products used for
design and development. Integration of all forms is left to the devices of a
myriad of developers well into the development process. The resulting sys-
tem is hard to understand, objects cannot be traced, and there is little cor-
respondence to the real world.

With these traditional methods, systems are actually encouraged by
informal (or semiformal) languages to be defined as ambiguous and incor-
rect. Interfaces are incompatible and errors propagate throughout devel-
opment. Once again the developers inherit the problem. The system and
its development are out of control.

Requirements are defined to concentrate on the application needs of the
user, but they do not consider that the user changes his mind or that his
environment changes. Developers are forced to use a technology without
an open architecture. The result is “locked in” designs, such as being
locked into a specific database schema or GUI; the user is forced to make
resource allocation a part of the application. Porting becomes a new devel-
opment for each new architecture, operating system, database, GUI envi-
ronment, language, or language configuration; critical functionality is
avoided for fear of the unknown and maintenance is both risky and the
most expensive part of the life cycle. When a system is targeted for a dis-
tributed environment, it is often defined and developed for a single proces-
sor environment and then redeveloped for a distributed environment —
another unnecessary development.

Insufficient information about a system’s run-time performance, includ-
ing that concerning the decisions to be made between algorithms or archi-
tectures, is incorporated into a system definition. This results in design
decisions that depend on analysis of outputs from exercising a multitude of
ad hoc implementations and associated testing scenarios. A system is
defined without considering how to separate it from its target environ-
ment. It is not known if a design is a good one until its implementation has
failed or succeeded.

The focus for reuse is late into development during the coding phase.
Requirements definitions lack properties to help find, create, and inher-
ently make use of commonality. Modelers are forced to use informal and
manual methods to find ways to divide a system into components natural

148

Development Before the Fact Technology

for reuse. Why reuse something in today’s changing market if it is not able
to be integrated, not portable or adaptable, and error prone? The result is
little incentive for reuse, and redundancy is a way of life. Again, errors
propagate accordingly.

Automation is an inherently reusable process. If a solution does not
exist for reuse, it does not exist for automation. Systems are defined with
insufficient intelligence for automated tools to use them as input. Too
often, automated tools concentrate on supporting the manual process
instead of doing the real work.

Definitions supported by “make work” automation are given to develop-
ers to turn into code manually. A process that could have been mechanized
once for reuse is performed manually over and over again. When automa-
tion attempts to do the real work, it is often incomplete across application
domains or even within a domain, resulting in incomplete code such as
skeleton or shell code. Manual processes are needed to complete unfin-
ished automations. An automation for one part of a system (e.g., the GUI)
needs to be integrated manually with an automation for another part of the
system (e.g., communications algorithms) or with the results of a manual
process. The code generated is often inefficient or hardwired to a particu-
lar architecture, language, or even a particular version of a language. Most
of the development process is needlessly manual. Again, all these manual
processes are creating new errors each time.

A promising solution to these problems is DBTF. Whereas the traditional
approach is after the fact, or curative, the DBTF approach is preventative.

DEVELOPMENT BEFORE THE FACT

With DBTF, each system is defined with properties that control its own
design and development. With this paradigm, a life cycle inherently pro-
duces reusable systems, realized in terms of automation. Unlike before, an
emphasis is placed on defining things the right way the first time. Problems
are prevented before they happen. Each system definition not only models
its application but also models its own life cycle.

From the very beginning, a system inherently integrates all of its own
objects (and all aspects of and about these objects) and the combinations
of functionality using these objects. It maximizes its own reliability and
flexibility to change and the unpredictable; capitalizes on its own parallel-
ism; supports its own run-time performance analysis and the ability to
understand the integrity of its own design; and maximizes the potential for
its own reuse, automation, and evolution. The system is developed with
built-in quality and built-in productivity.

A curative means to obtain quality is to continue testing the system until
the errors are eliminated; a preventative (i.e., DBTF) means is to not allow

149

SOFTWARE ENGINEERING HANDBOOK

errors to creep in, in the first place. Whereas a curative means to acceler-
ate a particular design and development process is to add resources such
as people or processors, a preventative approach would find a more effi-
cient way to perform this process, such as capitalizing more on reuse or
eliminating parts of it altogether, yet still reaching the desired results.
Effective reuse is a preventative concept. Reusing something with no
errors, to obtain a desired functionality, avoids the errors of a newly devel-
oped system; time and money will not be wasted in developing that new
system. For successful reuse, a system must be worth reusing and must be
reused for each user requiring functionality equivalent to it. This means
starting from the beginning of a life cycle, not at the end, which is typically
the case with traditional methods. Then a system is reused for each new
phase of development. No matter what kind, every ten reuses save ten
unnecessary developments.

THE TECHNOLOGY

The DBTF technology embodies and is based on a formal theory; it has
a formal systems language, a generic process, and an automation, all based
on the formal theory. Once understood, the characteristics of good design
can be reused by incorporating them into a language for defining any sys-
tem. The language is the key to DBTF. It has the capability to define any
aspect of any system (and any aspect about that system) and integrate it
with any other aspect. These aspects are directly related to the real world.

This same language can be used to define and integrate system require-
ments, specifications, design, and detailed design for functional, resource,
and resource allocation architectures throughout all levels and layers of
“seamless” definition, including hardware, software, and peopleware. It
could be used to define missile or banking systems as well as real-time,
Internet, or database environments.

With this language, every object is a system-oriented object (SOO)
developed in terms of other SOOs. An SOO integrates all aspects of a sys-
tem including that which is function, object, and timing oriented. Every
system is an object; every object is a system. Instead of object-oriented
systems, DBTF has system-oriented objects and can be used to define sys-
tems with diverse degrees of fidelity and completeness. Such a language
can always be considered a design language because design is relative: one
person’s design phase is another person’s implementation phase.

This implementation-independent language has mechanisms to define
mechanisms for defining systems. Although the core language is generic,
the user “language,” a by-product of a development, can be application
specific because the language is semantics dependent but syntax indepen-
dent. Unlike formal languages that are not friendly and friendly languages
that are not formal, this language is formal and friendly.

150

Development Before the Fact Technology

The first step in building a DBTF system is to define a model (without
concern for resource allocation details such as how many processes are
needed) with the language. This process could be in any phase of develop-
ment, including problem analysis, operational scenarios, and design. The
model is automatically analyzed to ensure it was defined properly. This
includes static analysis for preventative properties and dynamic analysis
for user-intent properties.

A complete and fully production-ready and fully integrated software
implementation (and documentation) for any kind or size of application,
consistent with the model, is then automatically generated by the generic
generator for a selected target environment in the language of choice (e.g.,
C, Java, or XML) and the architecture of choice. If the selected environment
has already been configured, it is selected directly; if not, the generator is
configured for a new language and new architecture before it is selected.

The resulting system can then be executed. If the desired system is soft-
ware, the system can now be tested for further user-intent errors. It
becomes operational after testing. Before the fact testing is inherently part
of every DBTF development step. Errors are prevented simply by construc-
tion with the language and because of that which is inherent or automated;
for example, since the generator automatically generates all the code, no
manual coding errors will be made. Target changes are made to the defini-
tion, not to the code. Target architecture changes are made to the configu-
ration of the generator environment, not to the code. If the real system is
hardware or peopleware, the generated software system can serve as a
form of simulation upon which the real system can be based.

DBTF is a system-oriented object approach based upon a unique con-
cept of control. The foundations are based on a set of axioms and on the
assumption of the existence of a universal set of objects. Each axiom
defines a relation of immediate domination; the union of the relations
defined by the axioms is control. Among other things, the axioms establish
the relationships of an object for invocation, input and output, input and
output access rights, error detection and recovery, and ordering during its
developmental and operational states.

This approach is used throughout a life cycle, starting with require-
ments and continuing with systems engineering, specification, analysis,
design, implementation, testing, and maintenance. Its users include man-
agers, system engineers, software engineers, and test engineers, as well as
end users.

In addition to experience with real-world systems, 001 takes its roots in
many other areas, including systems theory, formal methods, formal linguis-
tics, and object technologies. It would be natural to make assumptions
about what is possible and impossible based on its superficial resemblance

151

SOFTWARE ENGINEERING HANDBOOK

to other techniques such as traditional object technologies. It helps, how-
ever, to suspend any and all preconceived notions when first introduced to
it because it is a world unto itself — a completely new way to think about
systems and software.

The DBTF approach had its beginnings in 1968 with the Apollo space
missions when research was performed for developing software for man-
rated missions. This led to the finding that interface errors accounted for
approximately 75 percent of all errors found in the flight software during
final testing. These include data flow, and priority and timing errors at the
highest and lowest levels of a system to the finest grain detail. Each error
was placed into a category according to the means taken to prevent it by
the very way a system was defined. A theory was derived for defining a sys-
tem such that this entire class of interface errors would be eliminated.

INTEGRATED MODELING ENVIRONMENT

The first technology derived from this theory concentrated on defining
and building reliable systems in terms of functional maps. Since that time
this technology has been further developed to design and build systems
with DBTF properties in terms of an integration of functional and type
maps, where a map is a control hierarchy and a network of interacting
objects. The philosophy behind this approach is inherently recursive and
reusable where reliable systems are defined in terms of reliable systems.
Only reliable systems are used as building blocks and as mechanisms to
integrate these building blocks to form a new system. The new system
becomes a reusable for building other systems.

Every model is defined in terms of function maps (FMaps) to represent
the dynamic world of action by capturing functional and time (including
priorities) behavior and type maps (TMaps) to represent the static world
of objects by capturing space behavior (Exhibit 11-1). FMaps and TMaps
guide the designer in thinking through concepts at all levels of system
design. With these maps, everything you need to know (no more, no less)
is available. All model viewpoints can be obtained from FMaps and TMaps,
including data flow, control flow, state transitions, data and object struc-
ture, and dynamics. FMaps are inherently integrated with TMaps.

On an FMap, a function at each node is defined in terms of and controls
its children functions. For example, the function “build the table” could be
decomposed into and control its children functions “make parts and
assemble.” On a TMap, a type at each node is defined in terms of and con-
trols its children types. For example, “type, table,” could be decomposed
into and control its children types, “legs and top.”

Every type on a TMap owns a set of inherited primitive operations. Each
function on an FMap has one or more objects as its input and one or more

152

Development Before the Fact Technology

Model Functional Behavior (Time) Model Type Behavior (Space)
with Function Map (FMap) with Type Map (TMap)
At
naLs
/\ Control Structure @Function —— Objects (Members of Types)
-~ Constraint Type and its methods -... Relations

Exhibit 11-1. FMaps Are Inherently Integrated with TMaps.

objects as its output. Each object resides in an object map (OMap), an
instance of a TMap, and is a member of a type from a TMap. FMaps are
inherently integrated with TMaps by using these objects and their primi-
tive operations. FMaps are used to define, integrate, and control the trans-
formations of objects from one state to another state (e.g., a table with a
broken leg to a table with a fixed leg). Uses of primitive operations on types
defined in the TMap reside at the bottom nodes of an FMap. Primitive types
reside at the bottom nodes of a TMap.

When a system has all of its object values plugged in for a particular per-
formance pass, it exists in the form of an execution map (EMap), an
instance of an FMap.

Typically, a team of designers will begin to design a system at any level
(hardware, software, peopleware, or some combination) by sketching a
TMap of their application. This is where they decide on the types of objects
(and the relationships between these objects) that they will have in their
system. Often a road map (RMap), which organizes all system objects
including FMaps and TMaps, will be sketched in parallel with the TMap. An
RMap can also be automatically generated from a set of FMaps and TMaps
upon demand.

Once a TMap has been agreed upon, the FMaps begin almost to fall into
place for the designers because of the natural partitioning of functionality
(or groups of functionality) provided to the designers by the TMap system.

153

SOFTWARE ENGINEERING HANDBOOK

The TMap provides the structural criteria from which to evaluate the func-
tional partitioning of the system (e.g., the shape of the structural partition-
ing of the FMaps is balanced against the structural organization of the
shape of the objects as defined by the TMap). With FMaps and TMaps, a
system (and its viewpoints) is divided into functionally natural compo-
nents and groups of functional components that naturally work together; a
system is defined from the very beginning to inherently integrate and make
understandable its own real world definition.

PRIMITIVE STRUCTURES

All FMaps and TMaps are ultimately defined in terms of three primitive
control structures: a parent controls its children to have a dependent rela-
tionship, an independent relationship, or a decision-making relationship. A
formal set of rules is associated with each primitive structure. If these rules
are followed, interface errors are “removed” before the fact by preventing
them in the first place. As a result, all interface errors (75 to 90 percent of
all errors normally found during testing in a traditional development) are
eliminated at the definition phase. Using the primitive structures supports
a system to be defined from the very beginning to inherently maximize its
own elimination of errors.

Use of the primitive structures is shown in the definition of the FMap
for system, MakeATable (Exhibit 11-2). The top node function has FLAT-
wood and ROUNDwood as its inputs and produces Table as its output.
MakeATable, as a parent, is decomposed with a Join into its children func-
tions, MakeParts and Assemble. MakeParts takes in as input FLATwood
and ROUNDwood from its parent and produces Top and Legs as its out-
put. Top and Legs are given to Assemble as input. Assemble is controlled
by its parent to depend on MakeParts for its input. Assemble produces
Table as output and sends it to its parent.

. As a parent, MakeParts is decomposed into children, MakeLegs and
MakeTop, who are controlled to be independent of each other with the
Include primitive control structure. MakeLegs takes in part of its parent’s
input and MakeTop takes in the other part. MakeLegs provides part of its
output (Legs) to its parent and MakeTop provides the rest. MakeTop con-
trols its children, FinishSoftWood and FinishHardWood, with an Or. Here,
both children take in the same input and provide the same output because
only one of them will be performed for a given performance pass. Finish-
SoftWood will be performed if the decision function “is:Soft,Wood” returns
True; otherwise, FinishHardWood will be performed. Notice that input
(e.g., FLATwood) is traceable down the system from parent to children and
output (e.g., Table) is traceable up the system from children to parent. All
objects in a DBTF system are traceable. MakeATable’s TMap, Table, uses

154

Development Before the Fact Technology

Definition for Making a Table TMap Table(TupleOf)
Reqwrements Build a system for making a table.

e {able has Ie s, is made out of hard or soft
Woo %0a has a round or recta%gular top of Top(Wood) Legs

Wood(Oneof) (OSetON

FMap Table = MakeATable (FLATwood,ROUNDwood)
Soft(Nat) -eg(Wood)

JOIN Hard(Nat)
Table = Assemble (Top,Legs) Top,Legs = MakeParts (FLATwood, ROUNDwood)
eI s
bl INCLUDE
on hlp or maklng

sks need d ctions)
)3 the/r rel t?o ’s I[.;S for Top = MakeTop (FLATwood) Legs = MakelLegs (ROUNDwood)
mak/ng each table using

OR:is:Soft,Wood (FLATwood)

Top = FinishSoftWood (FLATwood) ~ Top=FinishHardWood(FLATwood)

Exhibit 11-2. The Three Primitive Structures Are Ultimately Used to De-
compose a Map. The FMap Part of the System, MakeATable,
Is Modeled Using JOIN, INCLUDE, and OR for Controlling
Dependent, Independent, and Decision-Making Functions,
Respectively.

nonprimitive structures called type structures, a concept discussed in a
later section.

Each type on a TMap can be decomposed in terms of primitive struc-
tures into children types where the defined relationships between types
are explicit. In Exhibit 11-3, Table as a parent has been decomposed into its
children, Top and Legs, where the relations between Top and Legs are on-
1 and on-2, respectively, the relation between Table and legs is r-1, and the
relation between Table and Top is r-0. Notice that making a Table Top
depends on Legs to rest on (Exhibit 11-3a). On the other hand, an indepen-
dency relationship exists between the front legs and the back legs of the
Table (Exhibit 11-3b). The Table may have FrontLegs or BackLegs, or Front-
Legs and BackLegs at once. In Exhibit 11-3c, which illustrates a decision
structure with objects, unlike with the dependent and independent struc-
tures, the pattern of the OMap is always different from the pattern of the
TMap because only one object is chosen to represent its parent for a given
instance.

It can be shown that a system defined with these structures results in
properties that support real-time distributed environments. Each system
is event-interrupt driven; each object is traceable and reconfigurable, and

155

SOFTWARE ENGINEERING HANDBOOK

Type Maps Object Maps
a) Table(r-0;r-1)
Join Table-1()
Top(r-0;on-1,0n-2) Legs(on-1,0n-2;r- Top-2(;on-1) Legs-3(on-

b) FrontAndBackLegs(on-1,0n-2;0n-3,0n-4)
Include FrontAndBackLegs-1(on-1;0n-3)

FrontLegs(on-1;0n-3) BackLegs(on-2;on- FrontLegs-2(on-1;0n-3)

Wood(is;on
c () Wood-1(is;)

hard| Oak(is;on) soft| Pine(is;on) hard| Oak-2(is;)

Exhibit 11-3. A TMap (and Its Corresponding OMaps) Can Be Decom-
posed into Its Explicit Relationships in Terms of the Three
Primitive Control Structures.

has a unique priority. Independencies and dependencies can readily be
detected and used to determine where parallel and distributed processing
is most beneficial. With these properties, a system is defined from the very
beginning to inherently maximize its own flexibility to change and the
unpredictable and to capitalize on its own parallelism.

DEFINED STRUCTURES

Any system can be defined completely using only the primitive struc-
tures, but less primitive structures can be derived from the primitive ones
and accelerate the process of defining and understanding a system. Non-
primitive structures can be defined for FMaps and TMaps and can be cre-
ated for asynchronous, synchronous, and interrupt scenarios used in real-
time, distributed systems. Similarly, retrieval and query structures can be
defined for client-server database management systems.

Colnclude is an example of a system pattern that happens often
(Exhibit 11-4a). Its FMap was defined with primitive structures. Within the
Colnclude pattern, everything stays the same for each use except for the
children function nodes A and B. The Colnclude pattern can be defined as
anonprimitive structure in terms of more primitive structures with the use
of the concept of defined structures. This concept is an example of avail-
able reusable patterns for FMaps and TMaps.

Included with each structure definition is the definition of the syntax for
its use (Exhibit 11-4b). Its use (Exhibit 11-4c) provides a “hidden reuse” of

156

Development Before the Fact Technology

A system is defined from the a) Structure Definition
very beginning to inherently .
maximize the potential @, Y, = Coinclude(x) >

for its own reuse e —

yb=B (xb)?

c) Example of a
Yo Vp =70 al,bl =

b) Syntax for Use

cl “
QazA (Xa)"D Q =5 (Xb)?> al=TaskA(a) b1=TaskB(a,b)

Exhibit 11-4. Defined Structures Are Used to Define Nonprimitive Struc-
ture Reusables in Terms of More Primitive Structures. CO-
INCLUDE is an Example of a System Pattern That Has Been
Turned into a Defined Structure.

the entire system as defined, but explicitly shows only the elements sub-
ject to change (that is, functions A and B). The Colnclude structure is used
in a similar way to the Include structure except that, with the Colnclude,
the user has more flexibility with respect to repeated use, ordering, and
selection of objects. Each defined structure has rules associated with it for
its use just as with the primitive control structures. Rules for the nonprim-
itives are inherited ultimately from the rules of the primitives.

Async, (Exhibit 11-5), is a real-time, distributed, communicating struc-
ture with asynchronous and synchronous behavior. The Async system was
defined with the primitive Or, Include, and Join structures and the Coln-
clude user-defined structure. It cannot be further decomposed because
each of its lowest level functions is a primitive function on a previously
defined type (see Identify2:Any and Clonel:Any under End, each of which
is a primitive operation on type Any), recursive (see Async under DoMore),
or a variable function for a defined structure (see A and B under process).
If a leaf node function does not fall into any of these categories, it can be
further decomposed or it can refer to an existing operation in a library or
an external operation from an outside environment.

157

SOFTWARE ENGINEERING HANDBOOK

Structure a,b = Async(l,a0,b0)

OR:Continue?(l,a20,b0
a,b = DoMore(l,a0,b0)

a,b = End(l,a0,b0)
/\ (1:20,60) Join
Include
ab= I1,a1,b1 =
b = Clone1:Any(b0)

a = |dentify2:Any(l,a0)

I1,a1 = A(l,a0)?
Syntax (ab="? (1,a0,b0) Use RB,RA=

Async: Continue?

planst,

il plansO,
RB1,RA - Initialize (R RA)

= ? —
.21 =A(,20)7) (b1 = B(b0)? RB,RA = CoordinateTasks(plans1,RB1,RA1)

N
Async: TasksDone

\
RA2 = Move(plans1,RA1)
NextStep,RB2 = TurnAndPlan(plans1,RB1)

Exhibit 11-5. Async is a Defined Structure That Can Be Used to Define
Distributed Systems with Synchronous and Asynchronous
Behavior.

CoordinateTasks uses Async as a reusable where TurnAndPlan and
Move are dependent, communicating, concurrent, synchronous, and asyn-
chronous functions. The two robots in this system work together to per-
form a task such as building a table. Here, one phase of the planning robot,
RB, is coordinated with the next phase of the slave robot, RA.

Reusability can be used with a TMap model by using user-defined type
structures, which are defined structures that provide the mechanism to
define a TMap without their particular relations explicitly defined. TMap
Table (Exhibit 11-2) uses a set of default user-defined type structures.
Table as a parent type controls its children types, Top and Legs, in terms of
a TupleOf type structure, Legs controls its child, Leg, in terms of OSetOf,
and Wood controls Hard and Soft with a OneOf. A TupleOf is a collection of
a fixed number of possibly different types of objects, OSetOf is a collection
of a variable number of the same types of objects (in a linear order), and
OneOf is a classification of possibly different types of objects from which
one object is selected to represent the class. These type structures, along
with TreeOf, can be used for designing any kind of TMap. TreeOf is a collec-
tion of the same types of objects ordered using a tree indexing system.
With the use of mechanisms such as defined structures, a system is defined

158

Development Before the Fact Technology

from the very beginning to inherently maximize the potential for its own
reuse.

FMAPS, TMAPS, AND THEIR INTEGRATION

Exhibit 11-6 shows a complete system definition for a manufacturing
company defined in terms of an integrated set of FMaps and TMaps. This
company could be set up to build tables — with the help of robots to per-
form tasks — using structures such as those defined above. Because this
system is completely defined, it is ready to be developed automatically to
complete, integrated, and fully production ready to run code. This sys-
tem’s FMap, Is_FullTime_Employee, has been decomposed until it reaches
primitive operations on types in TMap, MfgCompany. (See, for example,
Emps=Moveto:Employees (MfgC) where MfgC is of type MfgCompany and
Emps is of type Employees.) MfgCompany has been decomposed until its
leaf nodes are primitive types or defined as types that are decomposed in
another TMap.

System, Is_FullTime_Employee, uses objects defined by TMap, Mfg-
Company, to check to see if an employee is full or part time. First a move
is made from the MfgCompany type object, MigC, to an Employees type
object, Emps. The defined structure, LocateUsing:Name, finds an
Employee based on a name. Once found, a move is made from Emp (an
Employee) to PS (a Payscale). The primitive operation YN=is:FullTime(PS)

FMap TMap MigCompany
- i S
YN_[I\S_FuIIT|me_Emponee(EmpName,MfgC) /TupIeOf \
CoJoin
‘ ~ Depir'tinents Employees
. Emps=Moveto:Employees(MfgC) ManagementOf OS'etOf
YN=Find_Emp_In_Set(EmpName,Emps) / I
| Purchasing Marketing Emol
LocateUsing:Name Production mployee
Emelgyee
YN=Check_Emp_PayScale(Emp) TupleOf
TN
Join Pa);S\caIe Name(Str) Skills
PS=Moveto:PayScale(Emp) /OneOf\
YN=is:FullTime(PS) FullTime(Rat) Hourly(Rat)

Exhibit 11-6. A Complete System Definition Is an Integration of FMaps
and TMaps, Where the FMaps Have Been Decomposed Until
Reaching Primitive Functions on the Types in the TMaps
and the TMaps Have Been Decomposed Until Reaching the
Primitive Types. Specific Abstract Types Inherit Methods
from User-Defined Type Structures and Are Applied as Leaf
Function in FMaps.

159

SOFTWARE ENGINEERING HANDBOOK

is then used to determine from PS if Emp is full time. When PS is FullTime,
YN will be True.

Each type structure assumes its own set of possible relations for its par-
ent and children types. In this example, TMap, MfgCompany is decom-
posed into Departments and Employees in terms of TupleOf. Departments
is decomposed in terms of ManagementOf (a user-defined type structure)
into Purchasing, Production, and Marketing. Employees is decomposed in
terms of OSetOf. One of the children of Employee, PayScale, is decomposed
in terms of the type structure, OneOf.

Abstract types decomposed with the same type structure on a TMap
inherit (or reuse) the same primitive operations and therefore the same
behavior. So, for example, MfgCompany and Employee inherit the same
primitive operations from type structure, TupleOf. An example of this can
be seen in the FMap where both types, MfgCompany and Employee, use the
primitive operation, MoveTo, which was inherited from TupleOf.

Here each use of the MoveTo is an instantiation of the Child=MoveTo:
Child(Parent) operation of the TupleOf type structure. For example,
Emps=MoveTo:Employees(Mfg(C) allows one to navigate to an employee’s
object contained in a MfgCompany object. A type may be nonprimitive
(e.g., Departments), primitive (e.g., FullTime as a rational number), or a
definition that is defined in another type subtree (e.g., Employees). When
a leaf node type has the name of another type subtree, the child object will
be contained in the place holder controlled by the parent object (defined
as Skills) or a reference to an external object will be contained in the child
place holder controlled by the parent object (forming a relation between
the parent and the external object).

UNIVERSAL PRIMITIVE OPERATIONS

The TMap provides universal primitive operations, which are used for
controlling objects and object states inherited by all types. They create,
destroy, copy, reference, move, access a value, detect and recover from
errors, and access the type of an object. They provide an easy way to
manipulate and think about different types of objects. With universal prim-
itive operations, building systems can be accomplished in a more uniform
manner. TMap and OMap are also available as types to facilitate the ability
of a system to understand itself better and manipulate all objects the same
way when it is beneficial to do so.

TMap properties ensure the proper use of objects in an FMap. A TMap
has a corresponding set of control properties for controlling spatial rela-
tionships between objects. One cannot, for example, put a leg on a table
where a leg already exists; conversely, one cannot remove a leg from the
table where there is no leg. A reference to the state of an object cannot be
modified if there are other references to that state in the future; reject

160

Development Before the Fact Technology

values exist in all types, allowing the FMap user to recover from failures if
they are encountered.

The same types of definition mechanisms are used to define RotateRo-
tateArm, a hardware system (Exhibit 11-7), as were used to define the pre-
ceding software system. Note that this system also includes the use of
primitives for numeric calculation. In this system, the rotation of the robot
arm is calculated to move from one position to another in a manufacturing
cell to transfer a part. The universal operation (an example of another form
of reusable with polymorphism), Replace, is used twice in this example.
Each use of a universal operation has function qualifiers that select a
unique TMap parent—child combination to be used during the application
of the function.

Exhibit 11-8 has a definition that takes further advantage of the expres-
sive power of a TMap with the option of using explicitly defined relations.
In this example, a stack of bearings is described. A bearing in the stack may
be under (with relation on-0) or on (with relation on-1) another bearing
object in the stack as defined by the DSetOf structured type. A bearing
object is decomposed into a Cap, a RetainerWith Balls, and a Base. Object
relationships at this level show that the Cap is above the RetainerWith-
Balls, which is, in turn, above the Base. Further detail reveals that a Retainer
has (with the has-n relation) some number of RetainerHoleWithBall
objects. The set of RetainerHoleWithBall objects are independent of each
other, defined by the ISetOf structured type. This structure allows for phys-
ically independent relations on the objects in the set. Here, different por-
tions of the Cap surface are independently related (with the on-Balls rela-
tion) to each individual Ball object (with the on-Ball relation).

As experience is gained with different types of applications, new reus-
ables emerge for general or specific use. For example, a set of reusables has
been derived to form a higher level set of mechanisms for defining maps of
interruptable, asynchronous, communicating, distributed controllers. This
is essentially a second-order control system (with rules that parallel the
primary control system of the primitive structures) defined with the formal
logic of user-defined structures that can be represented using a graphical
syntax (Exhibit 11-9).

In such a system, each distributed region is cooperatively working with
other distributed regions and each parent controller may interrupt the
children under its control. In this example, the robot controller may apply
an arm controller or a sensor controller. If the arm controller is activated,
the two grippers may concurrently use an Include to hold two ends of some
object. If the sensor controller is activated, a sensor unit uses a Join to
sense some image, followed by an image unit matcher. These reusables can
also be used to manage other types of processes such as those used to
manage a software development environment or a corporation.

161

SOFTWARE ENGINEERING HANDBOOK

RobotA TMaps APortlds
4\ One
TupleOf \ ' POI’ltS Stock! / \ Parts
- RFt{oEz’:\\ltlc;)nTme(Nat) ConveyorA' | Grinder'
urnRate(Na .

PutDownTime(Nat) ConveyorB I0Ports
PickUpTime(Nat) Ports OSet0
MfgObject(Nat) TupIeO\ Igl\’ort
| APortids OneOf

IOPorts AtPort(IOPort!)

A N
RA = Rotate Robot Arm (to,RAQ) Input(Nat) Output(Nat)

Ps = Moveto:Ports,RobotA(RA0)

atP = Moveto:AtPort:Ports(Ps)

I0Ps = Moveto:IOPorts,Ports(Ps)

start = StartingPosition(atP,|IOPs)

end,Ps1 = ResetTo_NewPort(Ps,to,IOPs)

RA1 = Moveto:RobotA,Ports(Ps1) start = StartingPosition(atP,IOPs)
RA=ComputeRotationTime(RA1,end,start)

J
J rlOPs = Referto:IOPorts(atP,|OPs)

FMaps I0P = Moveto:IOPosrts(rlOPs)
start = Position(IOP)
end,Ps1 = ResetTo_NewPort(Ps,t0,I0Ps) co: |s|np{|OPort(IOP)

‘ start = Moveto:Output:IOPort(IOP)
end = GetPortID(to,Ps) start = Moveto:Input:IOPort(IOP)
c c Pls = Moveto:Portlds:Ports(Ps)
PIsTM = TMap:Portlds(Pls)
end = Index_OneOf(to,PIsTM)
IOPsN = Locate:IOPorts(end,IOPs)
IOPN = Moveto:IOPorts(IOPsN)
Ps1 = Replace:AtPort:Ports(IOPN,Ps)

RA=ComputeRotationTime(RA1,end,start)

02 |2\.\01 i
distance = Diff:Nat(end,start) H Robotg *
4

rate = Moveto: TurnRate:RobotA(RAT1)

' — 02 5
time = Mul:Nat(distance,rate) ConveyorB

RA = Replace:RotationTime:RobotA(time,RA1)

ConveyorA

Exhibit 11-7. Any Kind of System Can Be Defined with this Language, In-
cluding Software, Hardware, and Peopleware. Rotate Ro-
bot Arm is an example of a Hardware System Defined in
FMaps and TMaps.

The extent to which reuse is provided is a most powerful feature of DBTF.
FEverything developed is a candidate — reusable (and inherently integrat-
able) within the same system, other systems, and these systems as they
evolve. Commonality is ensured simply by using the language. The designer
models the objects and their relationships and the functions and their rela-
tionships; the language inherently integrates these aspects as well as takes
care of making those things that should be objects become objects. In fact,
FMaps are defined in terms of TMaps and use TMaps as reusables, while
TMaps are defined in terms of FMaps and use FMaps as reusables.

162

Development Before the Fact Technology

physical object
(side view)

TMap StackOfBearings(on;on-n) DSetOf

Bearing(on;on-1)

Cap(on;around,on-balls) Base(on-Basen;on-

RetainerWithBalls(around,on-balls;on-Basen) CJ

Retainer(around;restraints)

RetainerHolesWithBalls(restraints,on-balls;on-Basen) 1SetOf

RetainerHoleWithBall(restraint,on-ball;on-Base1) CJ

/\

RetainerHole(restraint;contains) Ball(contains,on-ball;on-Base1)

Exhibit 11-8. Explicitly Defined Relations Can Be Used to Take Further
Advantage of the Expressive Power of a TMap. Here, a
TMap Is Used for Defining a Bearing Manufacturing
Process.

PERFORMANCE CONSIDERATIONS

When designing a system environment, it is important to understand the
performance constraints of the functional architecture and to have the
ability to change configurations rapidly. A system is flexible to changing
resource requirements if the functional architecture definition is separated
from its resource definitions. To support such flexibility with the necessary
built-in controls, with DBTF the same language is used to define functional,
resource, and allocation architectures. The meta-language properties of
the language can be used to define global and local constraints for FMaps
and TMaps. Constraints can be defined in terms of FMaps and TMaps. If we
place a constraint on the definition of a function (e.g., Where F takes
between two and five seconds), then this constraint influences all func-
tions that use this definition. Such a constraint is global with respect to the
uses of F.

163

SOFTWARE ENGINEERING HANDBOOK

HoldRightSide

Grip Cm on: Gripper
<&~ Pressure

Robot System

defined as a
system of RaiseAndLower
distributed on:ArmController Grip Cmd1
communicating, 2 Include < rp &m
Arminfo
%
Arminfo1 Pressure1 HoldLeftSide
; A on:Gripper
RCmfo Manage
4 on:RobotController
; Or
RCinfo1 <\ Sensorinfo sense
TMap Sensorinfo \ command
J
Controllers(TreeOf) AllocateAndOrient
on:SensorController

Join

Controller(OneOf)

Senso
Controller ImageUnit

Sensor Gripper
Controller Arm Controller

FindMatches

object type
on:ImageUnit

Robot

Exhibit 11-9. A Second-Order Control System Has Been Derived That Par-
allels the Primary Control System to Form a Powerful Set of
Reusables for Defining Maps of Interruptable, Asynchro-
nous, Communicating, Distributed Controllers.

A global constraint of a definition may be further constrained by a local
constraint placed in the context of the definition using that definition; e.g.,
when function G uses F, where F takes six seconds (not two to five sec-
onds). The validity of constraints and their interaction with other con-
straints can be analyzed by static or dynamic means. The property of being
able to trace an object throughout a definition supports this type of analy-
sis and provides the ability to collect information on an object as it transi-
tions from function to function. As a result, one can determine the direct
and the indirect effects of functional interactions of constraints.

INHERENT INTEGRATION WITH SYSTEM-ORIENTED OBJECTS

A DBTF system is by nature an inherent integration of function (includ-
ing timing) and object orientation from the beginning, i.e., it is a system-ori-
ented object. The definition space is a set of real-world objects, defined in
terms of FMaps and TMaps.

Obijects, instantiations of TMaps, are realized in terms of OMaps. An exe-
cution, which is an instantiation of an FMap, is realized in terms of an

164

Development Before the Fact Technology

EMap. Definitions are independent of a particular implementation — e.g.,
building block definitions with a focus on objects are independent of par-
ticular object-oriented implementations. Properties of classical object-ori-
ented systems such as inheritance, encapsulation, polymorphism, and
persistence are supported with the use of generalized functions on OMaps
and TMaps.

The DBTF approach derives from the combination of steps taken to
solve the problems of the traditional “after the fact” approach. Collective
experience strongly confirms that quality and productivity increase with
the increased use of DBTF properties. A major factor is the inherent reuse
in these systems, culminating in ultimate reuse, which is either inherent or
automation itself.

From FMaps and TMaps, any kind of system can be automatically devel-
oped, resulting in complete, integrated, and production-ready target sys-
tem code and documentation. This is accomplished by the 001 Tool Suite,
an automation of the technology. The tool suite also has a means to
observe the behavior of a system as it is evolved and executed in terms of
OMaps and EMaps.

If asked if there were a way to develop any kind of software with:

¢ Seamless integration, including systems to software

¢ Correctness by built-in language properties

¢ No interface errors

¢ Defect rates reduced by a factor of ten

¢ Guarantee of function integrity after implementation

¢ Complete traceability and evolvability (changing applications, archi-
tectures, and technologies)

¢ Full life cycle automation

e No manual coding

e Maximized reuse including that which is automated or inherent

¢ Minimum time and minimum effort

¢ Atool suite

— all defined and automatically generated by itself, most people would say
this is impossible, at least in the foreseeable future.

This is not impossible; in fact, it is possible today with the 001 systems
design and software development environment (Exhibit 11-10 contains a
summary that compares the traditional “after the fact” environment with a
DBTF environment). Why can it do what it does? It is not magic. Simply put,
it is because this environment automates and is based on the Development
Before The Fact paradigm.

165

SOFTWARE ENGINEERING HANDBOOK

Exhibit 11-10. Summary Comparing Traditional “After the Fact”
Environment with a DBTF Environment.

Traditional (After the Fact)

DBTF (Before the Fact)

Integration ad hoc, if at all
~Mismatched methods, objects, phases, products,
architectures, applications, and environment

~System not integrated with software
~Function oriented or object oriented

~GUI not integrated with application
~Simulation not integrated with software code

Integration

~Seamless life cycle: methods, objects, phases,
products, architectures, applications, and
environment

~System integrated with software

~System oriented objects: integration of

function, timing, and object oriented
~GUI integrated with application
~Simulation integrated with software code

Behavior uncertain until after delivery

Correctness by built-in language

Interface errors abound and infiltrate the system
(over 75% of all errors)

~Most of those found are found after implementation
~Some found manually

~Some found by dynamic runs analysis

~Some never found

No interface errors

~All found before implementation

~All found by automatic and static analysis
~Always found

Ambiguous requirements, specifications, designs

introduce chaos, confusion and complexity

~Informal or semi-formal language

~Different phases, languages and tools

~Different language for other systems than for
software

Unambiguous requirements, specifications, designs

remove chaos, confusion, and complexity

~Formal, but friendly language

~All phases, same language and tools

~Same language for software, hardware and any
other system

No guarantee of function integrity after implementation

Guarantee of function integrity after implementation

Inflexible: Systems not traceable or evolvable

~Locked in bugs, requirements products,
architectures, etc.

~Painful transition from legacy

~Maintenance performed at code level

Flexible: Systems traceable and evolvable
~Open architecture

~Smooth transition from legacy
~Maintenance performed at specification level

Reuse not inherent
~Reuse is ad hoc)
~Customization and reuse are mutually exclusive

Inherent Reuse
~Every object a candidate for reuse
~Customization increases the reuse pool

Automation supports manual process instead of

doing real work

~Mostly manual: documentation, programming,

test generation, traceability, integration

~Limited, incomplete, fragmented, disparate, and
inefficient

Automation does real work

~Automatic programming, documentation, test
generation, traceability, integration

~100% code automatically generated for any kind
of software

Product x not defined and developed with itself

001 defined with and generated by itself
~#1 in all evaluations

Dollars wasted, error prone systems

~High risk

~Not cost effective

~Difficult to meet schedules

~Less of what you need and more of what you don t
need

Ultra-reliable systems with unprecedented

productivity in their development

~Low risk

~10t01,20t0 1,50to 1 dollars sa ved/dollars
made

~Minimum time to complete

~No more, no less of what you need

166

Development Before the Fact Technology

Note:

001, 001 Tool Suite, DBTF, Development Before the Fact, FunctionMap, FMap, TypeMap, TMap,
ObjectMap, OMap, RoadMap, RMap, ExecutionMap, EMap, RAT, System Oriented Object,
SO0, 001AXES, are all trademarks of Hamilton Technologies, Inc.

Selected Bibliography

Hamilton, M. (1986). Zero-defect software: the elusive goal, IEEE Spectrum, 23, 48-531986.

Hamilton, M. and Hackler, R. (1990). 001: a rapid development approach for rapid prototyping
based on a system that supports its own life cycle, IEEE Proc. st Int. Workshop Rapid Sys. Pro-
totyping, Research Triangle Park, NC, June 4, 1990.

Hamilton, M. and Hackler, WR. (in press). System Oriented Objects: Development Before the
Fact

Hamilton, M. and Hackler, W.R. (2000). Towards cost effective and timely end-to-end testing,
HTI, prepared for Army Research Laboratory, Contract No. DAKF11-99-P-1236.

Hamilton, M. (1994). Inside Development Before the Fact, Electron. Design, 31.
Hamilton, M. (1994). Development Before the Fact in action, Electron. Design, (ESSoftware En-

gineering Tools Experiment-Final Report, Vol. 1, Experiment Summary, Table 1, p. 9, Depart-
ment of Defense, Strategic Defense Initiative, Washington, D.C.)

Hornstein, R. and Hamilton, M. (in preparation). Realizing the potential for COTS utilization:
creating and assembling reusable components right the first time, NASA, Washington, D.C.,
Hamilton Technologies, Inc., Cambridge, MA.

Krut, Jr., B. (1993). Integrating 001 tool support in the feature-oriented domain analysis meth-
odology (CMU/SEI-93-TR-11, ESC-TR-93-188), Pittsburgh, Software Engineering Institute, Carn-
egie Mellon University.

Ouyang, M. and Golay, M.W. (1994). An integrated formal approach for developing high quality
software of safety-critical systems, Massachusetts Institute of Technology, Cambridge, MA,
Report No. MIT-ANP-TR-035.

001 Tool Suite. Hamilton Technologies, Inc. Version 3.3.1 (1986-2002) [www. htius.com]

167

This page intentionally left blank

Chapter 12
The Design
Specification

The process of information systems development must pass through a
number of distinct phases in order to be successful. This process is com-
monly known as the systems development life cycle (SDLC) and the design
specification is an essential and integral component of it. Design specifica-
tions are blueprints showing what to build and how to build it.

THE PROCESS

By the time the systems designer comes to the design phase of the
system life cycle, he or she has a pretty clear understanding of what the
new system should do and why. This information is recorded in several
documents:

e The feasibility study discusses the pros, cons, and costs of building
the system (see Appendix C).

¢ The project plan provides preliminary information about the project,
its mission and goals, its schedule, and its cost estimate (see Appen-
dix F).

e The system requirements specification (SRS) contains detailed infor-
mation about the requirements of the system (see Appendix G).

In spite of this detailed documentation, there may still be some uncer-
tainty regarding future capabilities of the new system due to the different
and changing perspectives of the end users and other stakeholders. Differ-
ent people will see different possibilities for the new system, which is why
a push to propose alternative solutions may take place. The designer must
then consider the different views, covering all structured requirements,
and transform them into several competing design strategies. Only one
design will eventually be pursued.

THE DETAILS OF DESIGN

A variety of models were used in the analysis phase to help create a
high-level process model. These tools, which include data flow diagrams
(Exhibit 12-1), entity relationship diagrams (Exhibit 12-2), and state transition

169

SOFTWARE ENGINEERING HANDBOOK

D1

Registration
Table
User Name Password
y Yy
User Name e
User Name
Test taker 1.1 12

Get Name Check Password

Password Password
—

D5
Cookie

Exhibit 12-1. The Data Flow Diagram

diagrams (Exhibit 12-3), are invaluable in producing program specifica-
tions as the move is made from logical models toward the physical design
of the system.

Newcomers to the field often insist that analysis tools and deliverables
be different from the design phase tools and deliverables. More com-
monly, many of the modeling tools and techniques used in the analysis
phase are also used during the design stage. In addition, there is definitely
an overlap between information contained within the SRS and information
contained within the SDS. For example, when developing structured sys-
tems, analysts frequently use the DFD to describe the flow of information
throughout the system for the analysis phase — the logical DFD. A more
detailed set of DFDs is then created for the design phase — the physical
DFD. The same can be said for ERDs, STDs, data dictionaries, and even
process specifications.

The DFD provides a good example of how a document created originally
during the analysis phase can be expanded during the design phase. In the
analysis phase a DFD is developed that shows a conceptual — or context
— view of the system as shown in Exhibit 12-4. The Level 0 diagram serves
as a “table of contents” for subsequent DFDs. Note that it shows a generic
“0” process with attendant data flows.

170

The Design Specification

B ERwWn/ERY for PowerBuilder/QuickStart
File Edt Client Server Report Option Help

partname (FK)
quantity

customer employee 1
custnum emp_id
name emp_fname
address emp_Iname
city dept_id (FK)
| places state (FK)
street
city
' zip_code
ordnum phone
salesperson (FK)| makes_sale_using, |status
custnum (FK) B---mem=- < ss_number
duedate salary
balance start_date
termination_daty
I containg birth_date
bene_health_ins
arder item bene_life_ins
— bene_day_care
itemnum
1

patname

description
picture

FK stands for foreign key.
itis afield (attribute)in one
table that is indexed in ancther.

= Foreign keys are the building
Erwin turns blocks for relating tables.
the graphic
representation | cpEaTE TABLE cust_order
of the (oxdnum CHAR (10) NOT NULL,
CUST.—URDER salespexrson INTEGER,
table irto this custnum CHER (11) NOT NULL,
SQLcode... duedate CHER (3),

balance FLOLT
)

CEELTE UNIQUE INDEX KPKcust_ardex
O cust_oxdex
(
oxrdnum ASC
)i

Exhibit 12-2. An ERD

171

SOFTWARE ENGINEERING HANDBOOK

Login Failed
Invoke Initial Page

User Selected Action

(Modify

Invoke Modify Database

Modifying

Displaying
Initial Page

User Selected Action
(Exit)

Invoke Initial Page

Login Initiated
Invoke Login Process

Processing
Login

Login Successful

Invoke Read Request

* User Selected Action

(Query)
Invoke Process Query

Reading User

Database

Processing

Request

TA

Matches Complete

Modification Complete
Invoke Read Request

Invoke Read Request

User Selected Action

(Reports

Report Complete

Queries

Query Complete
Invoke Process Matches

Processing
Matches

Invoke Read Request

Generating
Report

Exhibit 12-3. A STD

Invoke Generate Report

When drawing a DFD, a top—-down approach is the most effective. Steps
include (Kendall, 2002):

1. Develop a list of typical business activities and use it to determine
external entities, data flows, processes, and data stores.

2. Draw a context diagram that depicts external entities and data flows
to and from the system. The context diagram should be abstract —
i.e., do not show any detailed processes or data flows.

3. Now draw diagram 0, which can be likened to a table of contents. Di-

agram 0 is the next level of detail when using a top—down approach.

As we move down the hierarchy, we move from abstract and less de-

tailed to more detailed and more concrete.

Create a child diagram for each process depicted in diagram 0.

5. Check for any errors and make sure the labels assigned to processes
and data flows are logical and meaningful.

6. Now develop a physical data flow diagram from the logical data flow
diagram.

7. Partition the physical data flow by separating the parts of the dia-
gram to facilitate programming and implementation.

>

172

The Design Specification

Customer
Customer
details
Transaction Transaction
. details . details
Accounting Video Customer
Processing
A
Amount
Total)
paid
A
Store Clerk
Exhibit 12-4. The Context DFD
Member ID n
Customer Release video
Rental request for rental
,;;f:st Member ID
| D1 | Inventory | | D2 | Customer Info
Price’ Customer
info details
Verify and . Videos Transaction 4
Adjust Quantity released details Receipt Cust
Check-Out Print Receipt ustomer
Error or
payment / Total Ag;?gm Transaction
declined details
of stock
Store Clerk D3 Sales History

Exhibit 12-5. DFDs Grow Successfully More Detailed

In the design phase the designer analyzes the DFD and determines how
the data processes can be segregated into groups, each associated with a
type of process, as shown in Exhibit 12-5. Note that now far more detail is
specified.

173

SOFTWARE ENGINEERING HANDBOOK

Exhibit 12-6. The Process Specification

Process #1
Name: (LOGON)
Number: 1
Name: Logon

Description: registered test takers will log on to their accounts with their user
names and passwords through this process. They do not need to register
again. Once they log on, they enter their test subject and then they can take the
test.

Input data: user name from the test taker, password from the test taker, user
name from the registration table, password from the registration table

Output data: user name to the cookie
Type of process: manual check
Process logic:
Get user name and password from the user
if correct then
Allow the user to take the test
else

produce an error
endif

Key functions of each group are determined and these functions are
then broken down (i.e., decomposed) in order to obtain cohesive modules.
Each module is then specified separately (i.e., the process specification or
PSPEC), as shown in Exhibit 12-6, to ensure that data collections are
recorded, and that data produced by the modules corresponds to the data
passed between processes in the data flow diagrams.

DFDs are very flexible and are used during the analysis and design
phases. As discussed, you may draw logical or physical DFDs. The logical
set of DFDs diagrams how a business operates and details its business
activities. Logical DFDs show collections of data but not the detail of how
that data is stored or where it is stored. On the other hand, a physical set
of DFDs tries to diagram exactly how the system will or does operate. Phys-
ical DFDs show programs, databases, and other information necessary for
the implementation of a particular system.

Designers must obtain a deep appreciation of the system and its func-
tions because the production of a modular structural chart is not a
mechanical task (Curtis et al., 2000).

174

The Design Specification

LOGICAL AND PHYSICAL DESIGN

Design consists of two discrete steps: logical design and physical
design. To understand the components of each it is necessary to discuss
logical and physical analysis.

Logical and physical analysis

The physical analysis phase requires the systems analyst to determine
the specifics of the existing processes that the system will automate,
whether these processes are currently part of a technology system or are
completely manual. Physical analysis involves the process of determining,
in specific detail, exactly who does what and when he or she does it in the
process or problem being solved (Curtis et al., 2000). This analysis shows
what is really going on in the system, and helps the systems analyst put
some structure around the new system’s requirements.

Physical analysis occurs after the initial round of interviews with stake-
holders and end users. At this point in the process, the systems analyst is
likely to have an unwieldy batch of interview notes, details of observa-
tions, questionnaire responses, and sundry documents (Curtis et al.,
2000). This information provides the basis for building a methodical
description of the existing manual system. Building this description is the
foundation of physical analysis. This work is considered physical analysis
because the ultimate result of this work is a very nuts-and-bolts descrip-
tion of the actual (manual) steps and processes comprising the system,
with little to no logical abstraction.

A primary vehicle for accomplishing the physical analysis phase is the
manual system flowchart. This chart is very much like the process flow-
charts that many people are familiar with, with some minor changes. The
chart is structured in such a way that it is apparent which department,
organization, or person owns each task, as shown in Exhibit 12-7.

As you can see, this is a very detailed and physically oriented diagram,
showing the passage of documents and data through very specific check-
points. This provides the data presentation required in order to gain the
required level of understanding of the system as it exists, but you could not
develop a system from this picture; a logical diagram is required for that.

The logical analysis phase is focused on abstracting the details uncov-
ered during physical analysis out to a level of logical representation, which
will allow them to be manipulated. Logical analysis produces the ultimate
result of the systems analysis process: the decomposition of the functions
of the system into their logical constituents and the production of a logical
model of the processes and data flows (Curtis et al., 2000).

175

SOFTWARE ENGINEERING HANDBOOK

Skills Tracking

Consultant Manager Analyst

‘Approved
Profile

Skill Profile _| Skill Profile Skill Profile

Rejected Profile

Examine
Skill Profile Profile & Add to
< Approve Overall
or Skills
Reject
Approved
Y _Profile

Completed Report |

Exhibit 12-7. Task Analysis Flowchart

As the systems analyst and end user work through the flowcharts pro-
duced from the physical analysis and the preliminary logical model based
upon it, the goal should be to jointly produce a detailed written description
of all activities within the end user’s purview that fall within the scope of
the system (Bloor and Butler, 1989). The systems analyst and the end user
must agree that this list is complete and precise. The entries in the list
should be mutually exclusive and the list must be comprehensively
exhaustive. Combined with the manual system flowcharts and logical dia-
grams, this list will serve as basic system requirements. Ultimately a

176

The Design Specification

detailed system requirements specification will be created (see Appendix
G). With these documents in hand, the design phase can begin.

The analysis phase was broken down into two components: physical
analysis and logical analysis. The design phase is also broken down into
two components, although in the design phase logical design precedes
physical design.

Logical Design

The logical analysis and logical design phases are very similar and over-
lapping. Martin Butler and Robin Bloor stress that, in the logical phase, we
create a model of the application area that matches the events occurring
within the intended system. As these events are identified, each must be
examined to determine specific criteria for it (Bloor and Butler, 1989):

e What initiates the event?

e What is changed by the event?

e What subsequent events are triggered by the event?
e What error conditions can arise?

These descriptions are crucial inputs for the physical design phase
because they will allow us to derive the required objects and methods. It is
this process that is likely the most important aspect of systems design; all
of the blueprints for future code are based upon this logical model.

The tools of the logical paradigm are somewhat different from those of
physical analysis discussed previously. Physical analysis tools, such as
manual system flowcharts, are very concerned with the specific steps and
decision points inherent in moving through the system. The logical analy-
sis and design tools are more focused on definition of individual compo-
nents of the system and the ways these components interact. The tools of
choice for the logical phase of the systems development process are the
data-flow diagram (DFD) and the entity-relationship diagram when using
the traditional, structured paradigm.

At this stage of the process, with the logical design of the system com-
plete, all that remains to complete the design is to define the physical
design of the software.

Physical Design

The physical design is the blueprint for actual development of the soft-
ware and deployment of the system. The physical phase is concerned with
matching the logical model to the hardware and software at our disposal.
Thus, we are transforming a logical model into a workable model that can
be implemented (Bloor and Butler, 1989). Unlike the logical phases that
immediately precede this work, the physical design phase is focused on
specific implementation of the system. The logical design was built on the

177

SOFTWARE ENGINEERING HANDBOOK

requirements defined during the physical and logical analysis phases. This
fact allows the designer to build a physical design that implements the log-
ical design without worrying about meeting the functional requirements of
the end users; if the logical design is implemented, these requirements will
be fulfilled.

The physical design phase is also where some specific implementation
decisions must be made. Many, if not most, automated systems today use
third-party software for pieces of the solution. Database software, Java
application server software, and object messaging software are some
examples of the kinds of third-party components that are often required.
The logical design need not be concerned with the specific vendor choice,
only with a requirement for one, because the logical design is intended to
be abstracted away from the specific details of the implementation. The
physical design, however, must answer these questions (Curtis et al.,
2000). This fact illustrates the true distinction between the logical and
physical design phases: the logical design is focused on what the system
will do and the physical design is focused on how the system will do it.

THE SYSTEMS SPECIFICATION

The detailed design that has been achieved at this point in the process
results in a systems specification. No agreed-on standard format for this
specification exists and some insist that writing a design spec is more of an
art form than a scientific process. Most IT professionals have sought a
“cookie-cutter” explanation of how to write a good design spec, but one
simply does not exist. Curtis et al. (2000) give a good basic outline of what
a design specification should include:

e An executive summary in order to provide a quick summary of the ma-
jor points in the specification

¢ A description of the proposed system and its objectives (may also in-
clude flow block diagrams and data flow diagrams may be used)

e A description of all programs to include module specifications and
structure charts, together with test data

e A description of all input to include specimen source documents,
screen layouts, menu structures, and control procedures

e A description of all output to include specimen output reports and
contents of listings.

e A description of all data storage to include specification of file and da-
tabase structure

e A detailed specification of controls operating over procedures within
the system

e A specification of all hardware requirements and performance charac-
teristics to be satisfied

178

The Design Specification

e A specification of clerical procedures and responsibilities surround-
ing the system

¢ A detailed schedule for the implementation of the system

¢ Cost estimates and constraints

Appleton (1997) states that the design specification should meet the fol-
lowing criteria:

¢ [t should adequately serve as training material for new project mem-
bers so that they are able to understand what is said in design meet-
ings.

¢ [t should serve as “objective evidence” that the designers are follow-
ing through on their commitment to implement the functionality de-
scribed in the requirements spec.

e [t needs to be as detailed as possible, while at the same time not im-
posing too much of a burden on the designers.

A SYSTEM SPEC WALKTHROUGH
Appendix J is a complete SDS for a working student-created system:

e Section 1 provides an overview of the system, its mission and goals,
and any other supporting documentation deemed necessary by the
support team. Much of this can be copied from the SRS (Appendix G),
project plan (Appendix F), and feasibility study (Appendix C).

e Section 2 provides a list of design considerations that includes: as-
sumptions, dependencies, frequency of use, database requirements,
memory, and hardware and software constraints, as well as a descrip-
tion of the system environment — i.e., user interfaces, software inter-
faces, and communications interfaces. Section 2 also discusses
policies and procedures, design methodology, and system risks.

e Section 3 specifies the architecture of the system. (Appendix I)

e Section 4 provides a high-level design spec of the system. A detailed
set of DFDs can be found in this section.

e Section 5, the low-level design, provides a complete set of PSPECs as
well as a data dictionary (Appendix K).

¢ Section 6 is reserved for a list of business-use cases as well as a series
of screen shots showing the design of the user interface. (Appendix E).

CONCLUSION

Davis (2002) makes an important point when he states that without a
complete, unambiguous design specification document, one could be set-
ting oneself up for “costly” rewrites. Therefore it is important to recognize
that the systems specification is used as (Curtis et al., 2000):

e The exit criterion from the stage of detailed design prior to the stage
of implementation

179

SOFTWARE ENGINEERING HANDBOOK

¢ A source documentation from which programs are written and hard-
ware “tenders” are brought about

¢ A historical reference of the system for future users and developers

¢ A comparative document during the assessment phase once the sys-
tem is being used

An analyst who refers to the basic outline of design specification that
considers everything from goals and objectives, to subsystems descrip-
tion, to potential project issues, should be able to develop a spec docu-
ment that is understood by developers and at least somewhat by custom-
ers. These specifications should also help in avoiding errors and expensive
rewrites.

A functional design specification is like a pyramid. The top reflects a
broad overview that describes the wide spectrum of the system and its
components. At each level below the overview, one has an overview of
each of the primary components and as much detail as one’s developers
require (Davis, 2002).

References
Bloor, R. and Butler, M. (1989a). Object orientation...let’s get physical, DEC User, December,
42.

Curtis, G., Hoffer, J.A., George, J.F.,, and Valacich, J. (2000). Introduction to Business Systems
Analysis, Pearson Custom Publishing, Boston.

Davis, J. (2002). Design specifications: how much detail is enough? Available: http://build-
er.com.com/article.jhtml?id = r00120020206jed03.htmé&src = search:.

Harrington, J.L. (1998). Relational Database Design Clearly Explained, Morgan Kaufmann, San
Diego.

Kendall, K.E. and Kendall, J.E. (2002). Systems Analysis and Design, Prentice Hall, New York.

180

Chapter 13
Object-Oriented
Design

Current code is a liability, not an asset. The challenge is to develop new
code that is truly an asset. This challenge was issued by Vaughan Merlyn,
one of the luminaries of our industry. It is one that bottom-line-conscious
software engineering managers are now taking seriously. To meet this chal-
lenge, developers will need to do more than just tweak some code and liven
up user interfaces. They will need to dramatically alter the way in which
they code.

WHAT IS 00?

Object orientation (O0O), which views the abstractions manipulated by
computer software as counterparts to real-world objects, has promised
developers a brave new world. Object-oriented development emerged as
the dominant software development methodology of the 1990s. Not sur-
prisingly, many organizations are jumping on the OO bandwagon.

The concept of an object is the fundamental building block on which the
object-oriented paradigm rests. Four pivotal concepts are behind object
orientation: encapsulation, message passing, dynamic binding, and inher-
itance. To the extent that a tool or language incorporates these concepts,
it becomes qualified as an object-oriented tool kit.

We can explain these concepts using a simple letter as an analogy. Sup-
pose a user wrote an e-mail letter to a colleague in another department.
The letter is an object that has many properties in common with other let-
ters: it contains information and has associated procedures that allow the
user to manipulate it (read, write, and send). These properties, when
grouped together, constitute the concept of the letter object. This process
of combining data and functions all in one object is encapsulation.

Now suppose the e-mail system only allows users to write letters in
English, but the company just hired an employee who speaks only Japa-
nese. The company now needs the facility to create and manipulate Japa-
nese letters. This is done by putting letter objects in discrete categories,
referred to as classes.

181

SOFTWARE ENGINEERING HANDBOOK

A class is a collection of objects that share the same functionality and
characteristics (procedures and data). In this example, two classes are cre-
ated: an English letter class and a Japanese letter class. Both classes have
many functions and characteristics in common. By identifying those things
held in common we can create a super or parent class. Thus, the English
letter and the Japanese letter become subclasses with each pinpointing
how it differs from its parent and siblings.

The English and Japanese letter subclasses inherit the functionality of
“reading, writing, and sending” from the parent object. However, the Japa-
nese subclass is different in that it has the extra characteristic of translat-
ing text into the Japanese language, and the English subclass is different in
that it translates into English. This is the meat behind the OO concept of
inheritance.

The letter object permits the user to request certain tasks or services,
such as “read a letter,” “write a letter,” or “send a letter.” This is commonly
called “sending a message to an object” — or to use OO parlance, message
passing.

Sending a message is not quite the same as issuing a function call, a pro-
cess familiar to most developers. Different objects can respond to the same
message in different ways. For example, as just discussed, the “read” mes-
sage is handled one way by the English object and another way by the Jap-
anese object. In fact, the OO term “polymorphism” is used to describe the
ability to send general-purpose messages to objects that will then handle
them appropriately. The objects handle the specific details.

In sending these messages, the user never needs to specify the type of
object with which he or she is dealing. OO systems utilize what is known as
dynamic binding to determine the object type at run time when the code is
executed.

The benefits of OO can be summed up as: quality, productivity, predict-
ability, and control of complexity.

OO FROM THE BOTTOM UP

If we build object-oriented systems, we need tools that support the build-
ing of these applications. Developers building today’s applications are
essentially using the traditional, structured process methodologies devel-
oped by experts like Ed Yourdon, Tom DeMarco, and Chris Gane and Trish
Sarson, as well as the data modeling methodology pioneered by Peter Chen.

Currently, information engineering techniques pivot around data and its
relationships as documented in data-flow diagrams (Exhibit 13-1) and
entity-relationship diagrams (Exhibit 13-2). Structured analysis is not
based on objects, however.

182

Object-Oriented Design

D1

Registration
Table
User Name Password
y y
User Name e
User Name
Test taker 1.1 1.2

Get Name Check Password

Password Password
- J

D5
Cookie

Exhibit 13-1. A DFD

Interestingly, not everything using objects is object oriented. Professor
Paul Wegner of Brown University has defined three levels of object orienta-
tion for this purpose. The first level is object based. Object-based lan-
guages, tools, and methodologies support the concept of the object and
use of messages to communicate between objects. The second level is
what is known as class based, which supports the concepts of objects,
messaging, and classes. The third level is object oriented, which supports
the definition that this chapter has already supplied.

There are three levels of object orientation utilized in systems devel-
opment. Object-oriented analysis (OOA) coincides with traditional anal-
ysis but utilizes OO techniques. Object-oriented design (OOD) is the
design phase of the OO methodology and OOP (object-oriented program-
ming) is the programming phase. The reader is urged to review the defi-
nitions at the end of this chapter for a better feel for the vocabulary of
this methodology.

0O seems to have penetrated the organization in a bottom-up manner.
Though the benefits of OO have been touted for at least a decade, it was
only when OO languages became widely available that these methods
began to be widely adopted. A big part of this can be attributed to the intro-
duction of the Internet and Java programming language, which is OO. The
introduction of “visual” program development environments for C++
(Exhibit 13-3) and Visual Basic.Net was also a contributing factor.

Classes are actually the building block of OO systems. Classes are built
to be reusable and are often thought of as “black boxes.” The programmer

183

SOFTWARE ENGINEERING HANDBOOK

— -
File Edt Client Server Report Option Help
customer employee
custnum emp_id
name emp_fname
address emp_Ilname
city dept_id (FK)
:PLaEg.s state (FK)
street
city
zZip_code
Oldnl.ll'l'l phone
salesperson (FK)| makes_sale_using, |status
custnum (Fm --------- SS_nuI‘I‘!bEI
duedate salary
termination_datg
l contains birth_date
bene_health_ins
order item bene_life_ins
— bene_day_care
itemnum
i artname (F
descriptionf -
picture =
FK stands for foreign key.

Itis afield (attribute)in one
table that is indexed in ancther.

Erwin turns

the graphic
representation
of the
CUST_ORDER
table into this
S0Lcode...

Foreign keys are the building

blocks for relsting tables.

CRERTE TRBLE cust_oxder

(oxdnum CHRAR (10) NOT NULL,
salesperson INTEGER,

custnouam CHRR (11) NOT NULL,
dusdate CHRER (3),

balance FLOAT

):

CRELTE UNIQUE INDEX }CPI{cust_ozder
ON cust oxderxr
(
oxdroam LEC

)i

Exhibit 13-2. An ERD

184

Object-Oriented Design

Fle Edit Search Wiew Project Run Component Tools Help -E<N0ﬂ9> > g;;. B

DES->d @89 @22 & Standard | Additional | Win32 | Svstem | Diskoos | Win 21 | Samoles | Activex | Intemet | Servers |
@amole-nlse s OY iAmgdwr ¢ g=="152 f

TPOSLE EditPad Lite

|.F0rmMa TFambain

Propesties | Events | -
footmain. cpp |
Action
ActiveControl /"
Ahgn atlone //Borland C++Builder
| B &nchors | [akLeft.akTap] A/ Copyright (c) 1987, 1998 Borland International Inc. All Rights
Autolcrall | falze
AutoSize falze

BiDiMode baLeftToRight
EEBorderlcons | [biSystembeny
BorderSiyle | bsSingle

H#include <vel.hs
#praogma hdrstop

Borderwidth |0 #incelude <stdlib.h>
Caption Footbal #include <mmsystem.hpps:
ChierdHeight | 266 #include "foormain.h'
Chentwidth | 407 #inelude "instr.h"
Calar M cBlack 77

B Constraints [TSizeConstrair #oragiis Tesource ; dfn
Cursor ciDefault =

TFormMain *FormMain:

char nuebaf[10]

e s e R e -1

__Tastcall TFormMain:: T8
: TForm|Ouner)

Defaultoritor | dndctiveForm
DaockSite false:
Diragkind dk[rag
Draghiode dmhanual
Enabled tue

EFont [TFont) { %
FormSiye fsNormal ¥ ! AT e ST
Height 320 e R S R Hheppn s mt Li NoEmr =S R e
HelpContext |0 waid Faeteall TFarmd

2 hidden

1t Insert

Exhibit 13-3. The Borland Visual C++ Environment

should have only the details he or she needs to get the class to work.
Classes can be stored in a class library. If enough classes are available to
the programmer, the task of programming becomes less burdensome and
the code is of a much higher quality because classes and objects available
in a class library have been thoroughly tested.

The best way to explain the inner workings of classes is to show you a
very simple program. In the C++ program displayed in Exhibit 13-4, we cre-
ate a class named DayOfYear. Class DayOfYear encapsulates data (the inte-
gers month and day) and function (the function called output). If you read
through the program (//denotes comments), you will immediately see the
flexibility and power of classes and objects. As you can see, classes are the
heart of an OO system. It makes sense, then, that OOA and OOD revolve
around identification and specification of classes.

OOAD METHODOLOGIES

Object-oriented analysis and design (OOAD) benefits from a variety of
competing but similar methodologies. The major OO methodologies are
described by Gora (1996):

185

SOFTWARE ENGINEERING HANDBOOK

Exhibit 13-4. Creating Class DayOfYear

//Program to demonstrate a very simple example of a class.
#include <iostream.h>

//This is where we define our class. We will call it DayOfYear
//It is a public class. This means that there are no
//restrictions on use. There are also private classes.

//The class DayOfYear consists of two pieces of data: month
and//day and one function named output ()

class DayOfYear

{

public:
void output();
int month;
int day;
};//Notice the semicolon
//All classes are defined before main.
int main()

{

// We define variables of type char, integer and float (and
// others). A class is a kind of type. Below we are defining two
// classes of type DayOfYear. One is called today and the other
// 1is called birthday. Both instances of the class DayOfYear have
// a variable named month, another called day and a function
// called output ()

DayOfYear today, birthday;

int temp;//to keep out window open

cout << “Enter today’s date:\n”;

cout << “Enter month as a number: ”;
// Since both objects (today and birthday) use the variable month
// we have to have some way of distinguishing one from the other.
// We’ll use the object as the distinguishing factor. The period
// 1in this case is called the dot operator. today.month is
// different from birthday.month

cin >> today.month;
cout << “Enter the day of the month: ”;
cin >> today.day;
cout << “Enter your birthday:\n”;
cout << “Enter month as a number: ”;
cin >> birthday.month;
cout << “Enter the day of the month: ”;
cin >> birthday.day;
(continued)

186

Object-Oriented Design

Exhibit 13-4. (continued) Creating Class DayOfYear

// Now we will call the function called output for the two
// objects: once for today and once for birthday.
// Notice — because we see nothing between the parentheses — that
// mno arguments are passed to the output function
cout << “Today’'s date is ”;
today.output () ;
cout << “Your birthday is ”;
birthday.output () ;
// The && means AND

if (today.month = = birthday.month
&& today.day = = birthday.day)
cout << “Happy Birthday!\n”;
else

cout << “Happy Unbirthday!\n”;
cin >> temp;
return 0;
}
// Here is the function output that was defined in the class
// DayOfYear. Notice the interesting way of starting this
// function. The :: is called a scope resolution operator
void DayOfYear: :output ()
{
cout << “month = ” << month
<< ,” day = " << day << endl;

Booch

Grady Booch’s approach to OOAD (Object-Oriented Design with Applica-
tions, Benjamin/Cummings, 1994) is one of the most popular and is sup-
ported by a variety of reasonably priced tools ranging from Visio to Ratio-
nal Rose.

Coad and Yourdon

Coad and Yourdon published two of the first books on OOAD (Object-Ori-
ented Analysis and Object-Oriented Design, Prentice-Hall, New York, 1990
and 1991, respectively). Their methodology focuses on analysis of busi-
ness problems. Analysis proceeds in five stages, called SOSAS:

e Subjects: these are similar to the levels or layers in data-flow diagrams.

e Objects: object classes are specified in this stage.

e Structures: there are two types: classification structures and composi-
tion structures. Classification structures correspond to the inherit-
ance relationship between classes. Composition structures define the

187

SOFTWARE ENGINEERING HANDBOOK

other types of relationships between classes. Methodologies deal with
these structures.
e Attributes: these are handled similarly to attributes in relational analysis.
e Services: what other methodologies call methods or operations is
identified.

In design, these activities are refined into four components:

e Problem domain component: classes that deal with the problem do-
main; for example, customer classes and order classes

e Human interaction component: user-interface classes such as window
classes

¢ Task management component: system-management classes such as er-
ror classes and security classes

e Data management component: database access method classes and
the like

Jacobson: Objectory and OOSE

Jacobson’s full OOAD methodology, Objectory, is proprietary. His
object-oriented software engineering (OOSE) is a simplified version of
Objectory (Object-Oriented Systems Engineering, Addison-Wesley, Reading,
MA, 1992).

The major distinguishing feature in Jacobson is the use case. A use-case
definition consists of a diagram and a description of the interaction
between the actor and a system. An actor may be an end user or some
other object in the system.

According to Jacobson, a use case is any description of a single way to
use a system or application, or any class of top-level usage scenarios, that
captures how actors use their black-box applications. A use case is any
behaviorally related sequence of transactions that a single actor performs
in a dialog with a system in order to provide some measurable value to the
actor.

Use cases are used to document user requirements in terms of user dia-
logs with a system. They appear first in the requirements model and are
then used to generate a domain object model with objects drawn from the
entities of the business, as mentioned in the use cases. This is then con-
verted into an analysis model by classifying the domain objects into three
types: interface objects, entity objects, and control objects.

LBMS SEOO

Systems engineering OO (SEOO) is a proprietary methodology and tool
kit from the U.K.-based company LBMS. The four major components of the
SEOO methodology are:

188

Object-Oriented Design

e Work-breakdown structures and techniques

¢ An object modeling methodology

¢ GUI design techniques

¢ Relational database linkages to provide ER modeling and 4GL-specific
features

Rumbaugh OMT

James Rumbaugh’s methodology is described in his book Object-Ori-
ented Modeling and Design (Prentice-Hall, New York, 1991). Rumbaugh
starts by assuming that a requirements specification exists. Analysis con-
sists of building three separate models:

e The object model (OM): definition of classes, together with attributes
and methods; the notation is similar to that of ER modeling with meth-
ods (operations) added

e The dynamic model (DM): state transition diagrams (STDs) for each
class, as well as global event-flow diagrams

e The functional model (FM): diagrams very similar to data-flow
diagrams

Shlaer and Mellor

Shlaer and Mellor’s work is one of the earliest examples of OO method-
ology. (See Shlaer and Mellor’s books, Object-Oriented Systems Analysis:
Modeling the World in Data and Object Lifecycles: Modeling the World in
States, Prentice-Hall, New York, 1988 and 1992, respectively.)

The Shlaer and Mellor methodology starts with an information model
that describes objects, attributes, and relationships. Next, a state model
documents the states of objects and the transitions between them. Finally,
a data-flow diagram shows the process model.

OOAD SIMPLIFIED

Organizations that have purchased an OO software tool generally
adhere to the OOAD methodology that the tool encompasses (i.e., Objec-
tory, LBMS, etc.). Other organizations, however, are free to mix and match
the “best of breed” components of a wide variety of OOAD methodologies.
This section explains one such simplified approach.

1. Create the system boundary diagram. The first step in the analysis
and design is the creation of a system boundary diagram. This dia-
grams the domain model and its relationship with external systems
or users, as shown in Exhibit 13-5. The model structure diagram de-
picts the relationship of the domain objects.

189

SOFTWARE ENGINEERING HANDBOOK

A

Screenplay
Writer

Novel

|

I Publisher] [Author]

Publisher Artist Record Label
Info / Website Info / Website Info / Website

Exhibit 13-5. The System Boundary Diagram

190

. Develop an actor list of external systems and users (Exhibit 13-6).

The actor list shows each actor and his or her role in the domain
model. Gather information about these actors.

Create use cases and scenarios. Use cases are a user-centered anal-
ysis technique to capture requirements from a user’s point of view;
they describe the possible sequences of interactions among the sys-
tems with one or more actors. Use cases illustrate high-level abstract
functions without writing code. Scenarios capture the exceptions,
nonstandard responses, and problems from the normal use case
flow. Exhibit 13-7 shows a sample use case diagram and Appendix E
shows a set of use case diagrams with associated scenarios.
Generate CRC cards, which are note cards that contain the domain
model’s classes, their responsibilities, and collaborators
(Exhibit 13-8). The nouns used in the uses cases become the poten-
tial classes in the CRC cards. The verbs are the class’s responsibili-
ties; the collaborators help the classes do their jobs.

Draw a collaboration graph depicting the collaborations (i.e., rela-
tionships between objects) uncovered during the CRC process
(Exhibit 13-9) and event traces to represent how events cause flow
from one object to another (Exhibit 13-10).

Create a system class diagram from the information derived in the
preceding exercises. Exhibit 13-11 shows a class diagram depicted
in terms of a system’s subsystems. In the case of an OO system we
use the term package, which is a collection of classes. Subsequent
diagrams will depict each class as shown in this highest level class
diagram (Exhibit 13-12).

Object-Oriented Design

F
User
.
H= | Finance .| System Registration]
| Subsystem Controller Subsystem]
Financial | J
Institution |]
| Notification Search Reports] i \\’)
| Subsystem Subsystem Subsystem I \\,/_;’-/
| Data Interface]
| Database Subsystem]
Exhibit 13-6. External and Internal Actors
Uses
SUDMILS N s e st e et e e —-/" Displ. Assigns
-G
form number o
Changes Displays Stores
existing _—T existing changed
request P.O. data P.O. data
Cancels Displays Stores
EXISHH% -1 existing canceled
Requester reques P.O. data P.O. data

Uses

I

Validates
password

Displays
menu
options

Sends
confirmation
email

Exhibit 13-7. A Sample Use Case Diagram

7. A data dictionary (Exhibit 13-13) and set of process specifications
(Exhibit 13-14) can then be created for all data and processes iden-
tified along with all screen designs.

Using this OO methodology is an iterative process; all of the steps
described and illustrated above are constantly changing and evolving.

191

SOFTWARE ENGINEERING HANDBOOK

CLS025
Class Name: ResourceUsage
Class Type:
Class Characteristics:
Responsibilities: Collaborations:
Receive Usage Information Order
Store Usage Information Resource
Provide Usage Information Service Schedule
Authors: Jane Doe
Exhibit 13-8. The CRC Card
1 1
User Request
«subsystem» | «subsystem»
User M. -t Application Controller
User R
ser Response “
Retrieval Request Retrieval Response
\ 4
«subsystem»
Persistence
Information Retrieved Information Stored

RDB

Exhibit 13-9. The Collaboration Graph

192

Object-Oriented Design

Event Trace Diagram

Actors
User Browser DEDS
Login .
Check Login .
System
Ready
__Redirect to Content Screen
Info Query
Process Query
Query Results
Exhibit 13-10. An Event Trace
Definitions:

¢ (Class — a template comprising a definition of behavior and supporting
information; each instance created from the class has its own copy of
the information and utilizes a single copy of the methods that imple-
ment the class’ behavior.

¢ (Class hierarchy — a tree-structured aggregation of class definitions in
which vertical link establishes a superclass-subclass relationship be-
tween a pair of classes; the subclass is a specialization of the super-
class.

¢ Information hiding — a technique by which the structure and precise
usage of information (data) are concealed. The information is private
to its own objects and accessible to all other objects only via message
sends to the owner; this is the basis of encapsulation.

¢ Instance — a particular occurrence of an object defined by a class. All
instances of a class share the behavior implemented and inherited by
the class; each instance has its own private set of the instance vari-
ables implemented and inherited by the class.

193

SOFTWARE ENGINEERING HANDBOOK

SysternController
i\\ incomingData
Intemet User Input/Command translator
l/ caller
outgoing Data
acceptincoming Data
interpret Userfction
1:1 |callSubsystem
sendOutgoing Data:
Calls Operation Gul
in.... (Abstract)
1:1
Systern Controller GU||
Calls Operation welcomMessage
... menuBar
showHomePage:
retum Control
— | 1:1 — | 1:1 — | 1:1 — | 1:1
Registration Search Financial Reports
Subsystem Subsystem Subsystern Subsystern
(class Registration) (class Search) (¢lass Financial) (¢lass ReportController’
1:1 1:1 1:1 1:1
1:1
1:1 Netification
Subsystem

(class Notification)

Exhibit 13-11. A System Class Diagram

e Instantiation — the act of creating an instance of a class.

e Method — a procedure whose code implements the behavior invoked
by a message.

¢ Object — an entity capable of exhibiting a defined set of behaviors and
interacting with other objects.

e Object-oriented technology — a collection of languages, tools, environ-
ments, and methodologies aimed at supporting development of soft-
ware application centered around interrelated, interacting objects.

e Reuse and reusability — an approach to software engineering that em-
phasizes reusing software assets, including designs and code; and
building software assets likely to be reusable in future applications.

194

Object-Oriented Design

Payment

[ServiceProvider::ServiceProvider|

9

Creates
D. ..

Eustumer::l:uslmerl

1
0.*

Makes

Payment::Payment

-paymentAmount : Money

l-date : Date
Payment::invoice -time : Time
Ldate : Date
Ltiime : Time H+Payment()
L-payerName : String +setDate()
LpayeeName : String Made-for +getDate() : Date
-amouniDue ; Money +set‘ﬁlme{}
LsarviceProvider : ServiceProvider +getTime() : Time
Lorder : Order 1 0."
b | i (
&t&o‘:{e}r{) : Object +getOrder() : Object
+prini()
HgetPayment()
1 +recordPayment()
Created-for

1

[0rdar::0rdor |

+setPaymentAmount(}
+getPaymentAmount() : Money

+getCustomeriD() : String
H+setCustomeriD{) : String
+getinvaicelD() : String
+setinvoicelD() : String

Exhibit 13-12. A Class Diagram

195

SOFTWARE ENGINEERING HANDBOOK

B R THIS TABLE CONTAINS INFORMATION ABOUT USERS

COLUMN NAME TYPE LEN DESCRIPTION

REQ

OUID_USER_ID NUMBER 8 USER ID Y
LOGON_ID VARCHAR2 |8 USER LOGIN ID Y
PASSWORD VARCHAR2 | 22 USER PASSWORD — HASHED Y
FORGOT_PASSWORD_ | VARCHAR2 | 50 FORGOT PASSWORD QUESTION N
QUESTION

FORGOT_PASSWORD_ | VARCHAR2 | 20 FORGOT PASSWORD ANSWER N
ANSWER

FIRST_NAME VARCHAR2 [20 FIRST NAME Y
LAST_NAME VARCHAR2 | 20 LAST NAME Y
TITLE VARCHAR2 |3 TITLE — MR, MS, MRS Y
ADDRI VARCHAR2 [30 FIRST ADDRESS LINE Y
ADDR2 VARCHAR2 | 30 SECOND ADDRESS LINE N
CITY VARCHAR2 | 20 CITY Y
STATE VARCHAR2 |2 STATE Y
ZIP NUMBER 5 ZIP CODE Y
ZIP_4 NUMBER 4 4 DIGIT ZIP QUALIFIER N
HOME_PHONE VARCHAR2 | 10 HOME PHONE NUMBER Y
WORK_PHONE VARCHAR2 | 10 WORK PHONE NUMBER Y
OTHER_PHONE VARCHAR2 | 10 OTHER PHONE NUMBER N
E_MAIL VARCHAR2 [30 E-MAIL ADDRESS N
GENERAL_NOTES VARCHAR2 | 1000 | MISCELLANEOUS NOTES N
SYSID_ROLE_ID CHAR 1 USER ROLE — 1:ADMINISTRATOR, Y

2:MANAGER, 3:EMPLOYEE,
4:CUSTOMER
ACTIVE CHAR 1 ACTIVE OR NOT Y
USER_CREATED NUMBER 8 USER WHO CREATED THE RECORD Y
DATE_CREATED DATE DATE RECORD CREATED Y
USER_MODIFIED NUMBER 8 USER WHO MODIFED THE RECORD N
DATE_MODIFIED DATE DATE RECORD MODIFIED N
R THIS TABLE CONTAINS INFORMATION ABOUT A USER’S ROLE
(ADMIN, MANAGER, EMPLOYEE, CUSTOMER, ETC.)

COLUMN NAME TYPE LEN DESCRIPTION REQ
SYSID_ROLE_ID NUMBER 4 ROLE ID Y
ROLE_NAME VARCHAR2 | 30 NAME OF THE ROLE Y
ROLE_DESC VARCHAR2 | 30 DESCRIPTION OF THE ROLE N

THIS TABLE CONTAINS INFO ABOUT WHAT FUNCTIONALITY IS
(ADD_INVENTORY_ITEM, SCHEDULE_SERVICE, ETC.)
COLUMN NAME TYPE [LEN | DESCRIPTION [REQ
| SYSID_AUTH_RULE | NUMBER | 4 | AUTH RULE ID Y

Exhibit 13-13. A Data Dictionary Entry

196

Object-Oriented Design

Exhibit 13-14. A Process Specification

PACKAGE DatabaseManager IS

PROC addAppObject (appObject:IN, statusBoolean:0UT) ;

PROC modifyAppObject (appObject:IN, statusBoolean:0OUT) ;
PROC deleteAppObject (appObject:IN, statusBoolean:0UT) ;
PROC queryAppObject (appObject:IN, resultObject:0UT);

PROC loadDatabase (databaseFileName:IN, statusBoolean:OUT) ;
PROC saveDatabase (databaseFileName:IN, statusBoolean:OUT) ;
PROC convertAppToSQL (app (bject:IN, sglObject:0UT) ;

PROC convertSQLToApp (sglObject:IN, appObject:0UT) ;

PROC issueDBCommand (sglCommand:IN, statusBoolean:0OUT) ;
PROC getDatabaseResult (resultObject:0UT) ;

L1717 T007 77770777077 77777777777777777777777777777717777777
//

//addAppObject — Adds an application object to the database
//returns BOOLEAN

//TRUE — success

//FALSE — error

L1770 7 77070777077 77777777777777777777777777777717777777
//

PROC addAppObject (appObject:IN, statusBoolean:0UT)
TYPE returnCode IS INTEGER;

TYPE sglCommand IS STRING;

sglCommand = converTAppToSQL (appObject)

If sglCommand ! = “” convert sglCommand to ADD returned
sglCommand;

returnCode = issueDBCommand (sglCommand) ;

else

197

SOFTWARE ENGINEERING HANDBOOK

References

Gora, M. (1996). Object-oriented analysis and design, DBMS Online. http://www.dbms-
mag.com/9606d15.html.

198

Chapter 14
User Interface Design

Like many aspects of software engineering, in order to be effective, user
interface design needs to be analyzed, planned, and implemented in a
detailed and organized manner. With the demand for enhanced functional-
ity and implementation of increasingly complex systems, the pressure to
produce user interfaces that satisfy all user requirements becomes a great
challenge. Without guiding principles and a fundamental plan of attack,
developers are doomed to failure. Fortunately, as computer systems have
grown more complex, facilities for creating user interfaces quickly and
more efficiently have also come on stream. However, tools alone do not
make for a good user interface design.

User interfaces have matured rapidly over the last decade. The increas-
ing speed and power of the PC and the growth of the Internet have fueled
the development of larger and more complex applications requiring easier
and more intuitive user interfaces. As application developers deliver more
sophisticated and robust applications, users expect and demand better
and more intuitive user interfaces to accompany those applications. Com-
petition among application developers is fierce and a product’s user inter-
face plays a key role in adoption and acceptance by its user community:.

USER INTERFACE (UD DESIGN PRINCIPLES

No discussion of user interface design would be complete without refer-
ence to the underlying principles that guide good user interface design.
Volumes have been written on the subject. The following are pointers to a
few of the lists of user interface design principles from various sources:

e Design Basics, from the Internet, http://www-3.ibm.com/ibm/easy/
eou_ext.nsf/Publish/6 (IBM).

¢ Practical Real World Design, First Principles, from the Internet,
http://www.asktog.com/basics/firstPrinciples.html (Tognazzini,).

e Principles of Good GUI Design, from the Internet, http://axpl6.
ii.e.,org.mx/Monitor/v01n03/ar_ihc2.htm (Hobart,).

The perspectives are somewhat different, but all espouse the same
basic principles, reiterated here for emphasis:

e Put the user in control. The user is obviously the most important player
in this game and should be able to customize the interface to suit his

199

SOFTWARE ENGINEERING HANDBOOK

or her preferences or needs. Whenever possible, account for the us-
er’s skill level; categories such as novice, occasional user, and fre-
quent user make a good starting point. One example of this is a
Macintosh word processing product. A set of five options enables the
user to set the desired level of experience ranging from “novice” to
“power user.” Choosing a level results in filtering menus for only those
options required by a user of the selected experience. A user gaining
more experience at a specific level can move to the next level when
ready.

e Be direct. The user should be allowed to work with the information
presented by the application directly. When a user performs an action,
the result of the action should be immediately apparent.

e Use appropriate metaphors. Whenever possible use metaphors that
are familiar to the user. Metaphors help to make the user more com-
fortable when using the software and provides for a more intuitive in-
terface. For example, a checkbook is a suitable metaphor for an
application that manages a user’s bank account.

* Make the interface consistent. Consistency in design makes it easier for
the user to apply skills learned on one task to another task. Users
should not need to spend time trying to remember differences in be-
havior among objects. Many Windows applications, for example, have
the same basic pattern for menus; File and Edit are always the first two
menus on the left and Help is typically the last menu on the right, as
indicated in Exhibit 14-1.

Regular users of Windows applications expect these menus in this
order; therefore, it does not make sense to break this paradigm.

¢ Provide shortcuts. For novice users, shortcuts may not be all that im-
portant, but as the user gains experience with the interface, inevitably
he will look for faster and more efficient ways of getting the job done.

B Document - WordPad
File Edit view Insert Format Help

Ded S B s 2B B

.[Ar-id v||1IJ v|m|.Wes;ern vl- B 7~ O @ |§|% = = [
g---:---1---1---2-»-1---3---|---4-»-|---5-»-|--

F-:lr Hel_p, press F1

Exhibit 14-1. Menu Order Consistency

200

User Interface Design

Shortcuts play a key role here and are greatly appreciated by power
users. [know one technical writer who works in Microsoft Word with
the toolbar and menu bar hidden, doing all formatting work with only
shortcuts. Quite amazing!

¢ Be forgiving. The user should be allowed to change his mind and re-
verse a previously performed action. If circumstances make it impos-
sible to reverse the result of an action, provide an indication to the
user up front, indicating that the action about to take place cannot
be reversed. It is also important to make error recovery as easy as
possible.

¢ Provide feedback. It is important that the user know what task is being
performed. We all know how frustrating it can be when a program
freezes the system while it is performing a task with no visual indica-
tion that the task is being performed or completed. Visual queues
should be used to provide user interaction and feedback appropriate
to the task performed.

® Make the interface aesthetically pleasing. An important aspect of the
user interface is its visual appearance. Visual elements on the screen
compete for the user’s attention. It is not a simple task to get the right
balance so that the user’s attention is focused on the right elements at
the right time. Often it is necessary to acquire the services of a graph-
ics designer to get the right result. A professionally designed, aesthet-
ically pleasing application is more likely to gain acceptance among
users than one that lacks this characteristic.

¢ Be as simple as possible. This may sound simple, but from the devel-
oper’s perspective simplifying the user interface typically involves
quite a bit of work. In a complex application or product, try to develop
a user interface that exposes only information necessary for the user
to get the task done.

¢ Provide help. A help system is vital. Many different types of help sys-
tems are available. Embedded help is totally integrated within the ap-
plication; it provides help instructions for every screen that is part of
the user interface. Online help, typically accessible by choosing an
item from the help menu, is a set of topics about the product; a table
of contents, index, and search mechanism are typically provided so
that the user can browse or search for a topic of interest. Context-sen-
sitive help provides information about the current context; for exam-
ple, when a specific dialog is displayed, the user can press F1 to get
information about that dialog. Tooltip help displays hints; for exam-
ple, when the cursor hovers over a toolbar button, help text is dis-
played as shown in Exhibit 14-2.

Two industry standards that provide excellent information on user
interface design principles are The Windows Interface Guidelines for Soft-
ware Design and Macintosh Human Interface Guidelines. Two websites that

201

SOFTWARE ENGINEERING HANDBOOK

Microsoft Word - Document1

'j File Edit View Insert Format Tools Table Window Help _|E| £|
DEESRAY =8¢ -~ Q@ HEE:= G

I = —] e e b el S

I_ Print Preview %

o

¥

|Page 1 Sec t 11 lat 1" tn1 Cal [REC [TRE [EXT [oWR [WPH

Exhibit 14-2. Tooltip Help

q

Test Analysis

Implementatio Design

Exhibit 14-3. Phases of User Interface Design

provide some excellent examples of good and bad user interface design are
the Interface Hall of Fame, http://www.iarchitect.com/mfame.htm and the
Interface Hall of Shame, http://www.iarchitect.com/mshame.htm. See the
reference list at the end of this chapter for more details about these
sources.

THE UI DESIGN PROCESS

Principles are good, but how and when do we apply them? One of the
most popular user interface design methodologies is one that mimics the
overall software development process. This process consists of four
phases; each phase is repeated during each iteration of the cycle. A sum-
mary of the design process is shown graphically in Exhibit 14-3 and each of
its phases is described briefly below:

e Analysis. This phase involves collection of information about the user
and the tasks that he or she will want to perform using the application.
An excellent, highly rated book on this subject is User and Task Analy-
sis for Interface Design (Hackos and Redish, 1998). This book clearly

202

User Interface Design

separates analysis from design and provides guidelines and tech-
niques for eliciting task information from prospective users.

¢ Design. Once the analysis has been completed and all tasks have been
identified, the process of identifying the required objects and the ac-
tions to be performed can begin. User scenarios play a key role in this
phase. From the scenario narrative, the designer can extract the ob-
jects (typically nouns) and the actions (typically verbs) to build a list
of required elements. One book that addresses many of the issues that
the developer faces during the design phase is User Interface Design for
Programmers (Spolsky, 2000).

e Implementation. In the implementation phase, a prototype is pro-
duced. This is typically achieved using one of the many fourth-gener-
ation languages or programming development environments (Visual
Basic, Visual C++, Visual J++, Java, etc.) that allow the rapid develop-
ment of user interfaces using predefined libraries of components such
as Windows, Menus, Buttons, Drop-Down list controls, Tree controls,
etc.

e Test. When the prototype is complete, the developer can take the soft-
ware to the customer for user interface evaluation. Users can test
drive the software and make suggestions for improvements, which be-
come part of the analysis phase. Then the cycle can begin again to re-
fine the process further. Pamela Savage compares three different
evaluation techniques: 1) expert reviews, 2) user reviews, and 3) inter-
active usability testing, with the conclusion that all three play a role in
the evaluation process.

One aspect of good user interface design not immediately apparent from
the four phases of the design cycle described here is that the design
involves input from many different disciplines in addition to software
development. These disciplines include visual designers, writers, human
factors experts, and, of course, the user. A well-balanced team of people
providing input from different perspectives is critical to the success of the
user interface.

DESIGNING EFFECTIVE INPUT AND OUTPUT

Some systems analysts believe that designing input and output is the
most important task in designing a system because it is the part the end
user actually sees. Even though some people might disagree with this point
of view, poorly designed input and output may cause an otherwise well-
designed and solidly implemented system to fail. When systems analysts
design input and output, there are three aspects of concern: (1) the input
and output data (data flow) between software components, (2) the design
of input and output between the software and other nonhuman producers
and consumers of information, (3) the interaction between the user and
the computer.

203

SOFTWARE ENGINEERING HANDBOOK

Designing Input

A key factor for developing the design input is the customer’s require-
ments. This includes, but is not limited to: end-user expectations, patterns
of end-user usage, security, and performance. The customer should not be
the only consideration, however. All factors relevant to the design of the
system should be considered, including management requirements, inter-
face requirements, and other related processing requirements.

A variety of media and methods is used to capture and input data so that
it can be used properly, including: (1) paper forms combined with data-
entry screens, (2) electronic forms, and (3) direct entry devices.

Even though the usage of computers is very common, it would be sur-
prising to find a system that did not have at least one input or output paper
form. Paper forms carry data physically. In every business or organization
there are manual transactions that might require the use of manual forms,
such as order forms, sales transactions, and surveys. The data captured on
these forms, therefore, must be entered into the system for processing.
Guidelines for designing a paper form include:

e Select proper paper. Papers of different colors, grades, and weight
might be used to print a form. When we select a paper for our form, we
need to consider some factors, for example: how long the company
will keep it, how to fill in the form (handwritten or printed), how it will
be handled (gently, roughly), and if the paper is easy and convenient
to use.

e The size of paper should be appropriate. The most popular size is 8.5 by
11 inches. If you require a smaller form, try to use half of this standard
size: 8.5 by 5.5. For card forms, the standards start with 8 by 10 inches.
It is best not to use nonstandard sizes because those sizes often have
problems in handling and filing and usually increase the cost of devices
and papers.

e Forms should be easy to fill out. To make forms easy to fill out, the fol-
lowing techniques are used: (1) Put simple instructions or examples
on the form to assist users. (2) Form flow should be designed to follow
a logical sequence (left to right, top to bottom) (See Exhibit 14-4).
(3) Group-related data should be in the same section. (4) Each section
and field should have a caption that tells the user what to put there.
(5) Use proper space to make the form clearer. (6) Using lines and box-
es can also help. (7) Have alternative selections capability (i.e., use of
a check box).

e Design to meet the purpose of a form. A systems analyst should design
different forms to better reflect different process requirements even if
several forms are similar to each other.

e Make the form attractive. An attractive form can encourage the user to
complete it. A form should be designed to look neat and the input

204

Subscriber's Name

»

v

Patient's Name

User Interface Design

»| Policy Number

Date of Birth

A 4

Sex-M, F

v

Patient Address

v

| Pharmacy Name/Address > Date Filled

) | Drug Name and Strength

Exhibit 14-4. The Logical Flow of a Prescription Drug Claim Form

v

|Quantity '_> Price

Design
modifications
are made

Exhibit 14-5. The Design of a Form Is Cyclical.

Preliminary
design

N

Build
prototype
form

Build
prototype
form

Evaluation
is studied by
designer

A4

User
evaluates
form

fields should be logically ordered. Aesthetic forms or usage of differ-

ent fonts within the same form can help make it attractive.

¢ Design evaluation. After a form prototype has been created, we must
give it to the user and check to see if it meets the user’s requirements.
The user can provide some suggestions and the designer can make
modifications according to the suggestions. The evaluation cycle (see

Exhibit 14-5) repeats until users are satisfied with the form.

205

SOFTWARE ENGINEERING HANDBOOK

Form
Development Screen

E—

Database Form Library
T

Server

1 = =]

User User User

Exhibit 14-6. An Electronic Forms System

Designing Electronic Forms. When we talk about electronic forms sys-
tems (see Exhibit 14-6), we turn our attention from paper to screens.
Designers must design electronic forms to reflect the organization of the
data source. When it is used by people (customer, clerk, etc.), it must be
designed with all the captions, data entry fields, and instructions arranged
in a logical manner that can help users completing the forms. The design-
ing guideline for the paper form can also apply to screen form because
both have the same components.

Electronic forms have many advantages over paper that make use of this
automated capability much more efficient: (1) the ability to process calcu-
lations; (2) the ability to retrieve data and populate the electronic form to
reduce the number of fields that the user must fill in; (3) ability to validate
each field automatically; (4) the ability to coordinate processes between
tasks; (5) the ability to provide immediate help.

In most situations, electronic forms can replace all paper forms and
substantially reduce the cost of a system. Factors that affect the cost

206

User Interface Design

include: (1) printers might run out of paper, causing the system to pause;
(2) electronic forms can prevent many data entry errors and the end user
from using the wrong form; (3) electronic forms can be easily modified to
meet new business requirements; (4) electronic form databases efficiently
manage the many forms in use in an organization.

Direct Entry Devices. When using electronic forms, the keyboard is
the most common input device. However, there are some instances
where data is not input by a user or a keyboard is not practical. Other
data entry devices include:

e Scanner or optical character reader (OCR)
¢ Point-of-sale (POS) device

¢ Automatic teller machines (ATMs)

* Mouse

e Voice recognition

Designing Output

Output can be produced in a variety of ways: printing, screen, audio,
microform, CD ROM, or electronic output. Each technology has different
speed and cost, and affects the end user differently. When we choose an
output technology, the following should be considered: (1) the purpose of
the output; (2) the person who needs the information; (3) the reason the
output is needed; (4) the way the output will be used; (5) what specific
information will be included; (6) how the output will be viewed, i.e., printed
on paper, stored on secondary storage such as tape, CD, tape, etc., or
viewed on the screen; (7) how often the output is to be updated; (8) any
security issues.

USABILITY TESTING

A user interface design can benefit greatly from usability testing.
Although this testing involves quite a lot of up-front investment, the results
are worth the investment, especially for commercial applications that have
potentially a wide audience. Usability testing involves observing users as
they use the application to perform their required tasks. The tests are gen-
erally administered by human factors specialists and are usually per-
formed in a special work area where the specialists are separated from the
users by a one-way mirror that enables the specialists to observer users as
the tasks are performed. Users typically describe what they want to do and
how they are going about it using the software. The specialists study these
patterns and use the data to improve the user interface. This technique is
a very effective means of detecting misunderstood or misinterpreted areas
of the user interface. These areas can be redesigned and the tests can be
performed again to check for improvement.

207

SOFTWARE ENGINEERING HANDBOOK

SUMMARY

Providing a good user interface is a critical skill for application develop-
ers today. Good user interface design does not happen automatically
despite the myriad of tools available to help developers create them.

A good portion of this chapter has been devoted to stressing the design
principles; this is not an accident. The developer must learn and apply
basic principles and follow the tried and true process that leads to quality
user interface designs. The formula already exists; it merely needs to be
applied. The developer must always keep the users’ interests in mind,
especially in cases of conflict between satisfying a user requirement and
taking an easier implementation route. The user interface should strive to
delight and help the user get the job done faster and more efficiently. Devel-
opers must gain as much experience as possible when working with and
being exposed to good user interface designs.

The user interface is a key component when it comes to the acceptance
of an application or product. It can mean the difference between adoption
and obscurity.

References
Hackos, J. and Redish, J. (1998) User and Task Analysis for Interface Design, John Wiley & Sons,
New York.

Hobart, J. Principles of good GUI design, from the Internet, http://axp16.ii.e.,org.mx/Moni-
tor/v01n03/ar_ihc2.htm.

IBM. Design basics, from the Internet, http://www-3.ibm.com/ibm/easy/eou_ext.nsf/
Publish/6.

Isys Information Architects. Interface hall of fame, from the Internet http://www.iarchi-
tect.com/mfame.htm.

Isys Information Architects. Interface hall of shame, from the Internet http://www.iarchi-
tect.com/mshame.htm.

Macintosh Human Interface Guidelines. (1993) Addison-Wesley, Reading, MA.

Savage, Pamela. AT&T Bell Laboratories, User interface evaluation in an iterative design pro-
cess: a comparison of three techniques, from the internet, http://www.acm.org/sig-
chi/chi96/proceedings/shortpap/Savage/sp_txt.html.

Spolsky, J. (2000) User interface design for programmers, from the Internet, http://www.joelon-
software.com/uibook/chapters/fog0000000065.html.

The Windows Interface Guidelines for Software Design. (1995) Microsoft Press, Redmond, WA.

Tognazzini, B. Practical real world design, first principles, from the Internet, http://www.ask-
tog.com/basics/firstPrinciples.html.

Two additional general sources of information that are worth a mention even though they
are not explicitly referenced in this chapter are:
Sumit, GUI design links, from the Internet, http://www.sum-it.nl/enguilin.html.

Wilson, C. User interface design bibliography, from the Internet, http://world.std.
com/~uieweb/biblio.htm.

208

User Interface Design

Other Sources:

Blum, B.I. (1992) Software Engineering: a Holistic View, Oxford University Press, Inc., New York.

Burch, J.G. (1992) System Analysis, Design, and Implementation, Boyd & Fraser Publishing
Company, Boston.

Kendall, K.E. and Kendall, J.E. (2001) System Analysis and Design, 5th ed., Prentice Hall, Inc.,
Upper Saddle River, NJ.

Pressman, R.S. (2001) Software Engineering: a Practitioner’s Approach, 5th ed., McGraw-Hill
Companies, Inc., New York.

Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, Inc., Upper Saddle River, NJ.

www.sxu.edu/~rogers/bu433/index.html: System design: input, output, user interface.
www.webster.edu/~crawfodj/2810/pdf/2810ch07.pdf, User interface, input, and output design.

209

This page intentionally left blank

Chapter 15
Software
Re-Engineering

Organizations spend much money building software applications custom-
ized according to their business rules. In other words, software is the real-
ization of business rules. When business rules change, software must also
change. Software change is very important because organizations are now
completely dependent upon their software and have invested millions of
dollars in these systems. Therefore, organizations must invest in system
change to maintain the value of these systems. Software re-engineering is
a strategy for software change. It rebuilds existing legacy systems that
have become expensive to maintain or architecturally obsolete.

WHAT IS SOFTWARE RE-ENGINEERING?

Software re-engineering is (usually) concerned with reimplementing leg-
acy systems to make them more maintainable. Re-engineering may involve
redocumenting the system, organizing and restructuring the system, trans-
lating the system to a more modern programming language, or modifying
and updating the structure and values of the system’s data. The function-
ality of the software is not changed and, normally, the system architecture
also remains the same. Re-engineering improves the system structure, cre-
ates new system documentation, and makes it easier to understand.

WHY WE NEED SOFTWARE RE-ENGINEERING

Computer software is the product that software engineers design and
build. Once software is put into use, new requirements emerge and existing
requirements change as the business rules change. Parts of software may
need to be modified to correct errors or improve its performance.

As time goes on, software gets old and frequently breaks down. As the
software is modified, it becomes more and more complicated and difficult
to maintain. The level of difficulty of maintainability is directly proportion-
ate to the cost of maintaining the system.

We are consequently faced with a dilemma. If we continue to use the sys-
tem and make changes as required, our costs will inevitably increase. If we

211

SOFTWARE ENGINEERING HANDBOOK

decide to replace the system with a new system, costs will be incurred and
the new system might not be as good as the old system.

Software engineering techniques extend the lifetime of legacy systems
and reduce the costs of keeping these systems in use. We can create a prod-
uct with added functionality, better performance and reliability, and
improved maintainability by means of rebuilding the legacy system. Re-
engineering may involve some structural modifications but does not usu-
ally involve major architectural change.

SOFTWARE RE-ENGINEERING STRATEGIES

A major problem for organizations is implementing and managing
change to their legacy systems so that these systems continue to support
the organization’s business operations. There are a number of different
strategies for software change:

¢ Software maintenance

e Architectural transformation — e.g., migration to servers or to
Intranets

e Software re-engineering

Software maintenance is the general process of changing a system after
it has been delivered; this strategy does not normally involve major archi-
tectural changes to the system. The following are three types of software
maintenance:

1. Maintenance to repair software faults:
e Coding errors are very cheap to correct.
e Design errors are more expensive because this may involve rewrit-
ing several program components.
e Requirement errors are most expensive to repair due to the exten-
sive system redesign that may be necessary.
2. Maintenance to adapt the software to a different operating
environment
3. Maintenance to add to or modify the system’s functionality
e External and internal factors, such as changing markets, changing
laws, management changes, and structural reorganization, mean
that businesses undergo continual change. These changes gener-
ate new or modified software requirements, so all useful software
systems inevitably change as the business changes.

Approximately 20 percent of all maintenance efforts are spent fixing mis-
takes. The remaining 80 percent is spent adapting existing systems to
changes in their external environment, making enhancements requested
by users, and re-engineering an application for future use (Pressman,
2001).

212

Software Re-Engineering

After software has been corrected, adapted, and enhanced many times,
it usually becomes unstable. The more maintainence on the software, the
more frequently unexpected and serious side effects may occur. Although
the system still works, its maintenance costs increase and its value
decreases.

THE PROCESS OF RE-ENGINEERING

The main activities in a typical re-engineering process are:

1. Source Code Translation

The simplest form of software re-engineering is program translation
where source code in one programming language is automatically trans-
lated to source code in another language (i.e., COBOL to Java). The struc-
ture and organization of the program are unchanged but have higher qual-
ity than the original program. One reason for this is that the target language
may be an updated version of the original language or may be a translation
to a completely different language. Source-level translation may be neces-
sary for the following reasons:

e Hardware platform update: the organization may wish to change its
standard hardware platform, but compilers for the original language
may not be available on the new hardware.

¢ Organizational policy changes: an organization may want to standard-
ize on a particular language to minimize its support software costs.
Maintaining many versions of old compilers can be very expensive.

¢ Lack of software support: the suppliers of the language compiler may
have gone out of business or may discontinue support for their
product.

e Developers want to make the system easier to understand, test, and
maintain: Some legacy systems have solid program architecture; how-
ever, individual modules were coded in a way that makes them diffi-
cult to understand, test, and maintain. In this situation, the code can
be restructured (Pressman, 2001).

2. Reverse Engineering

Reverse engineering is the process of analyzing software with the objec-
tive of recovering its design and specification. The software source code is
usually available as input to the reverse engineering process. Reverse engi-
neering is different from re-engineering. Its purpose is to derive the design
or specification of a system from its source code, while the objective of re-
engineering is to produce a new, more maintainable system. Of course,
reverse engineering to develop a better understanding of a system is often
part of the re-engineering process.

213

SOFTWARE ENGINEERING HANDBOOK

Program structure
diagrams
Automated N System
analysis information
store
System to be Document Data structure
re-engineered generation diagrams
Manual
annotation Traceability
matrices

Exhibit 15-1. The Reverse Engineering Process

Reverse engineering can be used during software re-engineering to
recover the original program design to help developers understand a pro-
gram before reorganizing its structure. However, re-engineering need not
always follow reverse engineering:

e The design and specification of an existing system may be reverse en-
gineered so that they can serve as input to the requirements specifica-
tion for that program’s replacement.

e Alternatively, the design and specification may be reverse engineered
so that they are available to help program maintenance. With this ad-
ditional information, it may not be necessary to re-engineer the sys-
tem source code.

The reverse engineering process is illustrated in Exhibit 15-1. The pro-
cess starts with an analysis phase, during which the system is analyzed
using automated tools to discover its structure. In itself, this is not enough
to recreate the system design. Engineers then work with the system source
code and its structural model, adding information that they have collected
by understanding the system. This information is maintained as a directed
graph linked to the program source code.

Information store browsers are used to compare the graph structure
and the code and to annotate the graph with extra information. Documents
of various types, such as program and data structure diagrams and trace-
ability matrices, can be generated from the directed graph. Traceability
matrices show where entities in the system are defined and referenced.

Tools for program understanding may be used to support the reverse
engineering process. These usually present different system views and
allow easy navigation through the source code. For example, they allow
users to select a data definition, and then move through the code to where
that data item is used. Examples of such program browsers are discussed
by Cleveland (1989), Oman and Cook (1990), and Ning et al. (1994).

214

Software Re-Engineering

After the system design documentation has been generated, further
information may be added to the information store to help recreate the sys-
tem specification. This usually involves further manual annotation of the
system structure. The specification cannot be deduced automatically from
the system model.

3. Program Structure Improvement

The need to optimize memory use and the lack of understanding of soft-
ware engineering by many programmers have meant that many legacy sys-
tems are not well structured. Their control structure is tangled with many
unconditional branches and unintuitive control logic. This structure may
also have been degraded by regular maintenance. Changes to the program
may have made some code unreachable, but this can only be discovered
after extensive analysis. Maintenance programmers often dare not remove
code in case it may be accessed indirectly.

Typically, programs develop complex logic structure as they are modi-
fied during maintenance. New conditions and associated actions are added
without changing the existing control structure. In the short term, this is a
quicker and less risky solution because it reduces the chances of introduc-
ing faults into the system. In the long term, however, it leads to incompre-
hensible code. Complex code structures can also arise when programmers
try to avoid duplicating code. Along with unstructured control, complex
conditions can also be simplified as part of the program restructuring pro-
cess. For instance,

Complex condition:
If not (a > b and (c < d or not (e > f)))...
Simplified condition:
Ifa<=band(c>=dore->f)...

This is how a conditional statement including “not” logic may be made
more understandable.

If the program is data driven, with components tightly coupled through
shared data structures, restructuring the code may not lead to a significant
improvement in understandability. Program modularization may also be
necessary. If the program is written in a nonstandard language dialect,
standard restructuring tools may not work properly and significant manual
intervention may be required.

In some cases, it may not be cost-effective to restructure all of the pro-
grams in a system. Some may be of better quality than others and some
may not be subject to frequent change. Arthur (1988) suggests that data
should be collected to help identify those programs that could benefit
most from restructuring: The metrics, such as failure rate, percentage of

215

SOFTWARE ENGINEERING HANDBOOK

source code changed per year, component complexity, and the degree to
which programs or components meet current standards, can be used to
identify the candidates for restructuring.

4. Program Modularization

Program modularization is the process of reorganizing a program so
that related program parts are collected together and considered as a sin-
gle module. Once this has been done, it becomes easier to remove redun-
dancies in these related components, to optimize their interactions, and to
simplify their interface with the rest of the program. A number of types of
module may be created during the program modularization process.

e Data abstractions. In order to save memory space, many legacy sys-
tems depend on use of shared tables and common data areas. The in-
formation stored in these areas is globally accessible and may be used
by different parts of the system in different ways. It is expensive mak-
ing changes to these global data areas due to the costs of analyzing
change impacts across all uses of the data. To reduce the costs of
changes to these shared data areas, the program modularization pro-
cess may focus on the identification of data abstractions. Data ab-
stractions or abstract data types collect data and associated
processing and are resilient to change.

e Hardware modules. These are related to data abstractions and gather
all of the functions used to control a particular hardware device.

e Functional modules. For instance, all of the functions concerned with
input and input validation may be incorporated in a single module.
This type of modularization should be considered where it is imprac-
tical to recover program data abstractions.

e Process support modules. All of the functions and specific data items re-
quired to support a particular business process are grouped here.

5. Data Re-Engineering

Until now, most of our discussion on software evolution has focused on
the problems of program modification. However, in many cases, associated
problems of storage, organization, and format of the data processed by leg-
acy programs may need to evolve to reflect changes to the software. The
process of analyzing and reorganizing the data structures and, sometimes,
the data values in a system to make it more understandable is called data
re-engineering.

In principle, data re-engineering should not be necessary if the function-
ality of a system is unchanged. In practice, however, there are a number of
reasons why you may need to modify the data as well as the programs in a
legacy system:

216

Software Re-Engineering

® Data degradation. Over time, the quality of data tends to decline.
Change to the data incurs errors, redundant values may have been
created, and changes to the external environment may not be reflect-
ed in the data. This is unavoidable because the lifetime of data is often
very long.

¢ Inherent limits built into the program. Programs are now often re-
quired to process much more data than was originally envisioned by
their developers. Data re-engineering may be required to remove
these limitations.

e Architectural evolution. If a centralized system is migrated to a distrib-
uted architecture, it is essential that the core of that architecture be a
data management system that can be accessed from remote clients.
This may require a large data re-engineering effort to move data from
a mainframe to a server-based database management system. The
move to a distributed program architecture may also be initiated
when an organization decides to move from file-based data manage-
ment to a database management system.

Because data architecture has a strong influence on program architec-
ture and the algorithms that populate it, changes to the data will invariably
result in architectural or code-level changes. Rickets (1993) mentions some
of the problems with data that can arise in legacy systems made up of sev-
eral cooperating programs:

¢ Data naming problems. Name may be cryptic and difficult to under-
stand. Different names may be given to the same logical entity in dif-
ferent programs in the system. The same name may be used in
different programs to mean different things.

e Field length problems. When field lengths in records are explicitly as-
signed in the program, the same item may be assigned different
lengths in different programs or the field length may be too short to
represent current data.

® Record organization problems. Records representing the same entity
may be organized differently in different programs.

e Hard-coded literals. Absolute values, such as tax rates, are included di-
rectly in the program rather than referenced using some symbolic
name.

¢ Lack of a data dictionary.

e Inconsistent data definitions. Data values may also be stored in an in-
consistent way. After the data definitions have been re-engineered, the
data values must also be converted to conform to the new structure.

Exhibit 15-2 illustrates the process of data re-engineering, assuming that
data values converted. The change summary tables hold details of all the
changes to be made. They are therefore used at all stages of the data re-
engineering process.

217

SOFTWARE ENGINEERING HANDBOOK

| Program to be re-engineered | Data
analysis

A I
Stage 1 A4 Stage 2 Stage 3 l

Entity name Data reformatting
modification Default value Data
Data Literal replacement conversion conversion
analysis Data definition Validation rule —

modification

4 T v
Modified

reordering

| Change summary tables | data

Exhibit 15-2. The Data Re-Engineering Process

In Stage 1 of this process, the data definitions in the program are modi-
fied to improve understandability; the data is not affected by these modifi-
cations. It is possible to automate this process to some extent using pat-
tern matching systems such as Awk (Aho et al., 1988) to find and replace
definitions or to develop XML descriptions of the data (St Laurent and
Cerami, 1999) and use these to drive data conversion tools. However, some
manual work is almost always necessary to complete the process. The data
re-engineering process may stop at this stage if the goal is simply to
improve the understandability of the data structure definitions in a pro-
gram. If, however, there are data value problems as discussed earlier,
Stage 2 of the process may then be entered.

If an organization decides to continue to Stage 2 of the process, it is then
committed to Stage 3, data conversion, which is usually a very expensive
process. Programs must be written that embed knowledge of the old and
the new organization. These process the old data and output the converted
information.

FORWARD ENGINEERING

The major distinction between re-engineering and new software devel-
opment is the starting point for the development. For system re-engineer-
ing, the old system acts as a specification for the new system. Chikofsky
and Cross (1990) call conventional development forward engineering
(Exhibit 15-3) to distinguish it from software re-engineering (Exhibit 15-4).
Forward engineering starts with a system specification and involves the
design and implementation of a new system; re-engineering starts with an
existing system and transformation of the old system.

218

Software Re-Engineering

System
specification

Design
and
implementation

L New system]

Exhibit 15-3. Forward Engineering

Existing
software
engineering

Understanding
and
transformation

Re-engineered
system

Exhibit 15-4. Software Re-Engineering

219

SOFTWARE ENGINEERING HANDBOOK

CONCLUSION

Developing a custom-built system requires a lot of money and time.
Hence, organizations need to maintain their old systems in order to reduce
the cost and increase the lifetime of the old system. For these purposes, re-
engineering becomes a useful way to convert old, obsolete systems to
more efficient, streamlined systems.

Software re-engineering encompasses a series of activities that include
source code translation, reverse engineering, program structure improve-
ment, program modularization, and data re-engineering. The intent of
these activities is to create versions of existing programs that exhibit
higher quality and better maintainability.

References
Aho, AV, Kernighan, B.W,, et al. (1988). The Awk Programming Language, Prentice-Hall, Engle-
wood Cliffs, NJ, Chapters 8, 28.

CASS88. (1988). CASE tools for reverse engineering, CASE Outlook, CASE Consulting Group, 2,
1-15.

Chikofsky, E.J. and Cross, J.H. (1990). Reverse engineering and design recovery: a taxonomy,
IEEE Software, 7, 13-17.

Cleveland, L. (1989). A program understanding support environment, /BM Sys.J., 28, 324-344.

Ning, J.Q., Engberts, A, et al. (1994). Automated support for legacy code understanding, /EEE
Software, 37, 50-57.

Oman, P.W. and Cook, C.R. (1990). The book paradigm for improved maintenance, /[EEE Soft-
ware, 7, 39-45.

Pressman, R.S. (2001). Software Engineering: a Practitioner’s Approach, 5th ed., McGraw-Hill,
Boston, 799-824.

Rickets, J.A. DelMonaco, J.C., et al. (1993). Data reengineering for application systems, in Soft-
ware Reengineering Arnold, R.S., Ed., IEEE Press, Los Alamitos, CA, 288-293.

St Laurent, S. and Cerami, E. (1999). Building XML Applications, McGraw-Hill, New York, Chap-
ter 9.

220

Chapter 16
Software Testing

Testing is a critical component of software development. Its goal is to
uncover and correct errors found in software. Because software is com-
plex, it is reasonable to presume that software testing is a labor- and
resource-intensive process. Automated software testing helps to improve
testers’ productivity and reduce resources that may be required. By its
very nature, automated software testing increases test coverage levels,
speeds up test turnaround time, and cuts costs of testing. Unfortunately,
due to a variety of reasons, not all test automation projects will achieve
these returns on investment. In this chapter, a practical approach to auto-
mated software testing is discussed.

WHAT IS SOFTWARE TESTING?

A critical component in the process of software development is software
testing. The classic software life cycle model suggests a systematic,
sequential approach to software development that progresses through
software requirements analysis, design, code generation, and testing. That
is, once source code has been generated, program testing begins with the
goal of finding differences between the expected behavior specified by sys-
tem models and the observed behavior of the system.

The process of creating error-free software applications requires techni-
cal sophistication in the analysis, design, and implementation of that soft-
ware and proper test planning, as well as robust automated testing tools.
When planning and executing tests, software testers must consider the
software and the function it performs, the inputs and how they can be com-
bined, and the environment in which the software will eventually operate.

During early stages of the testing process, the programmer usually per-
forms all tests. This stage of testing is referred to as unit testing. Here the
programmer usually works with the debugger that accompanies his or her
compiler. For example Visual Basic, as shown in Exhibit 16-1, enables the
programmer to “step through” a program’s (or object’s) logic, one line of
code at a time, viewing the value of any and all variables as the program
proceeds.

A particular program is usually made up of many modules. An OO sys-
tem is composed of many objects. Programmers usually architect their
programs in a top—down modular fashion. Integration testing proves that

221

SOFTWARE ENGINEERING HANDBOOK

- Microsoft Yisual Basic [design] - [NAexcel (Code)]

Project Format Debug Run Query Diagram JTools Add-Ins

= @ ¢ (%= steplnto & ¢
= step Over shift+F8 =
ImnuSpee(I _ e I]
Run To Cursor Ctrl+F3 =
Add Watch...
69" Quick Watch... shift+F9
Els M Toggle Breakpoint F9
Clear All Breakpoints Ctrl+Shift+F9 T

p=pe =gy y g TIvC s JIv e TRl
°
Listl.AddItem Entry
Entry = "Scanning " & Nm.
Print. #3. Entrs

Exhibit 16-1. Visual Basic Providing Unit Testing Capabilities to Programmers

the module interfaces are working properly. For example, in Exhibit 16-2, a
programmer conducting integration testing would ensure that Module2
(process module) correctly interfaces with its subordinate, Module2.1 (cal-
culate process).

If module2.1 had not yet been written, it would have been referred to as
a stub. Integration testing could still be performed if the programmer
inserted two or three lines of code in the stub, which would act to prove
that it is well integrated to module2.

On occasion, a programmer will code all the subordinate modules first
and leave the higher-order modules for last. This is known as bottom-up
programming. In this case module2 would be empty except for a few lines
of code to prove that it is integrating correctly with module2.1, etc. In this
case, module 2 would be referred to as a driver.

222

Software Testing

Program
Module1 Module2 Module3
Read Process Close
Module2.1 Module2.2
Calculate Print

Exhibit 16-2. Integration Testing Proving Module Interfaces Are Working
Properly

Where integration testing is performed on the discrete programs or
objects with a master program, system testing refers to testing the inter-
faces between programs within a system. Because a system can be com-
posed of hundreds of programs, this is a vast undertaking.

It is quite possible that the system being developed is a replacement for
an existing system. In this case, parallel testing is performed. The goal here
is to compare outputs generated by each of the systems (old versus new)
and determine why there are differences, if any.

Parallel testing requires end users to be part of the testing team. If the
end user determines that the system is working correctly, we can see that
the customer has “accepted” the system. This, then, is a form of customer
acceptance testing.

As the testing progresses, testing specialists may become involved (see
Appendix P for a sample QA handover document). Within the vernacular of
IT, staff dedicated to performing testing are referred to as quality assur-
ance engineers and reside within the quality assurance department. QA
testers must have a good understanding of the program being tested as
well as the programming language that the program was coded in. In addi-
tion, the QA engineer must be methodical and be able to grasp complex
logic. Generally speaking, technical people with these attributes are hard

223

SOFTWARE ENGINEERING HANDBOOK

to come by and even harder to keep because most of them aspire to
become programmers.

Even simple software can present testers with obstacles. Couple this
complexity with the difficulty in attracting and keeping QA staff and you
have the main reason that many organizations now automate parts of the
testing process.

SOFTWARE TESTING STRATEGY

Software testing is one critical element of software quality assurance
(SQA) that aims at determining the quality of the system and its related
models. In such a process, a software system will be executed to determine
whether it matches its specification and executes in its intended environ-
ment. To be more precise, the testing process focuses on the logical inter-
nals of the software, ensuring that all statements have been tested, and on
the functional externals by conducting tests to uncover errors and ensure
that defined input will produce actual results that agree with required
results.

To ensure that the testing process is complete and thorough it is neces-
sary to create a test plan (Appendix O). A thorough test plan consists of the
following:

1. Revision history
2. System introduction
2.1. Goals and objectives
2.2. Statement of scope
2.3. Major constraints
3. Test plan
3.1. System description
3.2. Testing strategy
3.3. Testing resources
3.4. Testing metrics
3.5. Testing artifacts
3.6. Testing schedule
4. Test procedures
4.1. Class testing
4.2. Integration testing
5. Appendix 1: class testing test cases
5.1. Application controller subsystem
5.2. User management subsystem
5.3. Resource management subsystem
5.4. Order subsystem
5.5. Accounting subsystem
5.6. Customer relationship management subsystem
5.7. Persistence subsystem

224

Software Testing

6. Appendix 2: integration testing test cases
6.1. Customer registration
6.2. Reallocate resources
6.3. Search for service provider and initiate order
6.4. Place order
6.5. Pay for service
7. Appendix: project schedule

A sample test plan, created by my students for an OO dog grooming sys-
tem, can be found in Appendix O. Although all components of this test plan
are important, you will note that the plan is really focused around three
things:

1. The test cases

2. Metrics that will determine whether there has been testing success
or failure

3. The schedule

TEST AUTOMATION

The usual practice in software development is that the software is writ-
ten as quickly as possible and, once the application is done, it is tested
and debugged. However, this is a costly and ineffective way because the
software testing process is difficult, time consuming, and resource inten-
sive. With manual test strategies, this can be even more complicated and
cumbersome. A better alternative is to perform unit testing independent
of the rest of the code. During unit testing, developers compare the object
design model with each object and subsystem. Errors detected at the unit
level are much easier to fix; we only need to debug the code in that small
unit. Unit testing is widely recognized as one of the most effective ways to
ensure application quality; however, it is a laborious and tedious task. The
workload for unit testing is tremendous, so to perform unit testing manu-
ally is practically impossible and hence the need for automatic unit test-
ing. Another good reason to automate unit testing is that, when perform-
ing manual unit testing, we run the risk of making mistakes (Aivazis, 2000).

Besides saving time and preventing human errors, automatic unit test-
ing helps facilitate integration testing. After unit testing has removed
errors in each subsystem, combinations of subsystems are integrated into
larger subsystems and tested. When tests do not reveal new errors, addi-
tional subsystems are added to the group, and another iteration of integra-
tion testing is performed. The re-execution of a subset of tests that have
already been conducted is regression testing. It ensures that no errors are
introduced as a result of adding new modules or modification in the soft-
ware (Kolawa, 2001).

225

SOFTWARE ENGINEERING HANDBOOK

As integration testing proceeds, the number of regression tests can
grow very large. Therefore, it is inefficient and impractical to re-execute
every test manually once a change has occurred. The use of automated
capture and playback tools may prove useful in this case. They enable the
software engineer to capture test cases and results for subsequent play-
back and comparison.

Test automation can improve testers’ productivity; they can apply one
of several types of testing tools and techniques at various points of code
integration. Some examples of automatic testing tools in the market
include:

e C++Test for automatic C/C++ unit testing by ParaSoft
¢ Cantata++ for dynamic testing of C++ by IPL
e WinRunner for unit and system tests by Mercury Interactive

WinRunner is probably one of the more popular tools in use today
because it automates much of the painful process of testing. Used in con-
junction with a series of test cases (see Appendix O, Section 5), a big
chunk of the manual processes that constitute the bulk of testing can be
automated. The WinRunner product actually records a particular busi-
ness process by recording the keystrokes a user makes (e.g., emulates
user actions of placing an order). The QA person can then directly edit the
test script that WinRunner generates and add checkpoints and other vali-
dation criteria.

When done correctly with appropriate testing tools and strategies, auto-
mating software testing provides worthwhile benefits such as repeatability
and significant time saving. This is true especially when the system moves
into system test. Higher quality is also a result because less time is spent
in tracking down test environmental variables and in rewriting poorly writ-
ten test cases (Raynor, 1999).

Principles for Test Automation

Test automation can be applied at unit testing, one or more layers of
integration testing, and system testing (which is another form of integra-
tion). Tests should be executed soon after the code is written, before too
much code integration has occurred, so that bugs will not be carried for-
ward. When strategizing for test automation, consider automating these
tests as early as possible, as well as later in the testing cycle (Zallar,
2002).

Pettichord (2001) describes several principles that testers should
adhere to in order to succeed with test automation. These principles
include:

226

Software Testing

e Taking testing seriously

¢ Being careful who you choose to perform these tests

¢ Choosing what parts of the testing process to automate
¢ Being able to build maintainable and reliable test scripts
¢ Using error recovery

Testers need to realize that test automation is a software development
activity and so needs to adhere to standard software development prac-
tices. That is, test automation systems need to be tested and subjected to
frequent review and improvement to make sure that they are indeed
addressing the testing needs of the organization.

Because automating test scripts is part of the testing effort, good judg-
ment is required in selecting appropriate tests to automate. Not everything
can or should be automated. For example, overly complex tests are not
worth automating; manual testing is still necessary in this case.

Zambelich (2002) provides a guideline to make automated testing cost
effective. He says that automated testing is expensive and does not replace
the need for manual testing or enable you to “down-size” your testing
department. Automated testing is an addition to your testing process.
Some pundits claim that it can take between three to ten times as long (or
longer) to develop, verify, and document an automated test case than to
create and execute a manual test case. Zambelich indicates that this is
especially true if you elect to use the “record/playback” feature (contained
in most test tools) as your primary automated testing methodology. In fact,
Zambelich says that record/playback is the least cost-effective method of
automating test cases. Automated testing can be made to be cost-effective,
according to Zambelich, if some common sense is applied to the process:

¢ Choose a test tool that best fits the testing requirements of your orga-
nization or company. An automated testing handbook is available
from the Software Testing Institute (http://www.softwaretestinginsti-
tute.com).

¢ Understand that it does not make sense to automate everything. Over-
ly complex tests are often more trouble to automate than they are
worth. Concentrate on automating the majority of your tests, which
are probably fairly straightforward. Leave the overly complex tests for
manual testing.

¢ Only automate tests that will be repeated; one-time tests are not worth
automating.

PRACTICAL APPROACH TO AUTOMATED SOFTWARE TESTING

Isenberg (1994) explains requirements for success in automated soft-
ware testing. In order to succeed, the following four interrelated compo-
nents must work together and support one another.

227

SOFTWARE ENGINEERING HANDBOOK

e Automated testing system — it must be flexible and easy to update.

e Testing infrastructure — this includes a good bug tracking system, stan-
dard test case format, baseline test data, and comprehensive test
plans.

e Software testing life cycle — it defines a set of phases outlining what
test activities to perform and when to conduct them. These phases are
planning, analysis, design, construction, testing (initial test cycles,
bug fixes, and retesting), final testing and implementation, and post-
implementation.

e Corporate support — automation cannot succeed without the corpora-
tion’s commitment to adopting and supporting repeatable processes.

Automated testing systems should have the ability to adjust and
respond to unexpected changes to the software under test, which means
that the testing systems will stay useful over time. Some of the practical
features of automated software testing systems suggested by Isenberg are:

¢ Run all day and night in unattended mode

¢ Continue running even if a test case fails

e Write out meaningful logs

e Keep test environment up to date

e Track tests that pass, as well as tests that fail

USING AUTOMATED TESTING TOOLS

When automated testing tools are introduced, test engineers may need
to face some difficulties. Project management should be used to plan the
implementation of testing tools. Without proper management and selec-
tion of the right tool for the job, automated test implementation will fail
(Hendrickson, 1998). Dustin (1999) has accumulated a list of “automated
testing lessons learned” from his experiences with real projects and test
engineer feedback. Some are presented here:

e The various tools used throughout the development life cycle do not
integrate easily if they are from different vendors.

e Automated testing tools can speed up the testing effort; however, it
should be introduced early in the testing life cycle in order to gain
benefits.

e Duplicate information that is kept in multiple repositories is difficult
to maintain. As a matter of fact, in many instances the implementation
of more tools can result in less productivity.

e The automated testing tool drives the testing effort. Often when a new
tool is used for the first time, more time is spent on installation, train-
ing, initial test case development, and automating test scripts than on
actual testing.

e [t is not necessary for everyone on the testing staff to spend his or her
time automating scripts.

228

Software Testing

e Sometimes elaborate test scripts are developed through overuse of
the testing tool’s programming language, which duplicates the devel-
opment effort. That is, too much time is spent on automating scripts
without much additional value gained. Therefore, it is important to
conduct an automation analysis and to determine the best approach
to automation by estimating the highest return.

e Automated test script creation is cumbersome. It does not happen au-
tomatically.

¢ Tool training needs to be initiated early in the project so that test en-
gineers have the knowledge to use the tool.

¢ Testers often resist new tools. When introducing a new tool to the test-
ing program, mentors and advocates of the tool are very important.

e There are expectations of early payback. When a new tool is intro-
duced to a project, project members anticipate that the tool will nar-
row the testing scope right away. In reality, it is the opposite — i.e.,
initially the tool will increase the testing scope.

CONCLUSION

Test engineers can enjoy productivity increases as a testing task
becomes automated and a thorough test plan is implemented. Creating a
good and comprehensive automated test system requires an additional
investment of time and consideration, but it is cost effective in the long
run. More tests can be executed while the amount of tedious work on con-
struction and validation of test cases is reduced.

Automated software testing is by no means a complete substitute for
manual testing. In other words, manual testing cannot be totally elimi-
nated; it should always precede automated testing. In this way, the time
and effort saved by using of automated testing can now be focused on
more important testing areas.

References

Aivazis, M., (2000). Automatic unit testing, Computer, 33, back cover.

Dustin, E. (1999) Lessons in test automation, STQE Mag., and from the World Wide Web:
http://www.stickyminds.com/pop_print.asp?Objectld = 1802&0ObjectType = ARTCO, October,
41.

Hendrickson, E. (1998). The difference between test automation failure and success, Quality
Tree Software, retrieved from http://www.qualitytree.com/feature/dbtasaf.pdf.

Isenberg, H.M. (1994) The practical organization of automated software testing, Multi-Level
Verification Conference 95, December 1994, retrieved from http://www.automated-test-
ing.com/PATfinal.htm.

Kolawa, A., (2001). Regression testing at the unit level? Computer, 34, back cover.

Pettichord, B. (2001). Success with test automation, retrieved from http://www.
io.com/~wazmo/succpap.htm.

229

SOFTWARE ENGINEERING HANDBOOK

Raynor, D.A. (1999). Automated software testing, retrieved from http://www.trainersdi-
rect.com/resources/articles/ProjectManagement/AutomatedSoftwareTestingRaynor.html.

Zallar, K. (2002). Automated software testing — a perspective, retrieved from http://www.test-
ingstuff.com/autotest.html.

Zambelich, K. (2002). Totally data-driven automated testing, retrieved from http://www.sqa-
test.com/w_paperl.html.

230

Chapter 17
The Process
of EDP Auditing

For as long as there have been computer departments there have been EDP
(electronic data processing) auditors. These were and are the people who
make sure a system does what it is supposed to do. In this chapter we dis-
cuss a methodology for EDP auditing using a Web-based system as an
example.

In the “Wild West” days of the Internet, companies were “plopping” sys-
tems online faster than you could say “dot-com crash and burn.” Now that
those heady days appear to be over, smart organizations are beginning to
think of their Web-based systems in the same terms as they do their more
conventional systems.

In their quest toward increasing market share while lowering costs,
these organizations are finally delving into the intricacies of the Web-based
system to scrutinize such things as response time/availability, accessibil-
ity, ergonomics, logistics, customer service, and security and privacy.

This chapter provides the IT manager with a series of checklists that can
be used to audit the Web-based system and easily modified to audit con-
ventional systems. Audits should be done regularly, with the results used
to fine-tune the system. Ultimately, think of these checklists as a set of
issues that can be considered “food for thought.”

ORGANIZING YOUR AUDIT

It is recommended that you hire an external consulting firm to perform
this critical effort; however, your EDP audit department, with adequate
training, would be a sufficient alternative. The reason why I much prefer an
external auditor is that “neutral third parties” are usually more objective
because they are not stakeholders and are not friendly with stakeholders.
There is nothing like an unbiased opinion.

231

SOFTWARE ENGINEERING HANDBOOK

At a minimum, the auditor should obtain the following documentation:

¢ A diagram of the application system. A Web-based system is not unlike
any other computer system. It has processes (e.g., process credit
card) and entities (e.g., airline ticket) and shows the flow of data be-
tween the entities via the processes. Exhibit 17-1 shows an excerpt
from a typical data-flow diagram.

¢ A network diagram. Most modern computer systems are developed us-
ing one of several traditional network architectures (i.e., two-tier,
three-tier, etc.). Add EDI or Internet connectivity and you have quite a
sophisticated environment. The auditor will need a roadmap to this
environment to be able to determine any connectivity issues.
Exhibit 17-2 demonstrates what a simple network diagram should look
like.

e Staff hierarchy diagram. A complete list, preferably a diagram that
shows direct reports, along with phone numbers and e-mail addresses
is required. A good starting point is shown in Exhibit 17-3.

One would think that a modern organization would have these three
items readily available. Think again. In my own experience, few of the orga-
nizations that I audit possess all three of these required items. Few possess
even two.

If these are not available to the auditor, my recommendation is to start
the audit effort with a series of brainstorming sessions in which at least the
two diagrams are created. Even if diagrams are available, one or more
brainstorming sessions are still advisable. This provides the auditors a
“walk through” where system and network architects can be questioned
directly and invariably speeds up the audit process.

Once the preliminary step has been completed (i.e., understanding the
system), the auditor can proceed through his or her paces in a logical and
methodical manner. The following sections, presented as a series of check-
lists, represent areas of the audit that can be performed in any order.

The checklist is actually a series of questions or areas to be studied. The
responses to these questions form the data collected for input to the final
audit report. This report will contain problems found and issues over-
looked, as well as recommendations for improvement. For example, the
auditor might find that the company has done inadequate security testing.
The recommendation here might be to bring in a “white hat” to perform
penetration as well as intrusion testing. Alternatively, the audit might
uncover a deficiency in fulfillment processes the company follows to ship
products to the customer. Again, the audit report will make recommenda-
tions for improvement.

We will begin at the beginning.

232

. Customer Data

The Process of EDP Auditing

(1) 4 3 \ (4 A (5 \
Rental or
Customer |—Purchase Get Customer . >
N Verify Customer
Request Membership Account Status Scan Products Process Payment
Information
- J \
| | |
ccount Pastdue Account Payment Okay
NotaMember | o ation Customer Won't Pay Not Valid 4
D1 | Customer Data
(2)
D2 Inventory
Create New Store Manager D3 Produ[r;i History
ata
Customer Account
\ J
Product
Customer —RCheck t—v Check In-stock
eques Status
| D4 | Orders | | D3 Product History |
Data
—— —t—
Store Manager > Order New Move Old / Low
Releases and Usage Rentals
Other Products To Purchase Area
9 10
Products .
Vendor [Ordered ! Process Received [~ Invoice=, Process Payment
Products to Vendor
D2 Inventory | D4 | Orders |
D4 Orders

Exhibit 17-1.

A Data Flow Diagram for a Video Rental System

233

SOFTWARE ENGINEERING HANDBOOK

— Existing Data
| l. ! Infrastructure
— j\‘fCat-5 Dist. Lines
| = . :
Comm-Link Satellite Dish

B [0z] E
Hub
Server
E To Remote Bldgs.
Workstation
TS
111
| I
i . PBX
Workstation Workstation Workstation K
Connection to Existing Phone
Workstation Cables
TR
Router Switch
Internet
Exhibit 17-2. A Simple Network Diagram
SYSTEMIC AUDIT

It is surprising that many companies spend millions of dollars on adver-
tising budgets to draw more “eyeballs” to their sites but never factor in
whether or not the projected additional load can be supported by the
current system configuration. A systemic audit looks at such things as
response time, network architecture, and linkages.

234

The Process of EDP Auditing

Sam Dutkin
Project Manager

Penelope Sutton
Administrative |
Assistant

Max Horne Jon Hall John Woo John Carpenter
Information Systems Human Resources Accounting Technical Services
Project Leader Project Leader Project Leader Project Leader
| | |

Ridley Scott Ron Howard Stanley Kubrick
Hardware Technician Finance Training Coordinator

Michael Mann
Software Specialist

Exhibit 17-3. An Initial Staff Hierarchy Diagram

Response Time

Measurables in this section include actual response time versus pro-
jected response time. In spite of advances in supplying high-bandwidth
connections to consumers, the vast majority of PCs are connected to the
Web with little more than a 56-Kb modem and good intentions. This means
that sites that are highly graphical or use add-ons such as Macromedia
Flash will appear slow to download.

Given the wide variety of modem types, auditors should test the
response time of the site using different scenarios such as:

e Using a DSL or cable modem connection

e Using a 56-Kb connection

e Using a 28-Kb connection

e At random times during the day, particularly 9 a.m (start of work day)
and 4 p.m. (kids home from school)

Web sites such as netmechanic.com, a subscription service, can assist
in this endeavor by checking for slow response time directly from their
Web sites.

Broken Links

One of the top five irritants that Web surfers report is clicking on a link
and getting a “nonexistent page” error message. This often results from
system maintenance where Web programmers move the actual page but
neglect to modify the link to that page. Unfortunately, this is a frequent
occurrence. One of a number of tools, including netmechanic.com, can
assist in tracking down these broken links.

235

SOFTWARE ENGINEERING HANDBOOK

Database Audit

Originally the Web was a simple place consisting mostly of text; nary a
database was in sight. Today, the Web is filled to the brim with databases.
The addition of databases makes the audit process even more complex.
Because programming code is used to query, and perhaps even calculate,
against that database, it is imperative that random checks be performed in
an effort to pinpoint database query and calculation errors.

Essentially, auditing database access is similar to traditional IT (infor-
mation technology) QA (quality assurance) process. One or more scripts
must be written that will take that database through its paces. For example,
if a database program calculates insurance rates based on a zip code, then
that calculation should be duplicated manually or in a different parallel
automated fashion to ensure that the result is correct. The same can be
said for information that visitors to the site enter via a form. Is the informa-
tion entered the same as that sent to the database?

Network Audit

The network, including node servers, should be tested to see if it is
effectively configured to provide optimum response. It is not uncommon to
find the Web development group separated from the traditional IT develop-
ment group. This means that one frequently finds network configurations
designed inappropriately for the task at hand. For example, a site attract-
ing tens of thousands of hits a day would do well to run a multitude of Web
servers rather than just one.

Most organizations use one or more ISPs (Internet service providers) to
host their sites. The auditor should carefully gauge the level of service pro-
vided by these ISPs as well.

SECURITY AND QUALITY

No one topic is discussed more in the press than Internet security. From
“love bug” viruses to wily hackers breaking into Western Union, security is
an important component of the audit.

It is worthwhile to keep in mind that the auditor is not a security auditor,
nor should he be. His role is to conduct a top level assessment of the secu-
rity of the Internet- or Intranet-based system and, if warranted, recommend
the services of a security firm well versed in penetration and intrusion test-
ing. The entire issue of security is wrapped up within the more comprehen-
sive issue of quality. This section will address both issues.

236

The Process of EDP Auditing

Review the Security Plan

All organizations must possess a security plan in writing. If they do not
have this then they are severely deficient. The plan, at a minimum, should
address:

e Authentication. Is the person who he says he is.

e Authorization. What users have what privileges; in other words, “who
can do what?”

e Information integrity. Can the end user maliciously modify the infor-
mation?

e Detection. Once a problem is identified, how is it handled?

Passwords

Passwords are the first shield of protection against malicious attacks
upon your eBusiness. Questions to ask in this section include:

¢ [s anonymous login permitted? Under what conditions?

¢ [s a password scanner periodically used to determine if passwords
can be hacked? Examples of this sort of utility include LOphtcrack.com
for NT and www.users.dircon.co.uk/~crypto for UNIX.

e How often are passwords changed?

e How often are administrative accounts used to log on to systems?
Passwords are hard to remember. This means that, in order to gain en-
trance to systems quickly, administrative and programming systems
people often create easy-to-remember passwords such as “admin.”
These are the first passwords that hackers try to gain entrance into a
system.

Staff Background

Administrative network staff must have a security background as well as
atechnical background. Those wishing to train their staffs would do well to
look into the security skills certification program provided by www.sans.org.

Connectivity

Today’s organization may have many external connections (i.e., part-
ners, EDI, etc.), each of which the auditor should examine:

e The data passed between organizations: is what the company sent re-
ceived correctly?

¢ The security of the connection: how is the data transmitted? Is it re-
quired to be secure? Is encryption used?

e [f encryption is indeed used, it must be determined whether an appro-
priate algorithm is deployed.

237

SOFTWARE ENGINEERING HANDBOOK

The Product Base

All organizations invest in and then use a great deal of third-party soft-
ware. As publicized by the press, much of this software — particularly
browsers and e-mail packages, but word processing packages as well —
contain security holes that, left unpatched, put the organization at risk.
Therefore, for each software package used (for Net purposes):

e Check for publicized security holes.

¢ Check for availability of software patches. Always upgrade to the lat-
est version of software and apply the latest patches.

¢ Check to see if patches have been successfully applied.

¢ Check security software for security holes. Security software, such as
a firewall, can contain security holes just like any other type of soft-
ware. Check for updates.

In-House Development

The vast majority of Web-based software is written by in-house program-
ming staff. When writing for the Web it is important to ensure that your
own staff does not leave gaping holes through which malicious outsiders
can gain entrance. There are a variety of programming “loopholes” that
open the door wide to hackers:

¢ [n programming parlance, a “GET” sends data from the browser (cli-
ent) to the server. For example, look at the query string below:

http://www.site.com/process_card.asp?cardnumber = 123456789

All HTTP (hypertext transport protocol) requests get logged as
straight text into the server log as shown below:

2000-09-15 00:12:30 — W3SVC1l GET/process_card.asp
cardnumber = 123456789 200 0 623 360 570
80 HTTP/1.1 Mozilla/4.0+ (compatible;+5.01;+Windows+NT)

Not only is the credit card number clearly visible in the log, but it
might also be stored in the browser’s history file, thus exposing
this sensitive information to someone else using the same machine
later. Security organizations recommend utilization of the POST
method rather than the GET method for this reason.

¢ Are the programmers using “hidden” fields to pass sensitive informa-
tion? An example of this is relying on hidden form fields used with
shopping carts. The hidden fields are sometimes used to send the
item price when the customer submits the form. It is rather easy for a
malicious user to save the Web page to his own PC, change the hidden
field to reflect any price he wants, and then submit it.

¢ One way to combat the problem discussed in the previous item is to
use a hash methodology. A hash is a function that processes a

238

The Process of EDP Auditing

variable-length input and produces a fixed-length output. Because it is
difficult to reverse the process, the sensitive data transmitted in this
matter is secured. The auditor is required to assess the utilization of
this methodology given any problems he might find in assessing the
previous item.
[s sensitive data stored in ASP or JSP pages? Microsoft’s Internet infor-
mation server (IIS) contains a number of security flaws that, under
certain circumstances, allows the source of an ASP or JSP page to be
displayed rather than executed. In other words, the source code is vis-
ible to anyone browsing that particular Web site. If sensitive data,
such as passwords, is stored in the code then they will be displayed as
well. The rule here is not to hardcode any security credentials into the
page.
Are application-specific accounts with rights identified early in the de-
velopment cycle? There are two types of security. One is referred to as
“declarative” and takes place when access control is set from outside
the application program. “Programmatic” security occurs when the
program checks the rights of the person accessing the system. When
developing code for the Web, it is imperative that the rights issue be
addressed early in the development cycle. Questions to ask include:
— How many groups will be accessing the data?
— Will each group have the same rights?
— Will you need to distinguish between different users within a group?
— Will some pages permit anonymous access while others enforce au-
thentication?
How are you dealing with cross-site scripting? When sites accept user-
provided data (e.g., registration information, bulletin boards), which
is then used to build dynamic pages (i.e., pages created on the spur of
the moment), the potential for security problems is increased 100-
fold. No longer is the Web content created entirely by the Web design-
ers; some of it now comes from other users. The risk comes from the
existence of a number of ways in which text can be entered to simulate
code. This code can then be executed as any other code written by the
Web designers — except that it was written by a malicious user in-
stead. Javascript and html can be manipulated to contain malicious
code, which can perform a number of activities such as redirecting us-
ers to other sites, modifying cookies, etc. More information on this
topic can be obtained from CERT’s Website at http://www.cert.org/ad-
visories/CA-2000-02.html and http://www.cert.org/tech_tips/
malicious_code_mitigation.html.
Have you checked Wizard-generated or sample code? Often program-
mers “reuse” sample code they find on the Web or make use of gener-
ated code from Web development tools. Often the sample or
generated code contains hardcoded credentials to access databases,

239

SOFTWARE ENGINEERING HANDBOOK

directories, etc. The auditor will want to make sure that this is not the

case in the code being audited.

¢ Are code reviews performed? Nothing is worse than the lone program-
mer. Many of the problems discussed in the previous sections can be
negated if the code that all programmers write is subject to a peer re-
view. Code reviews, a mainstay of traditional quality-oriented pro-
gramming methodology, are rarely done in today’s fast-paced Internet
environment. This is one of the reasons why so many security break-
ins occur.

e [t is necessary to conduct a Web server review. In order to run pro-
grams on the Web, many organizations use the CGI (common gateway
interface) to enable programs (i.e., scripts) to run on their servers.
CGlis not only a gateway for your programming code (i.e., via data col-
lections forms) but also a gateway for hackers to gain access to your
systems. Vulnerable CGI programs present an attractive target to
intruders because they are easy to locate and usually operate with the
privileges and power of the Web server software. The replacement of
Janet Reno’s picture with that of Hitler on the Department of Justice
Web site is an example of this sort of CGI hole. The following questions
must be asked of developers using CGI:

— Are CGI interpreters located in bin directories? This should not be
the case because you are providing the hacker with all the capabil-
ities he needs to insert malicious code and then run it directly from
your server.

—Is CGI support configured when not needed?

— Are you using remote procedure calls (RPC)? These calls allow pro-
grams on one computer to execute programs on a second comput-
er. Much evidence indicates that the majority of distributed denial
of service attacks launched during 1999 and early 2000 were execut-
ed by systems that had RPC vulnerabilities. It is recommended,
wherever possible, to turn off or remove these services on ma-
chines directly accessible from the Internet. If this is not possible,
then at least ensure that the latest patches to the software are in-
stalled; these mitigate some of the known security holes.

—Is lISused? This is the software used on most Web sites deployed on
Windows NT and Windows 2000 servers. Programming flaws in IIS
remote data services (RDS) are used by hackers to run remote com-
mands with administrator privileges. Microsoft’s Web site discuss-
es methodologies to use to combat these flaws.

Testing

Pre-PC testing was a slow and meticulous process. Today'’s faster pace
means that inadequate testing is performed by most organizations. In

240

The Process of EDP Auditing

addition, many organizations forego security testing entirely. In this sec-
tion of the audit, we determine whether adequate security is performed.

¢ Has penetration testing been done? This testing is used to assess the
type and extent of security-related vulnerabilities in systems and net-
works, test network security perimeters, and empirically verify the
resistance of applications to misuse and exploitation. It is possible
that system administrators are sophisticated enough to be able to
utilize the tool sets available to scan the systems for vulnerabilities;
however, a whole host of “white hat” hacker security consulting firms
have sprung up over the past several years and these people are
recommended.

¢ Has intrusion testing been done? Many software tools are available on
the market today that “monitor” systems and report on possible intru-
sions. These are referred to as intrusion detection systems (IDS). In
this section of the audit, we determine whether an IDS is used and, if
so, how effectively.

¢ [s there a QA (quality assurance) function? Although QA departments
have been a traditional part of the IT function for decades, many new-
er pure-play Internet companies seem to ignore this function. In this
section, the auditor will determine if the QA function is present; if it is,
then it will be reviewed.

Reporting

Logging of all logins, attempted intrusions, etc. must be maintained for
a reasonable period of time. In this section, the auditor will determine if
these logs are maintained and, if so, for how long.

Backup

In the event of failure it is usual that the last backup be used to restore
the system. In this section, the auditor will determine the frequency of
backups and whether this schedule is reasonable.

ERGONOMICS

At this stage the auditor becomes involved in more abstract issues. In
the last section on security, we could be very specific about what a system
requires. In the section on ergonomics we need to be more subjective.

To achieve this end will require the auditor to meet with the system
developers and with the end users. At times, these end users will be cur-
rent or potential customers of the system; therefore, it might be necessary
to develop surveys and perform focus groups. The goal here is nothing less
than determining a “thumbs up” or “thumbs down” on the Web-based sys-
tem vis-a-vis other Web-based systems.

241

SOFTWARE ENGINEERING HANDBOOK

Navigability

Navigation means determination of whether or not the site makes sense
in terms of browsing it.

e How easy is it to find something on this site? If looking for a specific
product, how many pages does one need to surf through to find it?

¢ [s there a search engine? If so, review for correctness and complete-
ness. Many sites do not have search engines (in this instance we are
talking about a search engine to search the site only, rather than the
Internet). If the Web site exhibits depth (i.e., many pages), it becomes
rather difficult to navigate around it. If a search engine is available, the
auditor must check to see if what is being searched for can be correct-
ly found.

e [s there a site map? If so, review for correctness and completeness.
While not required and not often found, site maps are one of the most
useful of site navigation tools. If available, the auditor will determine
correctness of this tool.

¢ Are back and forward (or other) buttons provided? What tools are pro-
vided to the end user for moving backward and forward within the
site? Are the browser’s back and forward buttons the only navigation
tools — or did the Web designers provide fully functional toolbars? If
so, do these toolbars work on all pages? We have found that, of those
firms audited, 10 percent of the pages pointed to by the toolbars can-
not be found.

e Are frames used? If so, do toolbars and other navigation tools still
work?

Usability

In the end it comes down to one question really: “How usable is the Web
site?” In this section we ask:

e How easy is it to use this site? Although the auditor might have an
opinion that might well be valid, here we resort to surveys and focus
groups to determine the answer.

e How useful is this site?

Content

In this section we assess the value of the information contained within
the site compared to competitive sites.

¢ [s content updated regularly?

¢ [s content relevant?

¢ Do visitors consider content worthwhile? The auditor will use survey
techniques to determine the answer to this question.

242

The Process of EDP Auditing

e How does content compare with competitors’? The auditor will use
survey techniques to determine the answer to this question.

Search Engine

The use of search engines as a way to find a site has declined in popular-
ity, but it is still an important marketing vehicle on the Web. In this section
the auditor will determine where the site places when performing a search
using the top ten search engines.

CUSTOMER SERVICE

The Web is a doorway to the company’s business; however, it is just one
part of the business. Tangential services must be audited as well. Customer
service is one of the biggest problem areas for Net firms. There have been
many well-publicized instances of shoddy customer service. It is in the
company’s best interests, therefore, to assess customer service within the
firm vis-a-vis its Web presence.

Accessibility
How easy is it for your customers to reach you?

¢ Review e-mail response. How long does it take you to respond to a cus-
tomer e-mail?

e Review telephone response. How long does a customer wait on hold
before a person answers his or her query?

E-Commerce

If your site doubles as an e-commerce site (i.e., you sell goods or ser-
vices from your site), you need to assess the quality of this customer
experience.

e Check shopping experience. Using a “mystery shopper” approach, the
auditor will endeavor to make routine purchases using the Web site.
Determine:

—Is the shopping cart correct (i.e., are the goods you purchased in
the shopping cart)?

— Does the e-commerce software calculate taxes properly?

— Does the e-commerce software calculate shipping charges properly?

e Check the fulfillment experience:

—Is a confirmation e-mail sent to the purchaser?
—Is the return policy carefully explained?
— How quickly does the company refund money on returns?

243

SOFTWARE ENGINEERING HANDBOOK

Privacy

At a minimum, the auditor must review the company’s privacy policy
statement. He or she should then review the data flow to determine if the
privacy policy is adhered to.

LEGALITY

The digital age makes it easy to perform illegal and potentially litigious
acts. From a corporate perspective, this can be anything from a Web
designer illegally copying a copyrighted piece of art to employees down-
loading pornography.

Copyright

Check the content ownership of text on your site. It is quite easy to copy
text from one site to another. Ensure that your copy is completely original
or that you have the correct permissions to reprint the data. In the same
way, check image ownership.

Employee Web Usage

In a number of court cases employees have claimed harassment when
other employees within the organization downloaded and e-mailed por-
nography. The company is responsible for the actions of its employees;
therefore, it is highly recommended that the company:

e Create a policy memo detailing what can and cannot be done on the In-
ternet (include e-mail). Make sure all employees sign and return this
memo. Use tools such as those on surfcontrol.com to monitor employ-
ee Net usage.

e Determine whether any e-mail monitoring software is used and deter-
mine its effectiveness.

CONCLUSION

Auditing IT systems is an important activity. It is surprising, then, that so
few companies take the time and effort to perform this necessary activity.
EDP auditing not only pinpoints potentially troublesome technical areas
but it can also serve as reinforcement for stakeholder support by identify-
ing human factor issues as well.

244

Chapter 18

The Management
of Software
Maintenance

Maintenance is often called the enigma of software. Enormous amounts of
dollars are spent on it but little management attention is given to it. Soft-
ware maintenance presents a real conundrum — hardware deteriorates
because of lack of maintenance, whereas software often deteriorates
because of the presence of maintenance.

Maintenance is also the most expensive component of the software life
cycle, as shown in Exhibit 18-1. IT departments spend from 75 to 80 percent
of their budget (Guimaraes, 1983) and time on the maintenance process of
system development. In addition, the cost of fixing an error rises dramati-
cally as the software progresses through the life cycle. This amply demon-
strates that maintenance costs more than any other phase and also that
maintenance costs (per fixing the error) are enormous.

Once a new system is implemented, the real work begins for most IT
departments. As users utilize the system, errors are discovered, and
changes are requested. As systems have become more widely used within
critical departments of the organization, the maintenance process has
taken on a more important role. The management of systems maintenance
has become perhaps the most critical phase of systems development.

THE MAINTENANCE PROCESS

As the new system is implemented and users begin to work with it,
errors occur or changes are needed. Just as in the development of a new
system, maintenance requires that steps be taken carefully in making
changes or fixing errors. In the event of an error, this can be even more crit-
ical. Each step of the maintenance process is similar to steps in the sys-
tems development life cycle (Curtis et al., 2000) as seen in Exhibit 18-2.
This is a logical extension of the development process because changes
made to the system can affect the whole system and need to be controlled
carefully.

245

SOFTWARE ENGINEERING HANDBOOK

Exhibit 18-1.

Maintenance
accounts for 75-80%
of the systems
development effort

The High Cost of Maintenance

The remaining pieces
are:
Analysis
Design
Coding
Testing

SDLC
Project Project Initiation
Idenélgf;act:%r:‘and and Planning Analysis Logical Design Physical Design Implementation
Obtain 1Mol)
Maintenance Requests into Changes Design Changes m(p: ementing
Requests hanges

Maintenance Process

Exhibit 18-2.

Life Cycle

The Maintenance Life Cycle Compared to the Development

The first step in the process is to obtain a maintenance request from a
user. Many organizations use a system service request form (see Appendi-
ces A and B) that spells out the problem or need. Once the request has
been received, the requests can be transformed into changes that can then
be used to make design changes. After the changes are designed and
tested, the changes can be implemented.

Exhibit 18-3 is an overview of system maintenance. Both the customer
and maintainer are interacting with his or her own documentation, i.e., user
manual and maintainer manual. The customer poses questions, problems,

246

The Management of Soffware Maintenance

User
Manual
\ Answers [Questions
Fixes Problems
Change
control Improve- | Suggestions|
ments

v

Maintenance
manual

Exhibit 18-3. An Overview of System Maintenance

and suggestions to the maintainer who, in turn, gives the answers, which
are filtered through a change control process and back into the system.

TYPES OF MAINTENANCE

Categorizing the types of maintenance required is helpful in organizing
and prioritizing the requests of users. Software maintenance is more than
fixing mistakes. Maintenance activities can be broken down into four sub-
activities.

e Corrective maintenance

¢ Adaptive maintenance

¢ Perfective maintenance or enhancement
¢ Preventive maintenance or reengineering

Corrective Maintenance

Corrective maintenance involves fixing bugs or errors in the system as
they are discovered. This maintenance is the type most users are familiar
with because these problems are the most irritating to users. These usually
receive top priority because they can paralyze the organization if not iden-
tified and fixed. Corrective maintenance consumes approximately 17 per-
cent of the maintainer’s time (Lientz and Swanson, 1978). Major skills
required for corrective maintenance are:

¢ Good diagnostic skills
¢ Good testing skills
¢ Good documentation skills

247

SOFTWARE ENGINEERING HANDBOOK

Adaptive Maintenance

Adaptive software maintenance is performed to make a computer pro-
gram usable in a changed environment. For example, if the computer on
which the software runs is going to use a new operating system, the system
requires some adaptive tweaking. Adaptive maintenance is typically part
of a new release of the code or part of a larger development effort. Approx-
imately 18 percent of software maintenance is adaptive (Lientz and Swan-
son, 1978).

Perfective Maintenance

This is the act of improving the software’s functionality as a result of
end-user requests to improve product effectiveness. This includes

¢ Adding additional functionality
e Making the product run faster
¢ Improving maintainability

This is the biggest maintenance time consumer. Approximately 60 percent
of software maintenance is spent on perfective maintenance (Lientz and
Swanson, 1978).

Preventive Maintenance

This refers to performing “premaintenance” in order to prevent system
problems; it is different from corrective maintenance, which is performed
to correct an existing problem. This is like maintaining a car in which you
change the oil and air filter, not in response to some problem but to prevent
a problem from occurring in the first place.

MAINTENANCE COSTS

As computers and their systems become more widely used, the need for
maintenance grows. As these same systems age, maintenance becomes
more critical and time consuming. Since the early 1980s, it is estimated that
maintenance costs have skyrocketed from 40 percent of the IT budget to 75
to 80 percent (Exhibit 18-1). The reason for these increases stems from
once newly designed systems aging. This shift from development to main-
tenance is a natural occurrence as organizations avoid the high cost of new
systems and struggle to maintain their current systems.

Many factors affect the cost in time and money expended on system
maintenance. One of the most costly is design defects. The more defects in
a system, the more time is spent identifying and fixing them. If a system
has been designed and tested properly, most defects should have been
eliminated, but in the case of poor design or limited testing, defects can
cause system downtimes that cost the organization in lost efficiency and
perhaps sales.

248

The Management of Soffware Maintenance

The number of users can also affect the cost of system maintenance.
The more users, the more time will be spent on changes to the system.
More importantly, the more platforms the system is installed on, the higher
the cost of maintenance. If a single system needs a change, then the time it
takes to change the system is limited, but if that system resides on plat-
forms across the country, e.g., in many branch offices of corporations, then
the cost is increased significantly.

The quality of the documentation can also affect the overall cost of
maintenance. Poor documentation can result in many lost hours searching
for an answer that should have been explained in the documentation
(Lientz and Swanson, 1981). The documentation is a type of road map to
the system; when the map is well defined, finding your way through the sys-
tem and understanding it become much easier.

The quality of the people and their skill level can also cost an IT depart-
ment many wasted hours. An inexperienced or overloaded programmer
can increase the cost of maintenance in two ways. First he or she can waste
hours learning on the job at the IT department’s expense. Second, a pro-
grammer overwhelmed with projects, may skip steps in the maintenance
process and, in turn, make mistakes that cost time and money to fix.

The tools available to maintenance personnel can save many hours of
work. Using automation tools such as CASE tools, debuggers, and others
can help the programmer pinpoint problems faster or make changes more
easily.

The structure of the software can also contribute to maintenance costs
(Gibson, 1989). If software is built in a rational and easy-to-follow manner,
making changes will be much easier and thus much faster, saving time and
resources. Software maintenance costs can be reduced significantly if the
software architecture is well defined and clearly documented, and creates
an environment that promotes design consistency through the use of
guidelines and design patterns (Hulse et al., 1989).

A MODEL FOR MAINTENANCE

Harrison and Cook have developed a new model of software mainte-
nance based upon an objective decision rule, which determines whether a
given software module can be effectively modified or if it should be rewrit-
ten. Their take is that completely rewriting a module can be expensive.
However, it can be even more expensive if the module’s structure has been
severely degraded over successive maintenance activities. A module that
is likely to experience significant maintenance activity is called “change
prone.” Their paper suggests that early identification of change-prone
modules through the use of change measures across release cycles can be
an effective technique in efficiently allocating maintenance resources.

249

SOFTWARE ENGINEERING HANDBOOK

In maintenance requests for nonchange-prone modules, the process
flow is as follows:

Analyze code and identify change

Implement change and update documentation

Apply metric analysis

Compare with baseline

Check to see if it exceeds the threshold

If yes, then declare module to be “change prone;”
otherwise, declare module to be non-change prone.

VRN

The process for maintenance requests for a change-prone module is as
follows:

Identify the highest level artifact affected by the request
Regenerate artifact

Identify artifacts that can be reused

Iterate through “development”

Declare module to be non-change prone.

%
%
%
%

MANAGING MAINTENANCE PERSONNEL

As systems age and demand increases for maintenance personnel, there
has been a loud debate over just who should be doing the maintaining.
Should it be the original developers? Or should it be a separate mainte-
nance department? Many have argued that the people who developed the
system should maintain it because they will best understand the system
and be better able to change it (Swanson, 1990). This logic is correct but
difficult to fulfill because developers want to keep building new systems
and consider maintenance a less desirable function. IT professionals view
maintenance as fixing someone else’s mistakes. One solution to this prob-
lem that has been tried recently involves rotating the IT personnel from
development to maintenance and back to allow everyone to share in the
desirable as well as undesirable functions of the department.

MEASURING EFFECTIVENESS

An important part of managing maintenance is to understand and mea-
sure the effectiveness of the maintenance process. As a system is imple-
mented, service requests may be quite high as bugs are worked out and
needs for change are discovered. If the maintenance process is operating
properly an immediate decrease in failures should be seen (Exhibit 18-4).
Good management of maintenance should include recording failures over
time and analyzing these for effectiveness. If a decrease is not noticed, the
problem should be identified and resolved.

250

The Management of Soffware Maintenance

Failures

Implementation

Exhibit 18-4. Normal Distribution of Failures Following Implementation

Another measure of success of the maintenance process is the time
between failures. The longer the time between failures, the more time can
be spent on improving the system and not just fixing the existing system
(Lientz, 1983). Failures will happen, but more costly is the time fixing even
the simplest failure.

Recording the type of failure is important to understanding how the
failure happened and can assist in avoiding failures in the future. As this
information is recorded and maintained as a permanent record of the sys-
tem, solutions can be developed that fix the root cause for a variety of
failures.

CONTROLLING MAINTENANCE REQUESTS

As problems arise or the need for change is discovered, the flow of these
requests must be handled in a methodical way. Because all requests are
not equal and they arrive at the project manager’s desk at various times, a
system has been developed by most IT departments. This system provides
a logical path for the approval of requests and prioritizes and organizes
those approved. The project manager has the job of categorizing the
requests and passing them on to the “priority board” that decides if the
request is within the business model and what, if any, priority to give the
change. As decisions are made by the board, they are passed back to the
project manager for action. The project manager then reports the decision
to the user and acts on the change based on the priority given.

The type and severity of change help decide what priority it is given. If
the change is important enough, it may be placed at the top of the queue
for immediate action. If several changes occur in a single module a batch
change may be requested. A batch change involves making changes to a
whole module at once to avoid working on the same module several times.
This also allows users to view the changes as a single update that may
change the use of a module through screen changes or functionality.

251

SOFTWARE ENGINEERING HANDBOOK

ﬁ%ﬁ%ﬁ

Request Change
Priority|Board Uster
Decision—wﬁl’
@ — Change Order
Submit Request Prioritize and
Catagorize

Project]Manager Decision

Programmer

Exhibit 18-5. Change Request Flow

The queue of changes is a valuable tool in controlling work that needs to
be done. Items high in the queue receive the immediate attention they
deserve; those of lesser importance may never be acted on due to a change
in needs or a new system that solves the problem.

CONCLUSION

Managing system maintenance requires that steps be taken similar to
the development of new systems. System maintenance is in many ways an
extension of the system development life cycle and involves similar steps
to ensure that the system is properly maintained. As a new system is imple-
mented, system maintenance is required to fix the inevitable errors and
track them for future use. As a system ages and changes are requested, sys-
tem maintenance has the job of categorizing, prioritizing, and implement-
ing changes to the system. As these changes are made, the system librarian
has the very important job of controlling the integrity of the system. The
proper management of system maintenance is vital to the continued suc-
cess of the system. A well managed systems maintenance department can
save time and money by providing an error-free system that meets the
needs of the users it serves.

References
Curtis, G., Hoffer, J., George, J., and Valacich, S. (2000). Introduction to Business Systems Analy-
sis, Pearson Custom Publishing, Boston.

Gibson, V. and Senn, J. (1989). System Structure and Software Maintenance Performance, ACM
Press, New York.

Guimaraes, T. (1983). Managing Application Program Maintenance Expenditures, ACM Press,
New York.

252

The Management of Soffware Maintenance

Harrison, W. and Cook, C. Insights on improving the maintenance process through software
measurement. http://www.cs.pdx.edu/~warren/Papers/CSM.htm.

Hulse, C., Edgerton, S., Ubnoske, M., and Vazquez, L. (1999). Reducing Maintenance Costs
through the Application of Modern Software Architecture Principles, ACM Press, New York.

Lientz, B. (1983). Issues in Software Maintenance, ACM Press, New York.

Lientz, B.P. and Swanson, E.B. (1978). Characteristics of application software maintenance,
Commn. ACM, 21, 466-481.

Lientz, B.P. and Swanson, B. (1981). Problems in Application Software Maintenance, ACM Press,
New York.

Swanson, E. (1990). Departmentalization in Software Development and Maintenance, ACM
Press, New York.

253

This page intentionally left blank

Chapter 19
The Science of
Documentation

The one thing that software developers hate to do is to document their pro-
grams and their systems. Therefore, it is understandable that software
documentation is the one of the most neglected areas in information tech-
nology. However, documentation is one of the most important components
of systems development. Without adequate documentation, the system
can be neither utilized efficiently nor maintained properly.

WHAT EXACTLY IS DOCUMENTATION?

According to Ambler (2002), a document is any artifact external to
source code whose purpose is to convey information in a persistent man-
ner; documentation includes documents and comments in source code. A
model is an abstraction that describes one or more aspects of a problem or
a potential solution.

All professionals in the field agree that documentation promotes soft-
ware quality. There are numerous, well-documented reasons for this. David
Tufflye, a consultant who specializes in producing high-quality documenta-
tion to a predefined standard, says that consistent, accurate project docu-
mentation is known to be a major factor contributing to information sys-
tems quality. He goes on to say that document production, version control,
and filing are often not performed, contributing to a higher number of soft-
ware defects that impact the real and perceived quality of the software, as
well as leading to time and expense spent on rework and higher mainte-
nance costs (Tufflye, 2002).

Marcello Alfredo Visconti proposes a software system documentation
process maturity model that is consistent with — and runs in conjunction
with — the Software Engineering Institute’s (SEI) software process and
capability maturity model. He argues that one of the major goals of soft-
ware engineering is to produce the best possible working software along
with the best possible supporting documentation.

Decades’ worth of empirical data shows that software documentation
processes and products are key components of software quality. These

255

SOFTWARE ENGINEERING HANDBOOK

Exhibit 19-1

Visconti’s Four-Level Documentation Maturity Model

Keywords

Succinct
Description

Key
Practices

Key
Indicators

Key
Challenges

Level 1
Ad hoc
Chaos; variability

Documentation
not a high prior-
ity

Ad-hoc process;
documentation
not important

Documentation
missing or out of
date

Establish docu-
mentation stan-
dards

Level 2
Inconsistent
Standards
check-off list;
inconsistency

Documentation
recognized as
important and
must be done.

Inconsistent
application of
standards

Standards
established
and use of
check-off list

Exercise qual-
ity control
over content;
assess docu-
mentation
usefulness;
specify
process

Level 3
Defined
Product assess-
ment; process

definition

Documentation
recognized as
important and
must be done
well.

Documentation
quality assess-
ment; docu-
mentation
usefulness;
assurance
process defini-
tion

SQA-like prac-
tices

Establish pro-
cess measure-
ment; incorpo-
rate control
over process

Level 4
Controlled
Process assess-

ment; mea-
surement con-
trol; feedback;
improvement
Documentation
recognized as
important and
must be done
well consis-
tently
Process quality
assessment
and measures

Data analysis
and improve-
ment mecha-
nisms

Automate data
collection and
analysis; con-
tinually striv-
ing for optimi-
zation

Source: Cook, C.R. and Visconti, M. (2000). Software system documentation process maturity
model. http://www.cs.orst.edu/~cook/doc/Model.htm.

studies show that poor-quality, out-of-date, or missing documentation is a
major cause of errors in future software development and maintenance
(Visconti, 1993). For example, the majority of defects discovered during
integration testing are design and requirements defects, e.g., defects in
documentation that were introduced before any code was written

Visconti’s four-level documentation maturity model provides the basis
for an assessment of an organization’s current documentation process and
identifies key practices and challenges to improve the process. The four-
level enhanced model appears in Exhibit 19-1.

256

The Science of Documentation

Key practices as defined by Cook and Visconti (2000) are:

1.

10.

Creation of basic software documents

— Consistent creation of basic software development documents

— Consistent creation of basic software quality documents

Management recognition of importance of documentation

— Documentation generally recognized as important

Existence of documentation policy or standards

— Written statement or policy about importance of documentation

— Written statement or policy indicating what documents must be
created for each development phase

— Written statement or policy describing the contents of docu-
ments that must be created for each development phase

Monitor implementation of policy or standards

— Use of a mechanism, such as a check-off list, to verify that re-
quired documentation is done

— Monitor adherence to documentation policy or standards

Existence of a defined process for creation of documents

— Written statement to prescribe process for creation of documents

— Mechanism to monitor adherence to prescribed process

— Adequate time to carry out the prescribed process

— Training material or classes about the prescribed process

Methods to assure quality of documentation

— Mechanism to monitor quality of documentation

— Mechanism to update documentation

— Documentation is traceable to previous documents

Assessments of usability of documentation

— Person or group perception of usability of documents created

— Mechanism to obtain user feedback about usability of created
documentation

Definition of software documentation quality and usability measures

— Definition of measures of documentation quality

— Definition of measures of documentation usability

. Collection and analysis of documentation quality measures

— Collection of measures about quality of documentation

— Analysis of documentation quality measures

— Recording of documentation error data

— Tracking of documentation errors and problem reports to
solutions

— Analysis of documentation error data and root causes

— Generation of recommendations based on analysis of quality
measurements and error data

Collection and analysis of documentation usability measures

— Collection of measures about usability of documentation

— Analysis of documentation usability measurement

257

SOFTWARE ENGINEERING HANDBOOK

— Generation of recommendations based on analysis of usability
measurements

— Generation of documentation usage profile

11. Process improvement feedback loop

— Mechanism to feedback improvements to documentation
process

— Mechanism to incorporate feedback on quality of documentation

— Mechanism to incorporate feedback on usability of documentation

An assessment procedure was developed to determine where an organi-
zation’s documentation process stands relative to the model. This enables
mapping from an organization’s past performance to a documentation
maturity level and ultimately generates a documentation process profile.
The profile indicates key practices for that level and identifies areas of
improvement and challenges to move to the next higher level.

Application of the model has a definite financial benefit. The software
documentation maturity model and assessment procedure have been used
to assess a number of software organizations and projects; a cost/benefit
analysis of achieving documentation maturity levels has been performed
using COCOMO that yielded an estimated return on investment of about
6:1 when moving from the least mature level to the next. According to
Visconti, these results support the main claim of this research: software
organizations that are at a higher documentation process maturity level
also produce higher-quality software, resulting in reduced software testing
and maintenance effort (Visconti, 1993).

METHODS AND STANDARDS

The many approaches to producing documentation are practically
unique to each organization. Although the majority of software documen-
tation is produced manually — i.e., done with word processing programs
or with tools such as Microsoft Visio, some systems are designed to ease
the process and will produce “automatic” documentation. Some of the
automatic documentation capabilities are a subset of systems of a wider
range of capabilities; this is the case with many computer-assisted soft-
ware engineering (CASE) tools. These products are designed to support
development efforts throughout the software development life cycle
(SDLC), with documentation just one small part.

An example of one such tool is Hamilton Technologies 001 which is dis-
cussed at length in this handbook. 001 is a CASE tool (now usually called
application development tool in lieu of the term CASE) that surrounds
itself with an intriguing methodology called “development before the fact”
(DBTF). The premise behind 001 and DBTF is that developing systems in a
quality manner begets quality and error-reduced systems. One of the

258

The Science of Documentation

intriguing features of the 001 tool set is that it not only generates program-
ming source code from maps (i.e., models) of a business problem, but also
generates the documentation for the system.

On one end of the documentation spectrum, many companies utilize no
tools other than a word processor and a drawing tool to extract documen-
tation from their reluctant programmers. On the other end, forward-think-
ing companies make significant investments in their software development
departments by outfitting them with tool suites such as 001. The vast
majority of organizations lie somewhere between these two extremes.

The world of client/server has afforded the developer with new oppor-
tunities and decisions to make in terms of which tool set to use. When
Microsoft Office was first introduced, it was utilized mostly for word pro-
cessing. Today, Microsoft Access, the database component of the MS Office
product set, has become a significant player in corporations with a require-
ment for a robust but less complex database than that of the powerhouse
computers that run their back offices (i.e., Sybase, Oracle, Microsoft SQL
Server).

Microsoft Access enables the automated production of several kinds of
documents related to the datasets implemented with the program. The
documents describe schemas, queries, and entity relationship diagrams
(ERDs) as shown in Exhibit 19-2.

Some products are dedicated to producing documentation. One such
product is Doc-o-Matic by toolsfactory.com. It is designed to work with the
Borland Delphi software development environment. The product works
with Delphi’s internal structures, which may consist of: Author, Bugs, Con-
ditions, Examples, Exceptions, History, Ignore, Internal, Notes, Parameters,
Remarks, Return Value, See Also, Todo, and Version (Leahey, 2002). Doc-o-
Matic has been compared to a gigantic parsing routine. As software sys-
tems grow in size and sophistication, it becomes harder for humans to
understand them and anticipate their behavior, says Charles Robert Wal-
lace in his dissertation, “Formal Specification of Software Using Abstract
State Machines.” This method essentially enables walk-through before
code is written. Wallace argues that normal specification techniques aim to
foster understanding and increase reliability by providing a mathematical
foundation to software documentation (Wallace, 2000). His technique calls
for layering information onto a model through a series of refinements.

GENERATING DOCUMENTATION THE RIGHT WAY

At present, many organizations are practicing a “hit or miss ” form of
software documentation. These are usually the companies that follow no
or few policies and procedures and loosely follow standards. Good soft-
ware development is standards based; thus, documentations must also be

259

SOFTWARE ENGINEERING HANDBOOK

Customer

Sales Order

ltem

Exhibit 19-2. An Access Entity Relationship Diagram (ERD)

standards based. At minimum, software documentation should consist of
the following:

e All documentation produced prior to the start of code development. Most

projects go through a systems development life cycle, which often
starts with a feasibility study, goes on to create a project plan, and
then enters into the requirements analysis and system design phases.
Each of these phases produces one or more deliverables, schedules,
and artifacts (examples of these can be found in the appendices to this
handbook). In sum, the beginnings of your system documentation ef-
fort should include the feasibility study, project plan, requirements
specification, and design specification, where available.

e Program flowcharts. Programmers usually, although not always, ini-

260

tiate their programming assignment by drawing one or more flow-
charts that diagram the nuts and bolts of the actual program. Systems
analysts can utilize diagrammatic tools such as data flow diagrams
(DFD) or UML-based (unified modeling language) class diagrams

The Science of Documentation

. Customer Data
) (Y ()

Rental or
Customer |—Purchase

Get Customer

Verify Customer

Request Membershlp Account Status Scan Products Process Payment
Information
\ J -
! | !
Account Pastdue Account Payment Okay

Nota Member | ¢ ation Customer Won't Pay Not Valid

D1 | Customer Data
2
D2 Inventory
Create New Store Manager D3 Product History
Data
Customer Account

DR

Product
Customer — Check —#
Request

Check In-stock
Status

Product History |

| D4 | Orders | | D3 Data

7 (8 \

Releases and Usage Rentals
Other Products To Purchase Area

- _J

9) 10)
Products
Vendor |~ Ordered Process Received [~ "V01% pocess Payment
Products to Vendor
D2 Inventory | D4 | Orders |
D4 Orders

Exhibit 19-3. A DFD

(Exhibits 19-3 and 19-4) to depict the entire system from a physical de-
sign level; however, the programmer is often required to utilize flow-
charts (Exhibit 19-5) to depict the flow of a particular component of
the DFD or UML class diagram.

261

SOFTWARE ENGINEERING HANDBOOK

1

1

b

ApplicationControllerUl:: IUserInterfacel

Applicalion’ Controller

ResourceManagementUl:: ResourceUl
-ID : Long
-swingAttributes : Collection
- - - Resource:: ResourceUsage
+showCreate(in tOption : String) .
+showEdit(in tOption : String) -ID : Long 0.r 1
+showSearch(in tOption : String) -percentUsed : Percent ervice:: Appointment
|+ showList(in tOption : String, in oCollection : Collection) -appointmentiD : Long
-resourcelD : Long
| +ResourceUsage()
0.*
Resource:: Resource
-ID : Long
-name : String
-description : String 1
-unitCost : Money

-costUnit : String
-resourceTypelD : Long
-serviceProviderID : Long
+getID() * 1
R

:seelflonl;tréz(s)t() %IServicervider:: ServiceProvider
1 +getUnitCost() : Money
+setCostUnit()
+getCostUnit() : String

+getResourceType() : String
+setResourceType()

+getDescription() : String
+setDescription()

+getName() : String

+setName()

+getServiceProvider() : ServiceProvider

Exhibit 19-4. A UML Class Diagram

262

Use or business cases. The first bullet point recommends including in
your documentation all documentation created during the analysis
and design component of the systems development effort. Use cases
may or may not be a part of these documents — although they should
be. Use cases, an example of which is shown in Exhibit 19-6, provide a
series of end-user procedures that make use of the system in question.
For example, in a system that handles student registration, typical use
cases might include student log in, student registering for the first
time, and a student request for financial aid. Use cases are valuable in
all phases of systems development: 1) during systems analysis, use
cases enable the analyst to understand what the end user wants out of
the new system; 2) during programming, use cases assist the program-
mer to understand the logic flow of the system; and 3) during testing,
use cases can form the basis of the preliminary test scripts.

Terms of reference. Every organization is unique in that it has its own
vocabulary. Systems people are also unique in that they often use a lin-
go incomprehensible to most end users. A “dictionary” of terms used
is beneficial in clearing up any misunderstandings.

Review soccer
camp Web site

The Science of Documentation

,—>

Beginner

2-week camp

Determine
skill level

Advanced

L

2" week only

Download Web
application form

Complete
application

Accepted?

|

Yes No l

Send payment by
(date)

Championzone

Yes

Preview

attendee?

No

Apply next season

Exhibit 19-5. A Flowchart

List previous
camps attended

Submit coach
reference

263

SOFTWARE ENGINEERING HANDBOOK

Exhibit 19-6. A Sample Use Case

Requestor logs into the system to submit a new request:

1. Requestor keys in his log-on ID and six- to eight-digit password,
which are then verified against valid IDs and passwords in the pro-
curement database. If the ID or password does not match, an error
message is displayed on the screen. The requestor is prompted to
re-key the ID or password. The requestor is allowed three attempts
to log in. If unsuccessful, the password is flagged and a message is
displayed to call data security for resolution. If successful, the pro-
curement menu is displayed.

2. The requestor selects the menu option ENTER PURCHASE
REQUEST by pressing the radio button next to that option.

3. The system displays the purchase request order form on the
screen. The requestor keys the department name, number, and
cost center in the appropriate fields. The requestor also keys the
product numbers, selections, and quantities and then presses the
radio button for SUBMIT ORDER.

4. A purchase order number is automatically assigned by the system
and is displayed on the screen as confirmation of the order taken.

5. An e-mail is also sent to the requestor confirming the order.

264

Data dictionary. Although a data dictionary (DD) is usually included in
system design specification (SDS), if it is not, it should be included
here. An excerpt of a DD can be seen in Exhibit 19-7 and in Appendix
K. A data dictionary is “terms of reference” for the data used in the sys-
tem. It describes database, tables, records, fields, and all attributes
such as length and type (i.e., alphabetic, numeric). The DD also should
describe all edit criteria such as the fact that social security numbers
must be numeric and must contain nine characters.
Program/component/object documentation. Aside from flowcharts, un-
less the programmer is using an automated CASE tool that generates
documentation, the programmer should provide the following docu-
mentation: 1) control sheet (see Appendix N); 2) comments within the
program (Exhibit 19-8); 3) textual description of what the program is
doing, including pseudocode, as shown in Exhibit 19-8.

All presentation material. 1t is likely that, at some point, the system
team will be asked to make a presentation about the system. All pre-
sentation paraphernalia such as slides, notes, etc. should be included
in the system documentation.

The Science of Documentation

Exhibit 19-7. Data Dictionary

Name: Membership Database

Aliases: None

Where Used/How Used Used by the database management sys-
tem to process requests and return
results to the inquiry and administration

subsystems
Content Description: Attributes associated with each asset
including:
e Membership number = 10 numeric
digits

e Member since date = date
¢ Last name = 16 alphanumeric characters
e First name = 16 alphanumeric characters
e Address = 64 alphanumeric characters
e Phone number = 11 numeric digits
(1, area code, phone number)
e Assets on loan = array containing
10 strings, each containing 64 alphanu-
meric characters
¢ Assets overdue = array containing
10 strings each containing 64 alphanu-
meric characters
¢ Late fees due = 10 numeric digits
e Maximum allowed loans = 2 numeric

digits
Name: Member Data
Aliases: None
Where Used/How Used A file used to validate username and pass-

words for members, librarians, and

administrator when attempting to

access the system. The username and

password entered are compared with

the username and password in this file.

Access is granted only if a match is

found.

Content Description: Attributes associated with each asset

including:

e Member username = 16 alphanumeric
digits

e Member password = 16 alphanumeric
digits

265

SOFTWARE ENGINEERING HANDBOOK

Exhibit 19-8. Sample Program Comments

//Get cost of equipment

rsEquipment = Select * from Equipment Utilized Where Pothole ID =

NewPotholeID

Loop through rsEquipment and keep running total of cost by
equipment *

rsRepairCrew(“*Repair Time”)

Total Cost = Total Employee Cost + Total Equipment Cost +
Material Cost

Update Employee Set Total Cost Where Pothole ID = NewPotholeID

Test cases (Appendix O) and test plan. Although use cases form the ba-
sis of the initial set of test cases, they are a small subset of test cases.
An entire chapter has been dedicated to software testing, so we will
not prolog the discussion here. Suffice it to say that any and all test
cases used in conjunction with the system — along with the results of
those test cases — should be included in the system documentation.

e Metrics. It is sad to say that most organizations do not measure the ef-

fectiveness of their programmers. Those that do should add this infor-
mation to the system documentation. This includes a listing of all
metrics (formula) used and the results of those measurements. (This
handbook contains many chapters on metrics.) At a minimum, the
weekly status reports and management reports generated from
toolsets such as