

Software
Engineering
Handbook

The ABCs of IP Addressing

Gilbert Held

ISBN: 0-8493-1144-6

The ABCs of TCP/IP

Gilbert Held

ISBN: 0-8493-1463-1

Building an Information Security

Awareness Program

Mark B. Desman

ISBN: 0-8493-0116-5

Building a Wireless Office

Gilbert Held

ISBN: 0-8493-1271-X

The Complete Book of Middleware

Judith Myerson

ISBN: 0-8493-1272-8

Computer Telephony Integration,

2nd Edition

William A. Yarberry, Jr.

ISBN: 0-8493-1438-0

Cyber Crime Investigator’s Field Guide

Bruce Middleton

ISBN: 0-8493-1192-6

Cyber Forensics: A Field Manual for

Collecting, Examining, and Preserving

Evidence of Computer Crimes

Albert J. Marcella and Robert S. Greenfield,

Editors

ISBN: 0-8493-0955-7

Global Information Warfare:

How Businesses, Governments, and

Others Achieve Objectives and Attain

Competitive Advantages

Andy Jones, Gerald L. Kovacich,

and Perry G. Luzwick

ISBN: 0-8493-1114-4

Information Security Architecture

Jan Killmeyer Tudor

ISBN: 0-8493-9988-2

Information Security Management

Handbook, 4th Edition, Volume 1

Harold F. Tipton and Micki Krause, Editors

ISBN: 0-8493-9829-0

Information Security Management

Handbook, 4th Edition, Volume 2

Harold F. Tipton and Micki Krause, Editors

ISBN: 0-8493-0800-3

Information Security Management

Handbook, 4th Edition, Volume 3

Harold F. Tipton and Micki Krause, Editors

ISBN: 0-8493-1127-6

Information Security Management

Handbook, 4th Edition, Volume 4

Harold F. Tipton and Micki Krause, Editors

ISBN: 0-8493-1518-2

Information Security Policies,

Procedures, and Standards:

Guidelines for Effective Information

Security Management

Thomas R. Peltier

ISBN: 0-8493-1137-3

Information Security Risk Analysis

Thomas R. Peltier

ISBN: 0-8493-0880-1

A Practical Guide to Security Engineering

and Information Assurance

Debra Herrmann

ISBN: 0-8493-1163-2

The Privacy Papers:

Managing Technology and Consumers,

Employee, and Legislative Action

Rebecca Herold

ISBN: 0-8493-1248-5

Secure Internet Practices:

Best Practices for Securing Systems in

the Internet and e-Business Age

Patrick McBride, Jody Patilla,

Craig Robinson, Peter Thermos,

and Edward P. Moser

ISBN: 0-8493-1239-6

Securing and Controlling Cisco Routers

Peter T. Davis

ISBN: 0-8493-1290-6

Securing E-Business Applications and

Communications

Jonathan S. Held and John R. Bowers

ISBN: 0-8493-0963-8

Securing Windows NT/2000:

From Policies to Firewalls

Michael A. Simonyi

ISBN: 0-8493-1261-2

Six Sigma Software Development

Christine B. Tayntor

ISBN: 0-8493-1193-4

A Technical Guide to IPSec Virtual Private

Networks

James S. Tiller

ISBN: 0-8493-0876-3

Telecommunications Cost Management

Brian DiMarsico, Thomas Phelps IV,

and William A. Yarberry, Jr.

ISBN: 0-8493-1101-2

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401

E-mail: orders@crcpress.com

OTHER AUERBACH PUBLICATIONS

AUERBACH PUBLICATIONS

A CRC Press Company

Boca Raton London New York Washington, D.C.

Software
Engineering
Handbook
Jessica Keyes

"

Vjku"dqqm"eqpvckpu"kphqtocvkqp"qdvckpgf"htqo"cwvjgpvke"cpf"jkijn{"tgictfgf"uqwtegu0"Tgrtkpvgf"ocvgtkcn
ku"swqvgf"ykvj"rgtokuukqp."cpf"uqwtegu"ctg"kpfkecvgf0"C"ykfg"xctkgv{"qh"tghgtgpegu"ctg"nkuvgf0"Tgcuqpcdng
ghhqtvu"jcxg"dggp"ocfg"vq"rwdnkuj"tgnkcdng"fcvc"cpf"kphqtocvkqp."dwv"vjg"cwvjqtu"cpf"vjg"rwdnkujgt"ecppqv
cuuwog"tgurqpukdknkv{"hqt"vjg"xcnkfkv{"qh"cnn"ocvgtkcnu"qt"hqt"vjg"eqpugswgpegu"qh"vjgkt"wug0

Pgkvjgt"vjku"dqqm"pqt"cp{"rctv"oc{"dg"tgrtqfwegf"qt"vtcpuokvvgf"kp"cp{"hqto"qt"d{"cp{"ogcpu."gngevtqpke
qt"ogejcpkecn." kpenwfkpi"rjqvqeqr{kpi."oketqÞnokpi."cpf"tgeqtfkpi."qt"d{"cp{"kphqtocvkqp"uvqtcig"qt
tgvtkgxcn"u{uvgo."ykvjqwv"rtkqt"rgtokuukqp"kp"ytkvkpi"htqo"vjg"rwdnkujgt0

Vjg"eqpugpv"qh"ETE"Rtguu"NNE"fqgu"pqv"gzvgpf"vq"eqr{kpi"hqt"igpgtcn"fkuvtkdwvkqp."hqt"rtqoqvkqp."hqt
etgcvkpi"pgy"yqtmu."qt"hqt"tgucng0"UrgekÞe"rgtokuukqp"owuv"dg"qdvckpgf"kp"ytkvkpi"htqo"ETE"Rtguu"NNE
hqt"uwej"eqr{kpi0

Fktgev"cnn"kpswktkgu"vq"ETE"Rtguu"NNE."4222"P0Y0"Eqtrqtcvg"Dnxf0."Dqec"Tcvqp."Hnqtkfc"556530"

"

Vtcfgoctm"Pqvkeg<"

"

Rtqfwev"qt"eqtrqtcvg"pcogu"oc{"dg" vtcfgoctmu"qt" tgikuvgtgf" vtcfgoctmu."cpf"ctg
wugf"qpn{"hqt"kfgpvkÞecvkqp"cpf"gzrncpcvkqp."ykvjqwv"kpvgpv"vq"kphtkpig0

"

Xkukv"vjg"Cwgtdcej"Rwdnkecvkqpu"Ygd"ukvg"cv"yyy0cwgtdcej/rwdnkecvkqpu0eqo

"

Æ"4225"d{"ETE"Rtguu"NNE"
Cwgtdcej"ku"cp"kortkpv"qh"ETE"Rtguu"NNE

Pq"encko"vq"qtkikpcn"W0U0"Iqxgtpogpv"yqtmu
Kpvgtpcvkqpcn"Uvcpfctf"Dqqm"Pwodgt"2/:6;5/369;/:

Nkdtct{"qh"Eqpitguu"Ectf"Pwodgt"4224253528

"

Nkdtct{"qh"Eqpitguu"Ecvcnqikpi/kp/Rwdnkecvkqp"Fcvc

"

Mg{gu."Lguukec."3;72/
Uqhvyctg"gpikpggtkpi"jcpfdqqm"1"d{"Lguukec"Mg{gu0

r0"eo0
Kpenwfgu"dkdnkqitcrjkecn"tghgtgpegu"cpf"kpfgz0
KUDP"2/:6;5/369;/:
30"Uqhvyctg"gpikpggtkpiÐJcpfdqqmu."ocpwcnu."gve0"K0"Vkvng0

"""SC98097:"0M6:"4224
"""22703Ðfe43 4224253528

"

Cw369;aHOaho""Rcig"kx""Ygfpgufc{."Pqxgodgt"42."4224""9<2;"CO

This edition published in the Taylor & Francis e-Library, 2005.

ISBN 0-203-97278-3 Master e-book ISBN

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

Dedication

Τηισ βοοκ ισ µοστ αππρεχιατιϖελψ δεδιχατεδ το
µψ χλιεντσ ανδ φριενδσ, ολδ ανδ νεω,

ανδ παρτιχυλαρλψ µψ φαµιλψ.

This page intentionally left blank

vii

Contents

SECTION I . 1

1 Introduction to Software Engineering 5

The Software Developer . 6
The SDLC: Systems Development Life Cycle 8
The Feasibility Study: The First Step 9
Information-Gathering Channels . 10
Diagramming or Modeling the System 12
Developmental Methodologies . 14
System Design . 20
Object-Oriented Methodologies . 22
Testing. 25
Standards and Metrics . 27
Procedure . 29
Installation . 30
Documentation. 30
Maintenance . 31
Training. 32
Conclusion . 32

2 The Feasibility Study and Cost/Benefit Analysis 35
Feasibility Study Components . 35
Cost/Benefit Analysis . 38
Scheduling the Feasibility Study . 40
The Feasibility Study Process . 41
Conclusion . 45

3 Writing the Project Plan . 47
Why Write a Project Plan? . 47
Who Writes the Project Plan?. 48
What Goes into the Project Plan? . 48
The Project Plan Unwrapped . 49
Is It Worth It? . 58

4 Requirements Elicitation . 61
Stakeholder Analysis. 61

viii

Software Engineering Handbook

Elicitation Techniques. 62
A Checklist for Requirements Management 71
Conclusion . 71

5 Designing User-Oriented Systems . 75
Secrets of the Trade. 75
Tailoring the System to End Users’ Needs 76
Drumming Up Enthusiasm . 77
Methodologies . 78
Distributing Data to Its Rightful Owner — the End User . . . 80
The Systems Choice . 81
Conclusion . 83

6 The Outsourcing Decision . 85
Phase 1: Analysis and Evaluation. 85
Phase 2: Needs Assessment and Vendor Selection 85
Phase 3: Implementation. 86
An Outsourcing Example . 86
Should You Outsource? . 91
Questions to Ask Potential Outsourcing Companies 94
Outsourcing Models . 95
Conclusion . 95

7 Methodology Selection . 97
A Brief Summary of Common Generic Methodologies 97
Rating Your Methodology . 99
Determining Your Methodology’s Rating 107

8 Selecting and Integrating a Repository for Effective
Resource Management . 109
Effective Information Resource Management 109
How to Use This Chapter . 111
Scoring the Repository Workbench. 126

9 Structured Methodology Review . 129
Rapid Applications Development (RAD). 131
Joint Application Design (JAD) . 133
Group Support Systems (GSS) . 134
CASE Tools . 134
A Variety of Structured Methodologies. 135
Extreme Programming. 137
Conclusion . 138

10 Extreme Programming Concepts . 139
The Rules of Extreme Programming . 139
Conclusion . 145

11 Development Before the Fact Technology 147

ix

Contents

What Is Wrong with Systems . 147
Development Before the Fact. 149
The Technology . 150
Integrated Modeling Environment. 152
Primitive Structures . 154
Defined Structures . 156
FMaps, TMaps, and Their Integration. 159
Universal Primitive Operations . 160
Performance Considerations . 163
Inherent Integration with System-Oriented Objects 164

12 The Design Specification . 169
The Process . 169
The Details of Design. 169
Logical and Physical Design. 175
The Systems Specification . 178
A System Spec Walkthrough. 179
Conclusion . 179

13 Object-Oriented Design. 181
What Is OO? . 181
OO from the Bottom Up . 182
OOAD Methodologies . 185
OOAD Simplified . 189

14 User Interface Design . 199
User Interface (UI) Design Principles 199
The UI Design Process. 202
Designing Effective Input and Output 203
Usability Testing . 207
Summary. 208

15 Software Re-Engineering . 211
What is Software Re-Engineering? . 211
Why We Need Software Re-Engineering 211
Software Re-Engineering Strategies. 212
The Process of Re-Engineering . 213
Forward Engineering . 218
Conclusion . 220

16 Software Testing. 221
What Is Software Testing?. 221
Software Testing Strategy . 224
Test Automation . 225
Practical Approach to Automated Software Testing. 227
Using Automated Testing Tools . 228
Conclusion . 229

x

Software Engineering Handbook

17 The Process of EDP Auditing . 231
Organizing Your Audit . 231
Systemic Audit . 234
Security and Quality . 236
Ergonomics . 241
Customer Service. 243
Legality . 244
Conclusion . 244

18 The Management of Software Maintenance 245
The Maintenance Process. 245
Types of Maintenance . 247
Maintenance Costs. 248
A Model for Maintenance . 249
Managing Maintenance Personnel . 250
Measuring Effectiveness . 250
Controlling Maintenance Requests . 251
Conclusion . 252

19 The Science of Documentation . 255
What Exactly Is Documentation? . 255
Methods and Standards . 258
Generating Documentation the Right Way 259
Maintaining Documentation . 268
Conclusion . 269

20 Survey on IT Productivity and Quality 271
Planning for Quality . 272
The Process of Measurement . 273
The Original Metric . 275
The HP Way. 277
The Function Point Advantage. 278
The Quality Equation. 281
Conclusion . 282

SECTION II . 283

21 Putnam’s Software Equation and SLIM 287
Abstract. 287
Procedures/Issues/Policies. 287

22 The COCOMO II Model . 291
Abstract. 291
Application Composition Model . 291
The Early Design Model . 292
The Post-Architecture Model . 293

xi

Contents

23 Putnam’s Cost Estimation Model. 297
Abstract . 297
Procedures/Issues/Policies . 297

24 Malcolm Baldrige Quality Award . 299
Abstract . 299
Procedures/Issues/Policies . 299

25 Zachman’s Framework . 303
Abstract . 303
Procedures/Issues/Policies . 303

26 Linkman’s Method for Controlling Programs through
Measurement . 305
Abstract . 305
Procedure . 305

27 Kellner’s Nontechnological Issues in Software
Engineering. 309
Abstract . 309
Procedures/Issues/Policies . 309

28 Martin and Carey’s Survey of Success in Converting
Prototypes to Operational Systems . 313
Abstract . 313
Procedures/Issues/Policies . 314

29 Putnam’s Trends in Measurement, Estimation,
and Control. 317
Abstract . 317
Procedures/Issues/Policies . 318

30 Sprague’s Technique for Software Configuration
Management in a Measurement-Based Software
Engineering Program. 319
Abstract . 319
Procedures/Issues/Policies . 321
Procedures for Developing an SCM Process 321

31 Corbin’s Methodology for Establishing a Software
Development Environment. 325
Abstract . 325
Procedures/Issues/Policies . 325

32 Couger’s Bottom-Up Approach to Creativity
Improvement in IS Development . 329
Abstract . 329
Procedures/Issues/Policies . 329

xii

Software Engineering Handbook

33 Shetty’s Seven Principles of Quality Leaders 333
Abstract. 333
Procedures/Issues/Policies. 333

34 Simmons’ Statistics Concerning Communications’
Effect on Group Productivity . 337
Abstract. 337
Procedures/Issues/Policies. 337

35 Gould’s Points on Usability. 341
Abstract. 341
Procedures/Issues/Policies: . 341

36 Prescott’s Guidelines for Using Structured Methodology . . . 345
Abstract. 345
Procedures/Issues/Policies. 345

37 Kemayel’s Controllable Factors in Programmer
Productivity . 349
Abstract. 349
Procedures/Issues/Policies. 349

38 AT&T’s “Estimeeting” Process for Developing Estimates . . . 355
Abstract. 355
Procedures/Issues/Policies. 356

39 Burns’ Framework for Building Dependable Systems. 361
Abstract. 361
Procedures/Issues/Policies. 361

40 Avison’s Multiview Meta-Methodology 365
Abstract. 365
Procedures/Issues/Policies. 365

41 Byrne’s Reverse Engineering Technique. 369
Abstract. 369
Procedures/Issues/Policies. 370

42 Prieto-Diaz’ Reusability Model . 373
Abstract. 373
Procedures/Issues/Policies. 373

43 Farbey’s Considerations on Software Quality Metrics
during the Requirements Phase. 377
Abstract. 377
Procedures/Issues/Policies. 377

44 Redmill’s Quality Considerations in the Management
of Software-Based Development Projects 381

xiii

Contents

Abstract . 381
Procedures/Issues/Policies . 381

45 Contel’s Software Metrics in the Process Maturity
Framework . 385
Abstract . 385
Procedures/Issues/Policies . 385

46 Kydd’s Technique to Induce Productivity through
Shared Information Technology . 389
Abstract . 389
Procedures/Issues/Policies . 389

47 Bellcore’s Software Quality Metrics . 391
Abstract . 391
Procedures/Issues/Policies . 391

48 Keyes’ Value of Information . 393
Abstract . 393
Procedures/Issues/Policies . 393

49 Pfleeger’s Method for CASE Tool Selection Based
on Process Maturity . 395
Abstract . 395
Procedures/Issues/Policies . 395

50 McCabe’s Complexity Metric . 399
Abstract . 399
Procedures/Issues/Policies . 399

51 Halstead’s Effort Measure. 401
Abstract . 401
Procedures/Issues/Policies . 401

52 DEC’s Overview of Software Metrics. 403
Abstract . 403
Procedures/Issues/Policies . 403

53 Hewlett Packard’s TQC (Total Quality Control)
Guidelines for Software Engineering Productivity 407
Abstract . 407
Procedures/Issues/Policies . 407

54 Motorola’s Six Sigma Defect Reduction Effort 411
Abstract . 411
Procedures/Issues/Policies . 411

55 Lederer’s Management Guidelines for Better Cost
Estimating . 413
Abstract . 413

xiv

Software Engineering Handbook

56 Kanter’s Methodology for Justifying Investment
in Information Technology . 417
Abstract. 417
Procedures/Issues/Policies. 417

57 The “Make–Buy” Decision. 421
Abstract. 421
Procedures/Issues/Policies. 421

58 Software Selection from Multiple Packages 423
Abstract. 423
Procedures/Issues/Policies. 423

59 The Boehm COCOMO Model . 425
Abstract. 425
Procedures/Issues/Policies. 425

60 IEEE Standard Dictionary of Measures to Produce
Reliable Software . 427
Abstract. 427
Procedures/Issues/Policies. 427

61 IEEE Framework for Measures . 435
Abstract. 435
Procedures/Issues/Policies. 435

62 Gillies’ Method for Humanization of the Software
Factory . 439
Abstract. 439
Procedure . 440

63 Pfleeger’s Approach to Software Metrics Tool
Evaluation . 443
Abstract. 443
Procedures/Issues/Policie . 443

64 Maiden’s Method for Reuse of Analogous Specifications
through Human Involvement in Reuse Process 447
Abstract. 447
Procedures . 448

65 Tate’s Approaches to Measuring Size of Application
Products with CASE Tools . 451
Abstract. 451
Procedure . 452

SECTION III . 455

Appendices . 457

xv

Contents

Appendix A System Service Request Form. 459

Appendix B Project Statement of Work. 461

Appendix C Feasibility Study Template . 489

Appendix D Sample Cost/Benefit Analysis Worksheets 499

Appendix E Sample Business Use Case . 509

Appendix F Sample Project Plan . 519

Appendix G Sample SRS . 535

Appendix H Sample Survey. 577

Appendix I Sample Architectural Design. 579

Appendix J Sample SDS . 593

Appendix K Sample Data Dictionary . 639

Appendix L Sample OO SDS . 643

Appendix M Sample Class Dictionary . 749

Appendix N Control Sheet. 753

Appendix O Test Plan . 755

Appendix P QA Handover Document . 795

Appendix Q Software Metrics Capability Evaluation
Questionnaires . 797

Appendix R IT Staff Competency Survey 819

Appendix S Function Point Counting Guide. 825

Index . 859

This page intentionally left blank

xvii

Foreword

In Soul of a New Machine, Tracy Kidder details the riveting story of a
project conducted at breakneck speed, under incredible pressure. Driven
by pure adrenaline, the team members soon became obsessed with trying
to achieve the impossible. For more than a year, they gave up their nights
and weekends — in the end logging nearly 100 hours a week each! Some-
where buried in the midst of Kidder’s prose, we find that, at the end of this
project, the entire staff quit. Not just one or two of them, but every single
one!

The information technology field is ripe with stories such as this one.
Software development projects are usually complex and often mission crit-
ical. As a result, the pressure on staff to produce is great. Sometimes, as in
the Kidder example, even with success comes failure.

Successful software development projects (i.e., get the product done on
time without losing staff members) have something in common. Each of
these projects, in some way, shape, or form, followed one or more princi-
ples of applied methodology, quality, and productivity. Some of these prin-
ciples are clearly intuitive, but most are learned or culled from vast expe-
rience over a number of years and projects.

In today’s globally competitive environment, information technology is
a major partner with business units; because of this, the push is on for
enhanced software productivity and quality. Intuition just will not cut the
mustard any longer. An organization cannot wait until software developers
learn their quality lessons over so many projects in as many years.

This book was written to push the information technology industry up
that learning curve in one fell swoop. Collected here are 65 chapters, 191
illustrations, 19 appendices filled with practical (the keyword here is prac-
tical) techniques, policies, issues, checklists, and guidelines, and complete
“working” examples on methodology, quality, productivity, and reliability.
All of this information was culled from over 25 years of experience on the
front lines and experience as a professor of computer science as well.

This page intentionally left blank

xix

Acknowledgments

This book would not have been possible without the help and encour-
agement of many people. First of all, I would like to thank my husband and
parents, without whose unwavering support this book would never have
been finished. I also thank my editors at Auerbach, who had great faith in
this project.

I would also like to thank the following students at Fairleigh Dickinson
and the University of Phoenix: Carol Neshat, Jing Xia, Qing Xue, David Gold-
man, Mark Reese, Susmitha S. Kancherla, Scott D. Reese, Steve Mann, Jyh
Ming Lin, Len Baker, Yu-Ju Wu, Kanoksri Sarinnapakorn, Rod Berglund, and
Gina Cobb, as well as all of my students at Virginia Tech.

These students acted as my research assistants and worked diligently
on providing research, outlines, and very rough drafts for some of the
chapters in this book. These shining lights also developed many of the
appendices found at the back of this book.

JESSICA KEYES

This page intentionally left blank

xxi

Preface

Much has been said and written about software engineering.

Unfortunately, much of it is written from an academic perspective that
does not always address everyday concerns that the software developer
and his or her manager must face. With decreasing software budgets and
increasingly demanding users and senior management, technology direc-
tors want and need a complete guide to the subject of software engineer-
ing. This is that guide.

This handbook is composed of three parts. Section I contains 20 chap-
ters on all facets of software engineering — from planning to object-
oriented design. In Section II, we change gears from method to metrics. In
this section of the handbook, we find all manner of productivity, quality,
and reliability methods, such as a technique for converting prototypes to
operational systems and a methodology for establishing a productivity-
enabling software development environment.

In Section III — Appendices — using the principle that examples speak
louder than words, I have provided you with a set of “fully loaded” IT doc-
umentation including sample business-use cases, a test plan, a project
plan, and even a full systems requirement specification.

The content of the handbook is extensive and inclusive. In it you can find
everything from estimation methods to the seven principles of quality
leaders to guidelines for structured methodologies to productivity through
shared information technology.

And all of this is in the language of the software developer.

Note: I have made every attempt to acknowledge the sources of informa-
tion used, including copyrighted material. If, for any reason, a reference
has been misquoted or a source used inappropriately, please bring it to my
attention for rectification or correction in the next edition.

xxii

The Author

Jessica Keyes is president of New Art Technologies, Inc., a high-technology
and management consultancy and development firm started in New York in
1989. She is also a founding partner of New York City-based Manhattan
Technology Group.

Keyes has given seminars for such prestigious universities as Carnegie
Mellon, Boston University, University of Illinois, James Madison University,
and San Francisco State University. She is a frequent keynote speaker on
the topics of competitive strategy, productivity, and quality. She is former
advisor for DataPro, McGraw-Hill’s computer research arm, as well as a
member of the Sprint Business Council. Keyes is also a founding board of
directors member of the New York Software Industry Association. She has
recently completed a two-year term on the Mayor of New York City's Busi-
ness Advisory Council. She is currently a professor of computer science at
Fairleigh Dickinson University's graduate center as well as the University of
Phoenix and Virginia Tech.

Prior to founding New Art, Keyes was managing director of research and
development for the New York Stock Exchange and has been an officer with
Swiss Bank Co. and Banker's Trust in New York City. She holds a Masters of
business administration from New York University where she did her
research in the area of artificial intelligence.

A noted columnist and correspondent with over 200 articles published,
Keyes is the author of 16 books on technology and business issues.

Section I

This page intentionally left blank

3

THESE 20 CHAPTERS COVER the entire spectrum of software engineering activi-
ties. Topics covered include: information engineering, software reliability,
cost estimation, productivity and quality metrics, requirements elicitation,
engineering life cycle, object-oriented analysis and design, system model-
ing techniques, using UML, using DFDs, feasibility studies, project plan-
ning, the system requirements specification, the system design specifica-
tion, JAD, RAD, reverse engineering, re-engineering, the data dictionary,
the repository, the process specification, TQM, user interface design, the
test plan, use cases, methodologies, the class dictionary, outsourcing, soft-
ware maintenance, and documentation.

This page intentionally left blank

5

Chapter 1

Introduction to
Software Engineering

You must start somewhere so I have chosen to start this book at the begin-
ning — with a very brief introduction to software engineering. In this chap-
ter we are going to touch lightly on topics that we will cover in more depth
in later chapters. Reading this chapter will give you a sense of the intercon-
nectivity of the myriad of software engineering activities that we talk
about.

Computer systems come in all shapes and sizes. There are systems that
process e-mail and systems that process payroll. There are also systems
that monitor space missions and systems that monitor student grades. No
matter how diverse the functionality of these systems, they have several
things in common:

• All systems have end users. It is for these end users that the system has
been created. They have a vested interest in seeing that the system is
correctly and efficiently doing what it is supposed to be doing. You
might say that these end users have a “stake” in seeing that the system
is successful so sometimes they are referred to as “stakeholders.”
There are different types of stakeholders. A good systems analyst is
careful to make sure that he does not leave out stakeholders errone-
ously. This is indeed what happened when the post office started de-
veloping the automated system that you now see in use today at all
post offices. This system was developed “in a vacuum.” What this
means is that only higher level employees were involved in system de-
velopment. The clerks who actually man the windows were left out of
the process; when it came time for this system to be deployed, the
lack of involvement of this critical set of stakeholders almost led to an
employee mutiny.

• All systems are composed of functions and data. All of us like to get our
payroll checks. To create a payroll check requires us to define several
functions (sometimes called processes). For example, there might be
functions for: 1) obtaining employee information; 2) calculating pay-
roll taxes; 3) calculating other deductions; and 4) printing the check.
Systems analysts are not payroll clerks; nor are they accountants. A

6

SOFTWARE ENGINEERING HANDBOOK

typical systems analyst does not have the information at his fingertips
to create a payroll processing system without the involvement of
stakeholders. He needs to utilize several analytical techniques — in-
cluding interviewing and observation — to get the details on how to
perform these processes. Functions are only one half of the equation,
however. The other half is the data. Sometimes the data will already be
available to the systems analyst — i.e., via a corporate database or
file. Sometimes, however, the systems analyst will have to “create” a
new database for the application. For this particular task, he will usu-
ally work with a database administrator or data administrator. This
person has the expertise and authority to create or modify a database
for use with the new or enhanced application.

• All systems use hardware and software. A systems analyst has many de-
cisions to make. He must decide on which platform to run this system:
1) PC only; 2) mainframe only; 3) client/server (i.e., PC client and main-
frame or workstation server), etc. He also must decide whether or not
to use any third-party software (i.e., Excel, SAP, etc.); He may even
need to decide on which programming language and type of database
to use.

• All systems are written using programming languages. If the IT (informa-
tion technology) department is filled with COBOL programmers, it
might not be a wise decision to use Java. If Java is mandatory, then the
systems analyst needs to plan for this by training existing staff or out-
sourcing the development effort to a consulting firm. This information
is contained within the “requirements document,” which, in this hand-
book we will call the system requirements specification, or SRS.

• All systems should be designed using a methodology and proper docu-
mentory techniques. There are many developmental methodologies.
The two main generic categories are structured and object-oriented.
The tools and techniques surrounding these methodologies are part
and parcel of “software engineering.” A properly developed system is
carefully analyzed and then designed. The first step of this process is
the plan; the next step is the SRS, and the third step is the design doc-
ument. Finally implementation, testing, and then deployment take
place. These are some of the main steps in the software development
life Cycle or SDLC.

THE SOFTWARE DEVELOPER

I started out in this field as a programmer. In those days (several eons
ago) there were real boundaries between the different types of jobs one
could do. If you were a programmer you did not do analysis work and vice
versa. In fact, most analysts back then knew very little about programming.

That has all changed but, typically, you still start out as a programmer
but then the sky’s the limit. A programmer is a person who knows one or

7

Introduction to Software Engineering

more programming languages (e.g., Java, C++, etc.). His job is to read a pro-
gramming specification, which is usually written by the systems analyst,
and then translate that specification into program code.

In most companies the programmer works within project teams that are
managed by a project leader who, in turn, is managed by a project manager.
Each project team has one or more programmers and probably one or
more systems analysts. The programmer works on the code and seldom, if
ever, works with the end users. The systems analysts, on the other hand,
work directly with the end users to develop requirements and specifica-
tions for the system to be designed.

A programmer can lack all the social graces because few “outsiders”
deal with him, but the systems analyst is on the front lines. He needs to be
articulate, friendly, and a good listener. The systems analyst must also
have the capability to pay a great deal of attention to detail and be creative
in coming up with techniques for uncovering hidden information. For
example, when developing the FOCUS system, I needed to uncover hun-
dreds of mathematical formulas that could be used to analyze the financial
forms. I also had to design dozens of screens that could be utilized effi-
ciently by the end users. Instead of designing the screens (this was pre-
Internet days), I turned the end users loose with a word processing pro-
grammer and asked them to list the information they wanted to see and
where they wanted to see it. This is called JAD, or joint application devel-
opment.

When I first starting working for the New York Stock Exchange, I was
responsible for building a computer system that processed a series of
financial forms (like your tax forms) that were required to be filled out by
the various member firms (e.g., Merrill Lynch) of the Exchange. These
forms contained hundreds of financial items.

My job as an analyst was to work with the people in the regulatory
department who understood how to process these forms — these were the
end users. Our job was a hard one; the financial forms were complex. The
end users were accountant types with vast experience in interpreting these
forms. The reason for looking at these forms at all was to determine
whether the firm (i.e., Merrill Lynch) was financially healthy — a very
important job.

As the systems analyst on the job I had to meet regularly with these end
users to try to “pick their brains.” We met several times a week to work on
the project. There was lots of yelling and screaming and tons of pizza. In
the end, however, we developed a document that was quite detailed in
describing everything that the system — called FOCUS — was supposed to
do. Once this document was complete it was turned over to the program-
mers whose job it was to turn the document into a complete working
system.

8

SOFTWARE ENGINEERING HANDBOOK

As you can see from my description, I have left a few job titles out of the
picture because each organization is structured a bit differently. For the
most part, when one develops a system at least two departments are
involved. One is the end-user department (e.g., marketing, operations).
The end users have a “need” for a system to be developed or modified.
They turn to the computer department, sometimes called IS (information
systems), MIS (management information systems), or IT (information tech-
nology) to help them turn this need into a working system.

The end-user department is composed of experts who do a particular
task. Maybe they are accountants or maybe they are in marketing — they
still are experts in what they do. They are managed, just like IS people, by
managers. We can refer to these managers as business managers just like
we refer to a computer manager as an IS manager. Although most systems
analysts work directly with those that report to the business manager, the
business manager still plays a critical role. We need to turn to him if we
need some information from the entire department or we need to have
something done that only the business manager can direct.

THE SDLC: SYSTEMS DEVELOPMENT LIFE CYCLE

The development of computer systems has many moving parts. Each of
these parts has a name — i.e., analysis, design, etc. We call the entirety of
these steps a systems development life cycle.

Why do we call this a life cycle? A system has a life of its own. It starts
out as an idea and progresses until this idea germinates and then is born.
Eventually, when the system ages and is obsolete, it is discarded or “dies.”
So “life cycle” is really an apt term.

The idea phase of the SDLC is the point at which the end user, systems
analyst, and various managers meet for the first time. This is where the
scope and objectives of the system are fleshed out in a very high-level
document.

Next, a team composed of one or more systems analysts and end users
tries to determine whether the system is feasible. Systems can be NOT fea-
sible for many reasons: too expensive, technology not yet available, not
enough experience to create the system; these are just some of the reasons
why a system will not be undertaken.

Once the system is determined to be feasible, systems analysis is initi-
ated. This is the point when the analysts put on their detective hats and try
to ferret out all the rules and regulations of the system. What are the
inputs? What are the outputs? What kind of online screens will there be?
What kind of reports will be needed? Will paper forms be required? Will any
hook-ups to external files or companies be required? How shall this infor-
mation be processed? As you can see, much work needs to be done at this

9

Introduction to Software Engineering

point and many questions need to be answered. In the end, all of the
answers to these questions will be fully documented in a requirements
document.

Once all the unknowns are known and are fully documented, the sys-
tems analyst can put flesh on the skeleton by creating high-level and then
detailed designs. This is usually called a specification and can be hundreds
of pages long. This document contains flowcharts, file and database defini-
tions, and detailed instructions for the writing of each program.

All along the way, the accuracy of all of these documents is checked and
verified by having the end users and analysts meet with each other. In fact,
most approaches to system development utilize the creation of a project
team consisting of end users and IS staff. This team meets regularly to work
on the project and verify its progress.

Once a complete working specification is delivered to the programmers,
implementation can get underway. For the FOCUS system, we turned the
specification over to a team of about 20 programmers. The systems ana-
lyst, project leader, and project manager were all responsible for making
sure that the implementation effort went smoothly. Programmers coded
code and then tested that code. When this first level (unit testing) of test-
ing was done, there were several other phases of testing including systems
testing, parallel testing, and integration testing. Many companies have QA
(quality assurance) departments that use automated tools to test the
veracity of systems to be implemented.

Once the system has been fully tested, it is turned over to production
(changeover). Usually, just prior to this, the end-user departments (not
just the team working on the project) are trained and manuals distributed.
The entire team is usually on call during the first few weeks of the system
after changeover because errors often crop up and it can take several
weeks for the system to stabilize.

After the system is stabilized, it is evaluated for correctness. At this
point a list of things to correct as well as a “wish list” of things that were not
included in the first phase of the system is created and prioritized. The
team, which consisted of technical and end-user staff, usually stays put
and works on the future versions of the system.

THE FEASIBILITY STUDY: THE FIRST STEP (See Chapter 2)

It never pays to jump into developing a system. Usually, it is a good idea
to conduct a feasibility study first. The easiest part of the feasibility study
is determining whether the system is technically feasible. Sometimes, how-
ever, it might not be feasible because the company does not have the tech-
nical expertise to do the job. A good systems analyst will go one step fur-
ther and see if it is feasible to outsource (i.e., let someone else do it) the

10

SOFTWARE ENGINEERING HANDBOOK

project to people who can do the job. Sometimes, the technology is just not
robust enough. For example, many years ago I wanted to deliver voice rec-
ognition devices to the floor of the New York Stock Exchange. The technol-
ogy at that time was just too primitive so the entire project was deemed not
feasible.

Discovering that the project is feasible from a technical perspective but
would require vast organizational changes (e.g., creation of new end-user
departments) adds a layer of complexity to the problem. This, then, would
make the project organizationally not feasible.

Finally, the project just might cost too much money. To figure this out
will require you to perform a cost/benefit analysis (take out those spread-
sheets). To do this, you must figure out an estimated cost for everything
you wish to do, including cost of hardware, cost of software, cost of new
personnel, cost of training, etc. Then you need to calculate the financial
savings for creating the new system: reduce staff by one third; save 5 hours
a day. Sometimes the benefits are intangible; for example, allowing us to
compete with our major competitor.

Once it has been determined that the project is feasible, a project plan
is created that plots out the course for the entire systems development
effort — i.e., budget, resources, schedule, etc. The next step, then, is to
start the actual analytical part of systems development. For that we need
to collect some information. (See Chapter 2 for more information on feasi-
bility studies.)

INFORMATION-GATHERING CHANNELS

One of the first things you will do when starting a new project is to
gather information. Your job is to understand everything about the depart-
ment and proposed system you are automating. If you are merely modify-
ing an existing system, you are halfway there. In this case you will review
all of the system documentation and the system itself, as well as interview
the end users to ferret out the changed requirements.

How can you make sense out of a department and its processes when you
do not know anything about it? One of the things you do is to act like a detec-
tive and gather up every piece of documentation you can find. When I built
the FOCUS system, I scrounged around and managed to find policy manuals
and memos that got me part of the way toward understanding what these
people did for a living. Other sources of information include: reports used
for decision making; performance reports; records; data capture forms; Web
sites; competitors’ Web sites; archive data. Passive review is seldom
enough, however. The next step is to be a bit more active and direct.

The first thing you can do is to interview end users. For our FOCUS
project, I had already created a project team consisting of tech people and

11

Introduction to Software Engineering

end users; however, I decided that it would be worthwhile to interview a
representative sampling of people working in different jobs that “touched”
the process to be automated.

You cannot interview someone without preparation. This consists first
of understanding all that you can about the job and person being inter-
viewed and then preparing a set of questions for this person. However,
sometimes an interview is insufficient to meet your needs. Your subject
may not be able to articulate what he or she does. The next step, then, is
to observe the person at his job.

I’ve done much work in the artificial intelligence arena where observa-
tion is a large part of the systems analysis process. One of the case histo-
ries people in the field often talk about is one concerning building a tax
expert system.

At one end of a large table sat a junior accountant. A large number of tax
books were piled in front of the junior accountant At the other end sat
some of the most senior tax accountants at the firm. Nothing was piled in
front of them. In the center of the table sat the systems analyst armed with
a video recorder. This person was armed with a script that contained a
problem and a set of questions. The task at hand was for the junior accoun-
tant to work through the problem guided by the experts. The experts had
nothing to refer to but what was in their memories. Thus they were able to
assist the junior accountant to solve the problem while the video camera
recorded the entire process.

Observation can only be done selectively — a few people at the most.
Another technique, which will let you survey a broad number of people at
one time, is the questionnaire. Building a questionnaire requires some skill.
There are generally two types of questions:

Open-ended:
1. What are the most frequent problems you have in buying books

from a book store?
2. Of the problems listed above, what is the single most trouble-

some?
Closed:

1. The tool is used as part of the program development cycle to
improve quality 1 2 3 4 5
(circle appropriate response, where 5 is the highest score)

A good questionnaire will probably be a combination of both types of
questions (hybrid). It is also important to make sure that you format your
questionnaire for easy readability (lots of white space and even spacing),
put all the important questions first (in case the respondents do not finish
the survey), and vary the type of question so that participants do not sim-
ply circle 5s or 1s all the way down the page.

12

SOFTWARE ENGINEERING HANDBOOK

See Chapter 4 for more details on information-gathering channels.

DIAGRAMMING OR MODELING THE SYSTEM (See Appendices G and I)

You can use a wide variety of techniques to describe your problem and
its solution diagrammatically as well as a wide variety of tools that can
assist you in drawing these diagrams. One of the diagrammatic techniques
is flowcharting and the tool of choice is Microsoft Visio, as shown in
Exhibit 1-1.

One of the most practical of tools is the DFD, or data flow diagram, as
shown in Exhibit 1-2. DFDs are quite logical, clear, and helpful when build-
ing systems — even Web-based systems. All inputs, outputs, and processes
are recorded in a hierarchical fashion. The first DFD (referred to as DFD 0)
is often the system from a high-level perspective. Child DFDs get much
more detailed. Exhibit 1-2 is a snippet of a real online test system — a
rather complicated system that lets people take tests online. This particu-
lar DFD shows the data flow through the log-in process. The rectangular
boxes (i.e., D5) are the data stores. Notice that D5 is an online cookie; D1,
on the other hand, is a real database. It is a relational database and this is
one particular table. The databases and their tables are defined in a data
dictionary. The square box is the entity (i.e., test taker) and can be a per-
son, place, or thing; the other boxes are process boxes. Process 1.1 is the
process for Get Name. There will be a child DFD labeled 1.1 Get Name. 1.1
Get Name will also appear in a process dictionary that will contain a
detailed specification for how to program this procedure.

Other modeling tools include:

• Entity relationship diagram. An ERD is a database model that describes
the attributes of entities and the relationships among them. An entity
is a file (table). Today, ER models are often created graphically, and
software converts the graphical representations of the tables into the
SQL code required to create the data structures in the database as
shown in Exhibit 1-3.

• State transition diagram. An STD describes how a system behaves as a
result of external events. In Exhibit 1-4 we see the effects of a person
reporting a pothole.

• Data dictionary. The data dictionary is a very organized listing of all
data elements that pertain to the system. This listing contains some
very specific information as shown in Exhibit 1-5. It should be noted
that there are many variations in the formats of data dictionaries.

• Process specification. The PSPEC describes the “what, when, where,
and how” of the program in technical terms. It describes just how the
process works and serves to connect the DFD to the data dictionary.
It uses pseudocode (sometimes called structured English or Program

13

Introduction to Software Engineering

Exhibit 1-1. A Flowchart Created Using Visio

Apply next season

Download Web

application form

2nd week only

Complete

application

2-week camp

Send payment by

(date)

Review soccer

camp Web site

List previous

camps attended

Submit coach

reference

Accepted?

Preview

Championzone

attendee?

Determine

skill level

Beginner

Advanced

Yes

No

Yes No

14

SOFTWARE ENGINEERING HANDBOOK

Definition Language — PDL) to explain the requirements for program-
ming the process to the programmer. An example is shown in
Exhibit 1-6. Other ways of representing process logic are:
— A decision table
— A decision tree
— A mathematical formula
— Any combination of the above

• Class diagrams.Analysts working on an OO (object-oriented system)
will utilize OO tools and diagrammatic techniques. One of these is a
class diagram drawn using UML or unified modeling language. A class
diagram is shown in Exhibit 1-7.

DEVELOPMENTAL METHODOLOGIES (See Chapters 7, 9, 11, and 13)

The Software Engineering Institute, which is part of Carnegie Mellon, in
Pittsburgh, Pennsylvania, is famous for a framework that describes soft-
ware process maturity. A summary of the five phases appears in
Exhibit 1-8. Read this while keeping in mind that most organizations, sadly,
are at stage 2 or 3.

Companies that have achieved a stage 2 process maturity or higher
make use of methodologies to ensure that the company achieves a repeat-
able level of quality and productivity. Many methodologies are available for
use. Some of these are vendor driven — i.e., they are used in conjunction
with a software tool set. In general, methodologies can be categorized as

Exhibit 1-2. The Data Flow Diagram (DFD)

Test taker 1.1
Get Name

1.2
Check Password

D1
Registration

Table

D5
Cookie

Password

Password Password

User Name
User Name

User Name

15

Introduction to Software Engineering

Exhibit 1-3. The ERD

16

SOFTWARE ENGINEERING HANDBOOK

follows. It should be noted that a methodology can be used in conjunction
with another methodology:

• System development life cycle (SDLC). This is a phased, structured ap-
proach to systems development. The phases include requirements
feasibility, analysis, system design, coding, testing, implementation,
and testing. Please note that there are variations of these stated phas-
es. Usually, each phase is performed sequentially, although some po-
tential for overlap exists. This is the methodology used most often in
industry.

• Iterative (prototyping). Most of this approach is used to replace several
of the phases in the SDLC, in which the “time to market” can be
months (sometimes years). During this time, requirements may
change; therefore the final deliverable might be quite outmoded. To
prevent this from happening, it is a good idea to try to compress the
development cycle to shorten this time to market and provide interim
results to the end user. The iterative model consists of three steps:

Exhibit 1-4. The STD

Displaying

Initial Page

Processing

Login

Processing

Queries
Modifying

Database

User Selected Action

(Modify)

Invoke Modify Database

Modification Complete

Invoke Read Request

Reading User

Request

User Selected Action
(Query)

Invoke Process Query

Login Successful

Invoke Read Request

Login Failed

Invoke Initial Page

Login Initiated

Invoke Login Process

User Selected Action

(Exit)

Invoke Initial Page

Report Complete

Invoke Read Request

User Selected Action

(Reports)

Invoke Generate Report

Processing

Matches

Query Complete

Invoke Process Matches

Matches Complete

Invoke Read Request

Generating

Report

17

Introduction to Software Engineering

1) listen to the customer; 2) build or revise a mock-up; 3) enable cus-
tomer to test drive the mock-up and then return to step 1.

• Rapid application development (RAD). This is a form of the iterative
model. The key word here is “rapid.” Development teams try to get a
first pass of the system out to the end user within 60 to 90 days. To ac-
complish this, the normal seven-step SDLC is compressed into the fol-
lowing steps: business modeling; data modeling; process modeling;
application generation and testing and turnover. Note the term “appli-
cation generation.” RAD makes use of application generators, former-
ly called CASE (computer assisted software engineering) tools.

• Incremental model. The four main phases of software development are
analysis, design, coding, and testing. If we break a business problem
into chunks, or increments, then we can use an overlapping, phased
approach to software development. For example, we can start the
analysis of increment one in January, increment two in June, and

Exhibit 1-5. The Data Dictionary

Name: Membership Database [D2]
Aliases: None

Where
Used/ How
Used

Used by the Database Management System to process requests and
return results to the Inquiry and Administration Subsystems

Content
Description:

Attributes associated with each asset including:

• Membership Number = 10 Numeric Digits

• Member Since Date = Date

• Last Name = 16 Alphanumeric Characters

• First Name = 16 Alphanumeric Characters

• Address = 64 Alphanumeric Characters

• Phone Number = 11 Numeric Digits (1, area code, phone
number)

• Assets on Loan = Array containing 10 strings each
containing 64 Alphanumeric Characters

• Assets Overdue = Array containing 10 strings each
containing 64 Alphanumeric Characters

• Late Fees Due = 10 Numeric Digits

• Maximum Allowed Loans = 2 Numeric Digits

Name: Member Data [D3]
Aliases: None
Where
Used/ How
Used

A file used to validate username and passwords for members,
librarians, and administrator when attempting to access the system.
The username and password entered is compared with the username
and password in this file. Access is granted only if a match is found.

Content
Description:

Attributes associated with each asset including:

• Member Username = 16 Alphanumeric Digits

• Member Password = 16 Alphanumeric Digits

18

SOFTWARE ENGINEERING HANDBOOK

Exhibit 1-6. Pseudocode Example.

Process #1

Name Logon

Number: 1

Name: Logon

Description: Registered test takers will logon to their account

with their username and password through this process. Once they

register, they will be able to take the test.

Input data: User name from the test taker, password from the test

taker, user name from the registration tale, password from the

registration table

Output data: User name to the cookie

Type of process: Validation

Process logic:

Get user name and password from the user

If correct then

Allow the user to take the test

else

Produce an error

endif

Exhibit 1-7. A Class Diagram

+ResourceUsage()

-ID : Long
-percentUsed : Percent
-appointmentID : Long
-resourceID : Long

Resource:: ResourceUsage

+getID()
+Resource()
+setUnitCost()
+getUnitCost() : Money
+setCostUnit()
+getCostUnit() : String
+getResourceType() : String
+setResourceType()
+getDescription() : String
+setDescription()
+getName() : String
+setName()
+getServiceProvider() : ServiceProvider

-ID : Long
-name : String
-description : String
-unitCost : Money
-costUnit : String
-resourceTypeID : Long
-serviceProviderID : Long

Resource::Resource
0..*

1

Service:: Appointment

10..*
+showCreate(in tOption : String)
+showEdit(in tOption : String)
+showSearch(in tOption : String)
+showList(in tOption : String, in oCollection : Collection)

-ID : Long
-swingAttributes : Collection

ResourceManagementUI:: ResourceUI

ApplicationControllerUI:: IUserInterface

1

1

ServiceProvider:: ServiceProvider

1*

«subsystem»
Application Controller

11

19

Introduction to Software Engineering

Exhibit 1-8. Summary of the Five Phases of the Software Process Maturity
Framework

Stage 1: Initial is characterized by processes:

• That are ad hoc
• That have little formalization
• That have tools informally applied

Key actions to get to the next step:

• Initiate rigorous project management; management oversight; quality
assurance

Stage 2: Repeatable is characterized by processes:

• That have achieved a staple process with a repeatable level of statis-
tical control

Key actions to get to next step:

• Establish a process group
• Establish an SW-development process architecture
• Introduce software engineering methods and tech

Stage 3: Defined is characterized by processes:

• That have achieved foundation for major and continuing progress

Key actions to get to next step:

• Establish a basic set of process managements to identify quality and
cost parameters

• Establish a process database
• Gather and maintain process data
• Assess relative quality of each product and inform management

Stage 4: Managed is characterized by processes:

• That show substantial quality improvements coupled with compre-
hensive process measurement

Key actions to get to next step:

• Support automatic gathering of process data
• Use data to analyze and modify the process

Stage 5: Optimized is characterized by processes:

• That demonstrate major quality and quantity improvements

Key actions to get to next step:

• Continue improvement and optimization of the process

20

SOFTWARE ENGINEERING HANDBOOK

increment three in September. Just when increment three starts up,
we are at the testing stage of increment one, and coding stage of incre-
ment two.

• Joint application development (JAD). JAD is more of a technique than
a complete methodology. It can be utilized as part of any of the other
methodologies discussed here. The technique consists of one or more
end users who are then “folded” into the software development team.
Instead of an adversarial software-developer–end-user dynamic, the
effect is to have the continued, uninterrupted attention of the persons
who will ultimately use the system.

• Reverse engineering. This technique is used, first, to understand a sys-
tem from its code and, second, to generate documentation based on
the code and then make desired changes to the system. Competitive
software companies often try to reverse engineer their competitors’
software.

• Re-engineering. Business goals change over time. Software must
change to be consistent with these goals. Re-engineering utilizes many
of the techniques already discussed in this chapter. Instead of building
a system from scratch, the goal of re-engineering is to retrofit an exist-
ing system to new business functionality.

• Object-oriented. Object-oriented analysis (OOA), object-oriented de-
sign (OOD), and object-oriented programming (OOP) are very differ-
ent from what we have already discussed. In fact, you will need to
learn a new vocabulary as well as new diagramming techniques.

SYSTEM DESIGN

Most of the models we have discussed fall under the structured rubric
(except for the OO model). The requirements document, or SRS (systems
requirement specification), is written for a broad audience (see Appendix
G) and reflects this structured technique. Usually it is provided not only to
IT staff but also to end users. In this way, the end users are able to review
what they have asked for as well as the general architecture of the system.
Once approved, the system now must be designed. The system specifica-
tion, here called the SDS (systems design specification), contains a very
finite level of detail — enough so that programmers will be able to code the
entire system (See Appendices J and L for sample SDS and OOSDS, respec-
tively). This means that the SDS must contain:

• Information on all processes
• Information on all data
• Information about the architecture

You must start somewhere. That “somewhere” is usually the very high-
est level of a design. There are three logical ways to do this:

21

Introduction to Software Engineering

• Abstraction. This permits you to concentrate at some level of general-
ization without regard to irrelevant low-level details. This is your high-
level or logical design.

• Stepwise refinement. This is a successive decomposition or refinement
of the specifications. In other words, you move from the high level to
the detailed, from the logical to the physical.

• Modularity. This means that you know a good design when you see a
compartmentalization of data and function.

Look again at the DFD in Exhibit 1-2; it was not the first in the series. The
very first DFD would have been DFD 0, which is equivalent to the high level
of detail that it is recommended you start from. Here you can see the logi-
cal components of the system. Underneath the 0 level we start to get more
detailed and more physical. At these lower (or child) levels we start spec-
ifying files and processes.

The design document that you create will rarely look the same from one
organization to another. Each has its own template and its own standard
diagramming tool (i.e., Visio versus SmartDraw) and its own diagramming
format (i.e., flowcharts versus UML (uniform modeling language) versus
DFDs).

When the requirements document is high level, the specification is
much more detailed; it is, after all, a programming specification. For the
most part, the specification document for the testing system discussed
included: 1) a general description of the system; 2) its users; 3) its
constraints (i.e., must run on a PC); 4) the DFDs or other format; 5) the
data dictionary; 6) the process dictionary; 7) a chart showing the tasks
that need to be done (Gantt). The purpose of this specification (usually
called a “spec” by those in the field) is to give the programmers a manual
from which they can code. If it is a good spec the programmers should not
need to come back to you time after time to get additional information.
Chapters 12 through 14 have more information on this subject.

Design Strategies

Part of the process of designing a system is to make a bunch of deci-
sions. For example, in creating an online testing system, I had to answer the
following questions:

1. What platform should the testing software run on? PC? Internet?
Both?

2. If it was going to run on the Internet, should it be compatible with all
browsers or just one specific one?

3. What kind of programming language should be used? Should the cli-
ent use VBScript? JavaScript? Should all process be on the backend?
If so, which language should be used — Perl or Java?

22

SOFTWARE ENGINEERING HANDBOOK

4. What kinds of servers do I need? Do I run Microsoft NT, or UNIX, or
Linux? Do I need an e-commerce server? How about a RealMedia
server?

5. What kind of network am I going to use? VPN (virtual private net-
work)? Internet? Intranet? LAN?

I had to answer hundreds of other questions before we were able to pro-
ceed. Answering these questions required much research. For example, if
you were going to design a medical claims processing system, you would
probably decide in favor of using an optical scanning system to process the
thousands of medical claims that came in every day. There are many ven-
dors of optical scanning equipment. Part of your job would be to make a
list of the vendors, meet with them, and then perhaps beta one or two of
the competitive products.

Essentially, the job of a systems analyst is to be an explorer — go out
and wander the world and find the best combination of technologies to cre-
ate the most cost-effective system. To do this may require a combination of
strategies:

1. Program the whole thing in house.
2. Find out if there is a software package you can buy and use.
3. Let someone else program it (outsource).
4. Put together a combination of any of these items in any order.

OBJECT-ORIENTED METHODOLOGIES (See Chapter 13)

Object-oriented systems development follows the same pattern as
structured systems development. First, you must analyze your system
(object-oriented analysis or OOA). Next, you design the system using
object-oriented design or OOD. Finally, you code the system using object-
oriented (OOP) programming techniques and languages (i.e., C++, Java).

OO techniques may have some similarity to traditional techniques but
the concept of OO is radically different from what most development peo-
ple are used to. This methodology revolves around the concept of an
object, which is a representation of any information that must be under-
stood by the software. Objects can be:

• External entities: printer, user, sensor
• Things: reports, displays
• Occurrences or events: alarm, interrupt
• Roles: manager, engineer, salesperson
• Organizational unit: team, division
• Places: manufacturing floor
• Structures: employee record

23

Introduction to Software Engineering

The easiest way to think of an object is just to say it is any person, place,
or thing. One of the important features of OO is the reusability of its
objects. A well-coded object is often thought of as a “black box.” What this
means is that the programmer should be able to glue together several
objects to create a working system. He should not need to know too much
about any of these objects. Does anyone remember playing with Lego
blocks as a child? It was easy to create incredible things such as bridges
and building because each of the blocks was easily connected to all other
blocks. It is the same with objects (see encapsulation below).

First some OO definitions:

• Class: in object technology, a user-defined data type that defines a col-
lection of objects that share the same characteristics. An object, or
class member, is one instance of the class. Concrete classes are de-
signed to be instantiated. Abstract classes are designed to pass on
characteristics through inheritance.

• Object: a self-contained module of data and its associated processing.
Objects are the software building blocks of object technology.

• Polymorphism: meaning many shapes. In object technology, the ability
of a generalized request (message) to produce different results based
on the object that it is sent to.

• Inheritance: in object technology, the ability of one class of objects to
inherit properties from a higher class.

• Encapsulation: in object technology, making the data and processing
(methods) within the object private, which allows the internal imple-
mentation of the object to be modified without requiring any change
to the application that uses it. This is also known as information
hiding.

Take a look at Exhibit 1-9. Here we have a class, called automobile, that
has several common attributes. One is that this thing has a motor. Another
attribute is the fact that an automobile (usually) has four wheels. In an OO
system you can create derived classes from the parent class. Notice the
nice, shiny red sportscar. This is the derived class called “sports car.” It
also has a motor and four wheels that it inherits from the parent class.
However, in this derived class we have some additional attributes: fast rpm
and sleek design. The sports car is the child of the parent class named
automobile. So we can say, “Every convertible is an automobile but not
every automobile is a convertible.”

To develop an OO application one must define classes. If you know any-
thing about OO programming languages such as C++, all variables within a
program are defined as some “type” of data. For example, in C and C++, a
number is defined as a type called “integer.” When we define a class in a
programming language, it is defined as a type of class as shown below:

24

SOFTWARE ENGINEERING HANDBOOK

//Program to demonstrate a very simple example of a class

called DayOfYear.

#include <iostream.h>

//This is where we define our class. We’ll call it

DayOfYear//It is a public class. This means that there are

no//restrictions on use. There are also private classes.

//The class DayOfYear consists of two pieces of data: month

and//day and one function named output ()

class DayOfYear

{

public:

void output();

int month;

int day;

};

Designing OO systems requires the use of different modeling and defini-
tional techniques that take into account the idea of classes and objects.
Unified modeling language (UML) is an emerging standard for modeling OO
software. Exhibit 1-7 shows a sample class diagrammed using UML and
Appendix L contains a complete SDS for an OO system. Contained within
this SDS are numerous diagrams (models): 1) class diagrams, 2) object
models, 3) package diagrams that show how the classes are grouped
together, and 4) collaboration diagrams, which show how the classes “col-
laborate” or work with each other. (See Chapter 13 for more on object-
oriented methodologies.)

Exhibit 1-9. The Class Automobile.

The class called automobile
• Motor
• Four wheels

PARENT

Inheritance Derived class

The class called sports car
• Inherits motor
• Inherits four wheels
• Fast RPM
• Sleek design
CHILD (extra features)

25

Introduction to Software Engineering

TESTING (See Chapter 16)

When you tie many programs together you have a system. It is not
uncommon for a system to have thousands of lines of code, all of which
must be tested. The very first level of testing is at the programmer’s desk.
Here he works with whatever tools he is using to make sure that everything
works.

Many applications are built using a Microsoft product called Visual
Basic. Exhibit 1-10 shows what the debugger looks like. For those of you
who do not know the derivation of the term, debug means to take the
“bugs” out of a program. A bug is an error, but the term actually stems from
an incident with one of the first computers in the early 1950s. A real bug
crawled into the computer, which stopped working. Ever since, we use the
term debugging to describe the process of ridding a program of its
problems

The debugger will run only if your code “compiles and links” first. When
you compile a program it goes through a syntax checker that checks for
obvious errors (i.e., referencing a variable that does not exist).

Exhibit 1-10. Visual Basic’s Debugger.

26

SOFTWARE ENGINEERING HANDBOOK

When a group of programmers work together, their project manager
might think it a good idea that a “walkthrough” be held. This is when the
team gets together and examines the code as a group to find flaws and dis-
cuss better ways to do things. Usually this is not done. One reason is that
programmers do not like to do this; another reason is that it is very time
consuming.

You can consider the testing the programmer does at his own desk unit
testing — meaning testing a unit of work (a program). When several pro-
grams must interact together, another type of test that you might want to
perform is integrating testing. This test determines if the separate parts of
the system work well together. For example, program 1 creates a file that
contains a student file and program 2 processes that student file. If pro-
gram 1 makes a mistake and creates the student file incorrectly, then pro-
gram 2 will not work.

A system test tests the complete system — soup to nuts. All of the inputs
are checked, all of the outputs are checked, and everything in between is
checked. If there is an existing system, a parallel test is done. “Parallel” is
a good term for this because you must run both systems in tandem and
then check the results for similarities and differences.

Finally, acceptance testing is done. This means that you run a test and
the end user agrees or disagrees with the test and approves or disap-
proves it.

In any case, testing is a lot of work that involves many people, including
end users and, usually, a quality assurance (QA) department. QA people
spend all of their time writing testing scripts (i.e., a list of things to test for)
and then running those scripts. If they find an error they send a report to
the programmer, who then fixes it. QA usually uses testing tools to assist
with these massive jobs. These tools assist with the creation of scripts and
then automatically run them. This is especially helpful when conducting
stress testing — testing to see how well the system works when many peo-
ple are using it at the same time.

Testing is usually not performed in a vacuum. An analyst or manager
prepares a test plan that details exactly what must be tested and by whom
(see Appendix A). The test plan contains the testing schedule as well as the
intricate details of what must be tested. These detailed plans are called
“test cases” and form the basis for the test scripts used by the programmer
or QA staff member, usually in conjunction with a testing tool.

A sample test case that could appear in a test plan appears in
Exhibit 1-11. This would be turned into a script for use by the testers. For
more details of testing, see Chapter 16.

27

Introduction to Software Engineering

STANDARDS AND METRICS

When you build a house you must adhere to certain standards; other-
wise, the homeowner’s lamp will not fit into the electrical outlet. The size
of the outlet is consistent with a standard used throughout the building
industry. Those who travel know that they must bring an adaptor because
a hair dryer brought from the United States into Italy will not fit into Italian
outlets. This is because many standards in America are different from the
standards in other countries.

Standards are an important fact of life; without them we would be living
in chaos. This is especially true in the IT industry. The American National
Standards Institute, which is located in New York (www.ansi.org), was
founded in 1918 to coordinate the development of U.S. voluntary national
standards in the private and public sectors. It is the U.S. member body to

Exhibit 1-11. Sample Test Case.

1.1.1. Accounting: Payment
1.1.1.1. Description

The purpose of this test is to determine if a representa-
tive of the service care provider can enter a payment
receipt within the accounting subsystem.

1.1.1.2. Required Stubs/Drivers
The accounting subsystem will be invoked with partic-
ular attention to the payment class.

1.1.1.3. Test Steps
1. The service care provider must successfully log into

the system.
2. The service care provider must invoke the account-

ing user interface to enter the payment receipt.
3. The service care provider must enter a payment

receipt and press the button to commit the transac-
tion.

1.1.1.4. Expected Results
Test Success
1. A subsequent query indicates the customer’s bal-

ance reflecting the recent payment.
2. A successful message is displayed.
Test Failure
1. The customer’s balance does not reflect the pay-

ment receipt.
2. The customer’s balance reflects an incorrect

amount that is a result of faulty logic within the
program.

28

SOFTWARE ENGINEERING HANDBOOK

ISO and IEC. Information technology standards pertain to programming
languages, EDI, telecommunications and physical properties of diskettes,
cartridges, and magnetic tapes. The IEEE (Institute of Electrical and Elec-
tronics Engineers — www.ieee.org) is another membership organization
that develops standards.

For example, IEEE 1284 is an IEEE standard for an enhanced parallel port
that is compatible with the Centronics port commonly used on PCs.
Instead of just data, it can send addresses, allowing individual components
in a multifunction device (printer, scanner, fax, etc.) to be addressed inde-
pendently. IEEE 1284 also defines the required cable type that increases
distance to 32 feet.

Your company might well adhere to ISO 9000 and 9001. As I mentioned,
ANSI is the U.S. member body to ISO. The International Organization for
Standardization is a Geneva-based organization that sets international
standards. ISO 9000 is a family of standards and guidelines for quality in the
manufacturing and service industries from the International Standards
Association; it defines the criteria for what should be measured. ISO 9001
covers design and development, ISO 9002 covers production, installation
and service, and ISO 9003 covers final testing and inspection.

If you live by the rule of standards you need to have a way to measure
whether or not those standards are adhered to. In our field, we use metrics
(measurements). The most prevalent metric used is lines of code, which is
the number of lines of code a programmer can program in an hour. There
are many more metrics. The second half of this handbook provides details
on a variety of metrics that are in use (or should be in use) today. Appendix
P is a software metrics capability evaluation guide that will be useful prior
to starting on a measurement program.

A controlled development and maintenance program is essential for
bringing down the cost associated with software development life cycle.
The control mechanism can be implemented by setting up specific goals
and then selecting the right set of metrics for measurements against those
goals. Goals must be tangible and balanced or they will be too remote to be
considered achievable. Intermediate targets are needed for monitoring the
progress of the project and making sure that it is on the right track. Project
data collection and analysis should also be part of the control mechanism.

A four-step procedure (Linkman and Walker, 1991) is outlined for estab-
lishing targets and means for assessment. The procedure is not focused on
any particular set of metrics; rather, it believes that metrics should be
selected on the basis of goals. This procedure is suitable for setting up
goals for the entire project’s deliverables or for any partial product created
in the software life cycle. (More information on standards and metrics can
be found in Section II.)

29

Introduction to Software Engineering

PROCEDURE

1. Define measurable goals. The project goals establishment process is
similar to the development process for project deliverables. Soft-
ware projects usually start with abstract problem concepts and the
final project deliverables are obtained by continuously partitioning
and refining the problem into tangible and manageable pieces. Final
quantified goals can be transformed from initial intangible goals by
following the same divide-and-conquer method for software deliver-
ables. Three sources of information are helpful to establishing the
targets:
— Historical data under the assumptions that data is available, de-

velopment environment is stable, and projects are similar in
terms of type, size, and complexity

— Synthetic data such as modeling results if models used are cali-
brated to the specific development environment

— Expert opinions
2. Maintain balanced goals. The measurable goals are usually estab-

lished on the basis of cost, schedule, effort, and quality. It is feasible
to achieve a single goal, but it is always a challenge to deliver a
project with the minimum staff and resource, on time, and within
budget. It needs to be kept in mind that trade-off is always involved
and all issues should be addressed to reach a set of balanced goals.

3. Set up intermediate goals. A project should never be measured only
at its end point. Checkpoints should be set up to provide confidence
that the project is running on course. The common practice in-
volves setting up quantifiable targets for each phase, measuring the
actual values against the targets, and establishing a plan to make
corrections for any deviations. Cost, schedule, effort, and quality
should be broken down into phase or activity for setting up interme-
diate targets. Measurements for cost and effort can be divided into
machine and human resources according to software life-cycle
phase so that expenditures can be monitored to ensure the project
is running within budget. Schedule should always be defined in
terms of milestones or check points to ensure intermediate prod-
ucts can be evaluated and final product will be delivered on time.
Quality of intermediate products should always be measured to
guarantee the final deliverable will meet its target goal.

4. Establish means of assessment. Two aspects are involved in this
activity:
— Data collection. Based on the project characteristics such as size,

complexity, level of control, etc., a decision should be made in
terms of whether a manual data collection process or an automat-
ed data collection process should be used. If a nonautomated way

30

SOFTWARE ENGINEERING HANDBOOK

is applied, then the availability of the collection medium at the
right time should be emphasized.

— Data analysis. The following two types of analyses should be con-
sidered:
• Project analysis, a type of analysis consisting of checkpoint

analysis and continuous analysis (trend analysis), is concerned
with verifying that intermediate targets are met to ensure that
the project is on the right track.

• Component analysis is a type of analysis that concentrates on
the finer level of details of the end product and is concerned
with identifying those components in the product that may re-
quire special attention and action. The complete process in-
cludes deciding on the set of measures to be analyzed,
identifying the components detected as anomalous using mea-
sured data, finding out the root cause of the anomalies, and tak-
ing actions to make correction.

INSTALLATION

When you have a very small system you can just put it online (direct). If
your system is larger then there are several ways to approach installing
(implementing) the system. If you are going to replace an existing system,
then you can install the new system in a parallel mode. This means that you
run both systems at the same time for a period of time. Each day the end
users check the outputs and, when they feel comfortable, turn the old sys-
tem off.

Many companies run multiple servers with the same system running on
each server. One good way to install a system is to install it on a single
server first, see how it runs, and then install it on another server. This is
called a phased approach.

DOCUMENTATION

One day all of the programmers who wrote the original system will
leave. If documentation is not adequate then the new programmers will not
understand how to work on the system. I recently worked on a project
(Internet gambling for a foreign country) where the programmer did not
have any documentation at all. The system was written in C++ and ASP and
there were hundreds of programs. It was almost impossible to figure out
which program ran first. So, you really do need system documentation.

It is also critical to have some documentation for the end users. You
have seen the manuals that come with software that runs on your PC. Look
at the manual that comes with Visio; you are the end user for this software.
So, if you write a system, you will need to write a manual for your end users.

31

Introduction to Software Engineering

Finally, you will need to train your end users to use the system. When I
worked for the New York Stock Exchange, we brought in a tool that permit-
ted our end users to use a fourth generation language (4GL) to do their own
queries against the system’s database. We needed to train these end users
to use the 4GL productively. Instead of writing and teaching a course our-
selves, we hired an expert who did it for us (outsource). (See Chapter 19 for
more on documentation.)

MAINTENANCE

Many, many years ago I worked with a project leader who wanted to play
with a new toy. At the time databases were just coming into vogue, so the
project leader decided to create a database for a new system. The problem
was that this particular system did not need this particular database. The
system was written but, as a result of the horrid choice of databases, it
never ran well. In fact, it “bombed” out all the time.

After a year of problems, management decided that the system needed
to be fixed, and fix it we did. This is called corrective maintenance — mod-
ifying an existing system so that it works correctly. Maintenance is done for
lots of reasons.

One reason we are all familiar with is because of security and viruses.
Systems people frequently make modifications to software because of
problems such as this. The casino gaming programmers mentioned previ-
ously had to suspend programming new features into the system to take
care of the “Code Red” worm. This is an example of preventative mainte-
nance. Most often the reason for maintenance is simply to improve the sys-
tem. If the casino end users decide to add a new game to the system or a
new data field is added to a database or a new report is required — these
are examples of maintenance for improvement purposes.

Some organizations have two types of programmers; one type usually
works on new software and the other is stuck with maintenance. This is not
often done anymore because maintenance programmers are usually an
unhappy lot and, therefore, their turnover rate is quite high.

All systems need to be managed. You cannot make changes to a system
willy-nilly. The way you control what happens to a system is to continue
holding meetings with your end users and developing a prioritized list of
changes and additions that need to be made. Occasionally, a change might
come in from a person who is not on the end-user committee. To handle
these requests, system personnel usually make use of a standard change
request form. This form contains information such as desired change, rea-
son for change, screen shots of the existing screen that needs to be
changed, if applicable, and more, depending on the organization. Usually

32

SOFTWARE ENGINEERING HANDBOOK

these changes must be authorized by the end user’s management before it
is sent to the computer department.

Once the change request comes to the computer department, if it is sim-
ple and there is some spare time, the modification is scheduled immedi-
ately. Usually, however, it is added to a prioritized list of things to do. When
it reaches the top of the list, the same SDLC steps used during development
are used during maintenance. In other words, you need to determine
whether the modification is feasible, determine its cost, develop a specifi-
cation, etc. (Chapter 18 provides additonal discussion on maintenance.)

TRAINING

After the system is installed the end users will require some training.
The various ways to achieve this include in-house training to CAI (com-
puter assisted instruction).

Once the end-users are trained they will need some support on a day-to-
day basis. First, as already discussed, they will need a manual so they can
look up answers to questions. Some systems do not use paper manuals;
instead, everything is embedded in a Help file. If the manuals are insuffi-
cient then the company might want to do what most companies are doing
and fund and staff a Help Desk. Sometimes people in end-user departments
rely on a person within their department who has become quite expert at
using the system. This person is usually referred to as the resident expert.

CONCLUSION

In this introductory chapter we have covered a broad array of systems
development issues and methodologies. We started our grand tour by dis-
cussing the SDLC (systems development life cycle) that identifies the dif-
ferent steps IT team members take when developing a computer system
using the traditional structured approach. These steps include, but are not
limited to, feasibility study, analysis, design, testing, and implementation.

It is very important that an IT team use a methodology to build a system.
Although systems can certainly be built without such a methodology, the
resulting systems are usually quite flawed and inefficient, and cost too
much money to build and maintain. One would not build a house without
blueprints; therefore, it makes sense that one should not build a computer
system without a blueprint for building it (the requirement document and
design specification).

We have seen some of these “building tools” in action in the form of
DFDs (data flow diagrams) and PSPECs (process specifications). There are
many other diagrammatic techniques such as State transition diagrams,
E–R diagrams (entity–relationship), and control flow diagrams. These tools
are used by the analyst to lay out exactly what the system is going to do,

33

Introduction to Software Engineering

how the system will interact with its data, how the databases will be laid
out, and how the system will interface with other systems.

Of course, none of this is possible without first figuring out what the end
user wants and needs for his or her system. The process of determining
these requirements is usually called requirements elicitation and it is the
information uncovered in this process that the analyst uses to model the
system.

Once the system is deemed feasible and its requirements determined, it
is now time to physically design the system. This is when the analyst or
designer gets into the “bits and bytes” of the system: exactly what func-
tions will be programmed, the logic of these functions, what data will be
used, what network architecture should be used, etc. In this step, an
extremely detailed design specification is created — so detailed that the
programmers have all the information they need to write their programs.

The system is then tested (unit testing by the programmer, acceptance
testing by the end users, system testing by the team, etc.). After the system
has been thoroughly tested, it is time to implement the system; this is often
called “putting it into production” by those in the field. Just prior to this,
the IT team documents the system and trains the end users.

Finally, the system is in production and it is time to support it (help
desk, training, etc.) and make changes (maintenance) as required.

References

1. Linkman, S.G. and Walker, J.G. (1991). Controlling programs through measurement,
Inf. Software Technol., 33, 93–102.

This page intentionally left blank

35

Chapter 2

The Feasibility Study
and Cost/Benefit
Analysis

A feasibility study is a detailed assessment of the need, value, and practi-
cality of a proposed enterprise, such as systems development (Burch,
2000). Simply stated, it is used to prove that a project is either practical or
impractical. The ultimate deliverable is a report that discusses the feasibil-
ity of a technical solution and provides evidence for the steering commit-
tee to decide whether it is worth going on with any of the suggestions.

At the beginning of every project, it is often difficult to determine if the
project will be successful, if its cost will be reasonable with respect to the
requirements of building certain software, or if it will be profitable in the
long run.

In general, a feasibility study should include the following information:

• Brief description of proposed system and characteristics
• Brief description of the business need for the proposed system
• A cost/benefit analysis
• Estimates, schedules, and reports

Considerable research into the business and technical viability of the
proposed system is necessary in order to develop the feasibility study.

FEASIBILITY STUDY COMPONENTS

There are actually three categories of feasibility.

Financial Feasibility

A systems development project should be economically feasible and
provide good value to the organization. The benefits should outweigh the
costs of completing the project. The financial feasibility also includes the
time, budget, and staff resources used during all the stages of the project
through completion.

36

SOFTWARE ENGINEERING HANDBOOK

A feasibility study will determine if the proposed budget is enough to
fund the project to completion. When finances are discussed, time must
also be a consideration. Saving time and user convenience has always been
a major concern when companies develop products. Companies want to
make sure that services rendered will be timely. No end user wants to wait
for a long time to receive service or use a product, however good it is, if
another product is immediately available.

Key risk issues include: 1) the length of the project’s payback (the
shorter the payback, the lower the risk), 2) the length of the project’s
development time (the shorter the development time, the less likely objec-
tives, users, and development personnel will change and, consequently,
the lower the risk), and 3) the smaller the differences people make in cost,
benefit, and life cycle estimates, the greater the confidence that the
expected return will be achieved.

Technical Feasibility

A computer system should be practical to develop and easy to maintain.
It is important that the necessary expertise is available to analyze, design,
code, install, operate, and maintain the system. Technical feasibility
addresses the possibility and desirability of a computer solution in the
problem area. Assessments can be made based on many factors — for
example, knowledge of current and emerging technical solutions, availabil-
ity of technical personnel on staff, working knowledge of technical staff,
capacity of the proposed system to meet requirements, and capacity of the
proposed system to meet performance requirements.

Developing new technology will need to take into account the current
technology. Will today’s technology be able to sustain what we plan to
develop? How realistic is the project? Do we have the knowledge and tools
needed to accomplish the job? Emerging technology is getting more and
more advanced with each passing day; somehow we need to know if our
objectives can be realized. It is not enough to note if the product in devel-
opment is technologically feasible, we also must make sure that it is at par
with or more advanced than technology in use today.

Key risk issues:

• Project staff skills and clarity of project design requirements — tech-
nical risk is reduced where similar problems have been solved or
where the design requirements are understandable to all project par-
ticipants.

• Proven and accepted equipment and software — tried and tested
hardware and software components carry lower risk. Projects that are
novel or break new ground carry higher risk.

37

The Feasibility Study and Cost/Benefit Analysis

• Project complexity — a project that requires a high degree of technical
skills and experience will be a higher-risk undertaking than one that is
not as sophisticated and can be handled by less specialized people.

Organizational or Operational Feasibility

A systems development project should meet the needs and expecta-
tions of the organization. It is important that the system be accepted by the
user and be operational. The following requirements should be taken into
consideration in determining if the system is operationally feasible: staff
resistance or receptiveness to change, management support for a new sys-
tem, nature or level of user involvement, direct and indirect impact of new
system on current work practices, anticipated performance and outcome
of the new system compared to the old system, and viability of develop-
ment and implementation schedule. The following issues should also be
addressed:

• Does the organization for which the information system is to be sup-
plied have a history of acceptance of information technology or has
past introduction led to conflict?

• Will personnel within the organization be able to cope with operating
the new technology?

• Is the organizational structure compatible with the proposed informa-
tion system?

Key risk issues:

• User acceptance — the more strongly the users support the project,
the less risk of failure.

• Changes to organizational policies and structure — the more a project
influences changes to relationships within an organization or modifies
existing policies, the greater the risk.

• Changes to method of operation, practices, and procedures — the
more a project necessitates major changes or modifications to stan-
dard operating procedures in an organization, the greater the likeli-
hood of risk.

Depending upon the scope of the software to be developed, organization
feasibility might require the following analyses, particularly if the software
being developed is a product that will be introduced to the marketplace:

• Competitive analysis refers to the study of the current trends and dif-
ferent brand names available in today’s market to enforce competitive
advantage in product development.

• New product development analysis is a key factor in feasibility studies;
it studies the need for and uniqueness of a product, justifying further
study, development, and subsequent launching.

38

SOFTWARE ENGINEERING HANDBOOK

• Performance tracking analysis evaluates how well a product will per-
form technically and financially in relation to its features and require-
ments.

Competitive Analysis. How does your product or service measure up to
the competition? What is your market share? Is there room for growth?
Web sites can be visited, marketing literature reviewed, and financial
reports analyzed. Surveys can be developed to figure out the competition
and how the product will be needed.

Surveys are an important source of information on market needs and
user expectations. In competitive analysis, the market is evaluated as well
as the market standing value of existing products. Quantitative research is
also useful in anticipating market changes and foreseeing how the compe-
tition will react.

New Product Development. The first goal in launching a new product is
to identify a need. What will the software offer that is not offered right now
in existing products? Are businesses, schools, or personal consumers
interested in such a product? A feasibility study will allow an organization
to find the right niche for products. The feasibility study also helps evalu-
ate the market for growth, cost, and longevity of the product. This gives the
company a chance to tweak a product before it is manufactured and sub-
sequently launched.

Performance Tracking. There are many factors to consider when evalu-
ating the market share of a product. Profits and sales certainly reflect cus-
tomer acceptance, but true results can be known only when you evaluate
brand awareness as well as consumer attitudes and satisfaction. Equally
important to a healthy business are the people who make it happen. What
is the morale within your company? Are your employees performing at
their best? It is important to evaluate a company’s internal and external
behavior vis-à-vis the prospective end users of the product. If it is internal,
will employees see the need to implement totally new software and thus
relearn operations or will it hinder them from cooperating for fear that
technology might replace them?

COST/BENEFIT ANALYSIS

One of the major deliverables of the feasibility study is the cost/benefit
analysis. In this document the organizational, financial, and technical
aspects of creating the software are put into a dollars and cents format.
Appendix D (sample cost/benefit analysis worksheets) provides a good
framework for this analysis.

39

The Feasibility Study and Cost/Benefit Analysis

The purpose of this analysis is to determine whether the costs exceed
the benefits of the new or modified system. Costs associated with a com-
puter project can be categorized as follows:

• Systems analysis and design
• Purchase of hardware
• Software costs
• Training costs
• Installation costs
• Conversion and changeover costs
• Redundancy costs
• Operating costs, including people costs

Many specific costs are subcategorized within these categories; for
example: analyst calculations of total cost of project, alternatives to pur-
chasing hardware, staff needed to train users, maintenance costs for hard-
ware and software, costs of power and paper, and costs associated with
personnel to operate the new system. A more detailed list includes:

• Equipment — disk drives, computers, telecommunications, tape
drives, printers, facsimiles, voice and data networks, terminals, mo-
dems, data encryption devices, physical firewalls (leased or pur-
chased)

• Software — application programs, operating systems, diagnostic pro-
grams, utility programs, commercial off-the-shelf (COTS) software
such as word processors and graphics programs, database manage-
ment software, communications software, server software (leased or
purchased)

• Commercial services — teleprocessing, cell phones, voice mail, on-
line processing, Internet access, packet switching, data entry, legal
services

• Support services — systems analysis and design, programming, train-
ing, planning, project management, facilities management, network
support

• Supplies — CDs, tapes, paper, pens, pencils, CD-ROMs, etc.
• Personnel — salary and benefits for all staff involved, usually calculat-

ed at a rate of 30 percent of the base salary

It is important that the benefits outweigh the costs. Some of the benefits
cannot necessarily be measured, but nevertheless should be taken into
consideration. Some of those benefits are intangible such as savings in
labor costs, benefits due to faster processing, better decision making, bet-
ter customer service, and error reduction. It may be difficult to determine
benefits and costs in advance.

40

SOFTWARE ENGINEERING HANDBOOK

Cost information can be obtained from:

• Experiences from the past. Old documents and information will be use-
ful in getting some ideas about the cost of software, hardware, and
each service. Invoices for expenses for resources purchased for prior
projects are particularly useful.

• Costs from the market. It is also important to get the price from the cur-
rent market for your software system.

• Publishing. Business and trade publications and the Internet are an-
other source of price information as well as product functionality.

• Personal experience. End users and system staff might have relevant
information on costs and product feature sets.

SCHEDULING THE FEASIBILITY STUDY

Creating a schedule for the feasibility study is very important in that it
puts into perspective the amount of time required, people involved, poten-
tial consumers, and competition that will provide the relevant information.
Tasks include selecting a team, assigning appropriate tasks to each team
member, and estimating the amount of time required to finish each task.
Some of the scheduling tools that can be utilized are diagrams showing rel-
evant work scheduling in relation to the tasks required to finish the feasi-
bility study. Some of these use a table as shown below, a Gantt chart
(Exhibit 2-1), or a PERT diagram (Exhibit 2-2), which is represented by a
network of nodes and arrows that are evaluated to determine the project’s
critical activities. Precedence of activities is important in determining the
length of the project when using a PERT diagram.

Exhibit 2-1. Figuring the time schedule in relation to the related activity
may also be accomplished using a two-dimensional Gantt
chart.

Feasibility Study Tasks Detailed Activity Weeks Required

Data gathering Conduct interviews 3

Administer questionnaires 4

Read company reports 4

Introduce prototype 5

Observe reactions to prototype 3

Data flow and decision

analysis
Analyze data flow 8

Proposal preparation Perform cost/benefit analysis 3

Prepare proposal 2

Present proposal 2

41

The Feasibility Study and Cost/Benefit Analysis

THE FEASIBILITY STUDY PROCESS

A feasibility study should follow a certain process. It should analyze the
proposed project and produce a written description, define and document
possible types of systems, and develop a statement of the probable types
of systems. The feasibility study should analyze the costs of similar

Exhibit 2-2. A PERT (Program Evaluation and Review Techniques) Diagram

K = Ken, J = Jon, M = Matt, B = Bill
< = See next chart s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r

Requirements Spec. & Design

Requirements specification K, M, J, B

Engine architecture design K

Interface layout and design M

Interface Task Breakdown

Level Editor M

New Project wizard M

New Sprite wizard M

Database (DB) construction M

DB communication w/ interface M

Exporting game files ability

Exporting .cpp files ability

Engine Task Breakdown

Object Handler K

Sprite Handler K

Image Handler (DDraw) K

Sound Handler (DSound) J

Input Handler (DInput) K

Text Handler K

Logic Handler K

Attribute Handling K

Unit Pathing K

File I/O Parser K

Help Task Breakdown

Interface Help

Engine Help

FAQ

Game building tutorials

Manual

Testing Task Breakdown

Unit testing B

Integration testing

Validation testing

Performance testing

In-house Alpha testing

Outside beta testing

Documentation

System Requirements Specification B

Software Requirements Specification K, M

Software Quality Assurance Plan K

Risk Management Plan B, M

Software Configuration Mgmt. J, K

Project Plan J

30-Jan2-Jan 16-Jan

42

SOFTWARE ENGINEERING HANDBOOK

systems, produce a rough estimate of the system size, costs, and sched-
ules, and define the benefits of the system. It should produce an estimate
of the next stage of the life cycle. Analysis of the current system is neces-
sary in order to establish feasibility of a future technical system. This will
provide evidence for the functions that the new system will perform.
Finally, a report should be written containing suggestions, findings, and
necessary resources (Sauter, 2000).

A feasibility report will be written and submitted to management con-
taining all relevant information, including financial expenses and expected
benefits as shown in Exhibit 2-3. Based on this report, management will
make its determination about the future of the project. Much of the infor-
mation will come from the analyst and the systems investigation. The
report should include information on the feasibility of the project, the prin-
cipal work areas for the project, any needs for specialist staff that may be
required at later dates, possible improvements or potential savings, costs
and benefits, as well as recommendation. Charts and diagrams relative to
the project, such as Gantt and Pert charts, should be included in the feasi-
bility report. Obviously, the project cannot proceed until the feasibility
report has been accepted.

Determining Feasibility

A proposal may be regarded as feasible if it satisfies the three criteria
discussed at length earlier: financial, technical, and operational. Schedul-
ing and legal issues must also be considered (Burch, 2000). It is possible to
proceed with the project even if one or more of these criteria fail to be met.
For example, management may find that it is not possible to proceed with
the project at one point in time but that the project can commence at a
later date. Another option would be for management to make amendments
to the proposed agenda and agree to proceed upon those conditions. Con-
versely, a project that may have been determined feasible may later be
determined infeasible due to changes in circumstances.

Other Considerations

When dealing with many kinds of projects, costs and benefits are usually
the main concerns. Other concerns, however, should be considered.
Project timeframes should also be addressed in the feasibility study; real-
istic estimates should be made detailing staff resources and time required
to complete the different phases of the project.

In dealing with the project, it is also important to consider all legal or
regulatory issues that may occur throughout the feasibility or any stage of
the project. It may be wise to conduct a preliminary investigation of any
obligations and regulatory or legal issues prior to commencement of the
initial project stages.

4
3

T
h

e
 F

e
a

sib
ility S

tu
d
y a

n
d
 C

o
st/B

e
n

e
fit A

n
a

lysis

Exhibit 2-3. Expected Benefits Compared to Expenses

Interest Rate 10.00%

NPV $1,450,582.94

IRR 103%

Payback 2.0 years (payback manually calculated)

Assumptions Expenses

Year 1 Year 2 Year 3 Year 4 Year 5

IT Related

Initial hardware plus additional yearly capacity Hardware $304,000 $50,000 $50,000 $50,000 $50,000

Solution software and licensing costs for upgrades Software $111,000

Project-related design and implementation costs People $90,000

Training, policies, and procedures Training/Materials $250,000

Costs associated with potential unknown factors Variance $75,000

User Related

Human resources for the project Hardware

Software

People $300,000

Training for developers on application rollback Training/Materials

Lost Opportunity $10,000

TOTAL $1,140,000 $50,000 $50,000 $50,000 $50,000

(continued)

4
4

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K

Exhibit 2-3. (continued) Expected Benefits Compared to Expenses

Benefits

IT Related

Gains achieved from buying fewer servers Hardware $83,300 $83,300 $83,300 $83,300 $83,300

Software $0

1 man less spent managing storage People $50,000 $50,000 $50,000 $50,000 $50,000

Gains from more efficient use of storage Productivity Gains $75,000 $100,000 $125,000 $150,000 $175,000

User Related

Improved development efficiency, based on company

growth
Hardware $0

Software $0

People $150,000 $175,000 $200,000 $225,000 $250,000

Improved profit margins on projects, based on com-

pany growth
Productivity

Gains $200,000 $225,000 $250,000 $275,000 $300,000

TOTAL $558,300 $633,300 $708,300 $783,300 $858,300

TOTAL PMT ($581,700) $583,300 $658,300 $733,300 $808,300

45

The Feasibility Study and Cost/Benefit Analysis

Stages of Feasibility Study

Robinson (2002) has neatly summarized the stages of a feasibility study
(Exhibit 2-4):

1. Define project scope
2. Perform activity analysis
3. Perform needs analysis
4. Conduct conceptual modeling
5. Use case modeling
6. Identify nonfunctional requirements
7. Identify options
8. Select options
9. Plan acquisition strategy

10. Develop business case
11. Conduct package feasibility study

CONCLUSION

The primary goal of the feasibility study is to evaluate the risks, benefits,
and potential of a proposed project. We also know that the study should
aid in producing a solid plan for the research stage and stages to follow so
that the project will be given careful consideration and be properly funded.
According to Burch (2000), a feasibility study will help you make informed
and transparent decisions at crucial points during the developmental pro-
cess to determine whether it is operationally, economically, and techni-
cally realistic to proceed with a particular course of action. It should
provide a means of minimizing risks, clarifying issues and expectations,
and improving the decision making process and the stages to follow.

Exhibit 2-4. The Stages of a Feasibility Study

Define
Project Scope

Activity
Analysis

Needs
Analysis

Conceptual
Modeling

Use Case
Modeling

Select
Option

Plan
Acquisition

Strategy

Develop
Business

Case

Package
Feasibility

Study

Identify
Options

Identify
Nonfunctional
Requirements

46

SOFTWARE ENGINEERING HANDBOOK

References and Further Reading

Allen, G.W. (1998). The position of the feasibility study in project management, (Online) Avail-
able: http://www.dis.port.ac.uk/~allangw/papers/feas-stu.htm.

Anonymous. (1996). Feasibility study and initial assessment, (Online) Available: http://cyg-
nus.uwa.edu.au/~belle/ScafEng/feasibil.htm.

Burch, J. G. (2000). Designing and implementing record keeping systems, (Online). Available:
http://www.records.nsw.gov.au/publicsector/DIRKS/exposure_draft/feasibility_analysis.htm.

Curtis, G., Hoffer, J., George, J., and Valacich, J. (2000). Introduction to Business Systems Anal-
ysis, Pearson Custom Publishing, Boston, 17, 19, 23, 25–229.

Kendall, K.E. and Kendall, J.E. (1999). Systems Analysis and Design, 4th ed., Prentice Hall, New
York, 54–68.

Putnam, L. and Myers, W. (1997). How solved is the cost estimation problem? IEEE Software,
14(6), 105–107.

Pressman, R.S. (2001). Software Engineering: a Practitioner’s Approach, 5th ed., McGraw Hill,
New York, 117–118.

Robinson, P. (2002). Lyonsdale systems. Feasibility study, (Online) Available: http://mem-
bers.iinet.net.au/~lonsdale/bm/bm21.htm.

Sauter, V. (2000). The feasibility study, (Online) Available: http://www.umsl.edu/~sauter/anal-
ysis/deliverables.htm.

47

Chapter 3

Writing the Project
Plan

In the beginning there was just code and nothing but code. The art of soft-
ware engineering was just a blip on the horizon and project planning did
not even have a name. In the early days of software development, one per-
son could carry out the whole process of requirement collection, analysis,
designing, development, testing, and maintenance by himself. Of course,
he did not recognize these processes as independent steps with the names
I have used.

As computers became ubiquitous software engineering, the “policies
and procedures” of developing computer systems became an important —
and organized — discipline. Project planning became an indispensable
part of software engineering.

The project plan is the roadmap that details all of the components of a
software engineering effort. It is a work product generated by the planning
tasks in a software engineering process that contains detailed information
about budgets, schedules, and processes. It necessarily addresses a broad
audience, including management, staff, and customers. For this purpose it
should be comprehensive but concise.

WHY WRITE A PROJECT PLAN?

Projects often go awry. A China Airlines Airbus took off from Taipei Inter-
national Airport on April 26, 1994, and continued flying according to its
flight plan. While approaching Nagoya Airport for landing, the aircraft
crashed. On board were 271 persons: 256 passengers (including 2 infants)
and 15 crew members, of whom 264 persons (249 passengers including 2
infants and 15 crew members) were killed and 7 seriously injured. The air-
craft ignited and was destroyed.

While the aircraft was making an approach under manual control by the
flight officer, he inadvertently activated the GO lever, which caused the FD
(flight director) to GO AROUND mode and caused a thrust increase. This
made the aircraft deviate above its normal glide path, which, in turn led to

48

SOFTWARE ENGINEERING HANDBOOK

the chain of events that ultimately caused the airplane to stall and then
crash.

Computers are increasingly being introduced into safety-critical sys-
tems and, as a consequence, have been involved in more than a few acci-
dents. Some of the most widely cited software-related accidents in safety-
critical systems have involved a computerized radiation therapy machine
called the Therac-25. Between June, 1985, and January, 1987, six known
accidents involved massive overdoses by the Therac-25 — with resultant
deaths and serious injuries. They have been described as the worst series
of radiation accidents in the 35-year history of medical accelerators.

Software disasters like these could have been avoided had the software
been designed and tested properly. Productivity and quality oriented soft-
ware design cannot be accomplished without adequate project planning.

A realistic project plan must be developed at the beginning of a project.
It must be monitored during the project and modified, if necessary. Ulti-
mately, a project plan is a vehicle and focal point that enables the project
manager to carry out all sorts of project management activities. It provides
a roadmap for a successful software project.

WHO WRITES THE PROJECT PLAN?

The project manager or team leader normally writes the project plan,
although experienced consultants are often called in for this aspect of the
project. In truth, there are as many ways to write a project plan as there are
companies that write them. If the project is large, the proposed system
might be divided into subsystems — each with its own team. Each team
leader may need to write his own part of the project plan. The project man-
ager then compiles each subplan into a plan for the whole project.

Another alternative is to divide the project plan into discrete tasks and
parcel out the effort to team members. Appendix F contains a sample
project plan. As you can see from its table of contents, it is easily divisible.

WHAT GOES INTO THE PROJECT PLAN?

Pressman (2001) has defined the prototypical project plan. A student
implementation of this guideline can be found in Appendix F; the reader is
directed there for a concrete example of how a project plan is orchestrated.

The first section introduces the system and describes its purpose. The
project scope and objectives need to be defined here. This subsection con-
tains a formal statement of scope, description of major functions, concerns
on performance issues, and a list of management and technical constraints.

The second section discusses project estimates and resources. Histor-
ical data used for estimates needs to be specified, as do estimation

49

Writing the Project Plan

techniques. As a result of the estimation process, the estimates of effort,
cost, and duration need to be reported here. Resources are required to be
discussed in terms of people and minimal hardware and software
requirements.

The third section discusses risk management strategy. A risk table
needs to be created at first, followed by more detailed discussions on risks
to be managed. Based on that, a risk mitigation, monitoring, and manage-
ment (contingency) plan needs to be created for each risk that has been
addressed.

The fourth section is an actual project schedule in terms of deliverables
and milestones. A project work breakdown structure, or WBS, needs to be
created, followed by a task network and a timeline chart (Gantt chart). In
addition, a resource table describes the demand for and availability of
resources by time windows. In a WBS the total task is broken down into
series of smaller tasks. The smaller tasks are chosen based on size and
scope to fit in the management structure of the project. Therefore, efficient
planning and execution are possible.

The fifth section discusses staff organization. Usually a project is carried
out by a group of people and therefore a team structure needs to be defined
and a management reporting relationship specified.

The sixth section lays out a picture on tracking and control mecha-
nisms. It can be divided into two subsections: quality assurance and con-
trol and change management and control.

At the end of the project plan, all supporting materials that do not fit into
the body of the document can be attached in the appendices section.

Most project managers have a difficult time writing a project plan
because it is often required at project inception, which, unfortunately, is
when information is most scarce. The project manager must choose a pro-
cess model most appropriate for the project, and then define a preliminary
plan based on the set of common process framework activities. The possi-
ble models include linear sequential model, prototyping model, RAD model
(Mantei, 1991), incremental model (McDermid and Rook, 1993), spiral
model, etc. — many of which are described in other chapters of this hand-
book. Afterward, process decomposition (partitioning) is carried out, gen-
erating a complete plan reflecting the work tasks required to populate the
framework activities.

THE PROJECT PLAN UNWRAPPED

Software Scope

Determination of software scope needs to be ascertained first. One
establishes software scope by answering questions about context,

50

SOFTWARE ENGINEERING HANDBOOK

information objectives, function, performance, and reliability. The context
usually includes hardware, existing software, users, and work procedures.
Normally a system specification developed by a system analyst supplies
the information necessary to bound the scope.

Techniques like question and answer sessions and FAST (facilitated
application specification techniques) can be used to gather requirements
and establish project scope (Zahniser, 1990).

The following is a minimum that needs to be ascertained:

• Major functions are the customers’ requirements as to what the soft-
ware should be able to do.

• Performance issues are about speed, response time, and other perfor-
mance-related requirements. They can have serious impacts on the re-
quirement of effort and therefore should be clarified here.

• Management and technical constraints should be listed as foundation
for the next section’s estimation.

Project Estimates

Estimation is the one activity that lays a foundation for all other project
planning activities. However, a project manager should not be overly manic
in estimation. If an iterative process model is adopted, it is possible to
revisit and revise the estimates when customer requirements change.

Historical Data Used for Estimates. Historical data is key to a good esti-
mation. The availability of reliable historical software metrics from previ-
ous projects assists the project planner in translating the product size esti-
mation into effort, time and cost estimations. Baseline productivity
metrics (e.g., LOC (lines of code) or FP (function points)) should be stored
by project domain for use in future estimation efforts.

Estimation Techniques. If similar projects have already been completed,
estimates can easily be based on that available data. Otherwise, a decom-
position technique or an empirical model can be used. There are also soft-
ware tools that automate the process using the two preceding approaches.
At least two estimation methods should be used, with the final estimation
a triangulation of the two. Even so, common sense and experience should
be the ultimate judge.

In the example provided in Appendix F two estimation methodologies
are used:

• Process based where the system is decomposed into discrete tasks
such as analysis of the user interface and design of the user interface
with an estimated amount of time allocated to each. For the online

51

Writing the Project Plan

resource scheduling system the process-based estimate was 7.5 per-
son months.

• LOC, or line of code, estimation is much harder to estimate manually.
A tool such as COCOMO (an abbreviation of cost construction model)
makes the effort much easier. A wealth of information as well as a free
version of the COCOMO automated tool can be found on the CSE cen-
ter for software engineering web site (http://sunset.usc.edu/re-
search/COCOMOII/index.html).

COCOMO II is a model that allows one to estimate the cost, effort, and
schedule when planning a software developmental activity. It is based on
the original COCOMO model devised by Dr. Barry Boehm in 1981. The
COCOMO II model is actually derived from the following original mathe-
matical formula that is described in the second half of this book:

m = c1 * KLOCa*PROD[f i]

COCOMO II permits the estimator to estimate a project cost in terms of
LOC or function points (FP). FP calculation is quite complex; a chapter
explaining function points can be found in this section.

Exhibit 3-1 shows the COCOMO II tool set in action. Although a bit cum-
bersome — the nonfree COCOMO tools are much more user friendly — the
free version is quite functional. In this real-world example, I used COCOMO
to estimate the cost of building an Internet gaming system using the LOC
option (see module size). If you look down at the bottom of the screen shot,
you will notice three estimates: optimistic, most likely and pessimistic. The
COCOMO tool set has many features. I would recommend that you down-
load this tool and try it out.

Thus, the planner first needs to estimate the size of the product to be
built, and then translate the size estimate into human effort, calendar time,
and dollars.

Decomposition Techniques

According to Putnam and Myers (1992), several approaches can be used
to handle the project sizing problem: “fuzzy-logic” sizing, which uses
approximate reasoning technique as in the art of “guestimating,” function
point sizing, standard component sizing (i.e., modules, screens, reports,
etc.), and change sizing, which is used in estimating the size of an effort to
modify an existing system.

Problem-based estimation techniques include FP- and LOC-based esti-
mation, which we just discussed. Both require the project planner to
decompose the software into problem functions that can be estimated indi-
vidually. Then the project planner estimates LOC or FP (or other estima-
tion variable) for each function and applies the baseline productivity

52

SOFTWARE ENGINEERING HANDBOOK

metrics to derive the cost of or effort for the function. Finally, these func-
tion estimates are combined to produce the overall estimate for the whole
project. Alternatively, a process-based estimation is commonly used. Here
the process is partitioned into a relatively small set of activities (i.e., the
large project is decomposed or segmented into more manageable tasks) or
tasks and the effort required to accomplish each is estimated.

Empirical Model

A variety of empirical models are available to calculate the effort
required based on the size estimation in FP or LOC. Other than COCOMO
(Boehm, 1981), the most widely used model is the software equation (Put-
nam and Myers, 1992).

Putnam’s cost estimation model is a macro-estimation model. The
model recognizes the relationship between cost and the amount of time
available for the development effort. The Putnam model supports the
mythical man-month idea first put forth by Frederick Brooks that states
that people and time are not always interchangeable. The software equa-
tion is explained in the second half of this book.

Exhibit 3-1. Using COCOMO for Estimation

53

Writing the Project Plan

The results of these estimation techniques are estimates of effort, cost,
and duration. They, in turn, are used in other sections of the project plan.

Risk Management Strategy

A proactive risk strategy should always be adopted. It is better to plan
for possible risk than to need to react to it in a crisis. Software risks include
project risks, technical risks, and business risks; they can also be catego-
rized as known, predictable, or unpredictable risks. First, risks need to be
identified. One method is to create a risk item checklist. The sample
project plan in Appendix F lists the following risks:

• Customer will change or modify requirements
• Lack of sophistication of end users
• Users will not attend training
• Delivery deadline will be tightened
• End users resist system
• Server may not be able to handle larger number of users simultaneously
• Technology will not meet expectations
• Larger number of users than planned
• Lack of training of end users
• Inexperienced project team
• System (security and firewall) will be hacked

Then risks need to be projected in two dimensions: likelihood and con-
sequences. This section can be a separate RMMM (risk, mitigation, moni-
toring, and management) plan and used as part of the overall project plan.

Risk Table. A risk table is a simple tool for risk projection. First, based
on the risk item checklist, list all risks in the first column of the table. Then
in the following columns fill in each risk’s category, probability of occur-
rence, and assessed impact. Afterward, sort the table by probability and
then by impact, study it, and define a cut-off line.

Discussion of Risks to Be Managed. All risks above the cut-off line must
be managed and discussed. Factors influencing their probability and
impact should be specified.

RMMM Plan for Each Risk. A risk mitigation plan is a tool that can help in
avoiding risks. Causes of the risks must be identified and mitigated. Risk
monitoring activities take place as the project proceeds and should be
planned early. Risk management — i.e., the contingency plan — is a list of
activities that are put into action in the event a risk is realized. A plan
should be created well before that.

54

SOFTWARE ENGINEERING HANDBOOK

Schedules

Before drafting a schedule several things need to be done. The project
manager needs to first decide the type of the project from four choices:
concept development, new application development, application enhance-
ment, and re-engineering projects. Then the project manager needs to com-
pute a task set selector value (Pressman, 2001) by: 1) grading the project
for a set of adaptation criteria including its size, requirements, and con-
straints, 2) assigning weighting factors to each criterion, 3) multiplying the
grade by weighting factors and by the entry point multiplier for the type of
the project, and 4) computing the average of all results in the previous
step. Based on this average value, the project manager can choose the
degree of rigor required for the project from four options: casual, struc-
tured, strict, and quick reaction. Afterward, the task set can be decided and
distributed on the project time line based on the process model choice: lin-
ear sequential, iterative, or evolutionary.

A sample from the schedule created for use in Appendix F appears in
Exhibit 3-2.

Project tasks, also known as project work breakdown structure (WBS)
are now defined as shown in Exhibit 3-3.

Alternatively, a textual WBS can be created as shown in Exhibit 3-4.

Task Network. Interdependencies among tasks are defined using a task
network as shown in Exhibit 3-5. A task network is also known as an activity
network because it shows all of the activities for the project — and each
activity’s dependencies. In Exhibit 3-5, task 1.1 must be completed prior to
initiation of task 1.2, and so on. A variety of automated tools implementing
program evaluation and review technique (PERT) and critical path method
(CPM) (Moder et al., 1983) can be used for project scheduling.

DuPont developed the CPM for use in chemical plants. The objective is
to determine the trade-off between project duration and the total project
cost, which is accomplished by identifying the critical path through activity
network. The critical path can help management to change the duration of
the project. In CPM, an activity time is assumed to be known or predictable.

Project evaluation and review technique was developed by the Navy
when the Polaris missile was designed. When accurate time estimates are
not available, PERT is an ideal tool for Project Planning since it uses prob-
ability theory.

Exhibit 3-2. Project Work Breakdown Structure

Activities Deliverable From Date To Date Milestone

Meetings Weekly meetings 02/04/02 05/07/02 05/07/02

55

Writing the Project Plan

Eventually CPM and PERT merged into a single technique. Events are
shown as nodes and activities are shown as arrows that connect events.
Arrows represent the effort required for achieving the next event; direc-
tion specifies the order in which events must occur. There are two types
of times for each event. One is the “earliest time,” the earliest possible
time at which the event can be achieved. The other is the “latest time,”
which is the latest time the event can occur without delaying subsequent
events and completion of the project. For an event, the slack time can be
obtained or calculated by the difference between the latest and the earli-
est times.

Timeline Chart (Gantt Chart). Usually the timeline chart is generated
using automated tools after inputting the task network or task outline and
each task’s effort, duration, start date, and resource assignment. This
chart is visual and usually the most used part of a project plan. However,
it is also possible to create a viable Gantt chart using Microsoft Excel as
shown in Exhibit 3-6.

Resource Table. This is another output generated by the automated
tool, with a focus on the workload for and utilization of the project
resources, particularly human resources. Once a proper project schedule
is developed, its tasks and milestones should be tracked and controlled as
the project proceeds.

Exhibit 3-3. Our Student Project Plan Uses Microsoft Project to Create a
WBS.

56

SOFTWARE ENGINEERING HANDBOOK

Exhibit 3-4. Textual WBS

Phase I: Proposal

TASK START FINISH

Create budget Thu 6/20/02 Fri 6/21/02

Define project team Thu 6/20/02 Fri 6/21/02

Define material resources Mon 6/24/02 Wed 6/26/02

Identify management team Thu 6/27/02 Thu 6/27/02

Phase II: Planning

Determine performance goals Thu 6/20/02 Thu 6/20/02

Conduct stakeholder interviews Thu 6/20/02 Thu 6/20/02

Analyze current architecture Thu 6/20/02 Fri 6/21/02

Produce operational metrics Mon 6/24/02 Wed 6/26/02

Problem analysis Thu 6/27/02 Fri 6/28/02

Problem resolution Mon 7/1/02 Fri 7/12/02

Determine future needs Mon 7/15/02 Tue 7/16/02

Phase III: Design

Produce topology maps Wed 7/17/02 Tue 7/23/02

Determine capacity allocations Wed 7/24/02 Thu 7/25/02

Determine backup requirements Fri 7/26/02 Mon 7/29/02

Determine specific hardware req. Tue 7/30/02 Tue 7/30/02

Determine specific software req. Wed 7/31/02 Wed 7/31/02

Phase IV: Implementation

Install new SAN hardware Wed 7/31/02 Tue 8/20/02

Install necessary supporting software Thu 8/22/02 Thu 8/22/02

Verify SAN to topology maps Fri 8/23/02 Fri 8/23/02

Perform system testing Wed 8/21/02 Tue 8/27/02

Migrate hardware to SAN Wed 8/28/02 Tue 9/3/02

Testing and verification Wed 9/4/02 Tue 9/10/02

Collect operational metrics Wed 9/11/02 Thu 9/12/02

Compare to existing system Fri 9/13/02 Fri 9/13/02

Phase V: Support

Prepare training materials Wed 7/31/02 Tue 8/13/02

Perform testing against materials Wed 8/14/02 Wed 8/14/02

Training Wed 8/14/02 Tue 8/20/02

Establish support needs Mon 9/16/02 Tue 9/17/02

Implement tracking methodology Wed 9/18/02 Thu 9/19/02

Determine additional follow-up needs Wed 9/25/02 Wed 9/25/02

57

Writing the Project Plan

Project Resources

Estimation of resources required is an important component of software
planning. For each resource the planner needs to specify with these char-
acteristics: description, statement of availability, and time window.

• People: the planner needs to specify the organizational position and
specialty of human resources required by the project. Only after esti-
mating the development effort can we define the number of people
required.

• Hardware and software: hardware and software form the foundation of
the software engineering environment (Naur and Randall, 1969). The
project planner must determine its time window and verify its avail-
ability. Reusable software components should also be specified, alter-
natives evaluated, and acquisition made early.

• Special resources: any other resources not covered in the previous two
sections should be listed here.

• Staff organization: people are the critical factor in a software develop-
ment effort. In a typical software project, the players fall into five cat-
egories: senior managers, project (technical) managers, practitioners,
customers, and end users. A good team leader should be able to moti-
vate other players, organize the process, and innovate or encourage
people to be creative.

• Team structure (if applicable): a project manager should decide on the
organizational structure for the team. According to Mantei (1981),
these three generic team organizations exist: democratic decentral-
ized (DD), controlled decentralized (CD), and controlled centralized
(CC). The factors that influence the team structure decision include:
difficulty of the problem, size of the resultant programs, team lifetime,
problem modularity, criticality of the solution, rigidity of timeline, and
communications required. Generally speaking, a DD structure is best
for difficult problems and a CC or CD structure is best for very large
projects.

• Management reporting: coordination and communication issues, in-
cluding management reporting relationships, should be addressed
here.

Tracking and Control Mechanisms

This may be the last section, but not the least important. Errors and
changes are inevitable, and we need to plan ahead to stay prepared for
when they actually happen.

• Quality assurance and control: software quality assurance activities
(SQA) happen at each step of the software process and are carried out
by software engineers and an SQA group. Software engineers assure
quality by applying rigorous technical methods and measures, and

58

SOFTWARE ENGINEERING HANDBOOK

conducting formal technical reviews and well-planned testing. SQA
group assists software engineers through a set of activities that ad-
dress quality assurance planning, oversight, record keeping, analysis,
and reporting. We need to plan these activities in this subsection.

• Change management and control: the later the changes happen in a
project, the higher the cost. Change control combines human proce-
dures and automated tools to provide a mechanism for the control of
changes that, if uncontrolled, can rapidly lead a large project to chaos.
The change control process begins with a change request, leads to a
decision to make or reject the request, and culminates with a con-
trolled update of the software configuration item to be changed. This
part of the activities should be planned here.

Appendices

Any supporting materials to the preceding sections should be attached
in this section.

IS IT WORTH IT?

Like any other software engineering task, project planning and writing a
detailed project plan take time and costs money. Therefore a natural ques-
tion arises: is it worth it? The answer is yes. If you want a system that is
cost effective, does not go over budget, and actually works, a project plan
is mandatory.

More than a few people in this field use the “roadmap” metaphor to
describe the role of a project plan; however, it is also a “compass.” Its esti-
mation and scheduling part may be like a rough roadmap (never precise
enough at the beginning of a project), but its risk management, organiza-
tion plan, tracking, and control part are definitely a compass. It guides the
project team in handling unpredictable risks or undesired events.

A good project plan benefits not only the project, but also the domain as
whole by its measures and metrics, which can be historical data for later
projects.

References

Boehm, B. (1981). Software Engineering Economics, Prentice-Hall, New York.

Kerr, J. and Hunter, R. (1994). Inside RAD, McGraw-Hill, New York.

Mantei, M. (1981). The effect of programming team structures on programming tasks, CACM,
24, 106–113.

McDermid, J. and Rook, P., Eds. (1993). Software development process models, in Software En-
gineer’s Reference Book, CRC Press, Boca Raton, FL, 28–66.

Moder, J.J., Phillips, C.R., and Davis, E.W. (1983). Project Management with CPM, PERT and Pre-
cedence Diagramming, 3rd ed., Van Nostrand Reinhold, New York.

59

Writing the Project Plan

Naur, P. and Randall, B., Eds. (1969). Software Engineering: a Report on a Conference Sponsored
by the NATO Science Committee, NATO.

Pressman, R. (2001). Software Engineering, a Practitioner’s Approach, 5th ed., McGraw Hill, New
York.

Putnam, L. and Myers, W. (1992). Measures for Excellence, Yourdon Press, New York.

This page intentionally left blank

61

Chapter 4

Requirements
Elicitation

Without proper information it is difficult, if not impossible, to define or
start a systems development project. Information gathered in this process
is called requirements elicitation; it will enable the project manager or ana-
lyst to create a blueprint of current systems and allow definition of objec-
tives, description of processes, and deployment of objectives for the new
system. In addition, if the systems analyst is careful, he can lay the founda-
tion of efficient and effective communications with stakeholders that will
lead to a higher likelihood of a successful project.

STAKEHOLDER ANALYSIS

Stakeholders are the people needed to ensure the success of the
project, for example, daily users and their managers, as well as technical
support people. It is important to find all the stakeholder groups and
determine their interests and needs. The first step, then, in requirements
elicitation is stakeholder analysis in which you try to find answers to the
following questions:

• Who are the stakeholders?
• What goals do they see for the system?
• Why would they like to contribute?
• What risks and costs do they see?
• What kind of solutions and suppliers do they see?

Stakeholders could be:

• The sponsor who pays for the development of the product
• People who will be using the product on a daily basis
• Managers of departments looking to increase work force efficiency
• The company’s customers (clients of the system), without whose sup-

port there will be no business advantages
• Business partners: suppliers, carriers, and banks that also need to in-

teract with the system
• IT people and hotline staff in case the product is to be developed with-

in the company
• IT people at the client’s site

62

SOFTWARE ENGINEERING HANDBOOK

Stakeholders should be carefully interviewed (Curtis et al., 2000) to:

• Define financial constraints
• Define the current and proposed information systems
• Define current and proposed development process
• Define current and proposed hardware assets and availability
• Define current and proposed software assets and availability
• Define current and future goals and objectives of the stakeholders

Information gathered from the financial constraints will allow examina-
tion of realistic designs and eliminate unnecessary expenditures of
resources on unrealistic approaches. One must also know the current
information systems in place and hardware assets as well as the current
software assets available within the company. It is also critical that the
development team fully understand the current development methodolo-
gies and tool sets that the company utilizes. The goals and objectives of the
information gathering process are to be able to accumulate enough infor-
mation to define all of these items as well as the goals of the stakeholders.

ELICITATION TECHNIQUES

Various methods can be used to obtain the information necessary to
prepare a project plan. These methods include interviewing, question-
naires, observation, participation, documentation, research, business
intelligence (BI), competitive intelligence (CI), reverse engineering, and
benchmarking.

Interviewing

The most common method of gathering information is by interviewing
people. Interviewing can serve two purposes at the same time. The first is
a fact-finding mission to discover what each person’s goals and objectives
are with respect to the project; the second is to begin a communications
process that enables one to set realistic expectations for the project.

A wide variety of stakeholders can and should be interviewed. Stake-
holders are those with an interest in seeing this project successfully com-
pleted — i.e., they have a “stake” in the project. As discussed earlier, stake-
holders include employees, management, clients, and partners.

Employees. It is amazing to me that some analysts develop systems
without ever interviewing those whose jobs will be affected the most. This
occurred most notably at the U.S. Post Office when the clerical staff was
automated in the 1980s. So little information was shared about what the
new system was going to do that the clerks got the misimpression that they
were soon to be replaced.

63

Requirements Elicitation

The number and type of employees that will need to be interviewed will
depend on the type of system being developed. Systems generally fall into
two categories: tactical and strategic. Tactical systems are usually transac-
tional-based systems such as check processing, student registration, and
medical billing where data volumes are high and staff members accessing
those systems are clerical. Strategic systems support the decision making
process and are utilized by middle and senior managers. It is possible for
a system to be a hybrid of both these system types. An example of this
would be a transactional back end that collects data for analysis by man-
agers at the front end.

Interviews can have some major obstacles to overcome. The inter-
viewee may resist giving information out of fear, may relate his perception
of how things should be done rather than how they are really done, or may
have difficulty in expressing himself. On the other hand, the analyst’s own
mindset may also act as a filter. The interviewer sometimes needs to set
aside his own technical orientation and make a strong effort to put himself
in the position that the interviewee is in. This requires that the analyst
develop a certain amount of empathy.

An interview outline should contain the following information:

• Name of interviewee
• Name of interviewer
• Date and time
• Objectives of interview — i.e., what areas you are going to explore and

what data you are going to collect
• General observations
• Unresolved issues and topics not covered
• Agenda — i.e., introduction, questions, summary of major points,

closing

Recommended guidelines for handling the employee interview process
include:

• Determine the system type (tactical, strategic, hybrid).
• Make a list of departments affected by the new system.
• For each department, request or develop an organization chart that

shows the departmental breakdown along with the name, extension,
and list of responsibilities of each employee.

• Meet with the department head to request recommendations and then
formulate a plan that details which employees are the best interview
prospects. The “best” employees to interview are those: 1) who are
very experienced (i.e., senior) in performing their job functions;
2) who may have come from a competing company and, thus, have a
unique perspective; 3) who have had a variety of positions within the
department or company.

64

SOFTWARE ENGINEERING HANDBOOK

• Plan to meet with employees from all units of the department. In other
words, if you are automating the marketing function and interviewing
the marketing department, you will want to meet with employees from
the marketing communications unit, marketing research unit, public
relations group, etc. In some cases, you may find that interviewing sev-
eral employees at a time is more effective than dealing with a single
employee because interviewing a group of employees permits them to
bounce ideas off each other.

• If a departmental unit contains many employees, it is not optimum to
interview every one. It would be wrong to assume that the more peo-
ple in a department, the higher the number of interviewees should be.
Instead, sampling should be used. Sampling is used to: 1) contain
costs; 2) improve effectiveness; 3) speed up the data-gathering pro-
cess; 4) reduce bias. Systems analysts often use a random sample;
however, calculating a sample size based on population size and your
desired confidence interval is more accurate. Rather than provide a
formula and instructions on how to calculate sample size here, I direct
the reader to the sample size calculator located at http://www.survey-
system.com/sscalc.htm.

• Carefully plan your interview sessions. Prepare your interview ques-
tions in advance. Be familiar with any technical vocabulary your inter-
view subjects might use.

• No meeting should last longer than an hour. A half hour is optimum.
There is a point of diminishing returns with the interview process.
Your interviewees are busy and usually easily distracted. Keep in
mind that some of your interviewees may be doing this against their
will.

Customers. If the new or modified system will be affecting customers in
any way, one should interview several customers to obtain their impres-
sions of the current process and what features would be desirable. This
information can be very enlightening. Often customers just live with the
frustrations and never mention them to anyone at the company. Custom-
ers often have experiences with other vendors or suppliers and can offer
insight into the processes that other companies use or that they have
experienced.

Guidelines for interviewing customers include:

• Work with the sales and marketing departments to select knowledge-
able and cooperative customers.

• Prepare an adequate sample size as discussed in the prior section.
• Carefully plan your interview sessions. Prepare your interview ques-

tions in advance.

65

Requirements Elicitation

Companies and Consultants. Another source of potentially valuable
information is other companies in the industry and consultants who spe-
cialize in the areas that will change with the new processes. Consultants
can be easily located and paid for their expert advice, but it is wise to tread
slowly when working with other companies who are current or potential
competitors.

Guidelines for interviewing other companies include:

• Work with senior management and marketing to create a list of poten-
tial companies to interview. This list should contain the names of trad-
ing partners, vendors (companies that your company buys from), and
competitors.

• Attend industry trade shows to meet and mingle with competitor em-
ployees and listen to speeches made by competitive companies.

• Attend trade association meetings; sit on policy and standards
committees.

Suppliers. Suppliers of the products you are considering are also an
important source of ideas for the problem you are facing. These suppliers
know a great deal about how their product has been used and how prob-
lems have been overcome in different systems. They can also give you a
long list of features they provide.

Types of Questions. When interviewing anyone it is important to be
aware of how to ask questions properly. Open-ended questions are best for
gaining the most information because they do not limit individuals to pre-
defined answers. Other benefits of using open-ended questions are that it:
puts the interviewee at ease, provides more detail, induces spontaneity,
and is far more interesting for the interviewee. Open-ended questions
require more than a yes or no answer (Yate, 1993). An example of an open-
ended question is “What types of problems do you see on a daily basis with
the current process?” These questions allow individuals to elaborate on
the topics and potentially uncover the hidden problems at hand that might
not be discoverable with a question that requires a yes or no answer.

Often one starts a systems development effort with the intention of solv-
ing a problem that turns out to be a symptom of a larger problem. If the
examination of problems leads to the underlying issues, the resolution of
those issues will be more valuable to the company in the end. Many symp-
toms are a result of the same problem, and a simple change can fix many
issues at once. One disadvantage of open-ended questions is that they cre-
ate lengthier interviews. Another is that it is easy for the interview to get
off track and it takes an interviewer with skill to maintain the interview in
an efficient manner (Yates, 1993).

66

SOFTWARE ENGINEERING HANDBOOK

Closed-ended questions are, by far, the most common questions in inter-
viewing. They are questions that have yes and no answers and are utilized
to elicit definitive responses.

Past-performance questions can be useful to determine past experi-
ences with similar problems (Yates, 1993). Often interviewees are reluctant
to discuss problems so questions about past-performance can allow the
person to discuss an issue with similar problems. An example of how a
past-performance question is used is, “In your past job how did you deal
with these processes?”

Reflexive questions are appropriate for closing a conversation or mov-
ing forward to a new topic (Yates, 1993). Reflexive questions are created
with a statement of confirmation and adding a phrase such as: Don’t you?
Couldn’t you? Wouldn’t you?

Mirror questions are a subtle form of probing and are useful in obtaining
additional detail on a subject. After the interviewee makes a statement,
pause and repeat the statement with an additional or leading question: “So,
when this problem occurs, you simply move on to more pressing issues?”

Often answers do not give the interviewer enough detail so one follows
the question with additional questions to prod the interviewee to divulge
more details on the subject. For example:

• Can you give some more details on that?
• What did you learn from that experience?

Another, more subtle, prodding technique can be used by merely sitting
back and saying nothing. The silence will feel uncomfortable causing the
interviewee to expand on his or her last statement.

Questionnaires and Surveys

If large numbers of people need to be interviewed, one might start with
a questionnaire and then follow up with certain individuals that present
unusual ideas or issues in the questionnaires. Survey development and
implementation is composed of the following tasks, according to Creative
Research Systems, makers of a software solution for survey creation (sur-
veysolutions.com):

• Establish the goals of the project — what you want to learn.
• Determine your sample — whom you will interview.
• Choose interviewing methodology — how you will interview.
• Create your questionnaire — what you will ask.
• Pretest the questionnaire, if practical — test the questions.
• Conduct interviews and enter data — ask the questions.
• Analyze the data — produce the reports.

67

Requirements Elicitation

Similar to interviews, questionnaires may contain closed-end or open-
ended questions or a combination of the two.

Appendix H contains a survey that was created for a Y2K software prod-
uct. This survey demonstrates the use of a hybrid questionnaire. Although
most of the questions are quite specific, and thus closed-ended, there are
at least two open-ended questions. Questions 6 and 8 under the heading of
“management aspects” permit the respondent to reply to an essay type of
question.

Survey creation is quite an art form. Guidelines for creation of a survey
include:

• Provide an introduction to the survey. Explain why it is important to
respond to it. Thank participants for their time and effort.

• Put all important questions first because it is rare that all questions
will be responded to. Those filling out the survey often become tired
of or bored with the process.

• Use plenty of “white space.” Use an appropriate font (i.e., Arial) and
font size (i.e., at least 12), and do skip lines.

• Use nominal scales if you wish to classify things (i.e., What make is
your computer? 1 = Dell, 2 = Gateway, 3 = IBM).

• Use ordinal scales to imply rank (i.e., How helpful was this class?
3 = not helpful at all, 2 = moderately helpful, 1 = very helpful).

• Use interval scales when you want to perform some mathematical cal-
culations on the results; i.e.:

How helpful was this class?
Not useful at all Very useful
1 2 3 4 5

Tallying the responses will provide a “score” that assists in making
a decision that requires the use of quantifiable information. When
using interval scales, keep in mind that not all questions will carry
the same weight. Hence, it is a good idea to use a weighted average
formula during calculation. To do this, assign a “weight” or level of
importance to each question. For example, the preceding question
might be assigned a weight of 5 on a scale of 1 to 5, meaning that
this is a very important question. On the other hand, a question
such as “Was the training center comfortable” might carry a
weight of only 3. The weighted average is calculate by multiplying
the weight by the score (w * s) to get the final score. Thus the for-
mula is

snew = w * s.

Several problems might result from a poorly constructed questionnaire.
Leniency is caused by respondents who grade nonsubjectively — in other

68

SOFTWARE ENGINEERING HANDBOOK

words, too easily. Central tendency occurs when respondents rate every-
thing as average. The halo effect occurs when the respondent carries his
good or bad impression from one question to the next.

Several methods can be used to deploy a survey successfully. The easi-
est and most accurate is to gather all respondents in a conference room
and hand out the survey. For the most part, this is not realistic, so other
approaches would be more appropriate. E-mail and traditional mail are two
methodologies that work well, although you often must supply an incen-
tive (i.e., prize) to get respondents to fill out those surveys on a timely
basis. Web-based surveys (Internet and Intranet) are becoming increas-
ingly popular because they enable the inclusion of demos, audio, and
video. For example, a Web-based survey on what type of user interface is
preferable could have hyperlinks to demos or screen shots of the choices.

Creative Research Systems summarizes the different approaches to sur-
veys in the table shown in Exhibit 4-1.

Observation

Observation is an important tool that can provide a wealth of informa-
tion. There are two forms of observation: silent and directed. In silent
observation, the analyst merely sits on the sidelines with pen and pad and
observes what is happening. If it is suitable, a tape recorder or video

Exhibit 4-1. Different Approaches to Surveys

Speed E-mail and Web page surveys are the fastest methods, fol-
lowed by telephone interviewing. Mail surveys are the
slowest.

Cost
Personal interviews are the most expensive, followed by

telephone and then mail. E-mail and Web page surveys are
the least expensive for large samples.

Internet Usage
Web page and e-mail surveys offer significant advantages,

but you may not be able to generalize their results to the
population as a whole.

Literacy Levels
Illiterate and less-educated people rarely respond to mail

surveys.

Sensitive Questions
People are more likely to answer sensitive questions when

interviewed directly by a computer in one form or
another.

Video, Sound, Graphics
A need to get reactions to video, music, or a picture limits

your options. You can play a video on a Web page, in a
computer-direct interview, or in person. You can play
music when using these methods or over a telephone. You
can show pictures in the first methods and in a mail
survey.

69

Requirements Elicitation

recorder can record what is observed. However, this is not recommended
if the net result will be several hours of random footage.

Silent observation is best used to capture the spontaneous nature of a
particular process or procedure. For example:

• When customers will be interacting with staff
• During group meetings
• On the manufacturing floor
• In the field

Directed observation provides the analyst with a chance to microcon-
trol a process or procedure so that it is broken down into its observable
parts. At one accounting firm a tax system was being developed. The ana-
lysts requested that several senior tax accountants be coupled with a jun-
ior staff member. The group was given a problem as well as all of the man-
uals and materials needed. The junior accountant sat at one end of the
table with the pile of manuals and forms while the senior tax accountants
sat at the other end. A tough tax problem was posed. The senior tax
accountants were directed to think through the process and then direct
the junior member to follow through on their directions to solve this prob-
lem. The catch was that the senior members could not walk over to the jun-
ior person or touch any of the reference guides. This whole exercise had to
be verbal and use just their memories and expertise. The entire process
was videotaped. The net result was that the analyst had a complete record
of how to perform one of the critical functions of the new system.

Participation

The flip side of observation is participation. Actually becoming a mem-
ber of the staff and thereby learning exactly what it is that the staff does, so
that it might be automated, is an invaluable experience.

Documentation

It is logical to assume that a wide variety of documentation will be avail-
able to the analyst. This includes, but is not limited to, the following:

• Documentation from existing systems, including requirements and de-
sign specifications, program documentation, user manuals, and help
files. (This also includes whatever “wish” lists have been developed
for the existing system.)

• Archival information
• Policies and procedures manuals
• Reports
• Memos
• Standards
• E-mail

70

SOFTWARE ENGINEERING HANDBOOK

• Minutes from meetings
• Government and other regulatory guidelines and regulations
• Industry or association manuals, guidelines, and standards (e.g., ac-

countants are guided not only by in-house “rules and regulations” but
also by industry and other rules and regulations)

Competitive Intelligence

Competitive intelligence (CI) is business intelligence that is limited to
competitors and how that information affects strategy, tactics, and opera-
tions (Brock, 2000b). 4Sight partners (2000) define competitive intelligence
as “a systematic and ethical program for gathering, analyzing, and manag-
ing external information that can affect your company’s plans, decisions,
and operations.” 4Sight goes on to state that utilization of the Internet as
the method of gathering information on individuals and companies has
become widespread and automatic. CI enables management to make
informed decisions about everything from marketing, R & D, and investing
tactics to long-term business strategies (SCIP, 2002).

CI data can be gathered from the following sources:

• Internet discussion groups (listservs) and news groups (Usenet). Sim-
ple searches on the Internet can obtain expert discussions on issues
in listservs and Usenet (Graef, 2002). Often a quick form of CI is to
search these Internet postings for discussions of similar issues. The
level of detail contained in these discussions is beneficial for things to
do and also things that will not work (Graef, 2002). This is one of the
quickest and most cost-effective methods of obtaining information
about a project (Graef, 2002).

• Former employees of your competitors often are invaluable in provid-
ing information about your competitors’ operations, products, and
plans.

• Your competitors’ Web sites usually contain marketing information
about products and services offered as well as press releases, white
papers, and even product demos. Product demos enable the analyst
and business manager to effectively “reverse engineer” the competi-
tive product (i.e., see how it ticks).

• If your competitor is a public company then its investor relations Web
page will contain a wealth of financial information such as annual re-
ports. An alternative source of financial filings can be found at
www.sec.gov. A company’s 10Q (quarterly) and 10K (annual) reports
contain information on products, services, products, budgets, etc.

Normally, it is the role of the business or marketing manger to perform
competitive intelligence. However, when this is obviously not being done,
a proactive systems analyst will take the lead.

71

Requirements Elicitation

Brainstorming

In a brainstorming session you gather together a group of people, create
a stimulating and focused atmosphere, and let people come up with ideas
without risk of being ridiculed. Even seemingly stupid ideas may turn out
to be “golden.”

Focus groups

Focus groups are derived from marketing. These are structured sessions
where a group of stakeholders are presented with a solution to a problem
and then are closely questioned on their views about that solution.

Prototyping

A prototype is a simplified version of part of the final system. Develop-
ers experiment with the prototype to get an idea of how it would work in
real life and what its problems and plus points are.

A CHECKLIST FOR REQUIREMENTS MANAGEMENT

The requirements management checklist shown in Exhibit 4-2 is used by
the U.S. Department of the Navy.

CONCLUSION

Information gathering is a very intensive process with many aspects.
The more information one has about a project from the start, the better
prepared one will be to complete the project. Successful project manage-
ment demands that enough information be known at the beginning of a
project to anticipate potential problems in the systems development life
cycle (Keogh, 2000). The role of a systems analyst in information gathering
is to gain knowledge and interpret it to the benefit of the project plan.
Anthony Smith said that turning information into knowledge is the creative
skill of our age (ASH, 2002).

72

SOFTWARE ENGINEERING HANDBOOK

Exhibit 4-2. Requirements Management Checklist U.S. Department
of the Navy

Commitment Planning:

1. Were all stakeholders identified?

2. Was the acceptance criteria defined?

3. Were nontechnical requirements identified and documented?

4. Has the project plan been developed or updated?

5. Has the project’s risk been assessed?

6. Has the requirements management policy been reviewed?

7. Have the metric collection points and schedule for requirements
management been identified?

8. Has the project plan been reviewed?

9. Did senior management review the project plan?

10. Was commitment to the project plan obtained?

Elicitation:

1. Was information concerning the problem’s domain, open issues,
and resolution identified?

2. Were the candidate technical requirements captured?

3. Were nontechnical requirements captured?

Analysis:

1. Were the requirements decomposed?

2. Were the quality attributes for each requirement determined?

3. Was traceability of the requirements established?

4. Was a reconciliation of the requirements performed?

5. Was the rationale for any decisions captured?

6. Were modifications to the requirements reflected in the project
plan?

Formalization:

1. Were the informal requirements and supporting information
documented?

2. Were formalized work products developed?

3. Were formalized work products placed under configuration
management?

Verification:

1. Were the formalized requirements inspected for the quality
attributes?

2. Were inconsistencies among the requirements identified and
corrected?

(continued)

73

Requirements Elicitation

References

4Sight Partners. (2000). Battleground: information gathering versus user privacy, (Online.)
Available: http://www.4sightpartners.com/insights/watch082300.htm.

ASH (Action on Smoking and Health). (2002). Olympic questions, (Online) Available: ht-
tp://www.teachers.ash.org.au/researchskills/questions.htm.

Bock, W. (2000a). Frequently asked questions about business intelligence, (Online.) Available:
http://www.bockinfo.com/docs/bifaq.htm.

Bock, W. (2000b). Peter Drucker on information and information systems, (Online.) Available:
http://www.bockinfo.com/docs/drucker.htm.

Creative Research Systems. Survey Design. http://www.surveysystem.com/sdesign.htm.

Curtis, G., Hoffer, J., George, J., and Valacich, J. (2000). Introduction to Business Systems Analy-
sis, Pearson Custom Publishing, Boston.

Graef, J. (2002) Using the Internet for competitive intelligence, (Online) Available: ht-
tp://www.cio.com/CIO/arch_0695_cicolumn.html.

Keogh, J. (2000). Project Planning and Implementation, Pearson Custom Publishing, Boston.

SCIP. (2002) What is CI? (Online) Available: http://www.scip.org/ci/index.asp.

Yate, M. (1997). Hiring the Best, 4th ed., Adams Media, Avon, MA.

Exhibit 4-2. (continued) Requirements Management Checklist U.S. Depart-
ment of the Navy

3. Were redundant requirements identified and corrected?

4. Were deficiency reports generated and placed under configuration
management?

5. Was the project plan updated to reflect changes made as a result of
deficiency report resolution?

6. Are the formalized requirements traceable?

7. Have the stakeholders examined the formalized engineering arti-
facts and verified that they represent customer and end-user
requirements?

8. Were the formalized engineering artifacts placed under CM?

Commitment Acceptance:

1. Were requirements metrics presented to the customer?

2. Was the project status presented to the customer?

3. Did the stakeholders approve the baselined requirements?

4. Did the customer provide approval to proceed?

5. Were periodic or event-driven reviews of the requirements held
with project management?

6. Did QA audit the activities and products of requirements
management?

This page intentionally left blank

75

Chapter 5

Designing
User-Oriented
Systems

Developers of system software need to involve users in the design process
from the start. Until now, developers have kept the secrets of their trade
to themselves. At the same time, they have failed to take an interest in the
work of the business for which they are producing a tool. Users frequently
share in the development process only through beta tests of products
long after they have been designed. Users can frequently be a constant
source of data on work habits, loads, and performance requirements.
Developers can keep up with user needs the same way they are required
to keep up with changes in technology. Maintaining a good relationship
between the development and user communities ensures a healthy devel-
opment process.

SECRETS OF THE TRADE

During the last few decades while automation of the business world has
proceeded at an ever-accelerating pace, the practitioners of the black art
of systems development have jealously guarded the secrets of their trade.
Members of today’s computer cult, who talk among themselves in tongues
of Java, C++, and all things Internet, have forgotten the sounds of the
human language — so much so that it is often necessary to hire a translator
to explain the systems developer’s work to the confused customer, the
actual user of the cult’s handiwork.

This translator would not be needed if companies would design their
systems with the user in mind. That means involving end users at the start
of the systems development process. To accomplish this, the technical
staff must take some time away from studying the nuts and bolts of new
tools to learn the tricks of the users’ trades.

It also means that the end users need to be encouraged to get involved
in the entire systems development effort, from the specification stage to
actual application testing. Their involvement will help ensure that the

76

SOFTWARE ENGINEERING HANDBOOK

finished system meets their needs and, in turn, the information needs of
the corporation.

Today, under traditional systems analysis methods, the user is fre-
quently left out of the loop. During the standard requirements definition
phase, representatives from the user department are interviewed. Then a
work flow analysis may be performed to determine the relationships
between functions within that department. Finally, several months after
the requirements definition, some customer testing is conducted — testing
that unfortunately constitutes the sum total of user involvement. So it is
not surprising that a plethora of changes must be made after the user
finally reviews the test results.

TAILORING THE SYSTEM TO END USERS’ NEEDS

The systems staff can avoid this last-minute retrofit by building a system
tailored to specific end-user needs. To do that tailoring, the IT team should
apply the same quick-study principle used in keeping up with new technol-
ogy to learning end-user job functions. In fact, systems designers should
know these functions at least as well as a six-month employee who is doing
that work.

The necessary knowledge, however, is not always easy to come by
because, all too often, systems gurus balk at attending user meetings. A big
price tag may be attached to such behavior, as the New York Stock
Exchange (NYSE) found out during my tenure there. During the mid-1980s,
a series of user meetings was held to determine the rules and regulations
of an important regulatory system that the Exchange wanted to develop.
The NYSE’s IT group found these critical meetings boring and, as a conse-
quence, the finished system ended up incomplete; much money had to be
spent adding enhancement features.

A thorough immersion in the customer’s culture also negates the “we”
versus “them” attitude that exists between many end users and the sup-
porting IT staff. Top managers in the IT division at a major New York-based
Swiss Bank learned this lesson the hard way. The bank’s foreign exchange
trading group was adamant about needing a foreign exchange trading sys-
tem. The head of the Swiss Bank’s IT department disagreed, so the trading
group brought in an outside consultant who spoke their language and care-
fully listened to what they had to say.

As a result, the consultant was able to develop a usable, mostly error-
free system that the users proudly showed off to other departments at the
bank. At the next IT status meeting, users demanded to know why the IT
staff could not or would not deliver systems as fast and as good as the one
built by the foreign exchange group. Needless to say, the management of
Swiss Bank’s IT group was soon replaced.

77

Designing User-Oriented Systems

DRUMMING UP ENTHUSIASM

Once you have a user-friendly IT staff, then you need to drum up enthu-
siasm and interest among the user community so that it will want to be
involved every painful step of the way. “Community” is the operative word
here because as many users as is feasible should be involved in the sys-
tems development process. In today’s systems world, however, the norm is
to have only one user who serves as the liaison for the entire group and
assists the IT team as it develops specifications and tests the application.

Can one person adequately represent an entire user group? The answer
is almost always no if you want a system worth its development dollars.
Although involving many users can cause giant headaches, if the process is
properly handled, the resulting system will be superior.

That was the experience I had at the NYSE when faced with the challeng-
ing chore of devising a system for over 150 professional users spread
through five separate departments.

Despite the fact that each of the five departments did the exact same
job, the diversity of opinion among the people in these units was nearly
overwhelming. It took the great organizational skills of a talented analyst to
pull all the heterogeneous information together into one cohesive specifi-
cation. What resulted was far more complex, but a much more accurate
and usable system that covered all the bases.

To cover all those bases, the NYSE IT team formed a working committee
of users made up of one very verbal representative from each of the five
departments. For roughly three months prior to the start of the specifica-
tion stage, this working group would sometimes meet as often as two or
three times a week.

The meetings were spent discussing actual use cases upon which the
system would be based. In this way, the users were able to come up with all
of the criteria that would ultimately be used in developing the system. It
was during this conceptual phase of system definition that NYSE’s IS staff
and the departmental end users were able to reach a meeting of the minds
in terms of desired inputs and outputs.

Determining the users’ real information needs is indeed the stickiest
wicket of the entire specification process. If all you do is translate the
paper avalanche to the tube, then the ultimate system will not be much
better than the former manual one. In fact, many of these paperwork clone
systems actually decrease productivity.

The key to pinpointing the users’ actual information needs is not to
present more data, but to present less, but more meaningful or relevant,
data. To date, IT has applied the pitch-hit-and-run theory to most systems

78

SOFTWARE ENGINEERING HANDBOOK

development. Little, if any, consideration has been given to the differing
information requirements of the various decision-making levels within an
organization. As a result, you end up with fancy applications that spit out
a kludge of irrelevant information.

METHODOLOGIES

To avoid that systems scenario and to present the optimum mix of detail
and composite data to users, the developer can follow several time-tested
methods. All of the methods recognize a relationship between the type of
user and the level of detail needed to do the job or make a decision.

The three types of users — technical, tactical, and strategic — corre-
spond to the three levels of workers in today’s typical corporation. The
technical users are generally the paper pushers in the corporate hierarchy.
These employees —check processors and complaint takers, for example
— are the people who need to see all the data. They input and review a
wealth of data, normally in rote fashion.

At the opposite end of the spectrum are the senior managers, who use
information gathered at the lower rungs for strategic purposes. A whole
range of executive information and decision support systems is now avail-
able to help this corporate vanguard. These wares feature flashy colors on
touch screens notable for the scarcity of data displayed. The data is likely
to show sales projections, profitability numbers, and comparisons with the
competition.

In the middle, between the strategic users and the technical users, are
the tactical users. These are the middle managers, the poor unfortunates
buried under the paper avalanche. It is these professionals who therefore
need the most careful balance of data.

As always, users’ needs dictate the data representation discipline used.
Human resources or utility users, for example, are good candidates for
descriptive models in the form of organization charts or floor plans. Mod-
eling is also a good mode for operations management students who want
to apply game theory to problems that lack supporting information. On the
other hand, a normative representation of data is an apt choice for budget
personnel, who need the best answer to a given problem.

Deciding on the type of information and how to present it to a particular
group of users is the job of IT personnel. Sometimes they get carried away
with their mission. At the NYSE, for example, the systems staff realized
they had gone too far when a display for a large customer exceeded 91
screens of information. Going back to the drawing board, they came up
with a plan to make the 91-screen monster more manageable. What they
did was use graphics to tame the tangle of numbers displayed, coupled
with embedded expert systems that enabled users to navigate quickly and

79

Designing User-Oriented Systems

more effectively through the data. In this filtering process, the systems
developer sifts through the data, displaying only what is relevant at any
point in time.

One way to do the filtering is by using the monitoring method, which
serves up data to the user on an exception basis. This can take the form of
variance reporting, in which the system produces only exceptions based
on a programmatic review of the data. After reviewing credit card pay-
ments, a system can, for instance, display only those accounts where the
payment is overdue or below the minimum. The monitoring method can
also be used in programmed decision-making applications, in which case
the system makes all of the technical decisions and many of the tactical
ones as well.

American Express made the decision to go with a monitoring method
that simplified its complex credit authorization chores. An expert system,
aptly named Authorizer Assistant, helped Amex reduce the percentage of
bad credit authorizations. It also reduced the number of screens needed to
review customer data from a high of 12 to a manageable 2.

The advent of fourth generation languages (4GLs), which enabled end
users to access corporate databases with an easy-to-use query syntax, has
made interrogative methods of systems design more popular today.
Implicit in this approach is the understanding that on many occasions
users in complex decision-making environments cannot identify the infor-
mation they need to perform ad hoc analyses. In these cases, all of the data
elements must be resident in an accessible database. There must also be a
tool that allows users to easily develop queries and variations on these
queries against the data.

The ease-of-use factor provided by a 4GL came in very handy when
Bankers Trust in New York (now Deutsche Bank) opted to leave the retail
business. The data processing effort required to achieve this feat was
enormous. With the help of Focus, the 4GL product from Information
Builders in New York (www.ibi.com), the bank was able to ensure a smooth
transfer of accounts from Bankers to many other far-flung financial institu-
tions. Some accounts were spun off to a bank in Chicago and some to
Albany, New York, while a few high rollers were retained as privileged
Bankers Trust customers.

Once users are certain about the correct way to handle the data, the IT
squad can then translate this information into the specification that spells
out how the system should run. In many IT shops, how a system should run
is a function of what is available in-house. This means that user require-
ments are forcibly fit into an existing tool set and — just like a bad shoe fit
— a bad system fit causes users great pain.

80

SOFTWARE ENGINEERING HANDBOOK

Some of that pain was felt at the Securities Industry Automation Corp.
(SIAC), which originally cramped its users by limiting itself to just one
database product. SIAC began using Total from Cincom Systems Inc.,
Cincinnati, back in 1977, when few database tools were on the market.
There was absolutely nothing wrong with Total; what was wrong was the
implicit order to use it for all systems. Use it SIAC did — for everything!

Total is now gone from SIAC (Cincom has since retired the Total data-
base and folded its functionality into the Supra product), replaced by a bet-
ter stocked tool chest that includes a wide variety of database and 4GL tool
sets. SIAC learned that a greater selection of software arms the designer
with the options needed to tailor a system to specific user demands.

Good tailoring is particularly crucial when it comes to designing the
external component of a system that the users see. Although users are not
exposed to internal intricacies like utilities and overnight updating, they
routinely work with external features such as on-line updates and reports,
and PC uploading and downloading.

DISTRIBUTING DATA TO ITS RIGHTFUL OWNER — THE END USER

Most IT shops today design superbly efficient systems — for batch and
transaction-based systems. Unfortunately, these systems are then jury-
rigged for the part of the system visible to the user. Such technology tink-
ering often leaves the user out on a limb.

That is exactly where some end users at the NYSE found themselves
when a billing system using a hierarchical production database was
defined to a 4GL. The database, which was composed of numerous seg-
ments of data keyed by a brokerage firm number, ran very fast during over-
night update processing due to its efficient design, specifically labored
over for this purpose.

Meanwhile, some NYSE users were anticipating a new system with the
extra added attraction of ad hoc inquiry. By a happy coincidence — or so
it was originally thought —a 4GL had just been brought into the Exchange
for end-user computing. The hierarchically defined database was dutifully
defined to RAMIS; the users were trained and then let loose. RAMIS came
up empty.

The problem was that bane of logic, the JOIN. Although the internal
database was segmented into a logical structure for efficiencies, the data
on every brokerage house was dispersed throughout, making it difficult for
the users to get to it without understanding a bit more than they wanted to
know about information processing.

There are as many ways of designing systems as there are people to use
them. Most systems are designed out of prejudice: John Doe, the database

81

Designing User-Oriented Systems

administrator at the Widget Corp., is expert at Microsoft Access; therefore,
all systems at the company are designed using Microsoft Access. Most
corporate systems are designed around some sort of heavy-duty database.
There are several types of database architectures: hierarchical, as in IBM
IMS; networked, as in Computer Associates’ IDMS, which has lately mor-
phed into a combination networked and relational database; relational, as
in Microsoft’s SQL Server; and object oriented, as in Objectivity’s Objectiv-
ity/DB. The proper choice depends upon many factors, not the least of
which should be ease of access by the user.

Serious decisions must also be made regarding the system platform. In
a world of mainframes, PCs, minicomputers, advanced workstations, Inter-
net, and Intranets, the endless possibilities boggle the systems developer’s
mind. Solutions run the gamut from pure mainframe to a cluster of con-
nected micros and minis to web-based distributed. In vogue today is an
any-to-any environment where a user with a smart workstation has easy
access to various mainframes, minis, or PCs across an Intranet.

THE SYSTEMS CHOICE

Choosing hardware and software is truly the fun part of systems design.
Visits to vendors and trips to trade shows where you can play with test
equipment transport you into an IT Disneyland. But while you are out there
high-teching it up, at some point you had better come down to earth and
get the user involved. If not, your dream machine will turn into an expen-
sive nightmare. So, no matter what platform or program you pick, the user
variables in making your selection must be examined at every technologi-
cal turn. Among those user considerations are cost, ease of use, access to
corporate data, graphics requirements compatibility with current environ-
ment, and particular preferences.

Ease of use was the major criterion that caused some equipment the
NYSE was considering to be scuttled. Bar code readers for use in the field
were the equipment under investigation. The technical group at the
Exchange, who thought they had found the perfect solution, promptly
ordered sample equipment and found that it worked like a charm. How-
ever, in order for it to work properly, the credit-card size readers had to be
held at a certain angle. It was a good thing the users were consulted
because it turned out that they were not able to hold the devices at that
precise angle.

The lesson here is that just because you find it easy to use does not
mean the user will necessarily agree with you. Also, keep in mind that just
because it is state of the art and your technical staff adores it does not
mean the user will concur. It all adds up to input: the user needs to have a
say in the selection process.

82

SOFTWARE ENGINEERING HANDBOOK

This lesson is particularly pertinent when it comes to developing the
specification for online screens and reports — the most visible part of any
system. What frequently happens is that the IS people gather information
and create a specification. After six to twelve months, they are ready to
demo the system they developed to the users. With so much time interven-
ing, the users have invariably changed their minds about or forgotten what
they want.

At Bankers Trust, when it was developing an equipment leasing system,
that time was not allowed to elapse without user feedback. Instead, the
bank decided to rapid-prototype (RAD) the system for users. During the
specification stage, a series of screens were put up on the system within a
matter of days. Users were given an ID into the system so they could play
with the prototype. They got the feel for the system and were able to voice
their opinions and objections immediately.

An even more daring user approach was taken by the NYSE. Certain
Exchange users were given an online editor and told to develop the screens
utilizing a JAD (joint application development) methodology. IT staffers
held their breath for many days, fearing the outcome of this experiment.
They need not have feared; users know what they want to see and how they
want to see it. Therefore, forget about textbook cases of good screen
design and give your users a paintbrush.

Far more control is necessary in the system testing phase, however.
Users are notorious for their lax standards when they are involved in test-
ing. Therefore, the IT group must carefully oversee a test plan that covers
all facets of the system, using as many test cases and as many users as
possible.

In one company the systems squad exercised both caution and control
in testing a very large financial system that was distributed across a group
of seven users. The users were asked to compare test results with raw
data and to annotate screen printouts or reports as appropriate. Because
the users were given very specific tasks and very specific instructions
(not the usual “take a look at the system and let me know if you see any-
thing wrong”), the system was 99 percent debugged before it went into
production.

Once the system has been tested, it is time to go live. Ideally, the users
have been involved every step of the way in the design process, and pains
have been taken to keep all those who will ultimately use the system
informed of its progress.

Several years ago, the Securities & Exchange Commission stirred up
user interest by running a contest to name their system and giving out
awards to the winner — a move that would qualify as good user PR.
Another tried-and-true PR ploy is to stage glitzy system demos complete

83

Designing User-Oriented Systems

with refreshments. After show time, it is important to keep the name of the
system in front of the potential users. NYSE developers who designed a
system named Force did just that by distributing pens inscribed with the
slogan “May the FORCE be with you.”

CONCLUSION

The points I have mentioned are all quite obvious, but they are often
overlooked by harried IT staffs. This results in installed systems that are
deemed successful by technicians but are dubbed flops by users. Thus, to
design a system for all-around success, “May the USER be with you.”

This page intentionally left blank

85

Chapter 6

The Outsourcing
Decision

Outsourcing is a three-phased process:

Phase 1. Analysis and evaluation
Phase 2. Needs assessment and vendor selection
Phase 3. Implementation and management

PHASE 1: ANALYSIS AND EVALUATION

In order to understand the services that need to be outsourced, organi-
zational goals need to be identified — particularly the core competencies.
Once the goals and core competencies are identified, information related
to these activities is gathered to compare the cost of performing the func-
tions in-house with the cost of outsourcing them. This enables the com-
pany to answer nonfinancial questions such as “How critical are these
functions and activities?” or “What depends on these activities?” or “Will
this activity become a ‘mission critical’ activity?” This will help organiza-
tions reach decisions about whether or not to outsource. Long-term cost
and investment implications, work morale, and support should also be
considered (see Appendix D for sample cost-benefit analysis worksheets).

PHASE 2: NEEDS ASSESSMENT AND VENDOR SELECTION

The objective of this phase is to develop a detailed understanding of
the needs of the organization and the capabilities of possible solution
providers.

In this phase a “request for a proposal” (RFP) is developed and delivered
to applicable vendors. RFPs need to be structured in a manner to facilitate
assessment and comparison of the various vendors. They should contain
the complete requirements, problem that needs to be resolved, desires,
etc. A clearly structured and documented RFP also helps vendors under-
stand and evaluate what a company is looking for and assists them in
assessing whether they can provide the required service.

When evaluating the vendor proposals, the organization should look not
only at the technological capability of the vendor but also at factors such

86

SOFTWARE ENGINEERING HANDBOOK

as the vendor’s financial stability, track record, and customer support rep-
utation. Contacting vendor’s existing and previous clients would give the
organization a good idea about the vendor’s abilities.

Once a vendor is selected, the organization needs to make sure that a
fair and reasonable contract, beneficial to the organization, is negotiated.
It is imperative to define service levels and the consequences of not meet-
ing them clearly. Both parties should make sure that they understand the
performance measurement criteria (see Appendix Q for a software metrics
capabilities guide).

PHASE 3: IMPLEMENTATION

The final phase in the outsourcing decision process is the implementa-
tion. During this phase a clear definition of the task needs to be identified,
so establishing a time frame would be very helpful. Mechanisms need to be
established to monitor and evaluate performance during the vendor’s
developmental process. This is important even after implementation to
make sure that the outsourced tasks are being delivered by the vendor as
agreed upon. Ability to identify, communicate, and resolve issues promptly
and fairly will help the company achieve mutual benefits and make a rela-
tionship successful.

Depending on the size of the outsourcing contract, the manager respon-
sible for the program’s delivery and integration may be responsible for all
of the process, or only some. These are the horizontal and vertical factors
of outsourcing management. A manager of the horizontal process is often
involved in the decision to outsource, and is then responsible for defining
the work, selecting and engaging the vendor, and managing the delivery
and completion of the program. This manager normally handles all day-to-
day negotiations. With larger programs, particularly those on a global
scale, a decision is often made at senior levels to outsource. A negotiation
team is appointed to work through the complex agreements, usually under
strict confidentiality, until the agreement is finalized and announced. It is
then the role of the manager of the vertical component to implement and
manage the ongoing program. Part of this role is the interpretation of the
agreement and identification of areas not covered by the agreement.

AN OUTSOURCING EXAMPLE

In this chapter we will break down the outsourcing decision-making pro-
cess using an e-business system as an example. Since the Internet opened
for business just a short ten years ago and despite the boom–bust cyclical
nature of the market, few companies have not jumped into the foray by
building a corporate Internet presence. The Internet is the one thing most
companies have in common.

87

The Outsourcing Decision

Visit Gateway.com and wander over to their accessory store
(http://www.gtwaccessories.com). Here you can buy everything from digi-
tal cameras to software to printers. Sounds like quite an operation does it
not? The store might have the Gateway logo on it, but you will not find it on
any Gateway corporate computer. Where you will find it is at Vcom-
merce.com — a company that is in the business of putting other compa-
nies in the e-commerce business. According to Gateway, by outsourcing
the entire function, it is able to sell products and grow revenues while
focusing its attention on its core competencies.

In other words, Gateway, no slouch in the computer expertise depart-
ment, has decided that even they do not have the expertise or desire to run
a sophisticated e-commerce site. Instead, they decided to give the problem
to someone else — someone with the expertise. What, then, does this say
about the rest of us?

Outsourcing Issues

It is important to understand the ramifications of systems development
in the world of high-risk interconnected computers. In order to make an
ROI-enhancing decision, the CIO must gather much information from a
diversity of areas:

• Legal issues. It is amazing how many Web sites are without benefit of
legal counsel. This stems from the days when the Web had the reputa-
tion of the “Wild, Wild West.” Today, the CIO must be concerned about
issues such as copyright infringement of images and text, the use of
online warranties, licensing, contracts, and spamming.

• Regulatory issues. Right now purchases on the Web are not taxed but
expect that this reprieve will not last forever. Other taxation issues to
consider include the effect of telecommuting Web developers on the
jurisdictional exposure of the corporation. Of course, we all know by
now that online gambling is prohibited, but what about lotteries and
contests — even if you offer them as a promotional gimmick? Then
consider First Amendment issues, pornography issues — et cetera, et
cetera, et cetera.

• Security. Once you open your doors you will probably be letting in
more than customers. Hackers, crackers, and other malevolent crea-
tures of the night seem to spend all of their waking hours figuring out
new ways to wreak havoc on unsuspecting organizations. Top this off
with a veritable plague of new viruses, concerns about fire, sloppy
data entry, and attacks by internal employees and security becomes a
full-time job. Things you need to understand are uses of firewalls, en-
cryption, and authentication — ultracomplex technologies not for the
technologically faint of heart. Even the most sophisticated of preven-
tive measures will not ward off all attacks. Think back to the massive

88

SOFTWARE ENGINEERING HANDBOOK

denial of service attacks on sites such as Yahoo and eTrade in Febru-
ary, 2000, and the various klez viruses that plagued us in 2002.

• Staffing issues. Do you have the staff to implement an e-business initia-
tive successfully? E-business is hard work; it is 24 × 7 × 52. Also keep
in mind that new bells and whistles are invented almost daily. You will
need to invest a substantial sum to keep your staff trained so that they
can take advantage of these new technologies.

• System usability. Long gone are the days when you could throw up a
Web site and expect kudos. With a plethora of tool sets such as Mac-
romedia Flash, Web conferencing, instant chat, etc., the stakes for a
usable Web site have gotten a lot higher — and much more expensive.
Given the size of many Web sites, ergonomics and navigability issues
must be explored. Would GM ever release a new kind of car without
some sort of driver-acceptance testing?

• System functionality. It was so much easier just five years ago to throw
up a Web site and have it considered novel. Today all things novel
probably have already been done so you will not be able to lure new
web visitors to your site with the promise of the “newest and the great-
est.” Instead you must focus on your site’s functionality. For example,
a small golf Web site named swapgolf.com offers a wide variety of func-
tions: a golf shopping mall, ability to swap golf tee times, a bulletin
board, and even golf puzzles. Notice all the functionality is related to
the golf theme. CNBC.com, on the other hand, is a large site with many
more financial resources than swapgolf so it is no wonder that this site
is loaded with functionality. Note too that CNBC.com offers theme-
related functionality. Because CNBC is a financial news service,
Web site functionality includes financial-related services such as
MoneyTalk, Quote Box, and Markets. Also keep in mind that a Web site
is a high maintenance project that needs to be fed constantly.

• System reliability. Perhaps the most irritating problem Web surfers en-
counter is sites that have bad links, databases that decline to work,
and general overall system development sloppiness. It is almost as if
many sites were thrown online without any testing whatsoever.
Netslaves is a most intriguing Web site that takes delight in shooting
down what they consider to be myths and outright lies about all things
Internet. Self-professed Netslave media assassin Steve Gilliard has this
to say about the Net myth that “things move fast online and we have
to stay ahead.” He explains, “It takes time to develop a reliable busi-
ness. The faster you move, the more likely you are to screw up. It takes
time, years, to get things right, develop trust in key employees and sta-
bilize. Moving fast in many cases is an excuse for incompetence.”

• System integration. Web-based systems should never operate in a vac-
uum. Instead, they should be fully integrated into your current corpo-
rate systems. For example, your marketing and sales systems need
information about who is visiting your site, what they are looking at,

89

The Outsourcing Decision

and what they are buying. Only a solid integrative infrastructure will
accomplish this. Real synergy occurs when internal and external sys-
tems are effectively linked together, creating more efficient ways to
market, sell, and process and deliver orders. This translates to inte-
grating a whole spate of disparate systems, including inventory, order-
ing, and invoicing, along with supply-chain data from business
partners — in other words, the organization’s ERP (enterprise re-
source planning) resource.

• Meaningful metrics. It really does not pay to spend $5 million to build
an e-commerce system if you will never know how it affects the bot-
tom line. Will it increase sales by 10 percent or boost customer reten-
tion by 15 percent? Before you ever do the technology planning for an
e-business, you should decide just what it is you are hoping to accom-
plish (i.e., your business strategy plan) and then develop meaningful
metrics to measure your progress.

• Costs. Even if you plan carefully, there will always be those hidden and
unexpected costs for hardware, software, communications, and even
new staff.

What Does It Cost?

Back in 1995, Tom Vassos, an instructor at the University of Toronto, was
part of an IBM team that created IBM’s Web site. It had 10,000 documents
spread across 30 Web servers around the world. Their requirements
included everything from translation into multiple languages, download-
able documents, demonstration tools, contents of entire IBM magazines
and publications, graphics images, audio clips, and fulfillment mechanisms
for other deliverables such as CD Roms.

The site cost several million dollars initially, with an IBM commitment to
spending several more to maintain and expand the site.

Some experts estimate that a large site should cost $6 million over two
years, a medium site $2 million, and $500,000 for a small site over two
years. These numbers include many costs for site and product promotion
and content upkeep.

The Gartner Group surveyed 100 leading companies operating e-com-
merce sites and found that the average firm had spent three-quarters of a
million dollars on the technology (i.e., hardware/software/peopleware)
alone. Add to that the cost of marketing that site and you may need a bud-
get as high as amazon.com, which now spends upward of $40 million per
quarter to market itself.

Using an ISP (Internet Service Provider)

With the rise of Web-hosting companies, today the organization has a
wide variety of less expensive alternatives. For example, a small business

90

SOFTWARE ENGINEERING HANDBOOK

using a typical ISP such as VeriSign would pay about $376 per month for
monthly service, file storage and data transfer fees, and a shopping cart.
An even smaller business can get away with a bare-bones site for about $10
per month at Schogini.com. In neither of these cases does Web design fig-
ure into the equation. That is a separate cost.

Web site design costs vary considerably among web design firms. One
company I have worked with charged $2,000 for a 10-page site and $10,000
for a 25-page site. A high-end site for a mid-sized business I worked with set
the company back around $50,000. This got them about 50 pages and
assorted add-ons such as user tracking, image maps, frames, Shockwave or
Quicktime animation, audio, database, shopping cart, SSL (secure transac-
tion server), creative illustrations, CGI, and database programming. Host-
ing charges were separate. For a mid-sized business low end costs about
$100 to $160 a month, mid level $160 to $350 a month and high end about
$350 a month. Add $1,500 a month for a T-1 communications line.

A good place to start doing comparative research is www.thelist.com,
which provides a list of virtually all of the ISPs in the world and the services
and price structures they offer. As mentioned, you will find wide variation
in prices.

Rolling Your Own

The other choice, one that only very large companies seem to take
today, is to roll your own. Rough estimates for a start-up configuration for
a small to mid-sized company are as follows:

• Computer. Keep in mind that the IBM site described previously had 30
Web servers. Just one of them can cost you between $5,000 and
$25,000, which includes only the hardware. This is a one-time cost al-
though maintenance upgrades will need to be figured into the
equation.

• OS/server software. This can cost anywhere from $0 if you run a free
version of Linux to over $10,000. Usually either UNIX or Win-
dows/NT/2000 is used, with Linux quickly gaining ground. You may
also need to buy multiple Web servers. First there is the Web server
that runs the actual Web site. Add an additional Web server if you are
running an e-commerce server. Add a third server if you need to run
something like RealAudio. Again, this is a one-time cost requiring
maintenance upgrades.

• Modems. Modem pricing varies, depending upon how many you need
and their capabilities. Modems, in case you did not know, are used for
those people who might need to dial into your system. This is a one-
time cost.

91

The Outsourcing Decision

• Connectivity hardware. Hardware or software devices such as routers
and couplers will run you anywhere from $1000 to $5000+. This is a
one-time cost.

• Communications. You cannot simply hook up your PC to a slow modem
and expect to be able to use that as your Web site. Connecting your PC
to the Net will require you to lease a high-speed telephone line. A T-1
will cost you about $1500 a month. A T-3, which has a higher speed,
will cost you even more.

Labor Costs

As is true for most labor costs, the price of labor is all across the board.
Staff salaries for technology experts are rather high, with an average cost
of about $60,000 a year for someone with several years of experience.

Hiring consultants will bring a variety of proposals to your doorstep.
Web page authors charge anywhere from $30 to $150 an hour with the
higher-end price going to those that can build you a database or write you
a custom script using Perl or Java.

The Gartner Group has estimated that, through 2004, IT contractors and
other outside resources will be used to complete 50 percent of the e-busi-
ness work in large enterprises.

Costs Depend on What You Put on the Site

Whether you outsource or not, figuring out what your Web site will cost
is a lengthy, complicated process. The first thing to do is to make a list (see
Exhibit 6-1) of exactly what you expect to put on this site, how often you
will update it, and the site’s expected functionality.

Once this list is made, you can send out RFPs (requests for proposal) to
various Web-hosting companies to determine their cost structure to
develop your site. Your IT department should be given a chance to bid as
well.

SHOULD YOU OUTSOURCE?

Moving to an e-business model requires an enormous commitment. Ask
yourself whether you are up to it. Also ask yourself whether your company
is up to it.

There are many good reasons to outsource as Gateway discovered when
it decided to outsource many of its own e-business functions. Deciding
whether or not to outsource is a very individual decision based on many
corporate factors:

92

SOFTWARE ENGINEERING HANDBOOK

Exhibit 6-1. Figuring Out What Your Web Will Cost

Feature
IT Dept
Price

Competitor 1
Price

Competitor 2
Price

Number of pages of text?

a. Provide names and location of
this text.

Number of images?

a. Provide name and location of
each image file.

b. Do any of these images need to be
altered?

Number of animations required?

a. Provide name and location of
each.

b. If new ones must be designed,
provide design information.

Number of documents you wish to
store on the Web?

a. PDF files (name and location of
each)

b. Doc files (name and location of
each)

c. Powerpoint files (name and loca-
tion of each)

d. Wav or other audio files (name
and location of each)

e. Avi or other video file (name and
location of each)

f. Other files — list

Will you be using RealAudio or
video?

a. Are media files already available
or do they need to be created or
digitized?

Will you require SSL connectivity?
This is secure server capability so
that people can do things like enter
private information online.

a. Do you require encryption?

b. Do you require digital certifi-
cates?

c. What level of security do you
need?

(continued)

93

The Outsourcing Decision

Exhibit 6-1. (continued) Figuring Out What Your Web Will Cost

Feature
IT Dept
Price

Competitor 1
Price

Competitor 2
Price

How many e-mail accounts do you
need?

a. Will you need e-mail routing?

b. Will you need autoresponders?

Will you need a shopping cart ser-
vice for online purchases?

a. Do you already have product
information for those products
you wish to sell, including images
and text information? Provide file
name and location for each.

Will you need a chat room?

Will you need a bulletin board?

Will you need a guestbook?

Will you need feedback forms?

Will you need activity reports? What
periodicity?

Will you need banner creation?

To which other sites do you wish to
link?

Do you need database lookup?

Do you need a visitor registration
program?

Will you outsource or do it inter-
nally? If done internally, add costs
for:

a. Hardware

b. Servers

c. Modems

d. Connectivity

e. T1

Will your company require Internet
fax?

Will the company require virtual pri-
vate networks (VPNs)? (These are
private networks between one or
more locations, i.e., partners.)

94

SOFTWARE ENGINEERING HANDBOOK

Here are some reasons why outsourcing might be a good idea for your
company.

• Price. Rolling your own is often much more expensive than outsourc-
ing to a reputable service provider.

• Expertise. Few companies have the level of expertise in-house that
building a sophisticated Web site requires.

• Obsolescence. Hardware and software turn obsolete within six months
and upgrades are often expensive. Outsourcing makes this someone
else’s problem. For the outsourcer to stay in business, it must stay at
the most current release and use the most sophisticated equipment. It
does this so you do not need to.

• Security. As mentioned earlier, encryption, virus protection, and all of
the other security paraphernalia such as site backup and disaster re-
covery are quite expensive to perform on your own.

• Complete solution. If you select a reputable hosting company with lots
of experience you benefit from this experience and its expertise. It can
provide you with everything from hosting to design to maintenance,
all in one place.

• Scalability. It is likely that your site will grow in complexity and func-
tionality. A Web-hosting company will be able to scale up without ser-
vice interruptions.

• Of course, there are disadvantages to outsourcing as well:
• Hidden charges. If you exceed your quotas (i.e., data transfer, disk

space) you will be charged an additional premium.
• Their rules and not yours. The Web hosting company makes the rules

and not you. You will need to modify your own corporate policy to ac-
commodate the outsourcer.

• Timeliness. Say the Web hosting company runs an advertising blitz to
get new customers — and it works. Your request for modifications
might need to wait a while.

• Mergers and acquisitions. The Net world moves fast and is on an acqui-
sition binge. What happens if the company you are using is acquired?

QUESTIONS TO ASK POTENTIAL OUTSOURCING COMPANIES

A company cannot choose a hosting company out of a hat. Ask the fol-
lowing questions:

• What capabilities do you offer and at what prices? Can you provide us
with everything on our list of requirements?

• What is your level of expertise? Demonstrate by showing a portfolio of
Web sites developed at different levels of sophistication.

• How long have you been in business?
• What are your sales?
• Provide three references.

95

The Outsourcing Decision

• How quickly do you respond to telephone and e-mail customer service
questions?

• What measures do you have in place to secure our data on your
servers?

• Are you 24 × 7?
• What type of disaster recovery services do you provide?
• How often do you upgrade your hardware and software?
• If some of your staff are using dial-up lines to access your outsourced

servers, can they get online without busy signals? Can staff members
use local phone numbers to dial into the network?

• What are the speed and capacity of the hosting company’s link to the
Internet? (This is called throughput.)

• Will the hosting company accept large file transfers?
• Will the hosting company permit e-mail broadcasting?

OUTSOURCING MODELS

Outsourcing does not need to be an all or nothing proposition; several
models are available:

• In-house. If you are a large company with a significant existing technol-
ogy infrastructure with commensurate expertise, this approach might
be the most cost-beneficial to you. Of course, you will not know wheth-
er this is the right approach unless you cost out the other alternatives.

• Full outsource. Turn over the entire spectrum of development to an
outsourcing company or combination of outsourcing companies and
consulting firms.

• Partial outsource. Possible alternatives are hosting your own servers
but hiring a consultancy to program them; outsourcing your server
hosting but programming it in-house, and hosting your servers but
purchasing third-party software packages to run on those servers.

CONCLUSION

Whether to outsource or not is a difficult decision and involves the anal-
ysis of many variables. Ultimately the success — and bottom line — of the
organization rests on making the right decision.

This page intentionally left blank

97

Chapter 7

Methodology
Selection

It is surprising how few IT organizations utilize a formal methodology.
Although the vast majority employ a wide variety of automated tool sets to
assist their programmers in developing and testing complex code, the “pro-
cess” of systems development is still largely chaotic in most organizations.

A systems methodology guides the activities of developing and evolving
systems starting from the initial feasibility study and culminating only
when the system is finally retired. Use of a methodology assures the orga-
nization that its process of developing and maintaining systems is sustain-
able and repeatable.

Life would be simple if there were only one methodology. Unfortunately,
or fortunately depending upon your perspective, you can choose from
hundreds of methodologies (http://www.wwweb.org/smo/bmc/). Some are
industry standard and some are proprietary to a particular consulting
organization. Given this vast choice, it is important that you are able to
determine whether a systems methodology will meet the specific needs of
your organization. The way to do this is by evaluating the methodology.
This is the focus of this chapter.

A BRIEF SUMMARY OF COMMON GENERIC METHODOLOGIES

There is a wide variety of methodologies. Organizations will select the
ones most appropriate for their mode of development. It is not unusual for
an organization to utilize more than one methodology. Typically, a struc-
tured and an object-oriented approach can peacefully co-exist within one
company.

• System development life cycle (SDLC). This is a phased, structured ap-
proach to systems development. The phases include requirements
feasibility, analysis, system design, coding, testing, implementation,
and testing. Please note that there are variations of these stated phas-
es. Usually, each phase is performed sequentially, although some po-
tential for overlap exists. This is the methodology that is used most
often in industry.

98

SOFTWARE ENGINEERING HANDBOOK

• Iterative (prototyping). This approach is used to replace several of the
phases in the SDLC. In the SDLC approach the “time to market,” so to
speak, can be months (sometimes years). During this time, require-
ments may change and the final deliverable, therefore, might be quite
outmoded. To prevent this from happening it is a good idea to try to
compress the development cycle to shorten the time to market and
provide interim results to the end user. The iterative model consists of
three steps: 1) listen to customer; 2) build and revise a mock-up; 3)
have customer test drive the mock-up and then return to step 1.

• Rapid application development (RAD). This is a form of the iterative
model. The key word here is “rapid.” Development teams try to get a
first pass of the system out to the end user within 60 to 90 days. To ac-
complish this, the normal seven-step SDLC is compressed into the fol-
lowing steps: business modeling; data modeling; process modeling;
application generation, and testing and turnover. Note the term “appli-
cation generation”; RAD makes use of application generators, former-
ly called CASE (computer-assisted software engineering) tools.

• Incremental model. The four main phases of software development are
analysis, design, coding, and testing. If we break a business problem
into chunks — or increments — then we can use an overlapping,
phased approach to software development as shown below:

Increment 1
Analysis Design Code Test
→ Delivery of first increment

Increment 2
Analysis Design Code Test
→ Delivery of second increment, etc.

• Joint application development (JAD). JAD is more of a technique than
a complete methodology and can be utilized as part of any of the other
methodologies discussed here. The technique consists of “folding”
one or more end users into the software development team. Instead of
an adversarial software developer–end-user dynamic, the effect is to
have the continued, uninterrupted attention of the persons who will
ultimately use the system.

• Reverse engineering. This technique is used, first, to understand a sys-
tem from its code, second, to generate documentation base on the
code, and, third, make desired changes to the system. Competitive
software companies often try to reverse engineer their competitors’
software.

• Re-engineering. Business goals change over time. Software must
change to be consistent with these goals. Re-engineering utilizes many
of the techniques already discussed here. Instead of building a system
from scratch, the goal of re-engineering is to retrofit an existing system
to new business functionality.

99

Methodology Selection

• Object-oriented (OO). OO primarily consists of object-oriented analy-
sis (OOA), object-oriented design (OOD), and object oriented pro-
gramming (OOP). These methodologies are radically different from
traditional, more structured methodologies.

RATING YOUR METHODOLOGY

1. Does the methodology identify the steps necessary to produce each
deliverable of a systems development effort?

Methodologies are necessarily very “step” oriented. One cannot and
should not proceed to step two without adequately completing step one.
A person using a particular methodology should be provided with a clear
delineation of all steps as well as what initiates and terminates each of
these steps. A good methodology will define answers to the following
questions:

• What must be done?
• How long will it take?
• Why is the step done?
• How should it be done?
• What is produced?
• Who will do it?
• When should it be done?
• Which tools are to be used?

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

2. Does the methodology simplify the systems development process?

Some methodologies are so complicated that they are impossible to use.
If it is not clear to the user of the methodology how to use that particular
methodology, the systems development effort will fail.

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

100

SOFTWARE ENGINEERING HANDBOOK

3. Does the methodology encourage and provide the means to
implement a standard and repeatable approach to systems
development?

The Software Engineering Institute (http://www.sei.cmu.edu/sei-
home.html) in Pittsburgh is the creator of the well-known capability matu-
rity model (CMM). The framework consists of several levels of maturity
that an IT department goes through on its way to becoming completely
optimized and productive:

• Initial. This level is ad hoc and chaotic.
• Repeatable. Basic project management processes are established to

track cost, schedule, and functionality.
• Defined. Management and engineering activities are documented,

standardized, and integrated into the organization.
• Quantitatively managed. This level uses detailed measures.
• Optimizing. Continuous process improvement is enabled by quantita-

tive feedback and from testing innovative ideas and technologies.

An often quoted statistic is that 80 percent of us are sitting on top of
level one. Use of a methodology implies that the organization is at level
three — defined. A methodology enables the organization to implement a
standardized procedure for the development of systems so that the pro-
cess of developing these systems is standardized and can be repeated eas-
ily by one or more project teams.

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

4. Can the methodology be customized to meet the specific requirements
of the organization or is it unyielding and uncustomizable?

Every organization is unique in terms of its policies and procedures,
industry, and standards it applies to its practices. It makes sense, there-
fore, that any methodology selected needs to be flexible so that it can
accommodate the way the organization works today — as well as the way
the organization will work tomorrow. The very best methodologies are
those that permit the organization full customization capabilities in
terms of:

• Can the names of methodology components be changed to those the
organization is more familiar with?

• Can the descriptions of methodology components be changed?
• Can new components be added and related to existing components?
• Can component definitions (designs) be altered, extended, or deleted?

101

Methodology Selection

• Can new paths be defined to describe unique uses of the methodology?
• Can the underlying methods and deliverables be changed?

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

5. Is the methodology “state of the art?”

Each month brings new innovations to the IT industry. The Internet has
been with us for less than a decade. Flat file systems have morphed into
relational database systems that have morphed into object-oriented data-
bases.

Because the tools and techniques of developing systems are continually
improving, it makes sense that the methodology chosen needs to have the
capability of interacting with these newer tools and techniques — in case
the methodology becomes as obsolete as the tools it thinks you are using.
Tools that your methodology should support include:

• Computer-assisted systems engineering (CASE), as well as visual de-
velopment tools such as Visual Basic, Visual C++, etc.

• Data dictionaries, repositories, and data warehouses
• Java and XML
• Relational databases and object-oriented databases
• Client-server
• Cooperative and collaborative processing
• Internet and Intranet
• Accelerated and user-centered development such as JAD (joint appli-

cation development) and RAD (rapid application development)
• Integration (across business area, system data, and function sharing)

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

6. Is the methodology complete?

Most formal systems development activities are based around several
steps collectively known as the SDLC or systems development life cycle.
The SDLC consists of:

• Planning. In this step we uncover the mission and goals of the project
and ascertain the resources required to implement the system.

102

SOFTWARE ENGINEERING HANDBOOK

• Feasibility. This step determines whether or not the project is econom-
ically or technically feasible.

• Analysis. In this step the business and technical requirements of pro-
posed systems are uncovered, modeled, and documented.

• Design. During this phase system high-level as well as low-level archi-
tectures are crafted that are traceable back to the business require-
ments uncovered in the analysis phase.

• Implementation. In this phase programs are coded and tested.
• Production. Once the programs have been written and tested, this

phase will oversee the introduction of the system into the business.
• Maintenance. No system is ever complete. During the maintenance

phase, modifications are made to the system to fix errors and to en-
hance the system per new requirements.

Some methodologies pertain only to the latter phases of the SDLC. A pre-
ferred methodology will encompass the entire range of SDLC activities.

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

7. Can the methodology be broken down into components?

Although the methodology should cover all phases of the SDLC, the pre-
ferred methodology will be object oriented in nature. For example, it
should be possible to extract the piece of the methodology relevant to the
feasibility study easily.

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

8. Is the methodology adaptable across industries?

Organizations across industry boundaries exhibit different attributes. A
preferred methodology is adaptable to all industries, across all boundaries.

Rate this attribute:

Low High
0 1 2 3 4
| | |

Poor Adequate Excellent

103

Methodology Selection

9. Does the methodology produce documentation?

A formal process necessitates the creation of deliverables at certain pre-
designated milestones. For example, upon completion of the analysis
phase it is typical that a requirements specification be created. The partic-
ular methodology will specify the format and timeliness of the document.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

10. Does the methodology have discrete methods for each step in each
phase of the SDLC?

A formal methodology breaks down the systems development process
into phases (e.g., SDLC). Each phase, in turn, has its own unique steps. A
good methodology will supply methods that will instruct the developer in
applying that segment of the methodology to the particular step in ques-
tion. For example, a unique step of the analysis phase is to interview end
users. A good methodology will provide instructions on:

• Who performs this task
• How to perform this task
• What tools to use to perform this task
• What deliverable, if any, is required

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

11. Does the methodology provide techniques that describe how to
conduct its methods?

For a methodology to be usable it must detail the techniques of perform-
ing the tasks outlined within it. For example, for the task “interview end
users” techniques should include:

• How to select the end users
• What sampling techniques to use
• How to devise questionnaires and surveys
• How to use a tape or video recorder effectively

104

SOFTWARE ENGINEERING HANDBOOK

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

12. Will the methodology incorporate standards and practices of the
organization?

All organizations are different. Each publishes its own set of policies
and procedures (i.e., naming conventions, tool usage guidelines, etc.),
which may or may not be consistent within the industry. A good method-
ology enables the organization to maintain its unique set of standards and
practices.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

13. Does the methodology identify roles played by various members of
the project team?

A wide variety of people constitutes a typically project team.

• Project manager — manages one or more projects.
• Project leader — manages a specific project.
• Systems analyst — handles the analytical aspects of the system.
• Designer — designs the systems (might be the same person as the

analyst).
• Network administrator — is responsible for implementing the network

aspects of the system.
• Database administrator — designs the database and file systems.
• Web designer — handles the front end of any Internet or Intranet

systems.

An effective methodology links required skills with each method in
order to identify appropriate roles.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

105

Methodology Selection

14. Does the methodology identify support tools appropriate for
execution of each method?

A wide variety of tools on the market will automate many of the tasks
delineated in the methodology (i.e., survey generation, program code gen-
eration, model building).

It should be noted that many methodologies were developed by soft-
ware vendors for the express purpose of supporting a particular tool set.
In other words, the methodology was developed as a marketing vehicle for
the tool set.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

15. Is the methodology verifiable?

A formal methodology must have a visible model. This model must be
able to be verified for correctness and completeness and modified as
needs dictate. Only methodologies that are coupled with automated tool
sets are capable of this.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

16. Can the methodology be searched?

Methodology is the road map to the development of a system. As dis-
cussed, the methodology contains information on how to approach each
phase in the SDLC along with techniques and tools for executing the meth-
ods specified for that particular phase. From the perspective of the sys-
tems developer, the methodology is a knowledge base that instructs him or
her on the “how-tos” as well as the “why tos” and “when tos” of systems
development. It makes sense, therefore, that the system developer be per-
mitted to search through this methodology knowledge base to retrieve
specific information.

Because it is a knowledge base, the information contained there should
be navigable from multiple perspectives. The systems developer should be
able to forward chain through the knowledge base from top to bottom, as
well as backward chain upward from the lowest level to the highest level of
abstraction.

106

SOFTWARE ENGINEERING HANDBOOK

The methodology knowledge base should exhibit all of the features of an
end-user-oriented, windows- or browser-based system, including search,
print, save, edit, view, and help.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

17. Does the methodology maintain standard industry interfaces?

Although it is expected that the methodology chosen will be coupled
with one or more automated tools, a very strong possibility is that the orga-
nization will already be using a wide variety of other tool sets that the
methodological tool set should be able to interface with. These interfaces
include:

• Project management software
• CASE and application development tool sets
• Report writers
• Desktop publishing and word processing software
• Spreadsheets and databases

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

18. Is adequate training available for the methodology?

Whether the training is vendor oriented, in-house oriented or consult-
ant/training company oriented, it is imperative that staff be fully trained on
use of the methodology, as well as any tool sets, prior to use.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

19. Has the vendor demonstrated that the methodology/tool suite is used
at an organization similar to your organization?

Seeing the methodology and tool set, if applicable, in use at a compara-
ble organization is reassuring and demonstrates the full range of the

107

Methodology Selection

methodology’s capabilities. Additionally, it demonstrates the capabilities
of the vendor in terms of training, implementation, and support.

Rate this attribute:

Low High
0 1 2 3 4
| |

Poor Adequate Excellent

DETERMINING YOUR METHODOLOGY’S RATING

Our questionnaire contained 19 questions or attributes. With a top
score of 4 points for each question or attribute, the highest rating a meth-
odology can receive is 76 points. An adequate rating, a point score of at
least 2 per question, would be 36 points. Obviously, the higher the score is,
the better the methodology.

References and Further Reading

Holcman, S. (1993). A systems methodology: a rating and evaluation guide, in Software Engi-
neering Productivity Handbook, Keyes, J., Ed., McGraw-Hill, New York.

This page intentionally left blank

109

Chapter 8

Selecting and
Integrating a
Repository for
Effective Resource
Management

Τηε χορπορατιον οφ τηε φυτυρε ωιλλ βε ρυν ωιτη α ϖαστ µεση οφ ιντεραχτινγ χοµ−

πυτερσ ανδ δατα−βασεδ σψστεµσ. Ιτ ωιλλ βε ιµποσσιβλε το µαναγε ανδ βυιλδ τηε προ−

χεδυρεσ το τακε αδϖανταγε οφ τηισ τεχηνολογψ ωιτηουτ σοµε φορµ οφ ινφορµατιον

ενγινεερινγ, αππροπριατελψ αυτοµατεδ. Τηε ενχψχλοπεδια, ωηιχη ισ τηε ηεαρτ οφ

ινφορµατιον ενγινεερινγ, ωιλλ βε α ϖιταλ χορπορατε ρεσουρχε.

� ϑαµεσ Μαρτιν (1989)

EFFECTIVE INFORMATION RESOURCE MANAGEMENT

There are many roads to productivity. The one least traveled, but perhaps
most profitable, is the one where software tools are integrated in a manner
producing accessible and timely information.

The three keywords here are information, tools, and integration. Infor-
mation is really the most important asset a company owns. With proper
utilization, information becomes a potent competitive force. In today’s
very global — and very competitive — economy, information may, in fact,
be the deciding factor in determining the color of the organization’s
bottom-line.

Understanding that information is a resource to be valued, organiza-
tions have made a heavy investment in information technology. This
investment, to the tune of billions of dollars, included development of new
systems as well as purchase of a variety of software tools.

110

SOFTWARE ENGINEERING HANDBOOK

Software tools are decidedly two-flavored. On the one hand are the end
user-oriented tools, which include report writers and 4GLs; on the other
hand are tools that specifically target the development function. These
tools run the gamut from compilers to data administration tools to visual
development tools. Common among all of these tools has been the decided
lack of interconnectivity, or integration.

Lack of integration is a subtle defect with a powerfully negative impact
on the productivity and competitiveness of an organization. It translates to
an inability to manage information in a consistent and nonredundant fash-
ion. Because software tools have seams, information cannot flow easily
from one tool to anther, forcing organizations to move the information
manually between tools — or worse, to create redundant and conflicting
information stores.

Recognizing the ramifications of these problems, the industry has begun
to move in the direction of development frameworks. The goal of these
frameworks is to provide a boundaryless environment to spur the free flow
of information through the use of standards and guidelines for develop-
ment of software tools.

Metadata repositories, the focus of this chapter, have historically
focused on application development and data warehousing. Recently this
mission has been extended to support component middleware frame-
works and business objects. In the near future, knowledge management
and enterprise information portal environments will be supported as well.

A metadata repository, which I will call a repository workbench, has
three functions. It is a repository, it provides tools, and it forms the “con-
necting glue” of the development framework — in other words, integration.

A short and standard definition of a repository is “an organized refer-
ence to the data content of something. That something could be a system,
a database, or a collection of all the files, program databases, and manual
records maintained by a large organization.” Although the definition of
tools should be self-evident, in this context it is not.

Tools in a repository workbench environment encompass a broad spec-
trum of functionality that goes beyond what is commonly available. The last
component of the repository workbench equation is integration; this com-
ponent meshes the repository and the repository-based tools into an orga-
nization’s environment. The net sum of the repository equation is the abil-
ity to better leverage the skill set of a wide range of the organization’s staff
— from data administrators to programmers to analysts and end users.
This leveraging of skill sets leads to a dramatic increase in productivity.

111

Selecting and Integrating a Repository for Effective Resource Management

The remainder of this chapter assists the reader in three areas: evaluat-
ing the benefits of a repository workbench solution, planning for its imple-
mentation, and measuring it.

HOW TO USE THIS CHAPTER

In the first section — Evaluating the Repository Workbench — a quanti-
tative approach is taken to assist the reader in understanding the features
of a repository workbench and comparing these features across competi-
tive products. Twenty-three distinct criteria are divided into three catego-
ries: repository, integration, and tools; each criterion is presented in the
form of a set of features. To quantify the assessment, each should be rated
in terms of its importance to the organization. A rating, or weight, of 1 to 3
should be used (1 = not important to the organization, 2 = required by the
organization, 3 = of high importance to the organization).

Each of the features describing the criteria should next be rated accord-
ing to how well the vendor fulfills the requirement. A scale of 1 through 5
should be used: (1 = fails, 2 = weak, 3 = adequate, 4 = good, 5 = excellent).

After you finish rating all 23 criteria, your scores can be transferred to
the charts at the end of this chapter. These charts allow you to add up
repository scores and to make overall evaluations and comparisons.

In the second section — Preparing for the Repository Workbench — a
series of checklists is provided to assist the reader in deciding whether or
not a repository workbench solution is desirable and in developing a plan
for repository workbench implementation.

In the third section — Repository Metrics — a series of measurements
is provided to assist the reader in determining how well the repository is
utilized.

Evaluating the Repository workbench

Selecting a repository workbench is not a simple process. Repository
workbench software is quite complex and the selection process mirrors
this complexity. Because a repository workbench offers a composite of
functionality, the evaluation team needs to review three discrete levels of
functionality: the repository component, the workbench component, and
the integrative component. What follows is a set of categories that will
assist in this process; each represents a different level of functionality that
a product of this type should have.

The repository is the heart of the repository workbench. It is much more
than a data dictionary or a data warehouse. It stores information about
objects — whether those objects are file definitions or process rules. The

112

SOFTWARE ENGINEERING HANDBOOK

sections below itemize the major attributes of a repository. An effective
and robust repository should meet the objects presented in this section:

1. Initial Data Capture:
For the most part, objects required to be entered into the repository

already reside in catalogs, files, databases, and CASE encyclopedias, or as
part of a program (i.e., working storage as well as the procedure division).
Scanning enables an organization to populate the repository quickly
through the importation of objects from a pre-existing source. Among the
facilities that a robust repository product provides are:

Weighting: 1 2 3 Rating

Scan program source — file sections 1 2 3 4 5
Scan program source — working storage sections 1 2 3 4 5
Scan program source — procedure divisions 1 2 3 4 5
Scan copybooks 1 2 3 4 5
Scan multiple copybooks 1 2 3 4 5
Scan database catalogs 1 2 3 4 5
Scan CASE encyclopedias 1 2 3 4 5
Scan databases 1 2 3 4 5
Provide the ability to repopulate the repository

as many times as necessary through versioning 1 2 3 4 5
Provide collision resolution 1 2 3 4 5
Multilevel impact analysis 1 2 3 4 5
Scan data dictionaries 1 2 3 4 5
Scan class dictionaries 1 2 3 4 5

2. Tracking: A repository should have the ability to keep detailed infor-
mation about objects. The repository defines an object as more than the
traditional data definition; an object may be a field, file, procedure, or sys-
tem. Because the repository maintains detailed information about objects,
the organization has an excellent opportunity to track the status of many
of the formal processes that form the underpinnings of IT. A robust repos-
itory should be able to:

Weighting: 1 2 3 Rating

Keep track of jobs 1 2 3 4 5
Keep track of programs/objects 1 2 3 4 5
Document data content of files and databases 1 2 3 4 5
Document data processed by programs, jobs,

systems 1 2 3 4 5
Document reports and screens 1 2 3 4 5
Document schedules 1 2 3 4 5
Document backup and retention 1 2 3 4 5
Document maintenance responsibilities 1 2 3 4 5

113

Selecting and Integrating a Repository for Effective Resource Management

3. Source and Use: All organizations are different in the policies, meth-
ods, and procedures of their IT processes. The repository workbench must
integrate itself as well as act as an integrator of these policies, methods,
and procedures. The repository workbench must be flexible enough to:

Weighting: 1 2 3 Rating

Support data model 1 2 3 4 5
Support object model 1 2 3 4 5
Support information center usage 1 2 3 4 5
Support application generator 1 2 3 4 5
Support life cycle methodology 1 2 3 4 5
Support distributed processing 1 2 3 4 5
Document communications network 1 2 3 4 5
Maintain hardware inventory 1 2 3 4 5
Support data security planning 1 2 3 4 5
Support forms control 1 2 3 4 5
Support change and problem control 1 2 3 4 5
Support procedures and standards for repository

update and maintenance 1 2 3 4 5

4. User Access: Studies on productivity have shown that the user inter-
face has the greatest impact on the usability of the system. For the function
of data administration, a flexible user interface is mandatory if the organi-
zation is to leverage the resources of skilled professionals. The repository
workbench product should offer the following features:

Weighting: 1 2 3 Rating

Mainframe-based:
Easy to use 1 2 3 4 5
Contextual help facility 1 2 3 4 5
SAA/CUA compliant 1 2 3 4 5
Customizable 1 2 3 4 5
Pull-down menus 1 2 3 4 5
Pop-up windows 1 2 3 4 5
Fast-path commands 1 2 3 4 5

Client/Server based:
GUI 1 2 3 4 5
Graphical representation of E-R model 1 2 3 4 5
Point and click 1 2 3 4 5
Multiple platforms 1 2 3 4 5
CPI-C 1 2 3 4 5
XML 1 2 3 4 5

Online 1 2 3 4 5
Batch 1 2 3 4 5
Internet/Intranet 1 2 3 4 5

114

SOFTWARE ENGINEERING HANDBOOK

5. Dialog: A robust repository dialog should provide a simple, intuitive
means for maintaining and querying information assets, as well as access-
ing tools. Features should include:

Weighting: 1 2 3 Rating

Contextual menus 1 2 3 4 5
Menus rebuilt automatically as tools are added 1 2 3 4 5
Self-maintaining 1 2 3 4 5
E-R rule-based data entry screens 1 2 3 4 5
Project-based menus 1 2 3 4 5
Context-sensitive feedback 1 2 3 4 5
Reusable panels 1 2 3 4 5
Scrollable panels 1 2 3 4 5
Spreadsheet-like displays 1 2 3 4 5
Customize forms 1 2 3 4 5
End-user SQL queries 1 2 3 4 5
Project-defined SQL queries 1 2 3 4 5
Multilevel impact analysis 1 2 3 4 5
Attribute anchoring 1 2 3 4 5
Meaningful labels for DB names 1 2 3 4 5
Multiple text types 1 2 3 4 5

6. Extensibility: A robust repository workbench is not rigid; it should
support growth. This growth should not be limited merely to data defini-
tions. In an object-based environment a repository workbench should have
the flexibility to add new sources of information as well as new tools,
reports, and procedures. Each of these is defined as an object. Extensibility
features should include:

Weighting: 1 2 3 Rating

Dialog assistance 1 2 3 4 5
Automatic rebinding 1 2 3 4 5
Automatic creation of repository table spaces 1 2 3 4 5
(Re)creation of repository indices 1 2 3 4 5
Reorg 1 2 3 4 5
Error handling and correction 1 2 3 4 5
(Re)granting of table privileges 1 2 3 4 5
Integration with repository tools 1 2 3 4 5
Ability to add on in-house tools 1 2 3 4 5
Ability to add on third party tools 1 2 3 4 5
Ease in defining migration rules 1 2 3 4 5
Ease in defining security 1 2 3 4 5
Ease in defining validation rules 1 2 3 4 5
Ease in defining integrity rules 1 2 3 4 5
Ease in defining derivation rules 1 2 3 4 5
Ease in defining domain constraints 1 2 3 4 5

115

Selecting and Integrating a Repository for Effective Resource Management

7. Project Control: A repository workbench must provide facilities to
automate the enforcement of corporate and project standards and proce-
dures, and to control distribution of repository resources. Capabilities
should include:

Weighting: 1 2 3 Rating

Project-oriented security requirements 1 2 3 4 5
Clone function for rapid project definition 1 2 3 4 5
Access/update/migrate privileges 1 2 3 4 5
Ability to subset E-R types 1 2 3 4 5
Life cycle phase authorization 1 2 3 4 5
Project parameterization 1 2 3 4 5

8. Versioning: The repository workbench must provide a comprehen-
sive set of facilities for supporting, monitoring, and auditing the evolution
of repository definitions. This feature makes it possible to plan and imple-
ment the maintenance procedures that become necessary as systems
mature and require modifications. A robust repository workbench pro-
vides the following capabilities:

Weighting: 1 2 3 Rating

Use of variation name attribute 1 2 3 4 5
Unlimited number of variations 1 2 3 4 5
Support of revision number attribute 1 2 3 4 5
Ability to perform set-level operations

Set-rename 1 2 3 4 5
Set-delete 1 2 3 4 5
Set-copy 1 2 3 4 5

ANSI IRDS support 1 2 3 4 5
Alias support 1 2 3 4 5

9. Life Cycle Phase Management: Supporting an organization’s meth-
odologies is an essential role of a repository. A robust repository work-
bench provides an organization-extensible means for defining the various
stages of object evolution. These stages are referred to as life cycle phases.
Transition rules define the movement of an object from one phase to
another. Relationships between entities based upon their respective life
cycle phases should be verified to ensure proper migration results. Manag-
ing life cycle phases and object migration is a vital function within a repos-
itory if it is to control and participate in an organization’s development and
maintenance methodology. Features should include:

Weighting: 1 2 3 Rating

Customizable controls 1 2 3 4 5
Ability to add or remove life cycle definitions 1 2 3 4 5

(continued)

116

SOFTWARE ENGINEERING HANDBOOK

Weighting: 1 2 3 (continued) Rating

Transition rules 1 2 3 4 5
Migration paths 1 2 3 4 5
Relationship-state rules 1 2 3 4 5
Project-controlled life cycle phases 1 2 3 4 5
Versioning within life cycle phase 1 2 3 4 5

Integration. Developmental frameworks like AD/Cycle are philoso-
phies. For the most part, software engineering tools such as CASE maintain
key positions within this framework but do little to integrate effectively
with other tools in other quadrants of the framework — or even other tools
within the same quadrant. The objectives in this section, if met by the tool
being evaluated, will assure the organization that the repository will be
seamlessly integrated with repository tools as well as in-house-developed
and third-party tools.

10. Architecture: A repository workbench is a unique hybrid of reposi-
tory, tools, and an integrative vehicle. In order to support this threefold
functionality, the underlying architecture of a repository workbench prod-
uct must provide openness and an extensible framework. The organization
must be able to easily integrate into and expand upon the framework. The
architectural features of a robust architectural framework include:

Weighting: 1 2 3 Rating

Object-based approach 1 2 3 4 5
Extensible 1 2 3 4 5
Easily configurable 1 2 3 4 5
Easily modifiable 1 2 3 4 5
Easy integration 1 2 3 4 5
Underlying meta–meta model 1 2 3 4 5
Vendor-supplied meta model 1 2 3 4 5
Security, backup, and recovery 1 2 3 4 5
Referential integrity 1 2 3 4 5

11. Standards: The basis of any open framework is the standards that it
rests on. For this framework to be fully integrative with an organization’s
environment, the framework must conform to and support the standards
and guidelines that the industry has embraced. Additionally, the reposi-
tory workbench must provide the organization with the ability to support
the standards that it has developed as part of its policies and procedures.
This might includes where applicable:

Weighting: 1 2 3 Rating

XML 1 2 3 4 5
Web services 1 2 3 4 5

(continued)

117

Selecting and Integrating a Repository for Effective Resource Management

Weighting: 1 2 3 (continued) Rating

ANSI SQL 1 2 3 4 5
UML 1 2 3 4 5
Java community process 1 2 3 4 5
Internet engineering task force 1 2 3 4 5
OAG (open applications group) 1 2 3 4 5
OMG (object management group) 1 2 3 4 5
Business objects 1 2 3 4 5
Organizational naming conventions 1 2 3 4 5
Organizational keywords and abbreviations 1 2 3 4 5
Organizational custom rules 1 2 3 4 5
Other 1 2 3 4 5

12. Gateways: The basis of a repository product is information; how-
ever, information is not confined to a single source. A repository product
must provide the organization with a series of gateways that allow the
organization to export and import information among these information
sources (e.g., application development tools, various databases, and files).
Because the organization is expected to have multiple requirements for
gateways, the most robust repository workbenches will generically define
a gateway bridge that provides a commonalty of approach across diverse
products. Features should include:

Weighting: 1 2 3 Rating

Generic bridge architecture 1 2 3 4 5
Bi-directional bridge 1 2 3 4 5
Upload/download facilities 1 2 3 4 5
Check in/check out 1 2 3 4 5
Collision resolution 1 2 3 4 5
Impact analysis 1 2 3 4 5
Import/export capabilities 1 2 3 4 5
Bulk population ability 1 2 3 4 5
Repopulate through versioning 1 2 3 4 5
Default rules 1 2 3 4 5
Variable name mapping 1 2 3 4 5
Catalog import 1 2 3 4 5
Source import from multiple catalogs 1 2 3 4 5
Flat file import 1 2 3 4 5
Obsolete file import 1 2 3 4 5
IMS bridge:

Store and manage IMS objects 1 2 3 4 5
Generate copybooks, PSBs, DBDs 1 2 3 4 5
Impact analysis across objects 1 2 3 4 5
IMS SQL reporting writing 1 2 3 4 5

118

SOFTWARE ENGINEERING HANDBOOK

13. CASE Bridge: CASE (application development) tools require a very
specific gateway that allows CASE objects to be integrated into the reposi-
tory with the goal of permitting CASE users to have a more efficient way of
controlling, securing, reporting, and distributing specifications captured in
their workstations. A robust repository can be thought of as a clearing-
house between workstations and CASE products. The repository work-
bench should provide management tools that enable the organization to
share data resources. This includes:

Weighting: 1 2 3 Rating

Shared model between different tools 1 2 3 4 5
Support change control 1 2 3 4 5
Report on design and analysis 1 2 3 4 5
Upload CASE product Encyclopedia

Reporting 1 2 3 4 5
Rehearsal 1 2 3 4 5

Extend the definition of CASE objects 1 2 3 4 5
Reusability 1 2 3 4 5

14. Services: A product is only as good as the service provided by the
product vendor. Toward this end, the following features should be
evaluated:

Weighting: 1 2 3 Rating

Continuous support 1 2 3 4 5
Toll-free hotline 1 2 3 4 5
Timely assistance 1 2 3 4 5
Trial period provided 1 2 3 4 5
Customer references provided 1 2 3 4 5
Support during trial 1 2 3 4 5
Quality of staff 1 2 3 4 5
Maintenance program 1 2 3 4 5
Product improvement schedule 1 2 3 4 5
Responsiveness 1 2 3 4 5
Track record 1 2 3 4 5
Tailored training program 1 2 3 4 5
Online documentation 1 2 3 4 5
Manuals 1 2 3 4 5
Newsletter 1 2 3 4 5
User groups 1 2 3 4 5

15. Workbench Integration: The repository workbench creates a pro-
ductive environment where repository information is integrated with an
extensible tool set. This approach offers you the flexibility to incorporate

119

Selecting and Integrating a Repository for Effective Resource Management

your existing tools as well as those you may consider in the future. Tool
integration capabilities include:

Weighting: 1 2 3 Rating

Ability to integrate user-defined tools 1 2 3 4 5
Ability to integrate third-party packages 1 2 3 4 5
All tools accessible through online dialog 1 2 3 4 5
Extensible end-user interface 1 2 3 4 5
Well-documented API 1 2 3 4 5
Easy incorporation into menuing system 1 2 3 4 5
User security 1 2 3 4 5
Customizable help dialogs and messages 1 2 3 4 5

Tools. A robust repository workbench needs to supply a series of tools
that take advantage of the repository and its integrative prowess. The fea-
tures described in this section are those of a robust environment.

16. Tool Integration: The ability to integrate tools to the workbench is
only one side of the coin. The other side is to have the facilities to develop
in-house tools. A tool development environment should possess the fol-
lowing capabilities:

Weighting: 1 2 3 Rating

Vendor-supplied shell programs 1 2 3 4 5
Vendor-supplied subroutine libraries 1 2 3 4 5
Comprehensive assistance 1 2 3 4 5
Encapsulation 1 2 3 4 5
Tools developed in-house invoked through dialog 1 2 3 4 5
Vendor-supplied tools reusable 1 2 3 4 5

17. Groupware: Productivity is greatly enhanced when a facility is pro-
vided for project teams and users to communicate with each other. This is
often referred to as groupware. Within a repository environment, this can
be accomplished through the use of electronic mail. Features available
should include:

Weighting: 1 2 3 Rating

Electronic mail available 1 2 3 4 5
Messaging to project members 1 2 3 4 5
Messaging to users 1 2 3 4 5
Batch output messaging 1 2 3 4 5
Edit output and resend 1 2 3 4 5
Reusable method 1 2 3 4 5

18. Reporting: Various levels of the organization require access to the
repository for reporting. On one level, the end users require access to find

120

SOFTWARE ENGINEERING HANDBOOK

out the types of information available within the organization. On another
level, data administration staff has a real need to control the transition of
information within the repository. Both levels of user access need to be
supported. Reporting features include:

Weighting: 1 2 3 Rating

QMF reporting interface 1 2 3 4 5
FOCUS reporting interface 1 2 3 4 5
Canned reports should include:

Repository detail 1 2 3 4 5
Catalog detail 1 2 3 4 5
Repository/catalog comparison 1 2 3 4 5
Table column cross reference 1 2 3 4 5
Table structure/element cross reference 1 2 3 4 5
Logical/physical element reference 1 2 3 4 5
Logical entity cross reference 1 2 3 4 5
Structure circular references 1 2 3 4 5
Catalog statistical and action summary 1 2 3 4 5
Repository/catalog comparison 1 2 3 4 5
Repository content detail 1 2 3 4 5
Catalog content detail 1 2 3 4 5

19. Impact Analysis: In nonrepository systems, a large percentage of
nonproductive time is spent in determining the impact of change. Analysts
and programmers must manually review documentation and program
source listings to evaluate the extent of change necessary as well as the
length of time required to make those changes. This can be a lengthy pro-
cess. A repository-based system automates this process through the func-
tion of impact analysis. Automatic impact analysis deconstructs the repos-
itory to determine the level of change required. The impact analysis
function should include the following capabilities:

Weighting: 1 2 3 Rating

Multiple level 1 2 3 4 5
Nested impact analysis 1 2 3 4 5
Interactive as well as batch 1 2 3 4 5
Immediate maintenance capabilities 1 2 3 4 5
“Uses” and “where-used” displayed concurrently 1 2 3 4 5

20. Scripting: Database administrative procedures are extraordinarily
complex. The complexity of many of these tasks implies that the staff mem-
ber involved must have the highest degree of skill and exercise the utmost
level of care. Organizations that wish to leverage the skill set of the average
user, increase the speed at which a task may be completed, or deploy vast
functionality across differing layers of the organization require the means

121

Selecting and Integrating a Repository for Effective Resource Management

to decrease the complexity level of the activity and thereby reduce the risk
of error. A repository-based scripting facility provides this functionality.
Capabilities should include:

Weighting: 1 2 3 Rating

Recursive script development 1 2 3 4 5
Ability to invoke any vendor-supplied tool 1 2 3 4 5
Ability to invoke any vendor-supplied report 1 2 3 4 5
Ability to invoke any vendor-supplied script 1 2 3 4 5
Ability to invoke any in-house tool 1 2 3 4 5
Ability to invoke any in-house report 1 2 3 4 5
Ability to invoke any in-house script 1 2 3 4 5
Batch mode 1 2 3 4 5
Commit points and breakpoints 1 2 3 4 5
Script status feedback 1 2 3 4 5
Parameterized 1 2 3 4 5
Vendor-supplied base start-up scripts 1 2 3 4 5
Cut and paste facility 1 2 3 4 5
Invoked by electronic mail 1 2 3 4 5

21. Forms: Forms provide the ability to establish external layout defini-
tions that present a modified view of the objects within the repository
without altering the object itself. Although the definitions of objects in the
repository are not altered, the user view can be modified to afford the
greatest expediency in utilization of the repository without needing to
write code. Features should include:

Weighting: 1 2 3 Rating

Project-level modification 1 2 3 4 5
Order of presentation 1 2 3 4 5
Alteration of the prompt label 1 2 3 4 5
Alteration of the annotation 1 2 3 4 5
Modification of display rules 1 2 3 4 5
Modification of item length 1 2 3 4 5
Customization of the default values 1 2 3 4 5
Object-orientation of form 1 2 3 4 5
Maintainable via a method 1 2 3 4 5
Accessible through dialog menus 1 2 3 4 5
Accessible via scripting 1 2 3 4 5

22. Generation: The repository acts as the central clearinghouse for
corporate information resource management, so it must have the ability to
act in concert with definitions used by application development and end-
user tools. To enhance productivity, consistency, and security, the reposi-
tory workbench must have the ability to generate syntax. This includes the
ability to:

122

SOFTWARE ENGINEERING HANDBOOK

Weighting: 1 2 3 Rating

Use DDL, DML syntax including:
Create 1 2 3 4 5
Drop 1 2 3 4 5
Grant 1 2 3 4 5
Revoke 1 2 3 4 5
Bind 1 2 3 4 5
Rebind 1 2 3 4 5
Free 1 2 3 4 5

Generate and execute mode 1 2 3 4 5
Generate and save mode 1 2 3 4 5
Copybook generation 1 2 3 4 5
DBD, PSB for IMS 1 2 3 4 5
DCLGENs 1 2 3 4 5

23. Managing Relational Tables: A repository workbench needs to be
more than just a repository. Facilities to manage the underlying database
should be fully integrated into the tool set. These tools should provide the
ability to:

Weighting: 1 2 3 Rating

Unload/reload databases 1 2 3 4 5
Create and drop objects 1 2 3 4 5
Referential integrity support 1 2 3 4 5
Grant and revoke commands 1 2 3 4 5
Bind, rebind, and free commands 1 2 3 4 5
Reorg, runstats and copy commands 1 2 3 4 5

Preparing for the Repository Workbench

Preparing for any software implementation requires careful planning
and control. In the case of a repository workbench, where information, sys-
tems, and integration factors must be considered, even more care is urged
for a successful implementation. A series of checklists is provided for this
purpose.

Preplanning Action Items:

1. Standardize the names, definitions, and physical descriptions of
data elements used in all programs.

2. Document which data is kept in which files or databases or schemas.
3. Document which reports and screens are produced by which pro-

grams jobs and systems.
4. Document which programs, jobs, and systems access and update

which data elements in which files or databases or schemas.

123

Selecting and Integrating a Repository for Effective Resource Management

5. Document which modules and subprograms are included in which
programs.

6. Document processing schedules, file back-up and retention, and re-
sponsibilities for program and jobstream maintenance.

Questions to ask for sizing of data collection effort:

1. How many systems are there?
2. What is the quality of system documentation?
3. If documentation is inadequate, can the required data be obtained

from the original developers or from users?
4. How many programs are in each system?
5. How good are the run books and program documentation?
6. Have these been kept up to date as changes have been made?
7. Are job control statements kept in a single file or library?
8. Are program source statements kept in a single file or library?
9. Is some type of source library maintenance system in use?

10. Is library content really kept up to date?
11. How many FILEs, DATABASEs, and SCHEMAs are in each system?
12. How many different record types are there?
13. How many different relational tables are there?
14. Are standard record descriptions used?
15. Are they kept in a central library?
16. Are data element names standardized?
17. Are the names meaningful?
18. Are good definitions available?
19. Is there documentation of coding structures?
20. How well are reports, display screens, and input transactions docu-

mented?
21. Can the data content be obtained from user manuals?
22. If the information above is not readily available, how will it be ob-

tained? Who will compile it?
23. Who will do the actual work of preparing repository input?
24. How will it be done?
25. Can part of the data be obtained by scanning source programs or

copy libraries?
26. Who will review edit lists and resolve naming discrepancies and oth-

er problems?

Questions to ask concerning technical and operational issues:

1. Will the repository always be running? System initialization must be
amended to include this.

2. Will reports be produced automatically on some predetermined
schedule? Will they be triggered by specific events, such as the im-
plementation of a new system? Will they be on a run-on-request

124

SOFTWARE ENGINEERING HANDBOOK

basis? Who will initiate the jobs to produce the reports? How will
they be distributed? How will special requests be handled?

3. How will repository problems be reported and resolved?
4. Will computer operations think of the repository as a production

system?
5. Will procedures for the turnover of new systems or system changes

incorporate steps that will ensure that the repository has been cor-
rectly updated?

Questions to ask about security:

1. Who should be allowed to access what? Can project teams alter data
that they think of as their own?

2. Will passwords be controlled and changed from time to time? Will
they be changed when employees resign or are discharged?

3. Does repository software provide a mechanism to prevent access to
the repository via means other than the repository software?

Questions to ask concerning redundant and inconsistent data:

1. Can you identify all occurrences of the same information?
2. Can you determine which elements are calculated or derived and

how?
3. Will you know the original sources of all elements?
4. Will you know the uses of the elements?
5. Can the repository implementation help to determine whether there

are procedures or programs to ensure consistency?
6. Will the repository implementation provide for validation rules and

criteria?
7. Does it provide for data consistency and integrity rules?
8. What about procedures to ensure that such rules are entered in the

repository?

Questions to ask about complexity and interdependence:

1. Does the repository help us determine who actually uses the re-
ports or screens?

2. Does it help identify screens and reports that contain the same in-
formation?

3. Does it help the user identify the tasks and procedures that require
use of the information contained in the reports and screens?

4. Will it help improve documentation?
5. Will it decrease complexity by providing reusability?

Repository Metrics

These criteria measure how well a repository or data dictionary col-
lects, maintains, and retrieves information about data. The objectives of

125

Selecting and Integrating a Repository for Effective Resource Management

these measures are to offer users cost-effective means of retrieving rele-
vant information and reducing information overload. Five criteria are pro-
posed to evaluate data dictionaries and repositories: relevance, consis-
tency, common use among information systems, degree of automation, and
degree of security.

DBA Objective Metrics. The following criteria measure how well each
commercial repository/repository product fulfills DBA objectives.

Relevance. This criterion measures the effectiveness of retrieving cor-
rect information in response to a request. It is measured by two factors:
recall and precision.

Consistency. This criterion measures the performance of the product in
removing redundancies and storing the minimum number of elements from
which all other elements can be derived. The result will be what James
Martin (1990) refers to as a canonical data repository — a minimal and non-
redundant representation of data elements in an enterprise.

Common use among different IS: This criterion measures whether the
product can be consistently applied to standardize IS in different depart-
ments and operations within an IS organization. Current trends toward
integrating networks and information systems to build integrated reposi-
tory-network management environments make it important that reposito-
ries handle multiple environments. Deciding which repository to use as the
central repository may depend on its flexibility in handling a variety of soft-
ware and hardware. The common use criterion measures this flexibility:

Degree of automation. An active repository uses substantially less man-
power than a passive one. In response to an inquiry, an active repository
can locate the elements and find out who has access to them; it then
directs the database management system to obtain those data elements.
On the other hand, passive data dictionaries have no tie-ins to the operat-
ing system and require the user to write programs to gain access to the ele-
ments. This criterion measures the extent to which a product makes it easy
for a DBA to standardize and store elements.

Ρεχαλλ
Νυµβερ οφ µατχηινγ δατα ελεµεντσ ρετριεϖεδ βψ α προδυχτ

Μαξιµυµ νυµβερ οφ µατχηεσ ποσσιβλε
−−=

Πρεχισιον
Νυµβερ οφ µατχηινγ δατα ελεµεντσ ρετριεϖεδ βψ α προδυχτ

Νυµβερ οφ δατα ελεµεντσ ρετριεϖεδ βψ α προδυχτ
−−=

Χονσιστενχψ 1
Νυµβερ οφ ελεµεντσ ιν τηε φιναλ ρεποσιτορψ

Νυµβερ οφ ελεµεντσ ιν τηε οριγιναλ δατα διχτιοναριεσ
−−−�=

Χοµµον Υσε
Νυµβερ οφ ελεµεντσ στανδαρδιζεδ υσινγ παρτιχυλαρ προδυχτ

Νυµβερ οφ ελεµεντσ στανδαρδιζεδ ιν τηε οργανιζατιον
−−−=

126

SOFTWARE ENGINEERING HANDBOOK

Degree of security: Overall security depends on managing the access
controls to various data elements. Access control limits must be defined
for each user and violations acted upon.

Repository Workbench Metrics. The following metrics measure addi-
tional attributes of the repository workbench.

• Redundancy: One of the objectives of a repository solution is to act as
the single source for all information flows. To measure how successful
the repository implementation is requires knowledge concerning the
number of objects stored in the repository versus the number of ob-
jects stored, simultaneously, in different sources.

• Intuitive access: One of the most important, but underrated, features of
a repository workbench is its user interface. The more intuitive the di-
alog is, the more the repository workbench will be used. Frequency of
use translates into higher productivity; a low rating implies need for
tuning or training.

• Level of impact analysis. This metric measures how well the impact
analysis function is utilized.

• Integration. This metric determines the progress of the tool integration
effort. Because a repository workbench enables complete tool inte-
gration, the level of integration implies progress — or lack of it.

SCORING THE REPOSITORY WORKBENCH

The chart in Exhibit 8.1 provides a means to conduct a quantitative eval-
uation of several repository products. To use this chart, simply transfer
the scores from each of the rating scales under the 23 criteria. To transfer
the score, multiply the rating (1 through 5) by the weighting (1 through 3).

∆εγρεε οφ αυτοµατιον 1
Τιµε σπεντ ιν τραινινγ ανδ υσινγ προδυχτ

Τοταλ τιµε αϖαιλαβλε
−−−�=

∆εγρεε οφ σεχυριτψ 1
Νυµβερ οφ σεχυριτψ φαιλυρεσ

Νυµβερ οφ αττεµπτσ το βρεαχη σεχυριτψ
−−�=

Ρεδυνδανχψ
ρεδυνδαντ οβϕεχτσ

Τοταλ # οβϕεχτσ
−−−=

Ιντυιτιϖενεσσ 1
υσερσ ρεθυιρινγ µανυαλ

Τοταλ νυµβερ οφ υσερσ
−−−�=

Λεϖελ οφ ιµπαχτ αναλψσισ
λεϖελσ βεινγ αχχεσσεδ

Τοταλ # λεϖελσ ιν Ε−Ρ µοδελ
−−=

Ιντεγρατιον
τοολσ ιντεγρατεδ

Τοταλ # τοολσ ιν υσε
−−=

127

Selecting and Integrating a Repository for Effective Resource Management

References

Martin, J. (1989). Information Engineering, Book I: Introduction, Prentice Hall, Englewood Cliffs,
NJ.

Martin, J. (1990). Information Engineering, Book II: Planning and Analysis, Prentice Hall, Engle-
wood Cliffs, NJ.

Exhibit 8-1. Evaluation of Products

Product A Product B

1. Initial data capture

2. Tracking

3. Source and use

4. User access

5. Dialog

6. Extensibility

7. Project control

8. Versioning

9. Life cycle

10. Architecture

11. Standards

12. Gateways

13. CASE bridges

14. Services

15. Workbench integration

16. Tool development

17. Groupware

18. Reporting

19. Impact analysis

20. Scripting

21. Forms

22. Generation

23. Table management

This page intentionally left blank

129

Chapter 9

Structured
Methodology Review

A variety of methodologies is available to the systems analyst. Many are
proprietary methodologies utilized in conjunction with a software
application development tool set (CASE — computer assisted software
engineering).

The original and still frequently used systems development construct
dictates that systems are developed through a series of distinct stages. It
is necessary for each stage to be completed before going to the next. This
is a linear progression of system development, hence the name “waterfall”
method. Waterfall design methods are a one-way flow from the require-
ments process toward the working system (Coffee, 2001).

Once a stage of the project is complete, it is sent to the next stage with
a “deliverable,” which is evidence or documentation that the stage has
been completed and the project is ready for the next process. There are
eight generally accepted stages of a systems development life cycle tech-
nique (see Exhibit 9-1):

• Determination of scope and objectives — overall scope of the project is
agreed upon.

• Systems investigation and feasibility study — a report on the feasibility
of a technical solution to the problem is prepared.

• Systems analysis —a logical model of the existing system is built.
• System design — the analyst develops two or three alternative designs.
• Detailed design — detailed physical specifications are made so that

the system can be built.
• Implementation — the system is physically created.
• Changeover — the old system is replaced by the new system.
• Evaluation and maintenance —hardware and software are maintained.

A real benefit of this approach is the division of a lengthy project into
stages, which makes it more manageable. This is realized throughout the
project in terms of better project control and communication, and during
the working life of the system in terms of its meeting user requirements and

130

SOFTWARE ENGINEERING HANDBOOK

the ease with which it can be modified to take into account changes in
these requirements (Curtis, 2000).

However, many in the field feel that the traditional waterfall method is
outdated. The problem is that the waterfall models a one-way flow from
requirements. You must be able to paddle upstream and take a different
path if the one you first choose turns out to be too long — to practice

Exhibit 9-1. The Traditional SDLC

Documentation of

scope and
objectives

Systems

investigation and

feasibility study

System analysis

System design

Detailed design

Implementation

Changeover

Evaluation and

maintenance

Stage

131

Structured Methodology Review

white-water kayaking, rather than just going over the waterfall and hoping
you will like where you land (Coffee, 2001). Today’s business is fast paced
and systems need to be developed as quickly as possible to meet organiza-
tional needs, with early delivery of the easy portions of an application for
on-the-job testing and comments (Coffee, 1994).

Fast-changing requirements and shorter lead times might require the
use of different methodologies.

RAPID APPLICATIONS DEVELOPMENT (RAD)

It is no longer adequate to take two or three years to build a system. More
than ever, businesses are in a race against time (Glen, 1993). Directly
opposed to the traditional and lengthy life cycle approach is rapid applica-
tions development, or RAD for short. RAD is a loosely used term (like many
other design terms) that describes any approach to a fast-designed system.

RAD has been described as a set of tactics and techniques to minimize
development time — a radical departure from the traditional waterfall
method (Glen, 1993). Essentially, RAD uses time boxing to control develop-
ment time for each phase of the project. If a deadline is in danger of being
missed, lower-priority requirements are moved back to a later time box or
the next phase of an incremental delivery (Tudhope, 2000). RAD requires
management to accept consensus management and joint application
design (JAD). Specialists with advanced technology (SWAT teams) work
closely with the users to define and refine applications.

SWAT (also referred to by Glen as “slaves without any time”) is an effec-
tive tactic in many RAD projects in that small, multidisciplined IT teams
work with users directly. This fosters team building. SWAT members are
not confined to separate floors or buildings. This approach is different than
assembling many systems specialists with inch-wide and mile-deep knowl-
edge in specific areas to build applications in IT ghettos (Glen, 1993).

RAD has four phases, as shown in Exhibit 9-2 (Curtis et al., 2000):

1. Requirements planning — joint requirements planning (JRP), estab-
lishes high-level objectives

2. Applications development — JAD follows JRP, involves users in work-
shops

3. Systems construction — design specifications, used to develop de-
tailed and generate code

4. Cutover — users trained and the system tested

According to Tudhope (2000), the majority of developers who are aware
of RAD tend to select elements of the methodology rather than following it
strictly. Others use generally similar techniques without identifying them
as RAD.

132

SOFTWARE ENGINEERING HANDBOOK

Proponents of the RAD design methodology say that business needs can
change substantially during long development times, and meeting current
needs when the system comes into operation is a better aim than meeting
a “long-frozen” specification (Tadhope, 2000). However, others say you
should never let developers write a line of code until the specifications are
approved by all parties. Prudent managers might therefore follow the
“waterfall” model, in which requirements are completed and flow down-
stream to design (Coffee, 1994).

A variation of the RAD technique dictates that design technique is to be
deliberate in the systems foundation, but one should design some parts
ahead of time. The foundation is the data model, which should be designed
in partnership with the business side of the organization. A logical data or

Exhibit 9-2. The Four Phases of RAD

RAD

Requirements

Planning

Applications

Development

Systems

Construction

Cutover

Four Phases of Rapid Application

Development

133

Structured Methodology Review

object design process allows definition of how business is currently con-
ducted and plans for future changes. RAD is used for screens, reports, busi-
ness rules, and communications, but only after the database or object
model is in place. Involving users in the process that takes the longest
makes development time less of an issue; end users see the prototype in
days or hours once the foundation is laid (Boyer, 1995). Boyer recom-
mends that we build the walls of the application and roof as quickly as pos-
sible, but to make sure the foundation is in place first.

JOINT APPLICATION DESIGN (JAD)

In joint application design, analysts work with groups during the devel-
opment of the system; they integrate groups of technical and business
experts (Exhibit 9-3). These groups may include programmers, designers,
and project managers, as well as user reps, department management peo-
ple, and the controller or CIO. These JAD sessions are usually run by a
trained facilitator.

The JAD process has four stages: framework presentation, project scop-
ing, preliminary definitions development, and detailed requirements devel-
opment (Dodson, 1994).

In the framework presentation stage the facilitator sets the tone for the
project, explaining the JAD approach. Usually this stage involves a core
team of business experts and will last between one half to a full day. Project
scoping involves the same group of people identifying project priorities
across department lines. This should take a total of 6 to 12 hours. The pre-
liminary definitions stage produces the context diagram; the entire core
team participates in this phase. The context diagram shows the system’s
place in the flow of the organization’s information, which should take about
one day. The detailed requirements stage should take five to ten days in
session; however, the detailed requirements can take weeks to develop.

Attending all of these sessions is the “scribe” responsible for document-
ing all the information gathered during each meeting and providing it to the

Exhibit 9-3. The JAD Process

JAD

Facilitator

Bring together groups of people

Technical experts-

programmers, designers,

project managers.

Business Experts-User reps,

department mgt. people,
controller or CIO

134

SOFTWARE ENGINEERING HANDBOOK

team as needed. This relieves other participants from taking notes, which
diverts their attention from the matters at hand.

GROUP SUPPORT SYSTEMS (GSS)

One of the problems with meetings in the JAD approach is that only a
limited number of people can participate effectively before the meeting
becomes inefficient (Dennis et al., 1999). Nevertheless, it is important to
receive input from all the experts because no one expert usually has the
expertise to document business processes completely. Another problem
with JAD sessions is that only one person can speak at a time. This creates
a problem in that experts blocked from contributing their ideas while
another is speaking may forget or suppress them because they seem less
relevant later. Also, many times a group session is dominated by just a few
people. This could lead to a model that favors the dominating participants.

In recent years computer technology called group support systems has
been designed to provide same-time, same-place interactions in which par-
ticipants use computers to interact and exchange ideas (Dennis et al.,
1999). This is designed to reduce group interaction problems and may help
to improve meetings by using parallel communication, anonymity, and
group memory.

GSS also reduces meeting time and allows group members to share their
ideas simultaneously through the use of the collaborative software. Partic-
ipants can also remove themselves from the discussion to pause and think
without worrying about remembering what the other members have said.

Of course electronic meetings also have their negative effects. It is said
that this type of communication is often “less rich” than verbal communi-
cation and that resolving differences with electronic meetings is more dif-
ficult. The effectiveness of GSS greatly depends on the size of the group.
GSS was found to produce greater gains with larger groups; however, ver-
bal meetings are more effective where differences of opinion need to be
resolved (Dennis et al., 1999).

CASE TOOLS

The broadest definition of a CASE tool is any software tool that provides
automated assistance for software development, maintenance, or project
management activities (McMurtrey et al., 2000). CASE tools are not end-
user oriented; they are used by professionals for carrying out part of the
design and helping to speed the development process.

They have been trumpeted as the “silver bullet” of applications develop-
ment but have not necessarily lived up to that name because they are not
a “fix-all” solution to systems design. However, they are a feasible option
for practitioners of systems development.

135

Structured Methodology Review

Case tools assist in (Curtis et al., 2000):

• Corporate planning of info systems — used to track relationships be-
tween various components.

• Creating specification requirements — information system is analyzed
into its data requirements.

• Creating design specifications —tools are used to specify a design for
the system.

• Code-generation tools — accept output of the design specification and
produce code for direct execution.

• Information repository — stores information on entities, processes,
data structures, business rules, source code, and project management.

• Development methodology — provides automated diagramming facili-
ties for data-flow diagrams.

The many benefits of CASE include increased productivity, restructuring
of poorly written code, decrease of application development time, and aid
in project management. However, with benefits there are usually draw-
backs, and CASE is no exception. Some of the drawbacks are a reliance on
structured methodologies, a lengthy learning curve, possible user resis-
tance, limited functions, and a required working knowledge of the underly-
ing methodology.

A VARIETY OF STRUCTURED METHODOLOGIES

As mentioned, a wide variety of systems development methodologies
can be chosen from, some accompanied by CASE tools and some without
them. Most are based on the methodologies discussed previously. A list of
references to some of the most common structured methodologies follows:

1. Yourdon, E.E. and Constantine L.L. (1977). Structured Design: Funda-
mentals of a Discipline of Computer Program and System Design, Your-
don Press

2. DeMarco, T. (1979). Structured Analysis and Systems Specification,
Prentice Hall, Englewood Cliffs, NJ.

3. Gane, G. and Sarson, T. (1979). Structured Systems Analysis, Prentice
Hall, Englewood Cliffs, NJ.

4. Jackson, M. (1975). Principles of Program Design, Academic Press,
New York.

5. Jackson, M. (1983). System Development, Prentice Hall, Englewood
Cliffs, NJ.

6. Martin, J. (1988). Information Engineering: Book 1 Introduction, Book
2 Planning and Analysis, Book 3 Design and Construction, Prentice
Hall, Englewood Cliffs, NJ.

James Martin worked with Clive Finkelstein in designing information
engineering. Interestingly, two models were actually derived from this

136

SOFTWARE ENGINEERING HANDBOOK

exercise. Martin’s model is IT-driven while Finkelstein’s model is enter-
prise, or business, driven. I find Finkelstein’s the more useful of the two and
have included a brief summary here.

Finkelstein Information Engineering

Clive Finkelstein’s (1989) version of information engineering starts with
a business strategic planning exercise to identify important information
systems required by the business. Then it develops chosen priority sys-
tems through successively detailed analysis and design, through to imple-
mentation.

Strategic planning consists of the following stages:

• Stage 1. Identifying the current plan. Use any existing strategic or tac-
tical statements that may exist or a management questionnaire to
gather information about business strategy

• Stage 2. Evaluation of current status consists of eight steps:
1. Analyze mission and purpose to identify major data subjects

that are represented in a high level mission model
2. Identify potential goals (critical success factors)
3. Define goals
4. Identify issues
5. Define strategies to deal with each issue
6. Identify current functions (e.g., personnel, finance, etc.)
7. Allocate strategies to functions
8. Define functional responsibility (a detailed functional specifica-

tion for each functional manager)
• Stage 3. Setting strategic direction consists of three steps: (1, 2) inter-

nal, and external appraisal: analysis of business, and business envi-
ronment (3) strategic evaluation: create the strategic agenda; devise
proactive strategic options and select; define strategic statement: for-
mal documentation of strategic decisions, rational, assumptions, con-
clusions and alternatives.

Once we complete the strategic plan we can proceed to the develop-
ment of more detailed data models and process models. These are built up
in three successive levels:

• Strategic modeling: a high-level schematic data model, of interest to se-
nior managers. Steps involve:
1. Identifying data subjects
2. Identifying data entities from mission
3. Identifying preliminary functions
4. Identifying data entities from strategies
5. Identifying potential functions
6. Identifying strategic attributes

137

Structured Methodology Review

7. Defining purpose descriptions
• Tactical modeling: the strategic model is refined into areas of more de-

tail to describe data of more interest to middle managers. Typically ap-
proximately 20 of these tactical areas exist for any one strategic
model.

• Operational modeling: any one tactical area may have typically three
operational systems that need to be developed. Operational modeling
develops the data and process models for a particular operational
area to a level of detail to enable implementation.

• The final phase of the Finkelstein methodology is implementation. Im-
plementation is technology dependent and is carried out using suit-
able DBMS, CASE, and other development tools. The major techniques
used are:

• Business data modeling: a “business oriented” version of data modeling
• Process modeling: modeling of processes acting on “data,” especially

generic, reusable processes such as: Verify, Add, Read, Display,
Change, Delete.

• Dynamic performance monitoring: the use of a generic approach to per-
formance monitoring (a common requirement for most systems).

EXTREME PROGRAMMING

Extreme programming (XP) is a new programming methodology that is
getting fairly heavy notice these days. Kent Beck (1999) is one of its main
proponents and seems to have coined the term, so it seems reasonable to
treat his book as the defining standard of the field. XP is the application of
a group of practices to software development projects:

• The planning game: collaboration of business and programming pro-
fessionals to estimate the time for short tasks (called “stories” in XP)

• Small releases: a ship cycle measured in weeks rather than years
• Metaphor: “a single overarching metaphor” to guide development sub-

stitutes for a formal architectural specification
• Simple design: no provision in the code for future changes or flexibility
• Testing: every piece of code exercised by unit tests when written, and

the full suite of tests when integrated
• Refactoring: any piece of code subject to rewriting to make it simpler
• Pair programming: all production code jointly written by two developers
• Collective ownership: the right of any developer to change any piece of

code on the project
• Continuous integration: code integrated to the main line every few

hours
• 40-hour week: no overtime
• On-site customer: a business person dedicated to the project
• Coding standards: one standard per project

138

SOFTWARE ENGINEERING HANDBOOK

XP amounts to abandoning the traditional “waterfall model” of develop-
ment entirely in favor of what has often been called “cowboy coding.” Beck
argues that it is no longer vastly more expensive to fix problems in produc-
tion than in planning; as a result, it is not necessary to plan. Instead, let
your programmers program, trust them to solve problems as they come
up, and plan and ship frequently so that you get feedback from the cus-
tomer on a regular basis.

CONCLUSION

In this handbook’s chapter on OO methodologies you will find a com-
pletely different take on the topic of methodologies. OO is a newer, fast
method for creating software. In spite of OO’s increasing popularity, it is
not expected that the more traditional methodologies discussed in this
chapter will fade into oblivion any time soon.

References

Beck, K. (1999). Extreme Programming Explained, Addison-Wesley, Reading, MA.

Boyer, P. (1995). Is RAD all wet? Datamation, 41(16), 84.

Coffee, P. (2001). Coding over the waterfalls, eWeek, 18(13), 39.

Coffee, P. (1994). The development dilemma: figuring out how to use contradictory tech-
niques is the only safe bet in programming your C/S apps, PC Week, 11(36), 32.

Dennis, A.R., Hayes, G.S., and Daniels, Jr., R.M. (1999). Business process modeling with group
support systems, J. Manage. Inf. Syst., 15(4), 115.

Dodson, W.R. (1994). Secrets of a high performing teams: joint application design (JAD), Data
Based Advisor, 12(12), 46.

Finkelstein, C. (1989). An Introduction to Information Engineering, Addison-Wesley, Reading,
MA.

Glen, R. (1993). RAD requires radical thinking, I.T. Mag., 25(11), 36.

McMurtrey, M.E., Teng, J.T.C., Grover,V., and Kher, H.V. (2000). Current utilization of CASE
technology: lessons from the field, Industrial Manage. Data Syst., 100(1/2), 22.

Tudhope, D. (2000). Prototyping Praxis, constructing computer systems and building belief,
Hum.—Comput. Interaction, 15(4), 353.

139

Chapter 10

Extreme
Programming
Concepts

Extreme programming is a software methodology developed by Kent Beck
to help software developers to design and build a system more efficiently
and successfully. Extreme programming is a disciplined and well-planned
approach to software development. What makes this programming so pop-
ular is that it is one of the first lightweight methodologies. A lightweight
methodology has only a few rules and practices or ones that are easy to fol-
low. Extreme programming does not require any additional paperwork and
programmers do not need to go through tons of methods. It stresses cus-
tomer satisfaction and can be used when the customer is not certain of his
requirements or when new technology is to be introduced.

THE RULES OF EXTREME PROGRAMMING

Extreme programming applies four rules in developing the software
project:

• Communication. The programmer must communicate with the cus-
tomer and elicit his requirements, thus the emphasis on customer sat-
isfaction. The programmer also needs to communicate with fellow
workers, thus the emphasis on team work.

• Simplicity. The design is maintained as simply as possible.
• Feedback. The software is tested from its early stages, feedback is ob-

tained, and changes are made. This is a cyclical process.
• Courage. The programmer can make changes even at the last stages

and implement new technologies as and when they are introduced.

Extreme programming is a process of project development, as shown in
Exhibit 10-1. Customer requirements are obtained in the form of user sto-
ries; the programmer selects the user stories to be implemented first with
help from the customers. A plan is released that indicates how many user
stories can be implemented in a single iteration, thus starting iterative
development. The user stories are broken down into programming tasks

140

SOFTWARE ENGINEERING HANDBOOK

and assigned to programmers. The time required to complete these tasks
is estimated first; these initial estimates are referred to as uncertain esti-
mates. By using feedback, the programmer can adjust the estimates and
make them more certain.

Once these programming tasks have been implemented, they are sent
for acceptance testing. If these tasks produce an error or indicate a bug,
they are sent back to be recoded in the next iteration. Once the program-
ming tasks are approved by the customer, a small release of the tasks is
made to check functionality.

The components of extreme programming include:

• User stories. User stories are written by the customer and describe the
requirements of a system. The customer need not specify his require-
ments using any particular format or technical language; he merely
writes these in his own words. Aside from describing what the system
must be, the user stories are used to calculate the time estimates for
release planning. At the time of the implementation of the user stories
the developer obtains detailed information from the customer. The
time estimate is usually in the form of ideal development time — de-
fined as how long it would take to implement the story in code if there
were no distractions, no other assignments, and the programmer
knew exactly what to do. Typically, each story will get one to three
weeks. The user stories are also used to produce test scenarios for ac-
ceptance testing by the customer as well as to verify that the user sto-
ries have been implemented correctly.

Exhibit 10-1. The Extreme Programming Process of Software Development

 Learn and communicate

 Pair Programming
Iteration Unfinished Refactor Mercilessly Funtionality
plan Tasks Move People Around

Share CRC Cards
Tasks Too much 100% Unit

 To do Tests Passed

Stand up
Meeting Next Task

Failed or Failed
Acceptance Acceptance Test
Tests Acceptance

Test Passed
Bug Fixes

Day by Day

Collective code
ownership

141

Extreme Programming Concepts

• Release planning. Release planning produces the release plan followed
during development of the system; it is also called the “planning
game.” During release planning a meeting is set up with the customers
and the development team. During this meeting a set of rules is set up
by the customers and developers to which all agree. A schedule is
then prepared. A development team is selected to calculate each user
story in terms of ideal programming weeks, which is how long it would
take to implement that story if absolutely nothing else needed to be
done.

Release planning is guided by four values:

• Scope — how much needs to be done?
• Resources — how many people are available?
• Time — when will the project or release be done?
• Quality — how good and how well tested will the software be?

Candidate systems for XP are those that are reusable, testable, and have
good business values.

Iteration

At the beginning of every iteration, an iteration planning meeting is held
at which the user stories to be implemented during that iteration are cho-
sen; the customer selects the user stories. The selected stories are broken
down into discrete programming tasks during the planning session. The
programming tasks are specified in the programmer’s language.

The number of selected user stories or programming tasks increases or
decreases the project velocity. Each programming task is estimated based
on ideal programming days, which are the number of days it would take to
program a task if no distractions or interruptions occurred.

After these programming tasks have been developed, they are tested. If
bugs are found, the offending programming tasks are added back into the
release plan to be handled by the next iteration.

During each iteration (see Exhibit 10-2), the plan is checked to detect
duplicate programming tasks. If such tasks are found, they are removed or
consolidated. If a single iteration has too much to do, several user stories
are dropped; if the iteration has too little to do, a few are added.

Development

During the development phase, stand-up meetings are held every morn-
ing to discuss the problems faced during the development effort, to devise
a solution to these problems, and, perhaps most importantly, to promote
focus. No individual programmer owns his or her code. Instead, the code is

142

SOFTWARE ENGINEERING HANDBOOK

collectively owned and collaboratively worked upon. The focus of develop-
ment is on small, manageable releases that can be thoroughly tested.

CRC Cards

CRC stands for class, responsibilities, and collaboration. CRC cards
(Exhibit 10-3) contain information about the class, responsibilities and col-
laboration for designing the system as a team. CRC cards allow all the mem-
bers of the project team to contribute to the project which will provide a
number of good ideas which can then be incorporated in the design.

Exhibit 10-2. The Iterative Nature of XP

Exhibit 10-3. CRC Card

New User Story,
Project Velocity

Learn and
Communication

Release User Stories New Functionality
Plan Unfinished Tasks

Project

Next Velocity Iteration Bugs Fixes Latest
Iteration Planned Version

Iteration
 Failed Acceptance Plan

 Tests Day by Day
Bugs

Development

CLS025

Class Name: ResourceUsage

Class Type:

Class Characteristics:

Responsibilities: Collaborations:

Receive Usage Information Order

Store Usage Information Resource

Provide Usage Information Service Schedule

Authors: Jane Doe

143

Extreme Programming Concepts

Each CRC card is used to represent an object. The class name of the
object can be written at the top of the CRC card; the responsibilities of the
class are written on the left side of the card and the collaborating classes
are written to the right of each responsibility. A CRC session consists of a
person simulating the system by speaking about the relationships between
the objects and the process. In this way, weaknesses and problems can be
easily discerned and the various design alternatives can be explored
quickly by simulating the proposed design.

System Metaphor

Classes, objects, and methods coded by the programmer can be reused.
Instead of writing the code for a class, object, or method that already
exists, it is important to name the objects in a standardized manner that
enables other programmers to seek and reuse these objects. Thus, a com-
mon system or common system description is used by all programmers.

Collective Code Ownership

Collective code ownership is a contribution of the programmers to the
project in the form of ideas to any segment of the project. Any programmer
can add or change code, fix bugs, or refactor — i.e., reuse the code. The
entire team is responsible for the system’s architecture. Although it is hard
to believe that a whole team can have authority over the entire project, it
is actually possible. Each developer creates unit tests for his or her code as
the code is developed. Code is released into a source code repository after
being thoroughly tested.

Unit Test

Unit tests are written by the programmer before he starts coding. Writ-
ing the unit tests first gives the programmer a better understanding of the
requirements specified by the customer. In addition, writing unit tests
prior to coding helps programmers write the code more easily and faster.

Acceptance Test

Within the XP methodology, “functional” tests have been renamed
“acceptance” tests to indicate that the system is accepted by the customer.
The customer specifies the test scenarios during specification of the user
stories; each story will have one or more acceptance tests. The acceptance
tests are the expectation of the customer for the system. These acceptance
tests are black box system tests, which enable the programmer to derive
sets of input conditions that will fully exercise all functional requirements
for a program. The user reviews the results of the acceptance tests and
determines the priorities of the test failures. The team schedules time to fix
the failed test for every iteration.

144

SOFTWARE ENGINEERING HANDBOOK

Project Velocity

The project velocity is used to measure how much work is being com-
pleted on the project; it is obtained by adding up the estimates of user sto-
ries completed during the iteration. Project velocity can also be obtained
by adding up the estimates for tasks during the iteration. If the project
velocity shows significant variations, a release planning meeting is con-
ducted and a new plan is released. Project velocity is a measure of accu-
racy. How accurately are we able to produce results on time? How well are
we able to make estimates?

Small Releases

The development team releases small iterative versions of the system to
the customer. It is essential to get customer feedback on time instead of
waiting until the last moment, which results in making changes at the last
minute as well.

Simple Design

The design is kept as simple as possible. A complex design is hard to
understand when changes are to be made in the future.

Coding Standard

Programmers follow a specific set of standard rules in writing code. This
helps in communication among teams and enables a programmer to under-
stand the code written by any other programmer easily.

Refactoring

Refactoring is the art of removing any duplicate code — i.e., the reuse of
code that is already present. This helps in keeping the system design sim-
ple. Refactoring also saves a lot of time and increases the quality of the
system.

Pair Programming

Pair programming specifies that a pair of programmers work collabora-
tively on a task. This helps assess the code as it is written. Pair program-
ming increases software quality and takes the same time to deliver the sys-
tem as a single programmer working on a single machine.

Continuous Integration

Coding is done by dividing big projects into small, manageable program-
ming tasks. After coding, the discrete programming tasks are joined
together; however, each of these tasks is tested individually for bugs. Dur-
ing integration of the programming tasks, it is quite possible that new bugs

145

Extreme Programming Concepts

will arise. Therefore, after every integration, the integrated code is retested
for bugs.

Changes may be made on the request of the customer. All the changes
made to the code are integrated at least daily. The tests are then run before
and after the changes. The code is not released if any bugs are found.

40-Hour Week

Each programmer works for only 40 hours per week. This helps the pro-
ductivity of the project in the long term. No programmer is overloaded
with work and no overtime is allowed. Overtime usually exhausts the pro-
grammer and chances are he or she will make mistakes.

On-Site Customer

A single customer or a group of customers is available at all times for the
programmers. This helps in resolving the ambiguities that developers
encounter during development of the project, in setting priorities, and in
providing live scenarios.

CONCLUSION

Extreme programming can be stated as a fast and highly organized pro-
cess for development of a software system. XP emphasizes communica-
tion, which is essential in order to encourage new ideas. Because pair pro-
gramming is stressed in this method, the fear of losing any programmer in
the middle of the project is substantially decreased. Theoretically, XP
reduces competition among programmers by insisting that they all work as
a single team.

Extreme programming can be used where the requirements change rap-
idly and the customer is not sure of those requirements. Feedback is inte-
gral to this process; thus, the end product will be developed according to
customer requirements.

References

Beck, K. (1999). Extreme Programming Explained, Addison-Wesley, Reading, MA.

http://www.extremeprogramming.org. Extreme programming: a gentle introduction.

This page intentionally left blank

147

Chapter 11

Development Before
the Fact Technology

I met Margaret Hamilton a little over a decade ago. At the time I was writing
articles on software engineering for Software Magazine. I interviewed
Hamilton for one of these articles. This is when I became intrigued by her
radically different developmental technology called Development Before
the Fact (DBTF).

Hamilton had run the software engineering division of the Charles Stark
Draper Labs at MIT where the onboard flight software was being created
under her direction for the Apollo and Skylab missions. As you can well
imagine, software had to be developed to send people up into space and
then to bring them safely home. It was critical, therefore, to develop soft-
ware without any flaws. In her study of software developed for these mis-
sions, Hamilton tracked a variety of causes of software error — most nota-
bly interface errors. From her findings she developed the technology that
is the topic of this chapter.

DBTF (and its associated 001 tool set) is quite unique. System models
are visually created and then virtually bug-free code is automatically gen-
erated by the tool set, which generates the documentation as well. Aston-
ishingly, the 001 tool set actually generated itself.

WHAT IS WRONG WITH SYSTEMS

Today's traditional system engineering and software development envi-
ronments support their users in “fixing wrong things” rather than in “doing
them the right way in the first place.” Things happen too late, if at all. Sys-
tems are of diminished quality and an unthinkable amount of dollars is
wasted. This becomes apparent when analyzing the major problems of sys-
tem engineering and software development.

In defining requirements, developers rely on many different types of mis-
matched methods to capture aspects of even a single definition. In fact, the
universal modeling language (UML) resurrects and supports this very
practice. Among other things, data flow is defined using one method, state
transitions another, dynamics another, data types another, and structures

148

SOFTWARE ENGINEERING HANDBOOK

using still another method. Once these aspects of requirements are
defined, there is no way to integrate them. Designers are forced to think
and design this way because of limitations of technologies available to
them.

This leads to further problems. Integration of object to object, module
to module, phase to phase, type of application to type of application, or
systems to software become even more of a challenge than solving the
problem at hand. This is compounded by a mismatch of products used for
design and development. Integration of all forms is left to the devices of a
myriad of developers well into the development process. The resulting sys-
tem is hard to understand, objects cannot be traced, and there is little cor-
respondence to the real world.

With these traditional methods, systems are actually encouraged by
informal (or semiformal) languages to be defined as ambiguous and incor-
rect. Interfaces are incompatible and errors propagate throughout devel-
opment. Once again the developers inherit the problem. The system and
its development are out of control.

Requirements are defined to concentrate on the application needs of the
user, but they do not consider that the user changes his mind or that his
environment changes. Developers are forced to use a technology without
an open architecture. The result is “locked in” designs, such as being
locked into a specific database schema or GUI; the user is forced to make
resource allocation a part of the application. Porting becomes a new devel-
opment for each new architecture, operating system, database, GUI envi-
ronment, language, or language configuration; critical functionality is
avoided for fear of the unknown and maintenance is both risky and the
most expensive part of the life cycle. When a system is targeted for a dis-
tributed environment, it is often defined and developed for a single proces-
sor environment and then redeveloped for a distributed environment —
another unnecessary development.

Insufficient information about a system’s run-time performance, includ-
ing that concerning the decisions to be made between algorithms or archi-
tectures, is incorporated into a system definition. This results in design
decisions that depend on analysis of outputs from exercising a multitude of
ad hoc implementations and associated testing scenarios. A system is
defined without considering how to separate it from its target environ-
ment. It is not known if a design is a good one until its implementation has
failed or succeeded.

The focus for reuse is late into development during the coding phase.
Requirements definitions lack properties to help find, create, and inher-
ently make use of commonality. Modelers are forced to use informal and
manual methods to find ways to divide a system into components natural

149

Development Before the Fact Technology

for reuse. Why reuse something in today’s changing market if it is not able
to be integrated, not portable or adaptable, and error prone? The result is
little incentive for reuse, and redundancy is a way of life. Again, errors
propagate accordingly.

Automation is an inherently reusable process. If a solution does not
exist for reuse, it does not exist for automation. Systems are defined with
insufficient intelligence for automated tools to use them as input. Too
often, automated tools concentrate on supporting the manual process
instead of doing the real work.

Definitions supported by “make work” automation are given to develop-
ers to turn into code manually. A process that could have been mechanized
once for reuse is performed manually over and over again. When automa-
tion attempts to do the real work, it is often incomplete across application
domains or even within a domain, resulting in incomplete code such as
skeleton or shell code. Manual processes are needed to complete unfin-
ished automations. An automation for one part of a system (e.g., the GUI)
needs to be integrated manually with an automation for another part of the
system (e.g., communications algorithms) or with the results of a manual
process. The code generated is often inefficient or hardwired to a particu-
lar architecture, language, or even a particular version of a language. Most
of the development process is needlessly manual. Again, all these manual
processes are creating new errors each time.

A promising solution to these problems is DBTF. Whereas the traditional
approach is after the fact, or curative, the DBTF approach is preventative.

DEVELOPMENT BEFORE THE FACT

With DBTF, each system is defined with properties that control its own
design and development. With this paradigm, a life cycle inherently pro-
duces reusable systems, realized in terms of automation. Unlike before, an
emphasis is placed on defining things the right way the first time. Problems
are prevented before they happen. Each system definition not only models
its application but also models its own life cycle.

From the very beginning, a system inherently integrates all of its own
objects (and all aspects of and about these objects) and the combinations
of functionality using these objects. It maximizes its own reliability and
flexibility to change and the unpredictable; capitalizes on its own parallel-
ism; supports its own run-time performance analysis and the ability to
understand the integrity of its own design; and maximizes the potential for
its own reuse, automation, and evolution. The system is developed with
built-in quality and built-in productivity.

A curative means to obtain quality is to continue testing the system until
the errors are eliminated; a preventative (i.e., DBTF) means is to not allow

150

SOFTWARE ENGINEERING HANDBOOK

errors to creep in, in the first place. Whereas a curative means to acceler-
ate a particular design and development process is to add resources such
as people or processors, a preventative approach would find a more effi-
cient way to perform this process, such as capitalizing more on reuse or
eliminating parts of it altogether, yet still reaching the desired results.
Effective reuse is a preventative concept. Reusing something with no
errors, to obtain a desired functionality, avoids the errors of a newly devel-
oped system; time and money will not be wasted in developing that new
system. For successful reuse, a system must be worth reusing and must be
reused for each user requiring functionality equivalent to it. This means
starting from the beginning of a life cycle, not at the end, which is typically
the case with traditional methods. Then a system is reused for each new
phase of development. No matter what kind, every ten reuses save ten
unnecessary developments.

THE TECHNOLOGY

The DBTF technology embodies and is based on a formal theory; it has
a formal systems language, a generic process, and an automation, all based
on the formal theory. Once understood, the characteristics of good design
can be reused by incorporating them into a language for defining any sys-
tem. The language is the key to DBTF. It has the capability to define any
aspect of any system (and any aspect about that system) and integrate it
with any other aspect. These aspects are directly related to the real world.

This same language can be used to define and integrate system require-
ments, specifications, design, and detailed design for functional, resource,
and resource allocation architectures throughout all levels and layers of
“seamless” definition, including hardware, software, and peopleware. It
could be used to define missile or banking systems as well as real-time,
Internet, or database environments.

With this language, every object is a system-oriented object (SOO)
developed in terms of other SOOs. An SOO integrates all aspects of a sys-
tem including that which is function, object, and timing oriented. Every
system is an object; every object is a system. Instead of object-oriented
systems, DBTF has system-oriented objects and can be used to define sys-
tems with diverse degrees of fidelity and completeness. Such a language
can always be considered a design language because design is relative: one
person’s design phase is another person’s implementation phase.

This implementation-independent language has mechanisms to define
mechanisms for defining systems. Although the core language is generic,
the user “language,” a by-product of a development, can be application
specific because the language is semantics dependent but syntax indepen-
dent. Unlike formal languages that are not friendly and friendly languages
that are not formal, this language is formal and friendly.

151

Development Before the Fact Technology

The first step in building a DBTF system is to define a model (without
concern for resource allocation details such as how many processes are
needed) with the language. This process could be in any phase of develop-
ment, including problem analysis, operational scenarios, and design. The
model is automatically analyzed to ensure it was defined properly. This
includes static analysis for preventative properties and dynamic analysis
for user-intent properties.

A complete and fully production-ready and fully integrated software
implementation (and documentation) for any kind or size of application,
consistent with the model, is then automatically generated by the generic
generator for a selected target environment in the language of choice (e.g.,
C, Java, or XML) and the architecture of choice. If the selected environment
has already been configured, it is selected directly; if not, the generator is
configured for a new language and new architecture before it is selected.

The resulting system can then be executed. If the desired system is soft-
ware, the system can now be tested for further user-intent errors. It
becomes operational after testing. Before the fact testing is inherently part
of every DBTF development step. Errors are prevented simply by construc-
tion with the language and because of that which is inherent or automated;
for example, since the generator automatically generates all the code, no
manual coding errors will be made. Target changes are made to the defini-
tion, not to the code. Target architecture changes are made to the configu-
ration of the generator environment, not to the code. If the real system is
hardware or peopleware, the generated software system can serve as a
form of simulation upon which the real system can be based.

DBTF is a system-oriented object approach based upon a unique con-
cept of control. The foundations are based on a set of axioms and on the
assumption of the existence of a universal set of objects. Each axiom
defines a relation of immediate domination; the union of the relations
defined by the axioms is control. Among other things, the axioms establish
the relationships of an object for invocation, input and output, input and
output access rights, error detection and recovery, and ordering during its
developmental and operational states.

This approach is used throughout a life cycle, starting with require-
ments and continuing with systems engineering, specification, analysis,
design, implementation, testing, and maintenance. Its users include man-
agers, system engineers, software engineers, and test engineers, as well as
end users.

In addition to experience with real-world systems, 001 takes its roots in
many other areas, including systems theory, formal methods, formal linguis-
tics, and object technologies. It would be natural to make assumptions
about what is possible and impossible based on its superficial resemblance

152

SOFTWARE ENGINEERING HANDBOOK

to other techniques such as traditional object technologies. It helps, how-
ever, to suspend any and all preconceived notions when first introduced to
it because it is a world unto itself — a completely new way to think about
systems and software.

The DBTF approach had its beginnings in 1968 with the Apollo space
missions when research was performed for developing software for man-
rated missions. This led to the finding that interface errors accounted for
approximately 75 percent of all errors found in the flight software during
final testing. These include data flow, and priority and timing errors at the
highest and lowest levels of a system to the finest grain detail. Each error
was placed into a category according to the means taken to prevent it by
the very way a system was defined. A theory was derived for defining a sys-
tem such that this entire class of interface errors would be eliminated.

INTEGRATED MODELING ENVIRONMENT

The first technology derived from this theory concentrated on defining
and building reliable systems in terms of functional maps. Since that time
this technology has been further developed to design and build systems
with DBTF properties in terms of an integration of functional and type
maps, where a map is a control hierarchy and a network of interacting
objects. The philosophy behind this approach is inherently recursive and
reusable where reliable systems are defined in terms of reliable systems.
Only reliable systems are used as building blocks and as mechanisms to
integrate these building blocks to form a new system. The new system
becomes a reusable for building other systems.

Every model is defined in terms of function maps (FMaps) to represent
the dynamic world of action by capturing functional and time (including
priorities) behavior and type maps (TMaps) to represent the static world
of objects by capturing space behavior (Exhibit 11-1). FMaps and TMaps
guide the designer in thinking through concepts at all levels of system
design. With these maps, everything you need to know (no more, no less)
is available. All model viewpoints can be obtained from FMaps and TMaps,
including data flow, control flow, state transitions, data and object struc-
ture, and dynamics. FMaps are inherently integrated with TMaps.

On an FMap, a function at each node is defined in terms of and controls
its children functions. For example, the function “build the table” could be
decomposed into and control its children functions “make parts and
assemble.” On a TMap, a type at each node is defined in terms of and con-
trols its children types. For example, “type, table,” could be decomposed
into and control its children types, “legs and top.”

Every type on a TMap owns a set of inherited primitive operations. Each
function on an FMap has one or more objects as its input and one or more

153

Development Before the Fact Technology

objects as its output. Each object resides in an object map (OMap), an
instance of a TMap, and is a member of a type from a TMap. FMaps are
inherently integrated with TMaps by using these objects and their primi-
tive operations. FMaps are used to define, integrate, and control the trans-
formations of objects from one state to another state (e.g., a table with a
broken leg to a table with a fixed leg). Uses of primitive operations on types
defined in the TMap reside at the bottom nodes of an FMap. Primitive types
reside at the bottom nodes of a TMap.

When a system has all of its object values plugged in for a particular per-
formance pass, it exists in the form of an execution map (EMap), an
instance of an FMap.

Typically, a team of designers will begin to design a system at any level
(hardware, software, peopleware, or some combination) by sketching a
TMap of their application. This is where they decide on the types of objects
(and the relationships between these objects) that they will have in their
system. Often a road map (RMap), which organizes all system objects
including FMaps and TMaps, will be sketched in parallel with the TMap. An
RMap can also be automatically generated from a set of FMaps and TMaps
upon demand.

Once a TMap has been agreed upon, the FMaps begin almost to fall into
place for the designers because of the natural partitioning of functionality
(or groups of functionality) provided to the designers by the TMap system.

Exhibit 11-1. FMaps Are Inherently Integrated with TMaps.

Control Structure Function

Type and its methodsConstraint

Objects (Members of Types)

Relations

Model Type Behavior (Space)
with Type Map (TMap)

Model Functional Behavior (Time)
with Function Map (FMap)

154

SOFTWARE ENGINEERING HANDBOOK

The TMap provides the structural criteria from which to evaluate the func-
tional partitioning of the system (e.g., the shape of the structural partition-
ing of the FMaps is balanced against the structural organization of the
shape of the objects as defined by the TMap). With FMaps and TMaps, a
system (and its viewpoints) is divided into functionally natural compo-
nents and groups of functional components that naturally work together; a
system is defined from the very beginning to inherently integrate and make
understandable its own real world definition.

PRIMITIVE STRUCTURES

All FMaps and TMaps are ultimately defined in terms of three primitive
control structures: a parent controls its children to have a dependent rela-
tionship, an independent relationship, or a decision-making relationship. A
formal set of rules is associated with each primitive structure. If these rules
are followed, interface errors are “removed” before the fact by preventing
them in the first place. As a result, all interface errors (75 to 90 percent of
all errors normally found during testing in a traditional development) are
eliminated at the definition phase. Using the primitive structures supports
a system to be defined from the very beginning to inherently maximize its
own elimination of errors.

Use of the primitive structures is shown in the definition of the FMap
for system, MakeATable (Exhibit 11-2). The top node function has FLAT-
wood and ROUNDwood as its inputs and produces Table as its output.
MakeATable, as a parent, is decomposed with a Join into its children func-
tions, MakeParts and Assemble. MakeParts takes in as input FLATwood
and ROUNDwood from its parent and produces Top and Legs as its out-
put. Top and Legs are given to Assemble as input. Assemble is controlled
by its parent to depend on MakeParts for its input. Assemble produces
Table as output and sends it to its parent.

. As a parent, MakeParts is decomposed into children, MakeLegs and
MakeTop, who are controlled to be independent of each other with the
Include primitive control structure. MakeLegs takes in part of its parent’s
input and MakeTop takes in the other part. MakeLegs provides part of its
output (Legs) to its parent and MakeTop provides the rest. MakeTop con-
trols its children, FinishSoftWood and FinishHardWood, with an Or. Here,
both children take in the same input and provide the same output because
only one of them will be performed for a given performance pass. Finish-
SoftWood will be performed if the decision function “is:Soft,Wood” returns
True; otherwise, FinishHardWood will be performed. Notice that input
(e.g., FLATwood) is traceable down the system from parent to children and
output (e.g., Table) is traceable up the system from children to parent. All
objects in a DBTF system are traceable. MakeATable’s TMap, Table, uses

155

Development Before the Fact Technology

nonprimitive structures called type structures, a concept discussed in a
later section.

Each type on a TMap can be decomposed in terms of primitive struc-
tures into children types where the defined relationships between types
are explicit. In Exhibit 11-3, Table as a parent has been decomposed into its
children, Top and Legs, where the relations between Top and Legs are on-
1 and on-2, respectively, the relation between Table and legs is r-1, and the
relation between Table and Top is r-0. Notice that making a Table Top
depends on Legs to rest on (Exhibit 11-3a). On the other hand, an indepen-
dency relationship exists between the front legs and the back legs of the
Table (Exhibit 11-3b). The Table may have FrontLegs or BackLegs, or Front-
Legs and BackLegs at once. In Exhibit 11-3c, which illustrates a decision
structure with objects, unlike with the dependent and independent struc-
tures, the pattern of the OMap is always different from the pattern of the
TMap because only one object is chosen to represent its parent for a given
instance.

It can be shown that a system defined with these structures results in
properties that support real-time distributed environments. Each system
is event-interrupt driven; each object is traceable and reconfigurable, and

Exhibit 11-2. The Three Primitive Structures Are Ultimately Used to De-
compose a Map. The FMap Part of the System, MakeATable,
Is Modeled Using JOIN, INCLUDE, and OR for Controlling
Dependent, Independent, and Decision-Making Functions,
Respectively.

Definition for Making a Table

FMap Table = MakeATable (FLATwood,ROUNDwood)

Top,Legs = MakeParts (FLATwood,ROUNDwood)

Legs = MakeLegs (ROUNDwood)Top = MakeTop (FLATwood)

Top=FinishHardWood(FLATwood)Top = FinishSoftWood (FLATwood)

Table = Assemble (Top,Legs)

JOIN

INCLUDE
Determine:
a) relevant parts
(objects) and their
relationships for making
each kind of table
b) tasks needed (actions)
and their relationships for
making each table using

OR:is:Soft,Wood (FLATwood)

Requirements: Build a system for making a table.
 The table has legs, is made out of hard or soft
wood and has a round or rectangular top of

Table(TupleOf)

Leg(Wood)

Top(Wood)

TMap

Legs
(OSetOf)

Wood(OneOf)

Hard(Nat)

Soft(Nat)

156

SOFTWARE ENGINEERING HANDBOOK

has a unique priority. Independencies and dependencies can readily be
detected and used to determine where parallel and distributed processing
is most beneficial. With these properties, a system is defined from the very
beginning to inherently maximize its own flexibility to change and the
unpredictable and to capitalize on its own parallelism.

DEFINED STRUCTURES

Any system can be defined completely using only the primitive struc-
tures, but less primitive structures can be derived from the primitive ones
and accelerate the process of defining and understanding a system. Non-
primitive structures can be defined for FMaps and TMaps and can be cre-
ated for asynchronous, synchronous, and interrupt scenarios used in real-
time, distributed systems. Similarly, retrieval and query structures can be
defined for client-server database management systems.

CoInclude is an example of a system pattern that happens often
(Exhibit 11-4a). Its FMap was defined with primitive structures. Within the
CoInclude pattern, everything stays the same for each use except for the
children function nodes A and B. The CoInclude pattern can be defined as
a nonprimitive structure in terms of more primitive structures with the use
of the concept of defined structures. This concept is an example of avail-
able reusable patterns for FMaps and TMaps.

Included with each structure definition is the definition of the syntax for
its use (Exhibit 11-4b). Its use (Exhibit 11-4c) provides a “hidden reuse” of

Exhibit 11-3. A TMap (and Its Corresponding OMaps) Can Be Decom-
posed into Its Explicit Relationships in Terms of the Three
Primitive Control Structures.

Type Maps Object Maps

Wood(is;on)

soft| Pine(is;on)hard| Oak(is;on)

FrontAndBackLegs(on-1,on-2;on-3,on-4)
 Include

FrontLegs(on-1;on-3) BackLegs(on-2;on-

Table(r-0;r-1)
 Join

Top(r-0;on-1,on-2) Legs(on-1,on-2;r-

FrontAndBackLegs-1(on-1;on-3)

FrontLegs-2(on-1;on-3)

Table-1()

Top-2(;on-1) Legs-3(on-

Wood-1(is;)

hard| Oak-2(is;)

a)

b)

c

157

Development Before the Fact Technology

the entire system as defined, but explicitly shows only the elements sub-
ject to change (that is, functions A and B). The CoInclude structure is used
in a similar way to the Include structure except that, with the CoInclude,
the user has more flexibility with respect to repeated use, ordering, and
selection of objects. Each defined structure has rules associated with it for
its use just as with the primitive control structures. Rules for the nonprim-
itives are inherited ultimately from the rules of the primitives.

Async, (Exhibit 11-5), is a real-time, distributed, communicating struc-
ture with asynchronous and synchronous behavior. The Async system was
defined with the primitive Or, Include, and Join structures and the CoIn-
clude user-defined structure. It cannot be further decomposed because
each of its lowest level functions is a primitive function on a previously
defined type (see Identify2:Any and Clone1:Any under End, each of which
is a primitive operation on type Any), recursive (see Async under DoMore),
or a variable function for a defined structure (see A and B under process).
If a leaf node function does not fall into any of these categories, it can be
further decomposed or it can refer to an existing operation in a library or
an external operation from an outside environment.

Exhibit 11-4. Defined Structures Are Used to Define Nonprimitive Struc-
ture Reusables in Terms of More Primitive Structures. CO-
INCLUDE is an Example of a System Pattern That Has Been
Turned into a Defined Structure.

A system is defined from the

very beginning to inherently

maximize the potential

for its own reuse

b) Syntax for Use c) Examp le o f a

a) Structure Definition

J

I

J J

 = Coinclude(x)
b

y
ay ,

Functions to
be hidden

?= B)(
b

x
b

yy = A)(x
a a ?

CI

 = ?(x)
b

y
ay , a1,b1 =

a1 = TaskA(a) b1 = TaskB(a,b)

CI

?= B)(
b

x
b

yy = A)(x
a a ?

158

SOFTWARE ENGINEERING HANDBOOK

CoordinateTasks uses Async as a reusable where TurnAndPlan and
Move are dependent, communicating, concurrent, synchronous, and asyn-
chronous functions. The two robots in this system work together to per-
form a task such as building a table. Here, one phase of the planning robot,
RB, is coordinated with the next phase of the slave robot, RA.

Reusability can be used with a TMap model by using user-defined type
structures, which are defined structures that provide the mechanism to
define a TMap without their particular relations explicitly defined. TMap
Table (Exhibit 11-2) uses a set of default user-defined type structures.
Table as a parent type controls its children types, Top and Legs, in terms of
a TupleOf type structure, Legs controls its child, Leg, in terms of OSetOf,
and Wood controls Hard and Soft with a OneOf. A TupleOf is a collection of
a fixed number of possibly different types of objects, OSetOf is a collection
of a variable number of the same types of objects (in a linear order), and
OneOf is a classification of possibly different types of objects from which
one object is selected to represent the class. These type structures, along
with TreeOf, can be used for designing any kind of TMap. TreeOf is a collec-
tion of the same types of objects ordered using a tree indexing system.
With the use of mechanisms such as defined structures, a system is defined

Exhibit 11-5. Async is a Defined Structure That Can Be Used to Define
Distributed Systems with Synchronous and Asynchronous
Behavior.

Syntax

b1 = B(I,b0)?I1,a1 = A(I,a0)?

a,b = ? (I,a0,b0)

Async: Continue?

Use RB,RA =

RB,RA = CoordinateTasks(plans1,RB1,RA1)

NextStep,RB2 = TurnAndPlan(plans1,RB1)

RA2 = Move(plans1,RA1)

Async: TasksDone

Join

= Initialize
plans1,
RB1,RA

plans0,
RB0,RA()

Structure

a = Identify2:Any(I,a0)

b = Clone1:Any(b0)

a,b = End(I,a0,b0)

CI

Join

a,b =

a,b = DoMore(I,a0,b0)

I1,a1,b1 =

OR:Continue?(I,a0,b0)

I1,a1 = A(I,a0)? b1 = B(I,b0)?

a,b = Async(I,a0,b0)

Include

159

Development Before the Fact Technology

from the very beginning to inherently maximize the potential for its own
reuse.

FMAPS, TMAPS, AND THEIR INTEGRATION

Exhibit 11-6 shows a complete system definition for a manufacturing
company defined in terms of an integrated set of FMaps and TMaps. This
company could be set up to build tables — with the help of robots to per-
form tasks — using structures such as those defined above. Because this
system is completely defined, it is ready to be developed automatically to
complete, integrated, and fully production ready to run code. This sys-
tem’s FMap, Is_FullTime_Employee, has been decomposed until it reaches
primitive operations on types in TMap, MfgCompany. (See, for example,
Emps=Moveto:Employees (MfgC) where MfgC is of type MfgCompany and
Emps is of type Employees.) MfgCompany has been decomposed until its
leaf nodes are primitive types or defined as types that are decomposed in
another TMap.

System, Is_FullTime_Employee, uses objects defined by TMap, Mfg-
Company, to check to see if an employee is full or part time. First a move
is made from the MfgCompany type object, MfgC, to an Employees type
object, Emps. The defined structure, LocateUsing:Name, finds an
Employee based on a name. Once found, a move is made from Emp (an
Employee) to PS (a Payscale). The primitive operation YN=is:FullTime(PS)

Exhibit 11-6. A Complete System Definition Is an Integration of FMaps
and TMaps, Where the FMaps Have Been Decomposed Until
Reaching Primitive Functions on the Types in the TMaps
and the TMaps Have Been Decomposed Until Reaching the
Primitive Types. Specific Abstract Types Inherit Methods
from User-Defined Type Structures and Are Applied as Leaf
Function in FMaps.

Name(Str) Skills

Employee

FullTime(Rat) Hourly(Rat)

PayScale

TupleOf

OneOf

Employees

OSetOf

TMap MfgCompany

Purchasing

Production

Marketing

Departments

ManagementOf

TupleOf

Employee

FMap

YN=Is_FullTime_Employee(EmpName,MfgC)

Emps=Moveto:Employees(MfgC)

YN=Find_Emp_In_Set(EmpName,Emps)

YN=Check_Emp_PayScale(Emp)

PS=Moveto:PayScale(Emp)

YN=is:FullTime(PS)

Join

LocateUsing:Name

CoJoin

160

SOFTWARE ENGINEERING HANDBOOK

is then used to determine from PS if Emp is full time. When PS is FullTime,
YN will be True.

Each type structure assumes its own set of possible relations for its par-
ent and children types. In this example, TMap, MfgCompany is decom-
posed into Departments and Employees in terms of TupleOf. Departments
is decomposed in terms of ManagementOf (a user-defined type structure)
into Purchasing, Production, and Marketing. Employees is decomposed in
terms of OSetOf. One of the children of Employee, PayScale, is decomposed
in terms of the type structure, OneOf.

Abstract types decomposed with the same type structure on a TMap
inherit (or reuse) the same primitive operations and therefore the same
behavior. So, for example, MfgCompany and Employee inherit the same
primitive operations from type structure, TupleOf. An example of this can
be seen in the FMap where both types, MfgCompany and Employee, use the
primitive operation, MoveTo, which was inherited from TupleOf.

Here each use of the MoveTo is an instantiation of the Child=MoveTo:
Child(Parent) operation of the TupleOf type structure. For example,
Emps=MoveTo:Employees(MfgC) allows one to navigate to an employee’s
object contained in a MfgCompany object. A type may be nonprimitive
(e.g., Departments), primitive (e.g., FullTime as a rational number), or a
definition that is defined in another type subtree (e.g., Employees). When
a leaf node type has the name of another type subtree, the child object will
be contained in the place holder controlled by the parent object (defined
as Skills) or a reference to an external object will be contained in the child
place holder controlled by the parent object (forming a relation between
the parent and the external object).

UNIVERSAL PRIMITIVE OPERATIONS

The TMap provides universal primitive operations, which are used for
controlling objects and object states inherited by all types. They create,
destroy, copy, reference, move, access a value, detect and recover from
errors, and access the type of an object. They provide an easy way to
manipulate and think about different types of objects. With universal prim-
itive operations, building systems can be accomplished in a more uniform
manner. TMap and OMap are also available as types to facilitate the ability
of a system to understand itself better and manipulate all objects the same
way when it is beneficial to do so.

TMap properties ensure the proper use of objects in an FMap. A TMap
has a corresponding set of control properties for controlling spatial rela-
tionships between objects. One cannot, for example, put a leg on a table
where a leg already exists; conversely, one cannot remove a leg from the
table where there is no leg. A reference to the state of an object cannot be
modified if there are other references to that state in the future; reject

161

Development Before the Fact Technology

values exist in all types, allowing the FMap user to recover from failures if
they are encountered.

The same types of definition mechanisms are used to define RotateRo-
tateArm, a hardware system (Exhibit 11-7), as were used to define the pre-
ceding software system. Note that this system also includes the use of
primitives for numeric calculation. In this system, the rotation of the robot
arm is calculated to move from one position to another in a manufacturing
cell to transfer a part. The universal operation (an example of another form
of reusable with polymorphism), Replace, is used twice in this example.
Each use of a universal operation has function qualifiers that select a
unique TMap parent–child combination to be used during the application
of the function.

Exhibit 11-8 has a definition that takes further advantage of the expres-
sive power of a TMap with the option of using explicitly defined relations.
In this example, a stack of bearings is described. A bearing in the stack may
be under (with relation on-0) or on (with relation on-1) another bearing
object in the stack as defined by the DSetOf structured type. A bearing
object is decomposed into a Cap, a RetainerWith Balls, and a Base. Object
relationships at this level show that the Cap is above the RetainerWith-
Balls, which is, in turn, above the Base. Further detail reveals that a Retainer
has (with the has-n relation) some number of RetainerHoleWithBall
objects. The set of RetainerHoleWithBall objects are independent of each
other, defined by the ISetOf structured type. This structure allows for phys-
ically independent relations on the objects in the set. Here, different por-
tions of the Cap surface are independently related (with the on-Balls rela-
tion) to each individual Ball object (with the on-Ball relation).

As experience is gained with different types of applications, new reus-
ables emerge for general or specific use. For example, a set of reusables has
been derived to form a higher level set of mechanisms for defining maps of
interruptable, asynchronous, communicating, distributed controllers. This
is essentially a second-order control system (with rules that parallel the
primary control system of the primitive structures) defined with the formal
logic of user-defined structures that can be represented using a graphical
syntax (Exhibit 11-9).

In such a system, each distributed region is cooperatively working with
other distributed regions and each parent controller may interrupt the
children under its control. In this example, the robot controller may apply
an arm controller or a sensor controller. If the arm controller is activated,
the two grippers may concurrently use an Include to hold two ends of some
object. If the sensor controller is activated, a sensor unit uses a Join to
sense some image, followed by an image unit matcher. These reusables can
also be used to manage other types of processes such as those used to
manage a software development environment or a corporation.

162

SOFTWARE ENGINEERING HANDBOOK

The extent to which reuse is provided is a most powerful feature of DBTF.
Everything developed is a candidate — reusable (and inherently integrat-
able) within the same system, other systems, and these systems as they
evolve. Commonality is ensured simply by using the language. The designer
models the objects and their relationships and the functions and their rela-
tionships; the language inherently integrates these aspects as well as takes
care of making those things that should be objects become objects. In fact,
FMaps are defined in terms of TMaps and use TMaps as reusables, while
TMaps are defined in terms of FMaps and use FMaps as reusables.

Exhibit 11-7. Any Kind of System Can Be Defined with this Language, In-
cluding Software, Hardware, and Peopleware. Rotate Ro-
bot Arm is an example of a Hardware System Defined in
FMaps and TMaps.

FMaps

RA = Rotate Robot Arm (to,RA0)

Ps = Moveto:Ports,RobotA(RA0)
atP = Moveto:AtPort:Ports(Ps)

IOPs = Moveto:IOPorts,Ports(Ps)

end,Ps1 = ResetTo_NewPort(Ps,to,IOPs)
start = StartingPosition(atP,IOPs)

RA=ComputeRotationTime(RA1,end,start)
RA1 = Moveto:RobotA,Ports(Ps1)

C C C
C

C
C

start = StartingPosition(atP,IOPs)

rIOPs = Referto:IOPorts(atP,IOPs)
IOP = Moveto:IOPosrts(rIOPs)

start = Position(IOP)

start = Moveto:Output:IOPort(IOP)
start = Moveto:Input:IOPort(IOP)

J
J

co:isInput:IOPort(IOP)

Ports

APortIds
AtPort(IOPort!)IOPorts

TupleO

ConveyorB'

APortIds

Stock'
ConveyorA' Grinder'

Parts
One

IOPorts

IOPort

Input(Nat) Output(Nat)

OneOf

OSetO

TMapsRobotA

TupleOf

RotationTime(Nat)
TurnRate(Nat)

PutDownTime(Nat)
PickUpTime(Nat)

MfgObject(Nat)

Ports

end,Ps1 = ResetTo_NewPort(Ps,to,IOPs)

end = GetPortID(to,Ps)

PIs = Moveto:PortIds:Ports(Ps)

PIsTM = TMap:PortIds(PIs)

end = Index_OneOf(to,PIsTM)

IOPsN = Locate:IOPorts(end,IOPs)

IOPN = Moveto:IOPorts(IOPsN)

Ps1 = Replace:AtPort:Ports(IOPN,Ps)

CC

C
C

C
C

distance = Diff:Nat(end,start)

rate = Moveto:TurnRate:RobotA(RA1)

time = Mul:Nat(distance,rate)

RA = Replace:RotationTime:RobotA(time,RA1)

C
C

C

RA=ComputeRotationTime(RA1,end,start)

O4O

O2

O3

O2

OO1 I1

I2 I3

I1I2

I3 I4

ConveyorA

ConveyorB

RobotB RobotA

Grinder

Parts

Stoc

Milling

Lathe

Welder

physical object
(side view)

TMap

Retainer(around;restraints)

RetainerHolesWithBalls(restraints,on-balls;on-Basen) ISetOf

RetainerHoleWithBall(restraint,on-ball;on-Base1) CJ

RetainerHole(restraint;contains) Ball(contains,on-ball;on-Base1)

StackOfBearings(on;on-n) DSetOf

Bearing(on;on-1)

Cap(on;around,on-balls) Base(on-Basen;on-

RetainerWithBalls(around,on-balls;on-Basen) CJ

163

Development Before the Fact Technology

PERFORMANCE CONSIDERATIONS

When designing a system environment, it is important to understand the
performance constraints of the functional architecture and to have the
ability to change configurations rapidly. A system is flexible to changing
resource requirements if the functional architecture definition is separated
from its resource definitions. To support such flexibility with the necessary
built-in controls, with DBTF the same language is used to define functional,
resource, and allocation architectures. The meta-language properties of
the language can be used to define global and local constraints for FMaps
and TMaps. Constraints can be defined in terms of FMaps and TMaps. If we
place a constraint on the definition of a function (e.g., Where F takes
between two and five seconds), then this constraint influences all func-
tions that use this definition. Such a constraint is global with respect to the
uses of F.

Exhibit 11-8. Explicitly Defined Relations Can Be Used to Take Further
Advantage of the Expressive Power of a TMap. Here, a
TMap Is Used for Defining a Bearing Manufacturing
Process.

164

SOFTWARE ENGINEERING HANDBOOK

A global constraint of a definition may be further constrained by a local
constraint placed in the context of the definition using that definition; e.g.,
when function G uses F, where F takes six seconds (not two to five sec-
onds). The validity of constraints and their interaction with other con-
straints can be analyzed by static or dynamic means. The property of being
able to trace an object throughout a definition supports this type of analy-
sis and provides the ability to collect information on an object as it transi-
tions from function to function. As a result, one can determine the direct
and the indirect effects of functional interactions of constraints.

INHERENT INTEGRATION WITH SYSTEM-ORIENTED OBJECTS

A DBTF system is by nature an inherent integration of function (includ-
ing timing) and object orientation from the beginning, i.e., it is a system-ori-
ented object. The definition space is a set of real-world objects, defined in
terms of FMaps and TMaps.

Objects, instantiations of TMaps, are realized in terms of OMaps. An exe-
cution, which is an instantiation of an FMap, is realized in terms of an

Exhibit 11-9. A Second-Order Control System Has Been Derived That Par-
allels the Primary Control System to Form a Powerful Set of
Reusables for Defining Maps of Interruptable, Asynchro-
nous, Communicating, Distributed Controllers.

Image

sense
command

object type

SensorInfo

ArmInfo

ArmInfo1

RCinfo

RCinfo1

SensorInfo

Grip Cmd

Pressure

Grip Cmd1

Pressure1 HoldLeftSide
on:Gripper

HoldRightSide
on: Gripper

Sense
on:Senso

r

FindMatches
on:ImageUnit

AllocateAndOrient
on:SensorController

Join

RaiseAndLower
on:ArmController

Include

Manage
on:RobotController

Or

Controllers(TreeOf)

Controller(OneOf)

Senso
ImageUnit

Gripper

Arm Controller
Sensor
Controller

Robot
Controller

TMap

Robot System
defined as a
system of
distributed
communicating

165

Development Before the Fact Technology

EMap. Definitions are independent of a particular implementation — e.g.,
building block definitions with a focus on objects are independent of par-
ticular object-oriented implementations. Properties of classical object-ori-
ented systems such as inheritance, encapsulation, polymorphism, and
persistence are supported with the use of generalized functions on OMaps
and TMaps.

The DBTF approach derives from the combination of steps taken to
solve the problems of the traditional “after the fact” approach. Collective
experience strongly confirms that quality and productivity increase with
the increased use of DBTF properties. A major factor is the inherent reuse
in these systems, culminating in ultimate reuse, which is either inherent or
automation itself.

From FMaps and TMaps, any kind of system can be automatically devel-
oped, resulting in complete, integrated, and production-ready target sys-
tem code and documentation. This is accomplished by the 001 Tool Suite,
an automation of the technology. The tool suite also has a means to
observe the behavior of a system as it is evolved and executed in terms of
OMaps and EMaps.

If asked if there were a way to develop any kind of software with:

• Seamless integration, including systems to software
• Correctness by built-in language properties
• No interface errors
• Defect rates reduced by a factor of ten
• Guarantee of function integrity after implementation
• Complete traceability and evolvability (changing applications, archi-

tectures, and technologies)
• Full life cycle automation
• No manual coding
• Maximized reuse including that which is automated or inherent
• Minimum time and minimum effort
• A tool suite

— all defined and automatically generated by itself, most people would say
this is impossible, at least in the foreseeable future.

This is not impossible; in fact, it is possible today with the 001 systems
design and software development environment (Exhibit 11-10 contains a
summary that compares the traditional “after the fact” environment with a
DBTF environment). Why can it do what it does? It is not magic. Simply put,
it is because this environment automates and is based on the Development
Before The Fact paradigm.

166

SOFTWARE ENGINEERING HANDBOOK

Exhibit 11-10. Summary Comparing Traditional “After the Fact”
Environment with a DBTF Environment.

Traditional (After the Fact)

Behavior uncertain until after delivery

Interface errors abound and infiltrate the system
(over 75% of all errors)
~Most of those found are found after implementation
~Some found manually
~Some found by dynamic runs analysis
~Some never found

Ambiguous requirements, specifications, designs
introduce chaos, confusion and complexity
~Informal or semi-formal language
~Different phases, languages and tools
~Different language for other systems than for

No guarantee of function integrity after implementation

Inflexible: Systems not traceable or evolvable
~Locked in bugs, requirements products,
 architectures, etc.
~Painful transition from legacy
~Maintenance performed at code level

Reuse not inherent
~Reuse is ad hoc
~Customization and reuse are mutually exclusive

Automation supports manual process instead of
doing real work
~Mostly manual: documentation, programming,
test generation, traceability, integration
~Limited, incomplete, fragmented, disparate, and
 inefficient

Product x not defined and developed with itself

Dollars wasted, error prone systems

~High risk
~Not cost effective
~Difficult to meet schedules
~Less of what you need and more of what you don t
 need

Integration ad hoc, if at all
~Mismatched methods, objects, phases, products,
 architectures, applications, and environment

~System not integrated with software
~Function oriented or object oriented

~GUI not integrated with application
~Simulation not integrated with software code

DBTF (Before the Fact)

Correctness by built-in language

No interface errors
~All found before implementation
~All found by automatic and static analysis
~Always found

Unambiguous requirements, specifications, designs
remove chaos, confusion, and complexity
~Formal, but friendly language
~All phases, same language and tools
~Same language for software, hardware and any

Guarantee of function integrity after implementation

Flexible: Systems traceable and evolvable
~Open architecture
~Smooth transition from legacy
~Maintenance performed at specification level

Inherent Reuse
~Every object a candidate for reuse
~Customization increases the reuse pool

Automation does real work
~Automatic programming, documentation, test
 generation, traceability, integration
~100% code automatically generated for any kind
 of software

001 defined with and generated by itself
~#1 in all evaluations

Ultra-reliable systems with unprecedented
productivity in their development
~Low risk
~10 to 1, 20 to 1, 50 to 1 dollars sa ved/dollars
 made
~Minimum time to complete
~No more, no less of what you need

Integration
~Seamless life cycle: methods, objects, phases,
 products, architectures, applications, and
 environment
~System integrated with software
~System oriented objects: integration of
 function, timing, and object oriented
~GUI integrated with application
~Simulation integrated with software code

software other system

167

Development Before the Fact Technology

Note:

001, 001 Tool Suite, DBTF, Development Before the Fact, FunctionMap, FMap, TypeMap, TMap,
ObjectMap, OMap, RoadMap, RMap, ExecutionMap, EMap, RAT, System Oriented Object,
SOO, 001AXES, are all trademarks of Hamilton Technologies, Inc.

Selected Bibliography

Hamilton, M. (1986). Zero-defect software: the elusive goal, IEEE Spectrum, 23, 48–531986.

Hamilton, M. and Hackler, R. (1990). 001: a rapid development approach for rapid prototyping
based on a system that supports its own life cycle, IEEE Proc.1st Int. Workshop Rapid Sys. Pro-
totyping, Research Triangle Park, NC, June 4, 1990.

Hamilton, M. and Hackler, W.R. (in press). System Oriented Objects: Development Before the
Fact

Hamilton, M. and Hackler, W.R. (2000). Towards cost effective and timely end-to-end testing,
HTI, prepared for Army Research Laboratory, Contract No. DAKF11-99-P-1236.

Hamilton, M. (1994). Inside Development Before the Fact, Electron. Design, 31.

Hamilton, M. (1994). Development Before the Fact in action, Electron. Design, (ESSoftware En-
gineering Tools Experiment-Final Report, Vol. 1, Experiment Summary, Table 1, p. 9, Depart-
ment of Defense, Strategic Defense Initiative, Washington, D.C.)

Hornstein, R. and Hamilton, M. (in preparation). Realizing the potential for COTS utilization:
creating and assembling reusable components right the first time, NASA, Washington, D.C.,
Hamilton Technologies, Inc., Cambridge, MA.

Krut, Jr., B. (1993). Integrating 001 tool support in the feature-oriented domain analysis meth-
odology (CMU/SEI-93-TR-11, ESC-TR-93-188), Pittsburgh, Software Engineering Institute, Carn-
egie Mellon University.

Ouyang, M. and Golay, M.W. (1994). An integrated formal approach for developing high quality
software of safety-critical systems, Massachusetts Institute of Technology, Cambridge, MA,
Report No. MIT-ANP-TR-035.

001 Tool Suite. Hamilton Technologies, Inc. Version 3.3.1 (1986-2002) [www. htius.com]

This page intentionally left blank

169

Chapter 12

The Design
Specification

The process of information systems development must pass through a
number of distinct phases in order to be successful. This process is com-
monly known as the systems development life cycle (SDLC) and the design
specification is an essential and integral component of it. Design specifica-
tions are blueprints showing what to build and how to build it.

THE PROCESS

By the time the systems designer comes to the design phase of the
system life cycle, he or she has a pretty clear understanding of what the
new system should do and why. This information is recorded in several
documents:

• The feasibility study discusses the pros, cons, and costs of building
the system (see Appendix C).

• The project plan provides preliminary information about the project,
its mission and goals, its schedule, and its cost estimate (see Appen-
dix F).

• The system requirements specification (SRS) contains detailed infor-
mation about the requirements of the system (see Appendix G).

In spite of this detailed documentation, there may still be some uncer-
tainty regarding future capabilities of the new system due to the different
and changing perspectives of the end users and other stakeholders. Differ-
ent people will see different possibilities for the new system, which is why
a push to propose alternative solutions may take place. The designer must
then consider the different views, covering all structured requirements,
and transform them into several competing design strategies. Only one
design will eventually be pursued.

THE DETAILS OF DESIGN

A variety of models were used in the analysis phase to help create a
high-level process model. These tools, which include data flow diagrams
(Exhibit 12-1), entity relationship diagrams (Exhibit 12-2), and state transition

170

SOFTWARE ENGINEERING HANDBOOK

diagrams (Exhibit 12-3), are invaluable in producing program specifica-
tions as the move is made from logical models toward the physical design
of the system.

Newcomers to the field often insist that analysis tools and deliverables
be different from the design phase tools and deliverables. More com-
monly, many of the modeling tools and techniques used in the analysis
phase are also used during the design stage. In addition, there is definitely
an overlap between information contained within the SRS and information
contained within the SDS. For example, when developing structured sys-
tems, analysts frequently use the DFD to describe the flow of information
throughout the system for the analysis phase — the logical DFD. A more
detailed set of DFDs is then created for the design phase — the physical
DFD. The same can be said for ERDs, STDs, data dictionaries, and even
process specifications.

The DFD provides a good example of how a document created originally
during the analysis phase can be expanded during the design phase. In the
analysis phase a DFD is developed that shows a conceptual — or context
— view of the system as shown in Exhibit 12-4. The Level 0 diagram serves
as a “table of contents” for subsequent DFDs. Note that it shows a generic
“0” process with attendant data flows.

Exhibit 12-1. The Data Flow Diagram

Test taker

D1
Registration

Table

D5
Cookie

Password

Password Password

User Name
User Name

User Name

1.2
Check Password

1.1
Get Name

171

The Design Specification

Exhibit 12-2. An ERD

172

SOFTWARE ENGINEERING HANDBOOK

When drawing a DFD, a top–down approach is the most effective. Steps
include (Kendall, 2002):

1. Develop a list of typical business activities and use it to determine
external entities, data flows, processes, and data stores.

2. Draw a context diagram that depicts external entities and data flows
to and from the system. The context diagram should be abstract —
i.e., do not show any detailed processes or data flows.

3. Now draw diagram 0, which can be likened to a table of contents. Di-
agram 0 is the next level of detail when using a top–down approach.
As we move down the hierarchy, we move from abstract and less de-
tailed to more detailed and more concrete.

4. Create a child diagram for each process depicted in diagram 0.
5. Check for any errors and make sure the labels assigned to processes

and data flows are logical and meaningful.
6. Now develop a physical data flow diagram from the logical data flow

diagram.
7. Partition the physical data flow by separating the parts of the dia-

gram to facilitate programming and implementation.

Exhibit 12-3. A STD

Displaying

Initial Page

Processing

Login

Processing

Queries
Modifying

Database

User Selected Action

(Modify)

Invoke Modify Database

Modification Complete

Invoke Read Request

Reading User

Request

User Selected Action

(Query)

Invoke Process Query

Login Successful

Invoke Read Request

Login Failed

Invoke Initial Page

Login Initiated

Invoke Login Process

User Selected Action

(Exit)

Invoke Initial Page

Report Complete

Invoke Read Request

User Selected Action

(Reports)

Invoke Generate Report

Processing

Matches

Query Complete

Invoke Process Matches

Matches Complete

Invoke Read Request

Generating

Report

173

The Design Specification

In the design phase the designer analyzes the DFD and determines how
the data processes can be segregated into groups, each associated with a
type of process, as shown in Exhibit 12-5. Note that now far more detail is
specified.

Exhibit 12-4. The Context DFD

Exhibit 12-5. DFDs Grow Successfully More Detailed

0

Customer

Store Clerk

Customer

details

Total
Amount

paid

Transaction

details

Transaction

details

Video
Processing

Customer

Accounting

Customer Release video
for rental

Member ID

Rental request

Adjust
Inventory

1.3

Check-Out

1.4

Print Receipt
Customer

InventoryD1

Customer InfoD2

Sales HistoryD3

InventoryD1

Store Clerk

Verify and
Adjust Quantity

Error or out
of stock

Price
request Member ID

Price
info

Customer
details

Total Amount
paid Transaction

details

Transaction
details

Error or
payment
declined

Receipt
Videos
released

1.1

1.2

174

SOFTWARE ENGINEERING HANDBOOK

Key functions of each group are determined and these functions are
then broken down (i.e., decomposed) in order to obtain cohesive modules.
Each module is then specified separately (i.e., the process specification or
PSPEC), as shown in Exhibit 12-6, to ensure that data collections are
recorded, and that data produced by the modules corresponds to the data
passed between processes in the data flow diagrams.

DFDs are very flexible and are used during the analysis and design
phases. As discussed, you may draw logical or physical DFDs. The logical
set of DFDs diagrams how a business operates and details its business
activities. Logical DFDs show collections of data but not the detail of how
that data is stored or where it is stored. On the other hand, a physical set
of DFDs tries to diagram exactly how the system will or does operate. Phys-
ical DFDs show programs, databases, and other information necessary for
the implementation of a particular system.

Designers must obtain a deep appreciation of the system and its func-
tions because the production of a modular structural chart is not a
mechanical task (Curtis et al., 2000).

Exhibit 12-6. The Process Specification

Process #1

Name: (LOGON)

Number: 1

Name: Logon

Description: registered test takers will log on to their accounts with their user
names and passwords through this process. They do not need to register
again. Once they log on, they enter their test subject and then they can take the
test.

Input data: user name from the test taker, password from the test taker, user
name from the registration table, password from the registration table

Output data: user name to the cookie

Type of process: manual check

Process logic:

Get user name and password from the user

if correct then

Allow the user to take the test

else

produce an error

endif

175

The Design Specification

LOGICAL AND PHYSICAL DESIGN

Design consists of two discrete steps: logical design and physical
design. To understand the components of each it is necessary to discuss
logical and physical analysis.

Logical and physical analysis

The physical analysis phase requires the systems analyst to determine
the specifics of the existing processes that the system will automate,
whether these processes are currently part of a technology system or are
completely manual. Physical analysis involves the process of determining,
in specific detail, exactly who does what and when he or she does it in the
process or problem being solved (Curtis et al., 2000). This analysis shows
what is really going on in the system, and helps the systems analyst put
some structure around the new system’s requirements.

Physical analysis occurs after the initial round of interviews with stake-
holders and end users. At this point in the process, the systems analyst is
likely to have an unwieldy batch of interview notes, details of observa-
tions, questionnaire responses, and sundry documents (Curtis et al.,
2000). This information provides the basis for building a methodical
description of the existing manual system. Building this description is the
foundation of physical analysis. This work is considered physical analysis
because the ultimate result of this work is a very nuts-and-bolts descrip-
tion of the actual (manual) steps and processes comprising the system,
with little to no logical abstraction.

A primary vehicle for accomplishing the physical analysis phase is the
manual system flowchart. This chart is very much like the process flow-
charts that many people are familiar with, with some minor changes. The
chart is structured in such a way that it is apparent which department,
organization, or person owns each task, as shown in Exhibit 12-7.

As you can see, this is a very detailed and physically oriented diagram,
showing the passage of documents and data through very specific check-
points. This provides the data presentation required in order to gain the
required level of understanding of the system as it exists, but you could not
develop a system from this picture; a logical diagram is required for that.

The logical analysis phase is focused on abstracting the details uncov-
ered during physical analysis out to a level of logical representation, which
will allow them to be manipulated. Logical analysis produces the ultimate
result of the systems analysis process: the decomposition of the functions
of the system into their logical constituents and the production of a logical
model of the processes and data flows (Curtis et al., 2000).

176

SOFTWARE ENGINEERING HANDBOOK

As the systems analyst and end user work through the flowcharts pro-
duced from the physical analysis and the preliminary logical model based
upon it, the goal should be to jointly produce a detailed written description
of all activities within the end user’s purview that fall within the scope of
the system (Bloor and Butler, 1989). The systems analyst and the end user
must agree that this list is complete and precise. The entries in the list
should be mutually exclusive and the list must be comprehensively
exhaustive. Combined with the manual system flowcharts and logical dia-
grams, this list will serve as basic system requirements. Ultimately a

Exhibit 12-7. Task Analysis Flowchart

Skills Tracking

Consultant Manager Analyst

Approved
Profile

Approved
Profile

Skill Profile Skill Profile

Skill Profile

Skill Profile

Rejected Profile

Completed Report

Add to
Overall
Skills

Examine
Profile &
Approve

or
Reject

177

The Design Specification

detailed system requirements specification will be created (see Appendix
G). With these documents in hand, the design phase can begin.

The analysis phase was broken down into two components: physical
analysis and logical analysis. The design phase is also broken down into
two components, although in the design phase logical design precedes
physical design.

Logical Design

The logical analysis and logical design phases are very similar and over-
lapping. Martin Butler and Robin Bloor stress that, in the logical phase, we
create a model of the application area that matches the events occurring
within the intended system. As these events are identified, each must be
examined to determine specific criteria for it (Bloor and Butler, 1989):

• What initiates the event?
• What is changed by the event?
• What subsequent events are triggered by the event?
• What error conditions can arise?

These descriptions are crucial inputs for the physical design phase
because they will allow us to derive the required objects and methods. It is
this process that is likely the most important aspect of systems design; all
of the blueprints for future code are based upon this logical model.

The tools of the logical paradigm are somewhat different from those of
physical analysis discussed previously. Physical analysis tools, such as
manual system flowcharts, are very concerned with the specific steps and
decision points inherent in moving through the system. The logical analy-
sis and design tools are more focused on definition of individual compo-
nents of the system and the ways these components interact. The tools of
choice for the logical phase of the systems development process are the
data-flow diagram (DFD) and the entity-relationship diagram when using
the traditional, structured paradigm.

At this stage of the process, with the logical design of the system com-
plete, all that remains to complete the design is to define the physical
design of the software.

Physical Design

The physical design is the blueprint for actual development of the soft-
ware and deployment of the system. The physical phase is concerned with
matching the logical model to the hardware and software at our disposal.
Thus, we are transforming a logical model into a workable model that can
be implemented (Bloor and Butler, 1989). Unlike the logical phases that
immediately precede this work, the physical design phase is focused on
specific implementation of the system. The logical design was built on the

178

SOFTWARE ENGINEERING HANDBOOK

requirements defined during the physical and logical analysis phases. This
fact allows the designer to build a physical design that implements the log-
ical design without worrying about meeting the functional requirements of
the end users; if the logical design is implemented, these requirements will
be fulfilled.

The physical design phase is also where some specific implementation
decisions must be made. Many, if not most, automated systems today use
third-party software for pieces of the solution. Database software, Java
application server software, and object messaging software are some
examples of the kinds of third-party components that are often required.
The logical design need not be concerned with the specific vendor choice,
only with a requirement for one, because the logical design is intended to
be abstracted away from the specific details of the implementation. The
physical design, however, must answer these questions (Curtis et al.,
2000). This fact illustrates the true distinction between the logical and
physical design phases: the logical design is focused on what the system
will do and the physical design is focused on how the system will do it.

THE SYSTEMS SPECIFICATION

The detailed design that has been achieved at this point in the process
results in a systems specification. No agreed-on standard format for this
specification exists and some insist that writing a design spec is more of an
art form than a scientific process. Most IT professionals have sought a
“cookie-cutter” explanation of how to write a good design spec, but one
simply does not exist. Curtis et al. (2000) give a good basic outline of what
a design specification should include:

• An executive summary in order to provide a quick summary of the ma-
jor points in the specification

• A description of the proposed system and its objectives (may also in-
clude flow block diagrams and data flow diagrams may be used)

• A description of all programs to include module specifications and
structure charts, together with test data

• A description of all input to include specimen source documents,
screen layouts, menu structures, and control procedures

• A description of all output to include specimen output reports and
contents of listings.

• A description of all data storage to include specification of file and da-
tabase structure

• A detailed specification of controls operating over procedures within
the system

• A specification of all hardware requirements and performance charac-
teristics to be satisfied

179

The Design Specification

• A specification of clerical procedures and responsibilities surround-
ing the system

• A detailed schedule for the implementation of the system
• Cost estimates and constraints

Appleton (1997) states that the design specification should meet the fol-
lowing criteria:

• It should adequately serve as training material for new project mem-
bers so that they are able to understand what is said in design meet-
ings.

• It should serve as “objective evidence” that the designers are follow-
ing through on their commitment to implement the functionality de-
scribed in the requirements spec.

• It needs to be as detailed as possible, while at the same time not im-
posing too much of a burden on the designers.

A SYSTEM SPEC WALKTHROUGH

Appendix J is a complete SDS for a working student-created system:

• Section 1 provides an overview of the system, its mission and goals,
and any other supporting documentation deemed necessary by the
support team. Much of this can be copied from the SRS (Appendix G),
project plan (Appendix F), and feasibility study (Appendix C).

• Section 2 provides a list of design considerations that includes: as-
sumptions, dependencies, frequency of use, database requirements,
memory, and hardware and software constraints, as well as a descrip-
tion of the system environment — i.e., user interfaces, software inter-
faces, and communications interfaces. Section 2 also discusses
policies and procedures, design methodology, and system risks.

• Section 3 specifies the architecture of the system. (Appendix I)
• Section 4 provides a high-level design spec of the system. A detailed

set of DFDs can be found in this section.
• Section 5, the low-level design, provides a complete set of PSPECs as

well as a data dictionary (Appendix K).
• Section 6 is reserved for a list of business-use cases as well as a series

of screen shots showing the design of the user interface. (Appendix E).

CONCLUSION

Davis (2002) makes an important point when he states that without a
complete, unambiguous design specification document, one could be set-
ting oneself up for “costly” rewrites. Therefore it is important to recognize
that the systems specification is used as (Curtis et al., 2000):

• The exit criterion from the stage of detailed design prior to the stage
of implementation

180

SOFTWARE ENGINEERING HANDBOOK

• A source documentation from which programs are written and hard-
ware “tenders” are brought about

• A historical reference of the system for future users and developers
• A comparative document during the assessment phase once the sys-

tem is being used

An analyst who refers to the basic outline of design specification that
considers everything from goals and objectives, to subsystems descrip-
tion, to potential project issues, should be able to develop a spec docu-
ment that is understood by developers and at least somewhat by custom-
ers. These specifications should also help in avoiding errors and expensive
rewrites.

A functional design specification is like a pyramid. The top reflects a
broad overview that describes the wide spectrum of the system and its
components. At each level below the overview, one has an overview of
each of the primary components and as much detail as one’s developers
require (Davis, 2002).

References

Bloor, R. and Butler, M. (1989a). Object orientation…let’s get physical, DEC User, December,
42.

Curtis, G., Hoffer, J.A., George, J.F., and Valacich, J. (2000). Introduction to Business Systems
Analysis, Pearson Custom Publishing, Boston.

Davis, J. (2002). Design specifications: how much detail is enough? Available: http://build-
er.com.com/article.jhtml?id = r00120020206jed03.htm&src = search:.

Harrington, J.L. (1998). Relational Database Design Clearly Explained, Morgan Kaufmann, San
Diego.

Kendall, K.E. and Kendall, J.E. (2002). Systems Analysis and Design, Prentice Hall, New York.

181

Chapter 13

Object-Oriented
Design

Current code is a liability, not an asset. The challenge is to develop new
code that is truly an asset. This challenge was issued by Vaughan Merlyn,
one of the luminaries of our industry. It is one that bottom-line-conscious
software engineering managers are now taking seriously. To meet this chal-
lenge, developers will need to do more than just tweak some code and liven
up user interfaces. They will need to dramatically alter the way in which
they code.

WHAT IS OO?

Object orientation (OO), which views the abstractions manipulated by
computer software as counterparts to real-world objects, has promised
developers a brave new world. Object-oriented development emerged as
the dominant software development methodology of the 1990s. Not sur-
prisingly, many organizations are jumping on the OO bandwagon.

The concept of an object is the fundamental building block on which the
object-oriented paradigm rests. Four pivotal concepts are behind object
orientation: encapsulation, message passing, dynamic binding, and inher-
itance. To the extent that a tool or language incorporates these concepts,
it becomes qualified as an object-oriented tool kit.

We can explain these concepts using a simple letter as an analogy. Sup-
pose a user wrote an e-mail letter to a colleague in another department.
The letter is an object that has many properties in common with other let-
ters: it contains information and has associated procedures that allow the
user to manipulate it (read, write, and send). These properties, when
grouped together, constitute the concept of the letter object. This process
of combining data and functions all in one object is encapsulation.

Now suppose the e-mail system only allows users to write letters in
English, but the company just hired an employee who speaks only Japa-
nese. The company now needs the facility to create and manipulate Japa-
nese letters. This is done by putting letter objects in discrete categories,
referred to as classes.

182

SOFTWARE ENGINEERING HANDBOOK

A class is a collection of objects that share the same functionality and
characteristics (procedures and data). In this example, two classes are cre-
ated: an English letter class and a Japanese letter class. Both classes have
many functions and characteristics in common. By identifying those things
held in common we can create a super or parent class. Thus, the English
letter and the Japanese letter become subclasses with each pinpointing
how it differs from its parent and siblings.

The English and Japanese letter subclasses inherit the functionality of
“reading, writing, and sending” from the parent object. However, the Japa-
nese subclass is different in that it has the extra characteristic of translat-
ing text into the Japanese language, and the English subclass is different in
that it translates into English. This is the meat behind the OO concept of
inheritance.

The letter object permits the user to request certain tasks or services,
such as “read a letter,” “write a letter,” or “send a letter.” This is commonly
called “sending a message to an object” — or to use OO parlance, message
passing.

Sending a message is not quite the same as issuing a function call, a pro-
cess familiar to most developers. Different objects can respond to the same
message in different ways. For example, as just discussed, the “read” mes-
sage is handled one way by the English object and another way by the Jap-
anese object. In fact, the OO term “polymorphism” is used to describe the
ability to send general-purpose messages to objects that will then handle
them appropriately. The objects handle the specific details.

In sending these messages, the user never needs to specify the type of
object with which he or she is dealing. OO systems utilize what is known as
dynamic binding to determine the object type at run time when the code is
executed.

The benefits of OO can be summed up as: quality, productivity, predict-
ability, and control of complexity.

OO FROM THE BOTTOM UP

If we build object-oriented systems, we need tools that support the build-
ing of these applications. Developers building today’s applications are
essentially using the traditional, structured process methodologies devel-
oped by experts like Ed Yourdon, Tom DeMarco, and Chris Gane and Trish
Sarson, as well as the data modeling methodology pioneered by Peter Chen.

Currently, information engineering techniques pivot around data and its
relationships as documented in data-flow diagrams (Exhibit 13-1) and
entity-relationship diagrams (Exhibit 13-2). Structured analysis is not
based on objects, however.

183

Object-Oriented Design

Interestingly, not everything using objects is object oriented. Professor
Paul Wegner of Brown University has defined three levels of object orienta-
tion for this purpose. The first level is object based. Object-based lan-
guages, tools, and methodologies support the concept of the object and
use of messages to communicate between objects. The second level is
what is known as class based, which supports the concepts of objects,
messaging, and classes. The third level is object oriented, which supports
the definition that this chapter has already supplied.

There are three levels of object orientation utilized in systems devel-
opment. Object-oriented analysis (OOA) coincides with traditional anal-
ysis but utilizes OO techniques. Object-oriented design (OOD) is the
design phase of the OO methodology and OOP (object-oriented program-
ming) is the programming phase. The reader is urged to review the defi-
nitions at the end of this chapter for a better feel for the vocabulary of
this methodology.

OO seems to have penetrated the organization in a bottom–up manner.
Though the benefits of OO have been touted for at least a decade, it was
only when OO languages became widely available that these methods
began to be widely adopted. A big part of this can be attributed to the intro-
duction of the Internet and Java programming language, which is OO. The
introduction of “visual” program development environments for C++
(Exhibit 13-3) and Visual Basic.Net was also a contributing factor.

Classes are actually the building block of OO systems. Classes are built
to be reusable and are often thought of as “black boxes.” The programmer

Exhibit 13-1. A DFD

Test taker

D1
Registration

Table

D5
Cookie

Password

Password Password

User Name
User Name

User Name

1.1
Get Name

1.2
Check Password

184

SOFTWARE ENGINEERING HANDBOOK

Exhibit 13-2. An ERD

185

Object-Oriented Design

should have only the details he or she needs to get the class to work.
Classes can be stored in a class library. If enough classes are available to
the programmer, the task of programming becomes less burdensome and
the code is of a much higher quality because classes and objects available
in a class library have been thoroughly tested.

The best way to explain the inner workings of classes is to show you a
very simple program. In the C++ program displayed in Exhibit 13-4, we cre-
ate a class named DayOfYear. Class DayOfYear encapsulates data (the inte-
gers month and day) and function (the function called output). If you read
through the program (//denotes comments), you will immediately see the
flexibility and power of classes and objects. As you can see, classes are the
heart of an OO system. It makes sense, then, that OOA and OOD revolve
around identification and specification of classes.

OOAD METHODOLOGIES

Object-oriented analysis and design (OOAD) benefits from a variety of
competing but similar methodologies. The major OO methodologies are
described by Gora (1996):

Exhibit 13-3. The Borland Visual C++ Environment

186

SOFTWARE ENGINEERING HANDBOOK

Exhibit 13-4. Creating Class DayOfYear

//Program to demonstrate a very simple example of a class.

#include <iostream.h>

//This is where we define our class. We will call it DayOfYear

//It is a public class. This means that there are no

//restrictions on use. There are also private classes.

//The class DayOfYear consists of two pieces of data: month

and//day and one function named output ()

class DayOfYear

{

public:

void output();

int month;

int day;

};//Notice the semicolon

//All classes are defined before main.

int main()

{

// We define variables of type char, integer and float (and

// others). A class is a kind of type. Below we are defining two

// classes of type DayOfYear. One is called today and the other

// is called birthday. Both instances of the class DayOfYear have

// a variable named month, another called day and a function

// called output()

DayOfYear today, birthday;

int temp;//to keep out window open

cout << “Enter today’s date:\n”;

cout << “Enter month as a number: ”;

// Since both objects (today and birthday) use the variable month

// we have to have some way of distinguishing one from the other.

// We’ll use the object as the distinguishing factor. The period

// in this case is called the dot operator. today.month is

// different from birthday.month

cin >> today.month;

cout << “Enter the day of the month: ”;

cin >> today.day;

cout << “Enter your birthday:\n”;

cout << “Enter month as a number: ”;

cin >> birthday.month;

cout << “Enter the day of the month: ”;

cin >> birthday.day;

(continued)

187

Object-Oriented Design

Booch

Grady Booch’s approach to OOAD (Object-Oriented Design with Applica-
tions, Benjamin/Cummings, 1994) is one of the most popular and is sup-
ported by a variety of reasonably priced tools ranging from Visio to Ratio-
nal Rose.

Coad and Yourdon

Coad and Yourdon published two of the first books on OOAD (Object-Ori-
ented Analysis and Object-Oriented Design, Prentice-Hall, New York, 1990
and 1991, respectively). Their methodology focuses on analysis of busi-
ness problems. Analysis proceeds in five stages, called SOSAS:

• Subjects: these are similar to the levels or layers in data-flow diagrams.
• Objects: object classes are specified in this stage.
• Structures: there are two types: classification structures and composi-

tion structures. Classification structures correspond to the inherit-
ance relationship between classes. Composition structures define the

Exhibit 13-4. (continued) Creating Class DayOfYear

// Now we will call the function called output for the two

// objects: once for today and once for birthday.

// Notice — because we see nothing between the parentheses — that

// no arguments are passed to the output function

cout << “Today’s date is ”;

today.output();

cout << “Your birthday is ”;

birthday.output();

// The && means AND

if (today.month = = birthday.month

&& today.day = = birthday.day)

cout << “Happy Birthday!\n”;

else

cout << “Happy Unbirthday!\n”;

cin >> temp;

return 0;

}

// Here is the function output that was defined in the class

// DayOfYear. Notice the interesting way of starting this

// function. The :: is called a scope resolution operator

void DayOfYear::output()

{

cout << “month = ” << month

<< ,” day = ” << day << endl;

}

188

SOFTWARE ENGINEERING HANDBOOK

other types of relationships between classes. Methodologies deal with
these structures.

• Attributes: these are handled similarly to attributes in relational analysis.
• Services: what other methodologies call methods or operations is

identified.

In design, these activities are refined into four components:

• Problem domain component: classes that deal with the problem do-
main; for example, customer classes and order classes

• Human interaction component: user-interface classes such as window
classes

• Task management component: system-management classes such as er-
ror classes and security classes

• Data management component: database access method classes and
the like

Jacobson: Objectory and OOSE

Jacobson’s full OOAD methodology, Objectory, is proprietary. His
object-oriented software engineering (OOSE) is a simplified version of
Objectory (Object-Oriented Systems Engineering, Addison-Wesley, Reading,
MA, 1992).

The major distinguishing feature in Jacobson is the use case. A use-case
definition consists of a diagram and a description of the interaction
between the actor and a system. An actor may be an end user or some
other object in the system.

According to Jacobson, a use case is any description of a single way to
use a system or application, or any class of top-level usage scenarios, that
captures how actors use their black-box applications. A use case is any
behaviorally related sequence of transactions that a single actor performs
in a dialog with a system in order to provide some measurable value to the
actor.

Use cases are used to document user requirements in terms of user dia-
logs with a system. They appear first in the requirements model and are
then used to generate a domain object model with objects drawn from the
entities of the business, as mentioned in the use cases. This is then con-
verted into an analysis model by classifying the domain objects into three
types: interface objects, entity objects, and control objects.

LBMS SEOO

Systems engineering OO (SEOO) is a proprietary methodology and tool
kit from the U.K.-based company LBMS. The four major components of the
SEOO methodology are:

189

Object-Oriented Design

• Work-breakdown structures and techniques
• An object modeling methodology
• GUI design techniques
• Relational database linkages to provide ER modeling and 4GL-specific

features

Rumbaugh OMT

James Rumbaugh’s methodology is described in his book Object-Ori-
ented Modeling and Design (Prentice-Hall, New York, 1991). Rumbaugh
starts by assuming that a requirements specification exists. Analysis con-
sists of building three separate models:

• The object model (OM): definition of classes, together with attributes
and methods; the notation is similar to that of ER modeling with meth-
ods (operations) added

• The dynamic model (DM): state transition diagrams (STDs) for each
class, as well as global event-flow diagrams

• The functional model (FM): diagrams very similar to data-flow
diagrams

Shlaer and Mellor

Shlaer and Mellor’s work is one of the earliest examples of OO method-
ology. (See Shlaer and Mellor’s books, Object-Oriented Systems Analysis:
Modeling the World in Data and Object Lifecycles: Modeling the World in
States, Prentice-Hall, New York, 1988 and 1992, respectively.)

The Shlaer and Mellor methodology starts with an information model
that describes objects, attributes, and relationships. Next, a state model
documents the states of objects and the transitions between them. Finally,
a data-flow diagram shows the process model.

OOAD SIMPLIFIED

Organizations that have purchased an OO software tool generally
adhere to the OOAD methodology that the tool encompasses (i.e., Objec-
tory, LBMS, etc.). Other organizations, however, are free to mix and match
the “best of breed” components of a wide variety of OOAD methodologies.
This section explains one such simplified approach.

1. Create the system boundary diagram. The first step in the analysis
and design is the creation of a system boundary diagram. This dia-
grams the domain model and its relationship with external systems
or users, as shown in Exhibit 13-5. The model structure diagram de-
picts the relationship of the domain objects.

190

SOFTWARE ENGINEERING HANDBOOK

2. Develop an actor list of external systems and users (Exhibit 13-6).
The actor list shows each actor and his or her role in the domain
model. Gather information about these actors.

3. Create use cases and scenarios. Use cases are a user-centered anal-
ysis technique to capture requirements from a user’s point of view;
they describe the possible sequences of interactions among the sys-
tems with one or more actors. Use cases illustrate high-level abstract
functions without writing code. Scenarios capture the exceptions,
nonstandard responses, and problems from the normal use case
flow. Exhibit 13-7 shows a sample use case diagram and Appendix E
shows a set of use case diagrams with associated scenarios.

4. Generate CRC cards, which are note cards that contain the domain
model’s classes, their responsibilities, and collaborators
(Exhibit 13-8). The nouns used in the uses cases become the poten-
tial classes in the CRC cards. The verbs are the class’s responsibili-
ties; the collaborators help the classes do their jobs.

5. Draw a collaboration graph depicting the collaborations (i.e., rela-
tionships between objects) uncovered during the CRC process
(Exhibit 13-9) and event traces to represent how events cause flow
from one object to another (Exhibit 13-10).

6. Create a system class diagram from the information derived in the
preceding exercises. Exhibit 13-11 shows a class diagram depicted
in terms of a system’s subsystems. In the case of an OO system we
use the term package, which is a collection of classes. Subsequent
diagrams will depict each class as shown in this highest level class
diagram (Exhibit 13-12).

Exhibit 13-5. The System Boundary Diagram

191

Object-Oriented Design

7. A data dictionary (Exhibit 13-13) and set of process specifications
(Exhibit 13-14) can then be created for all data and processes iden-
tified along with all screen designs.

Using this OO methodology is an iterative process; all of the steps
described and illustrated above are constantly changing and evolving.

Exhibit 13-6. External and Internal Actors

Exhibit 13-7. A Sample Use Case Diagram

Financial
Institution

User

Internet

Finance
Subsystem

Notification
Subsystem

Database

System
Controller

Search
Subsystem

Data Interface
Subsystem

Reports
Subsystem

Registration
Subsystem

Requester

Uses

Uses

Submits
new request

Cancels
existing
request

Changes
existing
request

Displays
P.O. order

form

Displays
existing

P.O. data

Displays
existing

P.O. data

Validates
password

Displays
menu

options

Sends
confirmation

email

Assigns
P.O.

number

Stores
canceled
P.O. data

Stores
changed
P.O. data

Stores new
P.O. data

192

SOFTWARE ENGINEERING HANDBOOK

Exhibit 13-8. The CRC Card

Exhibit 13-9. The Collaboration Graph

CLS025

Class Name: ResourceUsage

Class Type:

Class Characteristics:

Responsibilities: Collaborations:

Receive Usage Information Order

Store Usage Information Resource

Provide Usage Information Service Schedule

Authors: Jane Doe

«subsystem»
User Management

«subsystem»
Application Controller

«subsystem»

Persistence

Information StoredInformation Retrieved

Retrieval ResponseRetrieval Request

User Request

User Response

RDB

193

Object-Oriented Design

Definitions:

• Class — a template comprising a definition of behavior and supporting
information; each instance created from the class has its own copy of
the information and utilizes a single copy of the methods that imple-
ment the class’ behavior.

• Class hierarchy — a tree-structured aggregation of class definitions in
which vertical link establishes a superclass-subclass relationship be-
tween a pair of classes; the subclass is a specialization of the super-
class.

• Information hiding — a technique by which the structure and precise
usage of information (data) are concealed. The information is private
to its own objects and accessible to all other objects only via message
sends to the owner; this is the basis of encapsulation.

• Instance — a particular occurrence of an object defined by a class. All
instances of a class share the behavior implemented and inherited by
the class; each instance has its own private set of the instance vari-
ables implemented and inherited by the class.

Exhibit 13-10. An Event Trace

Actors

System
Ready

Login

Info Query

Check Login

Redirect to Content Screen

Process Query

Query Results

User Browser DEDS

Event Trace Diagram

T
im

e
 L

in
e

194

SOFTWARE ENGINEERING HANDBOOK

• Instantiation — the act of creating an instance of a class.
• Method — a procedure whose code implements the behavior invoked

by a message.
• Object — an entity capable of exhibiting a defined set of behaviors and

interacting with other objects.
• Object-oriented technology — a collection of languages, tools, environ-

ments, and methodologies aimed at supporting development of soft-
ware application centered around interrelated, interacting objects.

• Reuse and reusability — an approach to software engineering that em-
phasizes reusing software assets, including designs and code; and
building software assets likely to be reusable in future applications.

Exhibit 13-11. A System Class Diagram

195

Object-Oriented Design

Exhibit 13-12. A Class Diagram

196

SOFTWARE ENGINEERING HANDBOOK

Exhibit 13-13. A Data Dictionary Entry

TBL_USER THIS TABLE CONTAINS INFORMATION ABOUT USERS

COLUMN NAME TYPE LEN DESCRIPTION REQ

OUID_USER_ID NUMBER 8 USER ID Y

LOGON_ID VARCHAR2 8 USER LOGIN ID Y

PASSWORD VARCHAR2 22 USER PASSWORD – HASHED Y

FORGOT_PASSWORD_
QUESTION

VARCHAR2 50 FORGOT PASSWORD QUESTION N

FORGOT_PASSWORD_
ANSWER

VARCHAR2 20 FORGOT PASSWORD ANSWER N

FIRST_NAME VARCHAR2 20 FIRST NAME Y

LAST_NAME VARCHAR2 20 LAST NAME Y

TITLE VARCHAR2 3 TITLE – MR, MS, MRS Y

ADDR1 VARCHAR2 30 FIRST ADDRESS LINE Y

ADDR2 VARCHAR2 30 SECOND ADDRESS LINE N

CITY VARCHAR2 20 CITY Y

STATE VARCHAR2 2 STATE Y

ZIP NUMBER 5 ZIP CODE Y

ZIP_4 NUMBER 4 4 DIGIT ZIP QUALIFIER N

HOME_PHONE VARCHAR2 10 HOME PHONE NUMBER Y

WORK_PHONE VARCHAR2 10 WORK PHONE NUMBER Y

OTHER_PHONE VARCHAR2 10 OTHER PHONE NUMBER N

E_MAIL VARCHAR2 30 E-MAIL ADDRESS N

GENERAL_NOTES VARCHAR2 1000 MISCELLANEOUS NOTES N

SYSID_ROLE_ID CHAR 1 USER ROLE – 1:ADMINISTRATOR,
2:MANAGER, 3:EMPLOYEE,
4:CUSTOMER

Y

ACTIVE CHAR 1 ACTIVE OR NOT Y

USER_CREATED NUMBER 8 USER WHO CREATED THE RECORD Y

DATE_CREATED DATE DATE RECORD CREATED Y

USER_MODIFIED NUMBER 8 USER WHO MODIFED THE RECORD N

DATE_MODIFIED DATE DATE RECORD MODIFIED N

TBL_ROLE THIS TABLE CONTAINS INFORMATION ABOUT A USER’S ROLE
(ADMIN, MANAGER, EMPLOYEE, CUSTOMER, ETC.)

COLUMN NAME TYPE LEN DESCRIPTION REQ

SYSID_ROLE_ID NUMBER 4 ROLE ID Y

ROLE_NAME VARCHAR2 30 NAME OF THE ROLE Y

ROLE_DESC VARCHAR2 30 DESCRIPTION OF THE ROLE N

TBL_AUTH_RULE THIS TABLE CONTAINS INFO ABOUT WHAT FUNCTIONALITY IS
(ADD_INVENTORY_ITEM, SCHEDULE_SERVICE, ETC.)

COLUMN NAME TYPE LEN DESCRIPTION REQ

SYSID_AUTH_RULE NUMBER 4 AUTH RULE ID Y

197

Object-Oriented Design

Exhibit 13-14. A Process Specification

PACKAGE DatabaseManager IS

PROC addAppObject(appObject:IN, statusBoolean:OUT);

PROC modifyAppObject(appObject:IN, statusBoolean:OUT);

PROC deleteAppObject(appObject:IN, statusBoolean:OUT);

PROC queryAppObject(appObject:IN, resultObject:OUT);

PROC loadDatabase(databaseFileName:IN, statusBoolean:OUT);

PROC saveDatabase(databaseFileName:IN, statusBoolean:OUT);

PROC convertAppToSQL(app(bject:IN, sqlObject:OUT);

PROC convertSQLToApp(sqlObject:IN, appObject:OUT);

PROC issueDBCommand(sqlCommand:IN, statusBoolean:OUT);

PROC getDatabaseResult(resultObject:OUT);

///

//

//addAppObject — Adds an application object to the database

//returns BOOLEAN

//TRUE — success

//FALSE — error

///

//

PROC addAppObject(appObject:IN, statusBoolean:OUT)

TYPE returnCode IS INTEGER;

TYPE sqlCommand IS STRING;

sqlCommand = converTAppToSQL(appObject)

If sqlCommand ! = “” convert sqlCommand to ADD returned

sqlCommand;

returnCode = issueDBCommand(sqlCommand);

else

198

SOFTWARE ENGINEERING HANDBOOK

References

Gora, M. (1996). Object-oriented analysis and design, DBMS Online. http://www.dbms-
mag.com/9606d15.html.

199

Chapter 14

User Interface Design

Like many aspects of software engineering, in order to be effective, user
interface design needs to be analyzed, planned, and implemented in a
detailed and organized manner. With the demand for enhanced functional-
ity and implementation of increasingly complex systems, the pressure to
produce user interfaces that satisfy all user requirements becomes a great
challenge. Without guiding principles and a fundamental plan of attack,
developers are doomed to failure. Fortunately, as computer systems have
grown more complex, facilities for creating user interfaces quickly and
more efficiently have also come on stream. However, tools alone do not
make for a good user interface design.

User interfaces have matured rapidly over the last decade. The increas-
ing speed and power of the PC and the growth of the Internet have fueled
the development of larger and more complex applications requiring easier
and more intuitive user interfaces. As application developers deliver more
sophisticated and robust applications, users expect and demand better
and more intuitive user interfaces to accompany those applications. Com-
petition among application developers is fierce and a product’s user inter-
face plays a key role in adoption and acceptance by its user community.

USER INTERFACE (UI) DESIGN PRINCIPLES

No discussion of user interface design would be complete without refer-
ence to the underlying principles that guide good user interface design.
Volumes have been written on the subject. The following are pointers to a
few of the lists of user interface design principles from various sources:

• Design Basics, from the Internet, http://www-3.ibm.com/ibm/easy/
eou_ext.nsf/Publish/6 (IBM).

• Practical Real World Design, First Principles, from the Internet,
http://www.asktog.com/basics/firstPrinciples.html (Tognazzini,).

• Principles of Good GUI Design, from the Internet, http://axp16.
ii.e.,org.mx/Monitor/v01n03/ar_ihc2.htm (Hobart,).

The perspectives are somewhat different, but all espouse the same
basic principles, reiterated here for emphasis:

• Put the user in control. The user is obviously the most important player
in this game and should be able to customize the interface to suit his

200

SOFTWARE ENGINEERING HANDBOOK

or her preferences or needs. Whenever possible, account for the us-
er’s skill level; categories such as novice, occasional user, and fre-
quent user make a good starting point. One example of this is a
Macintosh word processing product. A set of five options enables the
user to set the desired level of experience ranging from “novice” to
“power user.” Choosing a level results in filtering menus for only those
options required by a user of the selected experience. A user gaining
more experience at a specific level can move to the next level when
ready.

• Be direct. The user should be allowed to work with the information
presented by the application directly. When a user performs an action,
the result of the action should be immediately apparent.

• Use appropriate metaphors. Whenever possible use metaphors that
are familiar to the user. Metaphors help to make the user more com-
fortable when using the software and provides for a more intuitive in-
terface. For example, a checkbook is a suitable metaphor for an
application that manages a user’s bank account.

• Make the interface consistent. Consistency in design makes it easier for
the user to apply skills learned on one task to another task. Users
should not need to spend time trying to remember differences in be-
havior among objects. Many Windows applications, for example, have
the same basic pattern for menus; File and Edit are always the first two
menus on the left and Help is typically the last menu on the right, as
indicated in Exhibit 14-1.

Regular users of Windows applications expect these menus in this
order; therefore, it does not make sense to break this paradigm.

• Provide shortcuts. For novice users, shortcuts may not be all that im-
portant, but as the user gains experience with the interface, inevitably
he will look for faster and more efficient ways of getting the job done.

Exhibit 14-1. Menu Order Consistency

201

User Interface Design

Shortcuts play a key role here and are greatly appreciated by power
users. I know one technical writer who works in Microsoft Word with
the toolbar and menu bar hidden, doing all formatting work with only
shortcuts. Quite amazing!

• Be forgiving. The user should be allowed to change his mind and re-
verse a previously performed action. If circumstances make it impos-
sible to reverse the result of an action, provide an indication to the
user up front, indicating that the action about to take place cannot
be reversed. It is also important to make error recovery as easy as
possible.

• Provide feedback. It is important that the user know what task is being
performed. We all know how frustrating it can be when a program
freezes the system while it is performing a task with no visual indica-
tion that the task is being performed or completed. Visual queues
should be used to provide user interaction and feedback appropriate
to the task performed.

• Make the interface aesthetically pleasing. An important aspect of the
user interface is its visual appearance. Visual elements on the screen
compete for the user’s attention. It is not a simple task to get the right
balance so that the user’s attention is focused on the right elements at
the right time. Often it is necessary to acquire the services of a graph-
ics designer to get the right result. A professionally designed, aesthet-
ically pleasing application is more likely to gain acceptance among
users than one that lacks this characteristic.

• Be as simple as possible. This may sound simple, but from the devel-
oper’s perspective simplifying the user interface typically involves
quite a bit of work. In a complex application or product, try to develop
a user interface that exposes only information necessary for the user
to get the task done.

• Provide help. A help system is vital. Many different types of help sys-
tems are available. Embedded help is totally integrated within the ap-
plication; it provides help instructions for every screen that is part of
the user interface. Online help, typically accessible by choosing an
item from the help menu, is a set of topics about the product; a table
of contents, index, and search mechanism are typically provided so
that the user can browse or search for a topic of interest. Context-sen-
sitive help provides information about the current context; for exam-
ple, when a specific dialog is displayed, the user can press F1 to get
information about that dialog. Tooltip help displays hints; for exam-
ple, when the cursor hovers over a toolbar button, help text is dis-
played as shown in Exhibit 14-2.

Two industry standards that provide excellent information on user
interface design principles are The Windows Interface Guidelines for Soft-
ware Design and Macintosh Human Interface Guidelines. Two websites that

202

SOFTWARE ENGINEERING HANDBOOK

provide some excellent examples of good and bad user interface design are
the Interface Hall of Fame, http://www.iarchitect.com/mfame.htm and the
Interface Hall of Shame, http://www.iarchitect.com/mshame.htm. See the
reference list at the end of this chapter for more details about these
sources.

THE UI DESIGN PROCESS

Principles are good, but how and when do we apply them? One of the
most popular user interface design methodologies is one that mimics the
overall software development process. This process consists of four
phases; each phase is repeated during each iteration of the cycle. A sum-
mary of the design process is shown graphically in Exhibit 14-3 and each of
its phases is described briefly below:

• Analysis. This phase involves collection of information about the user
and the tasks that he or she will want to perform using the application.
An excellent, highly rated book on this subject is User and Task Analy-
sis for Interface Design (Hackos and Redish, 1998). This book clearly

Exhibit 14-2. Tooltip Help

Exhibit 14-3. Phases of User Interface Design

203

User Interface Design

separates analysis from design and provides guidelines and tech-
niques for eliciting task information from prospective users.

• Design. Once the analysis has been completed and all tasks have been
identified, the process of identifying the required objects and the ac-
tions to be performed can begin. User scenarios play a key role in this
phase. From the scenario narrative, the designer can extract the ob-
jects (typically nouns) and the actions (typically verbs) to build a list
of required elements. One book that addresses many of the issues that
the developer faces during the design phase is User Interface Design for
Programmers (Spolsky, 2000).

• Implementation. In the implementation phase, a prototype is pro-
duced. This is typically achieved using one of the many fourth-gener-
ation languages or programming development environments (Visual
Basic, Visual C++, Visual J++, Java, etc.) that allow the rapid develop-
ment of user interfaces using predefined libraries of components such
as Windows, Menus, Buttons, Drop-Down list controls, Tree controls,
etc.

• Test. When the prototype is complete, the developer can take the soft-
ware to the customer for user interface evaluation. Users can test
drive the software and make suggestions for improvements, which be-
come part of the analysis phase. Then the cycle can begin again to re-
fine the process further. Pamela Savage compares three different
evaluation techniques: 1) expert reviews, 2) user reviews, and 3) inter-
active usability testing, with the conclusion that all three play a role in
the evaluation process.

One aspect of good user interface design not immediately apparent from
the four phases of the design cycle described here is that the design
involves input from many different disciplines in addition to software
development. These disciplines include visual designers, writers, human
factors experts, and, of course, the user. A well-balanced team of people
providing input from different perspectives is critical to the success of the
user interface.

DESIGNING EFFECTIVE INPUT AND OUTPUT

Some systems analysts believe that designing input and output is the
most important task in designing a system because it is the part the end
user actually sees. Even though some people might disagree with this point
of view, poorly designed input and output may cause an otherwise well-
designed and solidly implemented system to fail. When systems analysts
design input and output, there are three aspects of concern: (1) the input
and output data (data flow) between software components, (2) the design
of input and output between the software and other nonhuman producers
and consumers of information, (3) the interaction between the user and
the computer.

204

SOFTWARE ENGINEERING HANDBOOK

Designing Input

A key factor for developing the design input is the customer’s require-
ments. This includes, but is not limited to: end-user expectations, patterns
of end-user usage, security, and performance. The customer should not be
the only consideration, however. All factors relevant to the design of the
system should be considered, including management requirements, inter-
face requirements, and other related processing requirements.

A variety of media and methods is used to capture and input data so that
it can be used properly, including: (1) paper forms combined with data-
entry screens, (2) electronic forms, and (3) direct entry devices.

Even though the usage of computers is very common, it would be sur-
prising to find a system that did not have at least one input or output paper
form. Paper forms carry data physically. In every business or organization
there are manual transactions that might require the use of manual forms,
such as order forms, sales transactions, and surveys. The data captured on
these forms, therefore, must be entered into the system for processing.
Guidelines for designing a paper form include:

• Select proper paper. Papers of different colors, grades, and weight
might be used to print a form. When we select a paper for our form, we
need to consider some factors, for example: how long the company
will keep it, how to fill in the form (handwritten or printed), how it will
be handled (gently, roughly), and if the paper is easy and convenient
to use.

• The size of paper should be appropriate. The most popular size is 8.5 by
11 inches. If you require a smaller form, try to use half of this standard
size: 8.5 by 5.5. For card forms, the standards start with 8 by 10 inches.
It is best not to use nonstandard sizes because those sizes often have
problems in handling and filing and usually increase the cost of devices
and papers.

• Forms should be easy to fill out. To make forms easy to fill out, the fol-
lowing techniques are used: (1) Put simple instructions or examples
on the form to assist users. (2) Form flow should be designed to follow
a logical sequence (left to right, top to bottom) (See Exhibit 14-4).
(3) Group-related data should be in the same section. (4) Each section
and field should have a caption that tells the user what to put there.
(5) Use proper space to make the form clearer. (6) Using lines and box-
es can also help. (7) Have alternative selections capability (i.e., use of
a check box).

• Design to meet the purpose of a form. A systems analyst should design
different forms to better reflect different process requirements even if
several forms are similar to each other.

• Make the form attractive. An attractive form can encourage the user to
complete it. A form should be designed to look neat and the input

205

User Interface Design

fields should be logically ordered. Aesthetic forms or usage of differ-
ent fonts within the same form can help make it attractive.

• Design evaluation. After a form prototype has been created, we must
give it to the user and check to see if it meets the user’s requirements.
The user can provide some suggestions and the designer can make
modifications according to the suggestions. The evaluation cycle (see
Exhibit 14-5) repeats until users are satisfied with the form.

Exhibit 14-4. The Logical Flow of a Prescription Drug Claim Form

Exhibit 14-5. The Design of a Form Is Cyclical.

Patient Address

Patient's Name

Subscriber's Name

Pharmacy Name/Address

Policy Number

Date of Birth Sex – M, F

Patient Phone

Date Filled Drug Name and Strength

Quantity Price

Preliminary
design

Build
prototype

form

Design
modifications

are made

Evaluation
is studied by

designer

User
evaluates

form

Build
prototype

form

206

SOFTWARE ENGINEERING HANDBOOK

Designing Electronic Forms. When we talk about electronic forms sys-
tems (see Exhibit 14-6), we turn our attention from paper to screens.
Designers must design electronic forms to reflect the organization of the
data source. When it is used by people (customer, clerk, etc.), it must be
designed with all the captions, data entry fields, and instructions arranged
in a logical manner that can help users completing the forms. The design-
ing guideline for the paper form can also apply to screen form because
both have the same components.

Electronic forms have many advantages over paper that make use of this
automated capability much more efficient: (1) the ability to process calcu-
lations; (2) the ability to retrieve data and populate the electronic form to
reduce the number of fields that the user must fill in; (3) ability to validate
each field automatically; (4) the ability to coordinate processes between
tasks; (5) the ability to provide immediate help.

In most situations, electronic forms can replace all paper forms and
substantially reduce the cost of a system. Factors that affect the cost

Exhibit 14-6. An Electronic Forms System

Screen

Screen Screen Screen

User User User

Database

Server

Form Library

Form
Development

207

User Interface Design

include: (1) printers might run out of paper, causing the system to pause;
(2) electronic forms can prevent many data entry errors and the end user
from using the wrong form; (3) electronic forms can be easily modified to
meet new business requirements; (4) electronic form databases efficiently
manage the many forms in use in an organization.

Direct Entry Devices. When using electronic forms, the keyboard is
the most common input device. However, there are some instances
where data is not input by a user or a keyboard is not practical. Other
data entry devices include:

• Scanner or optical character reader (OCR)
• Point-of-sale (POS) device
• Automatic teller machines (ATMs)
• Mouse
• Voice recognition

Designing Output

Output can be produced in a variety of ways: printing, screen, audio,
microform, CD ROM, or electronic output. Each technology has different
speed and cost, and affects the end user differently. When we choose an
output technology, the following should be considered: (1) the purpose of
the output; (2) the person who needs the information; (3) the reason the
output is needed; (4) the way the output will be used; (5) what specific
information will be included; (6) how the output will be viewed, i.e., printed
on paper, stored on secondary storage such as tape, CD, tape, etc., or
viewed on the screen; (7) how often the output is to be updated; (8) any
security issues.

USABILITY TESTING

A user interface design can benefit greatly from usability testing.
Although this testing involves quite a lot of up-front investment, the results
are worth the investment, especially for commercial applications that have
potentially a wide audience. Usability testing involves observing users as
they use the application to perform their required tasks. The tests are gen-
erally administered by human factors specialists and are usually per-
formed in a special work area where the specialists are separated from the
users by a one-way mirror that enables the specialists to observer users as
the tasks are performed. Users typically describe what they want to do and
how they are going about it using the software. The specialists study these
patterns and use the data to improve the user interface. This technique is
a very effective means of detecting misunderstood or misinterpreted areas
of the user interface. These areas can be redesigned and the tests can be
performed again to check for improvement.

208

SOFTWARE ENGINEERING HANDBOOK

SUMMARY

Providing a good user interface is a critical skill for application develop-
ers today. Good user interface design does not happen automatically
despite the myriad of tools available to help developers create them.

A good portion of this chapter has been devoted to stressing the design
principles; this is not an accident. The developer must learn and apply
basic principles and follow the tried and true process that leads to quality
user interface designs. The formula already exists; it merely needs to be
applied. The developer must always keep the users’ interests in mind,
especially in cases of conflict between satisfying a user requirement and
taking an easier implementation route. The user interface should strive to
delight and help the user get the job done faster and more efficiently. Devel-
opers must gain as much experience as possible when working with and
being exposed to good user interface designs.

The user interface is a key component when it comes to the acceptance
of an application or product. It can mean the difference between adoption
and obscurity.

References

Hackos, J. and Redish, J. (1998) User and Task Analysis for Interface Design, John Wiley & Sons,
New York.

Hobart, J. Principles of good GUI design, from the Internet, http://axp16.ii.e.,org.mx/Moni-
tor/v01n03/ar_ihc2.htm.

IBM. Design basics, from the Internet, http://www-3.ibm.com/ibm/easy/eou_ext.nsf/
Publish/6.

Isys Information Architects. Interface hall of fame, from the Internet http://www.iarchi-
tect.com/mfame.htm.

Isys Information Architects. Interface hall of shame, from the Internet http://www.iarchi-
tect.com/mshame.htm.

Macintosh Human Interface Guidelines. (1993) Addison-Wesley, Reading, MA.

Savage, Pamela. AT&T Bell Laboratories, User interface evaluation in an iterative design pro-
cess: a comparison of three techniques, from the internet, http://www.acm.org/sig-
chi/chi96/proceedings/shortpap/Savage/sp_txt.html.

Spolsky, J. (2000) User interface design for programmers, from the Internet, http://www.joelon-
software.com/uibook/chapters/fog0000000065.html.

The Windows Interface Guidelines for Software Design. (1995) Microsoft Press, Redmond, WA.

Tognazzini, B. Practical real world design, first principles, from the Internet, http://www.ask-
tog.com/basics/firstPrinciples.html.

Two additional general sources of information that are worth a mention even though they
are not explicitly referenced in this chapter are:

Sumit, GUI design links, from the Internet, http://www.sum-it.nl/enguilin.html.

Wilson, C. User interface design bibliography, from the Internet, http://world.std.
com/~uieweb/biblio.htm.

209

User Interface Design

Other Sources:

Blum, B.I. (1992) Software Engineering: a Holistic View, Oxford University Press, Inc., New York.

Burch, J.G. (1992) System Analysis, Design, and Implementation, Boyd & Fraser Publishing
Company, Boston.

Kendall, K.E. and Kendall, J.E. (2001) System Analysis and Design, 5th ed., Prentice Hall, Inc.,
Upper Saddle River, NJ.

Pressman, R.S. (2001) Software Engineering: a Practitioner’s Approach, 5th ed., McGraw-Hill
Companies, Inc., New York.

Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, Inc., Upper Saddle River, NJ.

www.sxu.edu/~rogers/bu433/index.html: System design: input, output, user interface.

www.webster.edu/~crawfodj/2810/pdf/2810ch07.pdf, User interface, input, and output design.

This page intentionally left blank

211

Chapter 15

Software
Re-Engineering

Organizations spend much money building software applications custom-
ized according to their business rules. In other words, software is the real-
ization of business rules. When business rules change, software must also
change. Software change is very important because organizations are now
completely dependent upon their software and have invested millions of
dollars in these systems. Therefore, organizations must invest in system
change to maintain the value of these systems. Software re-engineering is
a strategy for software change. It rebuilds existing legacy systems that
have become expensive to maintain or architecturally obsolete.

WHAT IS SOFTWARE RE-ENGINEERING?

Software re-engineering is (usually) concerned with reimplementing leg-
acy systems to make them more maintainable. Re-engineering may involve
redocumenting the system, organizing and restructuring the system, trans-
lating the system to a more modern programming language, or modifying
and updating the structure and values of the system’s data. The function-
ality of the software is not changed and, normally, the system architecture
also remains the same. Re-engineering improves the system structure, cre-
ates new system documentation, and makes it easier to understand.

WHY WE NEED SOFTWARE RE-ENGINEERING

Computer software is the product that software engineers design and
build. Once software is put into use, new requirements emerge and existing
requirements change as the business rules change. Parts of software may
need to be modified to correct errors or improve its performance.

As time goes on, software gets old and frequently breaks down. As the
software is modified, it becomes more and more complicated and difficult
to maintain. The level of difficulty of maintainability is directly proportion-
ate to the cost of maintaining the system.

We are consequently faced with a dilemma. If we continue to use the sys-
tem and make changes as required, our costs will inevitably increase. If we

212

SOFTWARE ENGINEERING HANDBOOK

decide to replace the system with a new system, costs will be incurred and
the new system might not be as good as the old system.

Software engineering techniques extend the lifetime of legacy systems
and reduce the costs of keeping these systems in use. We can create a prod-
uct with added functionality, better performance and reliability, and
improved maintainability by means of rebuilding the legacy system. Re-
engineering may involve some structural modifications but does not usu-
ally involve major architectural change.

SOFTWARE RE-ENGINEERING STRATEGIES

A major problem for organizations is implementing and managing
change to their legacy systems so that these systems continue to support
the organization’s business operations. There are a number of different
strategies for software change:

• Software maintenance
• Architectural transformation — e.g., migration to servers or to

Intranets
• Software re-engineering

Software maintenance is the general process of changing a system after
it has been delivered; this strategy does not normally involve major archi-
tectural changes to the system. The following are three types of software
maintenance:

1. Maintenance to repair software faults:
• Coding errors are very cheap to correct.
• Design errors are more expensive because this may involve rewrit-

ing several program components.
• Requirement errors are most expensive to repair due to the exten-

sive system redesign that may be necessary.
2. Maintenance to adapt the software to a different operating

environment
3. Maintenance to add to or modify the system’s functionality

• External and internal factors, such as changing markets, changing
laws, management changes, and structural reorganization, mean
that businesses undergo continual change. These changes gener-
ate new or modified software requirements, so all useful software
systems inevitably change as the business changes.

Approximately 20 percent of all maintenance efforts are spent fixing mis-
takes. The remaining 80 percent is spent adapting existing systems to
changes in their external environment, making enhancements requested
by users, and re-engineering an application for future use (Pressman,
2001).

213

Software Re-Engineering

After software has been corrected, adapted, and enhanced many times,
it usually becomes unstable. The more maintainence on the software, the
more frequently unexpected and serious side effects may occur. Although
the system still works, its maintenance costs increase and its value
decreases.

THE PROCESS OF RE-ENGINEERING

The main activities in a typical re-engineering process are:

1. Source Code Translation

The simplest form of software re-engineering is program translation
where source code in one programming language is automatically trans-
lated to source code in another language (i.e., COBOL to Java). The struc-
ture and organization of the program are unchanged but have higher qual-
ity than the original program. One reason for this is that the target language
may be an updated version of the original language or may be a translation
to a completely different language. Source-level translation may be neces-
sary for the following reasons:

• Hardware platform update: the organization may wish to change its
standard hardware platform, but compilers for the original language
may not be available on the new hardware.

• Organizational policy changes: an organization may want to standard-
ize on a particular language to minimize its support software costs.
Maintaining many versions of old compilers can be very expensive.

• Lack of software support: the suppliers of the language compiler may
have gone out of business or may discontinue support for their
product.

• Developers want to make the system easier to understand, test, and
maintain: Some legacy systems have solid program architecture; how-
ever, individual modules were coded in a way that makes them diffi-
cult to understand, test, and maintain. In this situation, the code can
be restructured (Pressman, 2001).

2. Reverse Engineering

Reverse engineering is the process of analyzing software with the objec-
tive of recovering its design and specification. The software source code is
usually available as input to the reverse engineering process. Reverse engi-
neering is different from re-engineering. Its purpose is to derive the design
or specification of a system from its source code, while the objective of re-
engineering is to produce a new, more maintainable system. Of course,
reverse engineering to develop a better understanding of a system is often
part of the re-engineering process.

214

SOFTWARE ENGINEERING HANDBOOK

Reverse engineering can be used during software re-engineering to
recover the original program design to help developers understand a pro-
gram before reorganizing its structure. However, re-engineering need not
always follow reverse engineering:

• The design and specification of an existing system may be reverse en-
gineered so that they can serve as input to the requirements specifica-
tion for that program’s replacement.

• Alternatively, the design and specification may be reverse engineered
so that they are available to help program maintenance. With this ad-
ditional information, it may not be necessary to re-engineer the sys-
tem source code.

The reverse engineering process is illustrated in Exhibit 15-1. The pro-
cess starts with an analysis phase, during which the system is analyzed
using automated tools to discover its structure. In itself, this is not enough
to recreate the system design. Engineers then work with the system source
code and its structural model, adding information that they have collected
by understanding the system. This information is maintained as a directed
graph linked to the program source code.

Information store browsers are used to compare the graph structure
and the code and to annotate the graph with extra information. Documents
of various types, such as program and data structure diagrams and trace-
ability matrices, can be generated from the directed graph. Traceability
matrices show where entities in the system are defined and referenced.

Tools for program understanding may be used to support the reverse
engineering process. These usually present different system views and
allow easy navigation through the source code. For example, they allow
users to select a data definition, and then move through the code to where
that data item is used. Examples of such program browsers are discussed
by Cleveland (1989), Oman and Cook (1990), and Ning et al. (1994).

Exhibit 15-1. The Reverse Engineering Process

Automated
analysis

Manual
annotation

System
information
store

Document
generation

Program structure
diagrams

Data structure
diagrams

Traceability
matrices

System to be
re-engineered

215

Software Re-Engineering

After the system design documentation has been generated, further
information may be added to the information store to help recreate the sys-
tem specification. This usually involves further manual annotation of the
system structure. The specification cannot be deduced automatically from
the system model.

3. Program Structure Improvement

The need to optimize memory use and the lack of understanding of soft-
ware engineering by many programmers have meant that many legacy sys-
tems are not well structured. Their control structure is tangled with many
unconditional branches and unintuitive control logic. This structure may
also have been degraded by regular maintenance. Changes to the program
may have made some code unreachable, but this can only be discovered
after extensive analysis. Maintenance programmers often dare not remove
code in case it may be accessed indirectly.

Typically, programs develop complex logic structure as they are modi-
fied during maintenance. New conditions and associated actions are added
without changing the existing control structure. In the short term, this is a
quicker and less risky solution because it reduces the chances of introduc-
ing faults into the system. In the long term, however, it leads to incompre-
hensible code. Complex code structures can also arise when programmers
try to avoid duplicating code. Along with unstructured control, complex
conditions can also be simplified as part of the program restructuring pro-
cess. For instance,

Complex condition:

If not (a > b and (c < d or not (e > f)))…

Simplified condition:

If a < = b and (c > = d or e > f)…

This is how a conditional statement including “not” logic may be made
more understandable.

If the program is data driven, with components tightly coupled through
shared data structures, restructuring the code may not lead to a significant
improvement in understandability. Program modularization may also be
necessary. If the program is written in a nonstandard language dialect,
standard restructuring tools may not work properly and significant manual
intervention may be required.

In some cases, it may not be cost-effective to restructure all of the pro-
grams in a system. Some may be of better quality than others and some
may not be subject to frequent change. Arthur (1988) suggests that data
should be collected to help identify those programs that could benefit
most from restructuring: The metrics, such as failure rate, percentage of

216

SOFTWARE ENGINEERING HANDBOOK

source code changed per year, component complexity, and the degree to
which programs or components meet current standards, can be used to
identify the candidates for restructuring.

4. Program Modularization

Program modularization is the process of reorganizing a program so
that related program parts are collected together and considered as a sin-
gle module. Once this has been done, it becomes easier to remove redun-
dancies in these related components, to optimize their interactions, and to
simplify their interface with the rest of the program. A number of types of
module may be created during the program modularization process.

• Data abstractions. In order to save memory space, many legacy sys-
tems depend on use of shared tables and common data areas. The in-
formation stored in these areas is globally accessible and may be used
by different parts of the system in different ways. It is expensive mak-
ing changes to these global data areas due to the costs of analyzing
change impacts across all uses of the data. To reduce the costs of
changes to these shared data areas, the program modularization pro-
cess may focus on the identification of data abstractions. Data ab-
stractions or abstract data types collect data and associated
processing and are resilient to change.

• Hardware modules. These are related to data abstractions and gather
all of the functions used to control a particular hardware device.

• Functional modules. For instance, all of the functions concerned with
input and input validation may be incorporated in a single module.
This type of modularization should be considered where it is imprac-
tical to recover program data abstractions.

• Process support modules. All of the functions and specific data items re-
quired to support a particular business process are grouped here.

5. Data Re-Engineering

Until now, most of our discussion on software evolution has focused on
the problems of program modification. However, in many cases, associated
problems of storage, organization, and format of the data processed by leg-
acy programs may need to evolve to reflect changes to the software. The
process of analyzing and reorganizing the data structures and, sometimes,
the data values in a system to make it more understandable is called data
re-engineering.

In principle, data re-engineering should not be necessary if the function-
ality of a system is unchanged. In practice, however, there are a number of
reasons why you may need to modify the data as well as the programs in a
legacy system:

217

Software Re-Engineering

• Data degradation. Over time, the quality of data tends to decline.
Change to the data incurs errors, redundant values may have been
created, and changes to the external environment may not be reflect-
ed in the data. This is unavoidable because the lifetime of data is often
very long.

• Inherent limits built into the program. Programs are now often re-
quired to process much more data than was originally envisioned by
their developers. Data re-engineering may be required to remove
these limitations.

• Architectural evolution. If a centralized system is migrated to a distrib-
uted architecture, it is essential that the core of that architecture be a
data management system that can be accessed from remote clients.
This may require a large data re-engineering effort to move data from
a mainframe to a server-based database management system. The
move to a distributed program architecture may also be initiated
when an organization decides to move from file-based data manage-
ment to a database management system.

Because data architecture has a strong influence on program architec-
ture and the algorithms that populate it, changes to the data will invariably
result in architectural or code-level changes. Rickets (1993) mentions some
of the problems with data that can arise in legacy systems made up of sev-
eral cooperating programs:

• Data naming problems. Name may be cryptic and difficult to under-
stand. Different names may be given to the same logical entity in dif-
ferent programs in the system. The same name may be used in
different programs to mean different things.

• Field length problems. When field lengths in records are explicitly as-
signed in the program, the same item may be assigned different
lengths in different programs or the field length may be too short to
represent current data.

• Record organization problems. Records representing the same entity
may be organized differently in different programs.

• Hard-coded literals. Absolute values, such as tax rates, are included di-
rectly in the program rather than referenced using some symbolic
name.

• Lack of a data dictionary.
• Inconsistent data definitions. Data values may also be stored in an in-

consistent way. After the data definitions have been re-engineered, the
data values must also be converted to conform to the new structure.

Exhibit 15-2 illustrates the process of data re-engineering, assuming that
data values converted. The change summary tables hold details of all the
changes to be made. They are therefore used at all stages of the data re-
engineering process.

218

SOFTWARE ENGINEERING HANDBOOK

In Stage 1 of this process, the data definitions in the program are modi-
fied to improve understandability; the data is not affected by these modifi-
cations. It is possible to automate this process to some extent using pat-
tern matching systems such as Awk (Aho et al., 1988) to find and replace
definitions or to develop XML descriptions of the data (St Laurent and
Cerami, 1999) and use these to drive data conversion tools. However, some
manual work is almost always necessary to complete the process. The data
re-engineering process may stop at this stage if the goal is simply to
improve the understandability of the data structure definitions in a pro-
gram. If, however, there are data value problems as discussed earlier,
Stage 2 of the process may then be entered.

If an organization decides to continue to Stage 2 of the process, it is then
committed to Stage 3, data conversion, which is usually a very expensive
process. Programs must be written that embed knowledge of the old and
the new organization. These process the old data and output the converted
information.

FORWARD ENGINEERING

The major distinction between re-engineering and new software devel-
opment is the starting point for the development. For system re-engineer-
ing, the old system acts as a specification for the new system. Chikofsky
and Cross (1990) call conventional development forward engineering
(Exhibit 15-3) to distinguish it from software re-engineering (Exhibit 15-4).
Forward engineering starts with a system specification and involves the
design and implementation of a new system; re-engineering starts with an
existing system and transformation of the old system.

Exhibit 15-2. The Data Re-Engineering Process

Data
analysis

Data
analysis

Data
conversion

Modified
data

Program to be re-engineered

Change summary tables

Stage 1 Stage 2 Stage 3

Entity name

modification

Literal replacement

Data definition

reordering

Data reformatting

Default value

conversion

Validation rule

modification

219

Software Re-Engineering

Exhibit 15-3. Forward Engineering

Exhibit 15-4. Software Re-Engineering

System
specification

New system

Design
and

implementation

Existing
software

engineering

Understanding

and

transformation

Re-engineered

system

220

SOFTWARE ENGINEERING HANDBOOK

CONCLUSION

Developing a custom-built system requires a lot of money and time.
Hence, organizations need to maintain their old systems in order to reduce
the cost and increase the lifetime of the old system. For these purposes, re-
engineering becomes a useful way to convert old, obsolete systems to
more efficient, streamlined systems.

Software re-engineering encompasses a series of activities that include
source code translation, reverse engineering, program structure improve-
ment, program modularization, and data re-engineering. The intent of
these activities is to create versions of existing programs that exhibit
higher quality and better maintainability.

References

Aho, A.V., Kernighan, B.W., et al. (1988). The Awk Programming Language, Prentice-Hall, Engle-
wood Cliffs, NJ, Chapters 8, 28.

CAS88. (1988). CASE tools for reverse engineering, CASE Outlook, CASE Consulting Group, 2,
1–15.

Chikofsky, E.J. and Cross, J.H. (1990). Reverse engineering and design recovery: a taxonomy,
IEEE Software, 7, 13–17.

Cleveland, L. (1989). A program understanding support environment, IBM Sys.J., 28, 324–344.

Ning, J.Q., Engberts, A., et al. (1994). Automated support for legacy code understanding, IEEE
Software, 37, 50–57.

Oman, P.W. and Cook, C.R. (1990). The book paradigm for improved maintenance, IEEE Soft-
ware, 7, 39–45.

Pressman, R.S. (2001). Software Engineering: a Practitioner’s Approach, 5th ed., McGraw-Hill,
Boston, 799–824.

Rickets, J.A. DelMonaco, J.C., et al. (1993). Data reengineering for application systems, in Soft-
ware Reengineering Arnold, R.S., Ed., IEEE Press, Los Alamitos, CA, 288–293.

St Laurent, S. and Cerami, E. (1999). Building XML Applications, McGraw-Hill, New York, Chap-
ter 9.

221

Chapter 16

Software Testing

Testing is a critical component of software development. Its goal is to
uncover and correct errors found in software. Because software is com-
plex, it is reasonable to presume that software testing is a labor- and
resource-intensive process. Automated software testing helps to improve
testers’ productivity and reduce resources that may be required. By its
very nature, automated software testing increases test coverage levels,
speeds up test turnaround time, and cuts costs of testing. Unfortunately,
due to a variety of reasons, not all test automation projects will achieve
these returns on investment. In this chapter, a practical approach to auto-
mated software testing is discussed.

WHAT IS SOFTWARE TESTING?

A critical component in the process of software development is software
testing. The classic software life cycle model suggests a systematic,
sequential approach to software development that progresses through
software requirements analysis, design, code generation, and testing. That
is, once source code has been generated, program testing begins with the
goal of finding differences between the expected behavior specified by sys-
tem models and the observed behavior of the system.

The process of creating error-free software applications requires techni-
cal sophistication in the analysis, design, and implementation of that soft-
ware and proper test planning, as well as robust automated testing tools.
When planning and executing tests, software testers must consider the
software and the function it performs, the inputs and how they can be com-
bined, and the environment in which the software will eventually operate.

During early stages of the testing process, the programmer usually per-
forms all tests. This stage of testing is referred to as unit testing. Here the
programmer usually works with the debugger that accompanies his or her
compiler. For example Visual Basic, as shown in Exhibit 16-1, enables the
programmer to “step through” a program’s (or object’s) logic, one line of
code at a time, viewing the value of any and all variables as the program
proceeds.

A particular program is usually made up of many modules. An OO sys-
tem is composed of many objects. Programmers usually architect their
programs in a top–down modular fashion. Integration testing proves that

222

SOFTWARE ENGINEERING HANDBOOK

the module interfaces are working properly. For example, in Exhibit 16-2, a
programmer conducting integration testing would ensure that Module2
(process module) correctly interfaces with its subordinate, Module2.1 (cal-
culate process).

If module2.1 had not yet been written, it would have been referred to as
a stub. Integration testing could still be performed if the programmer
inserted two or three lines of code in the stub, which would act to prove
that it is well integrated to module2.

On occasion, a programmer will code all the subordinate modules first
and leave the higher-order modules for last. This is known as bottom–up
programming. In this case module2 would be empty except for a few lines
of code to prove that it is integrating correctly with module2.1, etc. In this
case, module 2 would be referred to as a driver.

Exhibit 16-1. Visual Basic Providing Unit Testing Capabilities to Programmers

223

Software Testing

Where integration testing is performed on the discrete programs or
objects with a master program, system testing refers to testing the inter-
faces between programs within a system. Because a system can be com-
posed of hundreds of programs, this is a vast undertaking.

It is quite possible that the system being developed is a replacement for
an existing system. In this case, parallel testing is performed. The goal here
is to compare outputs generated by each of the systems (old versus new)
and determine why there are differences, if any.

Parallel testing requires end users to be part of the testing team. If the
end user determines that the system is working correctly, we can see that
the customer has “accepted” the system. This, then, is a form of customer
acceptance testing.

As the testing progresses, testing specialists may become involved (see
Appendix P for a sample QA handover document). Within the vernacular of
IT, staff dedicated to performing testing are referred to as quality assur-
ance engineers and reside within the quality assurance department. QA
testers must have a good understanding of the program being tested as
well as the programming language that the program was coded in. In addi-
tion, the QA engineer must be methodical and be able to grasp complex
logic. Generally speaking, technical people with these attributes are hard

Exhibit 16-2. Integration Testing Proving Module Interfaces Are Working
Properly

Program

Module1
Read

Module2
Process

Module3
Close

Module2.1

Calculate

Module2.2

Print

224

SOFTWARE ENGINEERING HANDBOOK

to come by and even harder to keep because most of them aspire to
become programmers.

Even simple software can present testers with obstacles. Couple this
complexity with the difficulty in attracting and keeping QA staff and you
have the main reason that many organizations now automate parts of the
testing process.

SOFTWARE TESTING STRATEGY

Software testing is one critical element of software quality assurance
(SQA) that aims at determining the quality of the system and its related
models. In such a process, a software system will be executed to determine
whether it matches its specification and executes in its intended environ-
ment. To be more precise, the testing process focuses on the logical inter-
nals of the software, ensuring that all statements have been tested, and on
the functional externals by conducting tests to uncover errors and ensure
that defined input will produce actual results that agree with required
results.

To ensure that the testing process is complete and thorough it is neces-
sary to create a test plan (Appendix O). A thorough test plan consists of the
following:

1. Revision history
2. System introduction

2.1. Goals and objectives
2.2. Statement of scope
2.3. Major constraints

3. Test plan
3.1. System description
3.2. Testing strategy
3.3. Testing resources
3.4. Testing metrics
3.5. Testing artifacts
3.6. Testing schedule

4. Test procedures
4.1. Class testing
4.2. Integration testing

5. Appendix 1: class testing test cases
5.1. Application controller subsystem
5.2. User management subsystem
5.3. Resource management subsystem
5.4. Order subsystem
5.5. Accounting subsystem
5.6. Customer relationship management subsystem
5.7. Persistence subsystem

225

Software Testing

6. Appendix 2: integration testing test cases
6.1. Customer registration
6.2. Reallocate resources
6.3. Search for service provider and initiate order
6.4. Place order
6.5. Pay for service

7. Appendix: project schedule

A sample test plan, created by my students for an OO dog grooming sys-
tem, can be found in Appendix O. Although all components of this test plan
are important, you will note that the plan is really focused around three
things:

1. The test cases
2. Metrics that will determine whether there has been testing success

or failure
3. The schedule

TEST AUTOMATION

The usual practice in software development is that the software is writ-
ten as quickly as possible and, once the application is done, it is tested
and debugged. However, this is a costly and ineffective way because the
software testing process is difficult, time consuming, and resource inten-
sive. With manual test strategies, this can be even more complicated and
cumbersome. A better alternative is to perform unit testing independent
of the rest of the code. During unit testing, developers compare the object
design model with each object and subsystem. Errors detected at the unit
level are much easier to fix; we only need to debug the code in that small
unit. Unit testing is widely recognized as one of the most effective ways to
ensure application quality; however, it is a laborious and tedious task. The
workload for unit testing is tremendous, so to perform unit testing manu-
ally is practically impossible and hence the need for automatic unit test-
ing. Another good reason to automate unit testing is that, when perform-
ing manual unit testing, we run the risk of making mistakes (Aivazis, 2000).

Besides saving time and preventing human errors, automatic unit test-
ing helps facilitate integration testing. After unit testing has removed
errors in each subsystem, combinations of subsystems are integrated into
larger subsystems and tested. When tests do not reveal new errors, addi-
tional subsystems are added to the group, and another iteration of integra-
tion testing is performed. The re-execution of a subset of tests that have
already been conducted is regression testing. It ensures that no errors are
introduced as a result of adding new modules or modification in the soft-
ware (Kolawa, 2001).

226

SOFTWARE ENGINEERING HANDBOOK

As integration testing proceeds, the number of regression tests can
grow very large. Therefore, it is inefficient and impractical to re-execute
every test manually once a change has occurred. The use of automated
capture and playback tools may prove useful in this case. They enable the
software engineer to capture test cases and results for subsequent play-
back and comparison.

Test automation can improve testers’ productivity; they can apply one
of several types of testing tools and techniques at various points of code
integration. Some examples of automatic testing tools in the market
include:

• C++Test for automatic C/C++ unit testing by ParaSoft
• Cantata++ for dynamic testing of C++ by IPL
• WinRunner for unit and system tests by Mercury Interactive

WinRunner is probably one of the more popular tools in use today
because it automates much of the painful process of testing. Used in con-
junction with a series of test cases (see Appendix O, Section 5), a big
chunk of the manual processes that constitute the bulk of testing can be
automated. The WinRunner product actually records a particular busi-
ness process by recording the keystrokes a user makes (e.g., emulates
user actions of placing an order). The QA person can then directly edit the
test script that WinRunner generates and add checkpoints and other vali-
dation criteria.

When done correctly with appropriate testing tools and strategies, auto-
mating software testing provides worthwhile benefits such as repeatability
and significant time saving. This is true especially when the system moves
into system test. Higher quality is also a result because less time is spent
in tracking down test environmental variables and in rewriting poorly writ-
ten test cases (Raynor, 1999).

Principles for Test Automation

Test automation can be applied at unit testing, one or more layers of
integration testing, and system testing (which is another form of integra-
tion). Tests should be executed soon after the code is written, before too
much code integration has occurred, so that bugs will not be carried for-
ward. When strategizing for test automation, consider automating these
tests as early as possible, as well as later in the testing cycle (Zallar,
2002).

Pettichord (2001) describes several principles that testers should
adhere to in order to succeed with test automation. These principles
include:

227

Software Testing

• Taking testing seriously
• Being careful who you choose to perform these tests
• Choosing what parts of the testing process to automate
• Being able to build maintainable and reliable test scripts
• Using error recovery

Testers need to realize that test automation is a software development
activity and so needs to adhere to standard software development prac-
tices. That is, test automation systems need to be tested and subjected to
frequent review and improvement to make sure that they are indeed
addressing the testing needs of the organization.

Because automating test scripts is part of the testing effort, good judg-
ment is required in selecting appropriate tests to automate. Not everything
can or should be automated. For example, overly complex tests are not
worth automating; manual testing is still necessary in this case.

Zambelich (2002) provides a guideline to make automated testing cost
effective. He says that automated testing is expensive and does not replace
the need for manual testing or enable you to “down-size” your testing
department. Automated testing is an addition to your testing process.
Some pundits claim that it can take between three to ten times as long (or
longer) to develop, verify, and document an automated test case than to
create and execute a manual test case. Zambelich indicates that this is
especially true if you elect to use the “record/playback” feature (contained
in most test tools) as your primary automated testing methodology. In fact,
Zambelich says that record/playback is the least cost-effective method of
automating test cases. Automated testing can be made to be cost-effective,
according to Zambelich, if some common sense is applied to the process:

• Choose a test tool that best fits the testing requirements of your orga-
nization or company. An automated testing handbook is available
from the Software Testing Institute (http://www.softwaretestinginsti-
tute.com).

• Understand that it does not make sense to automate everything. Over-
ly complex tests are often more trouble to automate than they are
worth. Concentrate on automating the majority of your tests, which
are probably fairly straightforward. Leave the overly complex tests for
manual testing.

• Only automate tests that will be repeated; one-time tests are not worth
automating.

PRACTICAL APPROACH TO AUTOMATED SOFTWARE TESTING

Isenberg (1994) explains requirements for success in automated soft-
ware testing. In order to succeed, the following four interrelated compo-
nents must work together and support one another.

228

SOFTWARE ENGINEERING HANDBOOK

• Automated testing system — it must be flexible and easy to update.
• Testing infrastructure — this includes a good bug tracking system, stan-

dard test case format, baseline test data, and comprehensive test
plans.

• Software testing life cycle — it defines a set of phases outlining what
test activities to perform and when to conduct them. These phases are
planning, analysis, design, construction, testing (initial test cycles,
bug fixes, and retesting), final testing and implementation, and post-
implementation.

• Corporate support — automation cannot succeed without the corpora-
tion’s commitment to adopting and supporting repeatable processes.

Automated testing systems should have the ability to adjust and
respond to unexpected changes to the software under test, which means
that the testing systems will stay useful over time. Some of the practical
features of automated software testing systems suggested by Isenberg are:

• Run all day and night in unattended mode
• Continue running even if a test case fails
• Write out meaningful logs
• Keep test environment up to date
• Track tests that pass, as well as tests that fail

USING AUTOMATED TESTING TOOLS

When automated testing tools are introduced, test engineers may need
to face some difficulties. Project management should be used to plan the
implementation of testing tools. Without proper management and selec-
tion of the right tool for the job, automated test implementation will fail
(Hendrickson, 1998). Dustin (1999) has accumulated a list of “automated
testing lessons learned” from his experiences with real projects and test
engineer feedback. Some are presented here:

• The various tools used throughout the development life cycle do not
integrate easily if they are from different vendors.

• Automated testing tools can speed up the testing effort; however, it
should be introduced early in the testing life cycle in order to gain
benefits.

• Duplicate information that is kept in multiple repositories is difficult
to maintain. As a matter of fact, in many instances the implementation
of more tools can result in less productivity.

• The automated testing tool drives the testing effort. Often when a new
tool is used for the first time, more time is spent on installation, train-
ing, initial test case development, and automating test scripts than on
actual testing.

• It is not necessary for everyone on the testing staff to spend his or her
time automating scripts.

229

Software Testing

• Sometimes elaborate test scripts are developed through overuse of
the testing tool’s programming language, which duplicates the devel-
opment effort. That is, too much time is spent on automating scripts
without much additional value gained. Therefore, it is important to
conduct an automation analysis and to determine the best approach
to automation by estimating the highest return.

• Automated test script creation is cumbersome. It does not happen au-
tomatically.

• Tool training needs to be initiated early in the project so that test en-
gineers have the knowledge to use the tool.

• Testers often resist new tools. When introducing a new tool to the test-
ing program, mentors and advocates of the tool are very important.

• There are expectations of early payback. When a new tool is intro-
duced to a project, project members anticipate that the tool will nar-
row the testing scope right away. In reality, it is the opposite — i.e.,
initially the tool will increase the testing scope.

CONCLUSION

Test engineers can enjoy productivity increases as a testing task
becomes automated and a thorough test plan is implemented. Creating a
good and comprehensive automated test system requires an additional
investment of time and consideration, but it is cost effective in the long
run. More tests can be executed while the amount of tedious work on con-
struction and validation of test cases is reduced.

Automated software testing is by no means a complete substitute for
manual testing. In other words, manual testing cannot be totally elimi-
nated; it should always precede automated testing. In this way, the time
and effort saved by using of automated testing can now be focused on
more important testing areas.

References

Aivazis, M., (2000). Automatic unit testing, Computer, 33, back cover.

Dustin, E. (1999) Lessons in test automation, STQE Mag., and from the World Wide Web:
http://www.stickyminds.com/pop_print.asp?ObjectId = 1802&ObjectType = ARTCO, October,
41.

Hendrickson, E. (1998). The difference between test automation failure and success, Quality
Tree Software, retrieved from http://www.qualitytree.com/feature/dbtasaf.pdf.

Isenberg, H.M. (1994) The practical organization of automated software testing, Multi-Level
Verification Conference 95, December 1994, retrieved from http://www.automated-test-
ing.com/PATfinal.htm.

Kolawa, A., (2001). Regression testing at the unit level? Computer, 34, back cover.

Pettichord, B. (2001). Success with test automation, retrieved from http://www.
io.com/~wazmo/succpap.htm.

230

SOFTWARE ENGINEERING HANDBOOK

Raynor, D.A. (1999). Automated software testing, retrieved from http://www.trainersdi-
rect.com/resources/articles/ProjectManagement/AutomatedSoftwareTestingRaynor.html.

Zallar, K. (2002). Automated software testing — a perspective, retrieved from http://www.test-
ingstuff.com/autotest.html.

Zambelich, K. (2002). Totally data-driven automated testing, retrieved from http://www.sqa-
test.com/w_paper1.html.

231

Chapter 17

The Process
of EDP Auditing

For as long as there have been computer departments there have been EDP
(electronic data processing) auditors. These were and are the people who
make sure a system does what it is supposed to do. In this chapter we dis-
cuss a methodology for EDP auditing using a Web-based system as an
example.

In the “Wild West” days of the Internet, companies were “plopping” sys-
tems online faster than you could say “dot-com crash and burn.” Now that
those heady days appear to be over, smart organizations are beginning to
think of their Web-based systems in the same terms as they do their more
conventional systems.

In their quest toward increasing market share while lowering costs,
these organizations are finally delving into the intricacies of the Web-based
system to scrutinize such things as response time/availability, accessibil-
ity, ergonomics, logistics, customer service, and security and privacy.

This chapter provides the IT manager with a series of checklists that can
be used to audit the Web-based system and easily modified to audit con-
ventional systems. Audits should be done regularly, with the results used
to fine-tune the system. Ultimately, think of these checklists as a set of
issues that can be considered “food for thought.”

ORGANIZING YOUR AUDIT

It is recommended that you hire an external consulting firm to perform
this critical effort; however, your EDP audit department, with adequate
training, would be a sufficient alternative. The reason why I much prefer an
external auditor is that “neutral third parties” are usually more objective
because they are not stakeholders and are not friendly with stakeholders.
There is nothing like an unbiased opinion.

232

SOFTWARE ENGINEERING HANDBOOK

At a minimum, the auditor should obtain the following documentation:

• A diagram of the application system. A Web-based system is not unlike
any other computer system. It has processes (e.g., process credit
card) and entities (e.g., airline ticket) and shows the flow of data be-
tween the entities via the processes. Exhibit 17-1 shows an excerpt
from a typical data-flow diagram.

• A network diagram. Most modern computer systems are developed us-
ing one of several traditional network architectures (i.e., two-tier,
three-tier, etc.). Add EDI or Internet connectivity and you have quite a
sophisticated environment. The auditor will need a roadmap to this
environment to be able to determine any connectivity issues.
Exhibit 17-2 demonstrates what a simple network diagram should look
like.

• Staff hierarchy diagram. A complete list, preferably a diagram that
shows direct reports, along with phone numbers and e-mail addresses
is required. A good starting point is shown in Exhibit 17-3.

One would think that a modern organization would have these three
items readily available. Think again. In my own experience, few of the orga-
nizations that I audit possess all three of these required items. Few possess
even two.

If these are not available to the auditor, my recommendation is to start
the audit effort with a series of brainstorming sessions in which at least the
two diagrams are created. Even if diagrams are available, one or more
brainstorming sessions are still advisable. This provides the auditors a
“walk through” where system and network architects can be questioned
directly and invariably speeds up the audit process.

Once the preliminary step has been completed (i.e., understanding the
system), the auditor can proceed through his or her paces in a logical and
methodical manner. The following sections, presented as a series of check-
lists, represent areas of the audit that can be performed in any order.

The checklist is actually a series of questions or areas to be studied. The
responses to these questions form the data collected for input to the final
audit report. This report will contain problems found and issues over-
looked, as well as recommendations for improvement. For example, the
auditor might find that the company has done inadequate security testing.
The recommendation here might be to bring in a “white hat” to perform
penetration as well as intrusion testing. Alternatively, the audit might
uncover a deficiency in fulfillment processes the company follows to ship
products to the customer. Again, the audit report will make recommenda-
tions for improvement.

We will begin at the beginning.

233

The Process of EDP Auditing

Exhibit 17-1. A Data Flow Diagram for a Video Rental System

10

Process Payment
to Vendor

Invoice

Customer

Customer

Store Manager

1

Get Customer
Membership
Information

2

Create New
Customer Account

Not a Member
Account

Information

3

Verify Customer
Account Status

Pastdue
Customer Won't Pay

Account
Not Valid

4

Scan Products

5

Process Payment

Payment Okay

Rental or
Purchase
Request

Customer DataD1

InventoryD2

Product History
Data

D3

Customer DataD1

6

Check In-stock
Status

Product
Check

Request

InventoryD2

Store Manager

OrdersD4

Vendor

7

Order New
Releases and

Other Products

Product History
Data

D3

8

Move Old / Low
Usage Rentals

To Purchase Area

InventoryD2

Products
Ordered

InventoryD2

OrdersD4

OrdersD4

9

Process Received
Products

234

SOFTWARE ENGINEERING HANDBOOK

SYSTEMIC AUDIT

It is surprising that many companies spend millions of dollars on adver-
tising budgets to draw more “eyeballs” to their sites but never factor in
whether or not the projected additional load can be supported by the
current system configuration. A systemic audit looks at such things as
response time, network architecture, and linkages.

Exhibit 17-2. A Simple Network Diagram

Cat-5 Dist. Lines

Existing Data
Infrastructure

Comm-Link
Satellite Dish

HubHub
Server

To Remote Bldgs.

PBX

SwitchRouter

Internet

Server

Workstation

WorkstationWorkstation Workstation

Connection to
Workstation

Existing Phone
Cables

235

The Process of EDP Auditing

Response Time

Measurables in this section include actual response time versus pro-
jected response time. In spite of advances in supplying high-bandwidth
connections to consumers, the vast majority of PCs are connected to the
Web with little more than a 56-Kb modem and good intentions. This means
that sites that are highly graphical or use add-ons such as Macromedia
Flash will appear slow to download.

Given the wide variety of modem types, auditors should test the
response time of the site using different scenarios such as:

• Using a DSL or cable modem connection
• Using a 56-Kb connection
• Using a 28-Kb connection
• At random times during the day, particularly 9 a.m (start of work day)

and 4 p.m. (kids home from school)

Web sites such as netmechanic.com, a subscription service, can assist
in this endeavor by checking for slow response time directly from their
Web sites.

Broken Links

One of the top five irritants that Web surfers report is clicking on a link
and getting a “nonexistent page” error message. This often results from
system maintenance where Web programmers move the actual page but
neglect to modify the link to that page. Unfortunately, this is a frequent
occurrence. One of a number of tools, including netmechanic.com, can
assist in tracking down these broken links.

Exhibit 17-3. An Initial Staff Hierarchy Diagram

Max Horne
Information Systems

Project Leader

Ridley Scott
Hardware Technician

Michael Mann
Software Specialist

Jon Hall
Human Resources

Project Leader

Penelope Sutton
Administrative

Assistant

John Woo
Accounting

Project Leader

Ron Howard
Finance

Sam Dutkin
Project Manager

John Carpenter
Technical Services

Project Leader

Stanley Kubrick
Training Coordinator

236

SOFTWARE ENGINEERING HANDBOOK

Database Audit

Originally the Web was a simple place consisting mostly of text; nary a
database was in sight. Today, the Web is filled to the brim with databases.
The addition of databases makes the audit process even more complex.
Because programming code is used to query, and perhaps even calculate,
against that database, it is imperative that random checks be performed in
an effort to pinpoint database query and calculation errors.

Essentially, auditing database access is similar to traditional IT (infor-
mation technology) QA (quality assurance) process. One or more scripts
must be written that will take that database through its paces. For example,
if a database program calculates insurance rates based on a zip code, then
that calculation should be duplicated manually or in a different parallel
automated fashion to ensure that the result is correct. The same can be
said for information that visitors to the site enter via a form. Is the informa-
tion entered the same as that sent to the database?

Network Audit

The network, including node servers, should be tested to see if it is
effectively configured to provide optimum response. It is not uncommon to
find the Web development group separated from the traditional IT develop-
ment group. This means that one frequently finds network configurations
designed inappropriately for the task at hand. For example, a site attract-
ing tens of thousands of hits a day would do well to run a multitude of Web
servers rather than just one.

Most organizations use one or more ISPs (Internet service providers) to
host their sites. The auditor should carefully gauge the level of service pro-
vided by these ISPs as well.

SECURITY AND QUALITY

No one topic is discussed more in the press than Internet security. From
“love bug” viruses to wily hackers breaking into Western Union, security is
an important component of the audit.

It is worthwhile to keep in mind that the auditor is not a security auditor,
nor should he be. His role is to conduct a top level assessment of the secu-
rity of the Internet- or Intranet-based system and, if warranted, recommend
the services of a security firm well versed in penetration and intrusion test-
ing. The entire issue of security is wrapped up within the more comprehen-
sive issue of quality. This section will address both issues.

237

The Process of EDP Auditing

Review the Security Plan

All organizations must possess a security plan in writing. If they do not
have this then they are severely deficient. The plan, at a minimum, should
address:

• Authentication. Is the person who he says he is.
• Authorization. What users have what privileges; in other words, “who

can do what?”
• Information integrity. Can the end user maliciously modify the infor-

mation?
• Detection. Once a problem is identified, how is it handled?

Passwords

Passwords are the first shield of protection against malicious attacks
upon your eBusiness. Questions to ask in this section include:

• Is anonymous login permitted? Under what conditions?
• Is a password scanner periodically used to determine if passwords

can be hacked? Examples of this sort of utility include L0phtcrack.com
for NT and www.users.dircon.co.uk/~crypto for UNIX.

• How often are passwords changed?
• How often are administrative accounts used to log on to systems?

Passwords are hard to remember. This means that, in order to gain en-
trance to systems quickly, administrative and programming systems
people often create easy-to-remember passwords such as “admin.”
These are the first passwords that hackers try to gain entrance into a
system.

Staff Background

Administrative network staff must have a security background as well as
a technical background. Those wishing to train their staffs would do well to
look into the security skills certification program provided by www.sans.org.

Connectivity

Today’s organization may have many external connections (i.e., part-
ners, EDI, etc.), each of which the auditor should examine:

• The data passed between organizations: is what the company sent re-
ceived correctly?

• The security of the connection: how is the data transmitted? Is it re-
quired to be secure? Is encryption used?

• If encryption is indeed used, it must be determined whether an appro-
priate algorithm is deployed.

238

SOFTWARE ENGINEERING HANDBOOK

The Product Base

All organizations invest in and then use a great deal of third-party soft-
ware. As publicized by the press, much of this software — particularly
browsers and e-mail packages, but word processing packages as well —
contain security holes that, left unpatched, put the organization at risk.
Therefore, for each software package used (for Net purposes):

• Check for publicized security holes.
• Check for availability of software patches. Always upgrade to the lat-

est version of software and apply the latest patches.
• Check to see if patches have been successfully applied.
• Check security software for security holes. Security software, such as

a firewall, can contain security holes just like any other type of soft-
ware. Check for updates.

In-House Development

The vast majority of Web-based software is written by in-house program-
ming staff. When writing for the Web it is important to ensure that your
own staff does not leave gaping holes through which malicious outsiders
can gain entrance. There are a variety of programming “loopholes” that
open the door wide to hackers:

• In programming parlance, a “GET” sends data from the browser (cli-
ent) to the server. For example, look at the query string below:

http://www.site.com/process_card.asp?cardnumber = 123456789

All HTTP (hypertext transport protocol) requests get logged as
straight text into the server log as shown below:

2000–09–15 00:12:30 — W3SVC1 GET/process_card.asp

cardnumber = 123456789 200 0 623 360 570

80 HTTP/1.1 Mozilla/4.0+(compatible;+5.01;+Windows+NT)

Not only is the credit card number clearly visible in the log, but it
might also be stored in the browser’s history file, thus exposing
this sensitive information to someone else using the same machine
later. Security organizations recommend utilization of the POST
method rather than the GET method for this reason.

• Are the programmers using “hidden” fields to pass sensitive informa-
tion? An example of this is relying on hidden form fields used with
shopping carts. The hidden fields are sometimes used to send the
item price when the customer submits the form. It is rather easy for a
malicious user to save the Web page to his own PC, change the hidden
field to reflect any price he wants, and then submit it.

• One way to combat the problem discussed in the previous item is to
use a hash methodology. A hash is a function that processes a

239

The Process of EDP Auditing

variable-length input and produces a fixed-length output. Because it is
difficult to reverse the process, the sensitive data transmitted in this
matter is secured. The auditor is required to assess the utilization of
this methodology given any problems he might find in assessing the
previous item.

• Is sensitive data stored in ASP or JSP pages? Microsoft’s Internet infor-
mation server (IIS) contains a number of security flaws that, under
certain circumstances, allows the source of an ASP or JSP page to be
displayed rather than executed. In other words, the source code is vis-
ible to anyone browsing that particular Web site. If sensitive data,
such as passwords, is stored in the code then they will be displayed as
well. The rule here is not to hardcode any security credentials into the
page.

• Are application-specific accounts with rights identified early in the de-
velopment cycle? There are two types of security. One is referred to as
“declarative” and takes place when access control is set from outside
the application program. “Programmatic” security occurs when the
program checks the rights of the person accessing the system. When
developing code for the Web, it is imperative that the rights issue be
addressed early in the development cycle. Questions to ask include:
— How many groups will be accessing the data?
— Will each group have the same rights?
— Will you need to distinguish between different users within a group?
— Will some pages permit anonymous access while others enforce au-

thentication?
• How are you dealing with cross-site scripting? When sites accept user-

provided data (e.g., registration information, bulletin boards), which
is then used to build dynamic pages (i.e., pages created on the spur of
the moment), the potential for security problems is increased 100-
fold. No longer is the Web content created entirely by the Web design-
ers; some of it now comes from other users. The risk comes from the
existence of a number of ways in which text can be entered to simulate
code. This code can then be executed as any other code written by the
Web designers — except that it was written by a malicious user in-
stead. Javascript and html can be manipulated to contain malicious
code, which can perform a number of activities such as redirecting us-
ers to other sites, modifying cookies, etc. More information on this
topic can be obtained from CERT’s Website at http://www.cert.org/ad-
visories/CA-2000–02.html and http://www.cert.org/tech_tips/
malicious_code_mitigation.html.

• Have you checked Wizard-generated or sample code? Often program-
mers “reuse” sample code they find on the Web or make use of gener-
ated code from Web development tools. Often the sample or
generated code contains hardcoded credentials to access databases,

240

SOFTWARE ENGINEERING HANDBOOK

directories, etc. The auditor will want to make sure that this is not the
case in the code being audited.

• Are code reviews performed? Nothing is worse than the lone program-
mer. Many of the problems discussed in the previous sections can be
negated if the code that all programmers write is subject to a peer re-
view. Code reviews, a mainstay of traditional quality-oriented pro-
gramming methodology, are rarely done in today’s fast-paced Internet
environment. This is one of the reasons why so many security break-
ins occur.

• It is necessary to conduct a Web server review. In order to run pro-
grams on the Web, many organizations use the CGI (common gateway
interface) to enable programs (i.e., scripts) to run on their servers.
CGI is not only a gateway for your programming code (i.e., via data col-
lections forms) but also a gateway for hackers to gain access to your
systems. Vulnerable CGI programs present an attractive target to
intruders because they are easy to locate and usually operate with the
privileges and power of the Web server software. The replacement of
Janet Reno’s picture with that of Hitler on the Department of Justice
Web site is an example of this sort of CGI hole. The following questions
must be asked of developers using CGI:
— Are CGI interpreters located in bin directories? This should not be

the case because you are providing the hacker with all the capabil-
ities he needs to insert malicious code and then run it directly from
your server.

— Is CGI support configured when not needed?
— Are you using remote procedure calls (RPC)? These calls allow pro-

grams on one computer to execute programs on a second comput-
er. Much evidence indicates that the majority of distributed denial
of service attacks launched during 1999 and early 2000 were execut-
ed by systems that had RPC vulnerabilities. It is recommended,
wherever possible, to turn off or remove these services on ma-
chines directly accessible from the Internet. If this is not possible,
then at least ensure that the latest patches to the software are in-
stalled; these mitigate some of the known security holes.

— Is IIS used? This is the software used on most Web sites deployed on
Windows NT and Windows 2000 servers. Programming flaws in IIS
remote data services (RDS) are used by hackers to run remote com-
mands with administrator privileges. Microsoft’s Web site discuss-
es methodologies to use to combat these flaws.

Testing

Pre-PC testing was a slow and meticulous process. Today’s faster pace
means that inadequate testing is performed by most organizations. In

241

The Process of EDP Auditing

addition, many organizations forego security testing entirely. In this sec-
tion of the audit, we determine whether adequate security is performed.

• Has penetration testing been done? This testing is used to assess the
type and extent of security-related vulnerabilities in systems and net-
works, test network security perimeters, and empirically verify the
resistance of applications to misuse and exploitation. It is possible
that system administrators are sophisticated enough to be able to
utilize the tool sets available to scan the systems for vulnerabilities;
however, a whole host of “white hat” hacker security consulting firms
have sprung up over the past several years and these people are
recommended.

• Has intrusion testing been done? Many software tools are available on
the market today that “monitor” systems and report on possible intru-
sions. These are referred to as intrusion detection systems (IDS). In
this section of the audit, we determine whether an IDS is used and, if
so, how effectively.

• Is there a QA (quality assurance) function? Although QA departments
have been a traditional part of the IT function for decades, many new-
er pure-play Internet companies seem to ignore this function. In this
section, the auditor will determine if the QA function is present; if it is,
then it will be reviewed.

Reporting

Logging of all logins, attempted intrusions, etc. must be maintained for
a reasonable period of time. In this section, the auditor will determine if
these logs are maintained and, if so, for how long.

Backup

In the event of failure it is usual that the last backup be used to restore
the system. In this section, the auditor will determine the frequency of
backups and whether this schedule is reasonable.

ERGONOMICS

At this stage the auditor becomes involved in more abstract issues. In
the last section on security, we could be very specific about what a system
requires. In the section on ergonomics we need to be more subjective.

To achieve this end will require the auditor to meet with the system
developers and with the end users. At times, these end users will be cur-
rent or potential customers of the system; therefore, it might be necessary
to develop surveys and perform focus groups. The goal here is nothing less
than determining a “thumbs up” or “thumbs down” on the Web-based sys-
tem vis-à-vis other Web-based systems.

242

SOFTWARE ENGINEERING HANDBOOK

Navigability

Navigation means determination of whether or not the site makes sense
in terms of browsing it.

• How easy is it to find something on this site? If looking for a specific
product, how many pages does one need to surf through to find it?

• Is there a search engine? If so, review for correctness and complete-
ness. Many sites do not have search engines (in this instance we are
talking about a search engine to search the site only, rather than the
Internet). If the Web site exhibits depth (i.e., many pages), it becomes
rather difficult to navigate around it. If a search engine is available, the
auditor must check to see if what is being searched for can be correct-
ly found.

• Is there a site map? If so, review for correctness and completeness.
While not required and not often found, site maps are one of the most
useful of site navigation tools. If available, the auditor will determine
correctness of this tool.

• Are back and forward (or other) buttons provided? What tools are pro-
vided to the end user for moving backward and forward within the
site? Are the browser’s back and forward buttons the only navigation
tools — or did the Web designers provide fully functional toolbars? If
so, do these toolbars work on all pages? We have found that, of those
firms audited, 10 percent of the pages pointed to by the toolbars can-
not be found.

• Are frames used? If so, do toolbars and other navigation tools still
work?

Usability

In the end it comes down to one question really: “How usable is the Web
site?” In this section we ask:

• How easy is it to use this site? Although the auditor might have an
opinion that might well be valid, here we resort to surveys and focus
groups to determine the answer.

• How useful is this site?

Content

In this section we assess the value of the information contained within
the site compared to competitive sites.

• Is content updated regularly?
• Is content relevant?
• Do visitors consider content worthwhile? The auditor will use survey

techniques to determine the answer to this question.

243

The Process of EDP Auditing

• How does content compare with competitors’? The auditor will use
survey techniques to determine the answer to this question.

Search Engine

The use of search engines as a way to find a site has declined in popular-
ity, but it is still an important marketing vehicle on the Web. In this section
the auditor will determine where the site places when performing a search
using the top ten search engines.

CUSTOMER SERVICE

The Web is a doorway to the company’s business; however, it is just one
part of the business. Tangential services must be audited as well. Customer
service is one of the biggest problem areas for Net firms. There have been
many well-publicized instances of shoddy customer service. It is in the
company’s best interests, therefore, to assess customer service within the
firm vis-a-vis its Web presence.

Accessibility

How easy is it for your customers to reach you?

• Review e-mail response. How long does it take you to respond to a cus-
tomer e-mail?

• Review telephone response. How long does a customer wait on hold
before a person answers his or her query?

E-Commerce

If your site doubles as an e-commerce site (i.e., you sell goods or ser-
vices from your site), you need to assess the quality of this customer
experience.

• Check shopping experience. Using a “mystery shopper” approach, the
auditor will endeavor to make routine purchases using the Web site.
Determine:
— Is the shopping cart correct (i.e., are the goods you purchased in

the shopping cart)?
— Does the e-commerce software calculate taxes properly?
— Does the e-commerce software calculate shipping charges properly?

• Check the fulfillment experience:
— Is a confirmation e-mail sent to the purchaser?
— Is the return policy carefully explained?
— How quickly does the company refund money on returns?

244

SOFTWARE ENGINEERING HANDBOOK

Privacy

At a minimum, the auditor must review the company’s privacy policy
statement. He or she should then review the data flow to determine if the
privacy policy is adhered to.

LEGALITY

The digital age makes it easy to perform illegal and potentially litigious
acts. From a corporate perspective, this can be anything from a Web
designer illegally copying a copyrighted piece of art to employees down-
loading pornography.

Copyright

Check the content ownership of text on your site. It is quite easy to copy
text from one site to another. Ensure that your copy is completely original
or that you have the correct permissions to reprint the data. In the same
way, check image ownership.

Employee Web Usage

In a number of court cases employees have claimed harassment when
other employees within the organization downloaded and e-mailed por-
nography. The company is responsible for the actions of its employees;
therefore, it is highly recommended that the company:

• Create a policy memo detailing what can and cannot be done on the In-
ternet (include e-mail). Make sure all employees sign and return this
memo. Use tools such as those on surfcontrol.com to monitor employ-
ee Net usage.

• Determine whether any e-mail monitoring software is used and deter-
mine its effectiveness.

CONCLUSION

Auditing IT systems is an important activity. It is surprising, then, that so
few companies take the time and effort to perform this necessary activity.
EDP auditing not only pinpoints potentially troublesome technical areas
but it can also serve as reinforcement for stakeholder support by identify-
ing human factor issues as well.

245

Chapter 18

The Management
of Software
Maintenance

Maintenance is often called the enigma of software. Enormous amounts of
dollars are spent on it but little management attention is given to it. Soft-
ware maintenance presents a real conundrum — hardware deteriorates
because of lack of maintenance, whereas software often deteriorates
because of the presence of maintenance.

Maintenance is also the most expensive component of the software life
cycle, as shown in Exhibit 18-1. IT departments spend from 75 to 80 percent
of their budget (Guimaraes, 1983) and time on the maintenance process of
system development. In addition, the cost of fixing an error rises dramati-
cally as the software progresses through the life cycle. This amply demon-
strates that maintenance costs more than any other phase and also that
maintenance costs (per fixing the error) are enormous.

Once a new system is implemented, the real work begins for most IT
departments. As users utilize the system, errors are discovered, and
changes are requested. As systems have become more widely used within
critical departments of the organization, the maintenance process has
taken on a more important role. The management of systems maintenance
has become perhaps the most critical phase of systems development.

THE MAINTENANCE PROCESS

As the new system is implemented and users begin to work with it,
errors occur or changes are needed. Just as in the development of a new
system, maintenance requires that steps be taken carefully in making
changes or fixing errors. In the event of an error, this can be even more crit-
ical. Each step of the maintenance process is similar to steps in the sys-
tems development life cycle (Curtis et al., 2000) as seen in Exhibit 18-2.
This is a logical extension of the development process because changes
made to the system can affect the whole system and need to be controlled
carefully.

246

SOFTWARE ENGINEERING HANDBOOK

The first step in the process is to obtain a maintenance request from a
user. Many organizations use a system service request form (see Appendi-
ces A and B) that spells out the problem or need. Once the request has
been received, the requests can be transformed into changes that can then
be used to make design changes. After the changes are designed and
tested, the changes can be implemented.

Exhibit 18-3 is an overview of system maintenance. Both the customer
and maintainer are interacting with his or her own documentation, i.e., user
manual and maintainer manual. The customer poses questions, problems,

Exhibit 18-1. The High Cost of Maintenance

Exhibit 18-2. The Maintenance Life Cycle Compared to the Development
Life Cycle

5 %

5 %

5 %

80 %

5 %

Maintenance

accounts for 75-80%

of the systems

development effort

The remaining pieces

are:

Analysis

Design

Coding

Testing

SDLC

Project
Identification and

Selection

Project Initiation
and Planning

Analysis

Requests into Changes
Obtain

Maintenance
Requests

Maintenance Process

Logical Design

Design Changes

Physical Design Implementation

Implementing
Changes

247

The Management of Software Maintenance

and suggestions to the maintainer who, in turn, gives the answers, which
are filtered through a change control process and back into the system.

TYPES OF MAINTENANCE

Categorizing the types of maintenance required is helpful in organizing
and prioritizing the requests of users. Software maintenance is more than
fixing mistakes. Maintenance activities can be broken down into four sub-
activities.

• Corrective maintenance
• Adaptive maintenance
• Perfective maintenance or enhancement
• Preventive maintenance or reengineering

Corrective Maintenance

Corrective maintenance involves fixing bugs or errors in the system as
they are discovered. This maintenance is the type most users are familiar
with because these problems are the most irritating to users. These usually
receive top priority because they can paralyze the organization if not iden-
tified and fixed. Corrective maintenance consumes approximately 17 per-
cent of the maintainer’s time (Lientz and Swanson, 1978). Major skills
required for corrective maintenance are:

• Good diagnostic skills
• Good testing skills
• Good documentation skills

Exhibit 18-3. An Overview of System Maintenance

Questions

Problems

Suggestions

Customer

Maintainer

Analysis Design Code System

User
Manual

Maintenance
manual

Change
control

Answers

Fixes

Improve-
ments

248

SOFTWARE ENGINEERING HANDBOOK

Adaptive Maintenance

Adaptive software maintenance is performed to make a computer pro-
gram usable in a changed environment. For example, if the computer on
which the software runs is going to use a new operating system, the system
requires some adaptive tweaking. Adaptive maintenance is typically part
of a new release of the code or part of a larger development effort. Approx-
imately 18 percent of software maintenance is adaptive (Lientz and Swan-
son, 1978).

Perfective Maintenance

This is the act of improving the software’s functionality as a result of
end-user requests to improve product effectiveness. This includes

• Adding additional functionality
• Making the product run faster
• Improving maintainability

This is the biggest maintenance time consumer. Approximately 60 percent
of software maintenance is spent on perfective maintenance (Lientz and
Swanson, 1978).

Preventive Maintenance

This refers to performing “premaintenance” in order to prevent system
problems; it is different from corrective maintenance, which is performed
to correct an existing problem. This is like maintaining a car in which you
change the oil and air filter, not in response to some problem but to prevent
a problem from occurring in the first place.

MAINTENANCE COSTS

As computers and their systems become more widely used, the need for
maintenance grows. As these same systems age, maintenance becomes
more critical and time consuming. Since the early 1980s, it is estimated that
maintenance costs have skyrocketed from 40 percent of the IT budget to 75
to 80 percent (Exhibit 18-1). The reason for these increases stems from
once newly designed systems aging. This shift from development to main-
tenance is a natural occurrence as organizations avoid the high cost of new
systems and struggle to maintain their current systems.

Many factors affect the cost in time and money expended on system
maintenance. One of the most costly is design defects. The more defects in
a system, the more time is spent identifying and fixing them. If a system
has been designed and tested properly, most defects should have been
eliminated, but in the case of poor design or limited testing, defects can
cause system downtimes that cost the organization in lost efficiency and
perhaps sales.

249

The Management of Software Maintenance

The number of users can also affect the cost of system maintenance.
The more users, the more time will be spent on changes to the system.
More importantly, the more platforms the system is installed on, the higher
the cost of maintenance. If a single system needs a change, then the time it
takes to change the system is limited, but if that system resides on plat-
forms across the country, e.g., in many branch offices of corporations, then
the cost is increased significantly.

The quality of the documentation can also affect the overall cost of
maintenance. Poor documentation can result in many lost hours searching
for an answer that should have been explained in the documentation
(Lientz and Swanson, 1981). The documentation is a type of road map to
the system; when the map is well defined, finding your way through the sys-
tem and understanding it become much easier.

The quality of the people and their skill level can also cost an IT depart-
ment many wasted hours. An inexperienced or overloaded programmer
can increase the cost of maintenance in two ways. First he or she can waste
hours learning on the job at the IT department’s expense. Second, a pro-
grammer overwhelmed with projects, may skip steps in the maintenance
process and, in turn, make mistakes that cost time and money to fix.

The tools available to maintenance personnel can save many hours of
work. Using automation tools such as CASE tools, debuggers, and others
can help the programmer pinpoint problems faster or make changes more
easily.

The structure of the software can also contribute to maintenance costs
(Gibson, 1989). If software is built in a rational and easy-to-follow manner,
making changes will be much easier and thus much faster, saving time and
resources. Software maintenance costs can be reduced significantly if the
software architecture is well defined and clearly documented, and creates
an environment that promotes design consistency through the use of
guidelines and design patterns (Hulse et al., 1989).

A MODEL FOR MAINTENANCE

Harrison and Cook have developed a new model of software mainte-
nance based upon an objective decision rule, which determines whether a
given software module can be effectively modified or if it should be rewrit-
ten. Their take is that completely rewriting a module can be expensive.
However, it can be even more expensive if the module’s structure has been
severely degraded over successive maintenance activities. A module that
is likely to experience significant maintenance activity is called “change
prone.” Their paper suggests that early identification of change-prone
modules through the use of change measures across release cycles can be
an effective technique in efficiently allocating maintenance resources.

250

SOFTWARE ENGINEERING HANDBOOK

In maintenance requests for nonchange-prone modules, the process
flow is as follows:

Analyze code and identify change →
Implement change and update documentation →
Apply metric analysis →
Compare with baseline →
Check to see if it exceeds the threshold →
If yes, then declare module to be “change prone;”

otherwise, declare module to be non-change prone.

The process for maintenance requests for a change-prone module is as
follows:

Identify the highest level artifact affected by the request →
Regenerate artifact →
Identify artifacts that can be reused →
Iterate through “development” →
Declare module to be non-change prone.

MANAGING MAINTENANCE PERSONNEL

As systems age and demand increases for maintenance personnel, there
has been a loud debate over just who should be doing the maintaining.
Should it be the original developers? Or should it be a separate mainte-
nance department? Many have argued that the people who developed the
system should maintain it because they will best understand the system
and be better able to change it (Swanson, 1990). This logic is correct but
difficult to fulfill because developers want to keep building new systems
and consider maintenance a less desirable function. IT professionals view
maintenance as fixing someone else’s mistakes. One solution to this prob-
lem that has been tried recently involves rotating the IT personnel from
development to maintenance and back to allow everyone to share in the
desirable as well as undesirable functions of the department.

MEASURING EFFECTIVENESS

An important part of managing maintenance is to understand and mea-
sure the effectiveness of the maintenance process. As a system is imple-
mented, service requests may be quite high as bugs are worked out and
needs for change are discovered. If the maintenance process is operating
properly an immediate decrease in failures should be seen (Exhibit 18-4).
Good management of maintenance should include recording failures over
time and analyzing these for effectiveness. If a decrease is not noticed, the
problem should be identified and resolved.

251

The Management of Software Maintenance

Another measure of success of the maintenance process is the time
between failures. The longer the time between failures, the more time can
be spent on improving the system and not just fixing the existing system
(Lientz, 1983). Failures will happen, but more costly is the time fixing even
the simplest failure.

Recording the type of failure is important to understanding how the
failure happened and can assist in avoiding failures in the future. As this
information is recorded and maintained as a permanent record of the sys-
tem, solutions can be developed that fix the root cause for a variety of
failures.

CONTROLLING MAINTENANCE REQUESTS

As problems arise or the need for change is discovered, the flow of these
requests must be handled in a methodical way. Because all requests are
not equal and they arrive at the project manager’s desk at various times, a
system has been developed by most IT departments. This system provides
a logical path for the approval of requests and prioritizes and organizes
those approved. The project manager has the job of categorizing the
requests and passing them on to the “priority board” that decides if the
request is within the business model and what, if any, priority to give the
change. As decisions are made by the board, they are passed back to the
project manager for action. The project manager then reports the decision
to the user and acts on the change based on the priority given.

The type and severity of change help decide what priority it is given. If
the change is important enough, it may be placed at the top of the queue
for immediate action. If several changes occur in a single module a batch
change may be requested. A batch change involves making changes to a
whole module at once to avoid working on the same module several times.
This also allows users to view the changes as a single update that may
change the use of a module through screen changes or functionality.

Exhibit 18-4. Normal Distribution of Failures Following Implementation

Failures

Implementation

252

SOFTWARE ENGINEERING HANDBOOK

The queue of changes is a valuable tool in controlling work that needs to
be done. Items high in the queue receive the immediate attention they
deserve; those of lesser importance may never be acted on due to a change
in needs or a new system that solves the problem.

CONCLUSION

Managing system maintenance requires that steps be taken similar to
the development of new systems. System maintenance is in many ways an
extension of the system development life cycle and involves similar steps
to ensure that the system is properly maintained. As a new system is imple-
mented, system maintenance is required to fix the inevitable errors and
track them for future use. As a system ages and changes are requested, sys-
tem maintenance has the job of categorizing, prioritizing, and implement-
ing changes to the system. As these changes are made, the system librarian
has the very important job of controlling the integrity of the system. The
proper management of system maintenance is vital to the continued suc-
cess of the system. A well managed systems maintenance department can
save time and money by providing an error-free system that meets the
needs of the users it serves.

 References

Curtis, G., Hoffer, J., George, J., and Valacich, S. (2000). Introduction to Business Systems Analy-
sis, Pearson Custom Publishing, Boston.

Gibson, V. and Senn, J. (1989). System Structure and Software Maintenance Performance, ACM
Press, New York.

Guimaraes, T. (1983). Managing Application Program Maintenance Expenditures, ACM Press,
New York.

Exhibit 18-5. Change Request Flow

Priority Board

Decision

Submit Request

Request Change

Prioritize and
Catagorize

Project Manager

User

Change Order

Decision Programmer

253

The Management of Software Maintenance

Harrison, W. and Cook, C. Insights on improving the maintenance process through software
measurement. http://www.cs.pdx.edu/~warren/Papers/CSM.htm.

Hulse, C., Edgerton, S., Ubnoske, M., and Vazquez, L. (1999). Reducing Maintenance Costs
through the Application of Modern Software Architecture Principles, ACM Press, New York.

Lientz, B. (1983). Issues in Software Maintenance, ACM Press, New York.

Lientz, B.P. and Swanson, E.B. (1978). Characteristics of application software maintenance,
Commn. ACM, 21, 466–481.

Lientz, B.P. and Swanson, B. (1981). Problems in Application Software Maintenance, ACM Press,
New York.

Swanson, E. (1990). Departmentalization in Software Development and Maintenance, ACM
Press, New York.

This page intentionally left blank

255

Chapter 19

The Science of
Documentation

The one thing that software developers hate to do is to document their pro-
grams and their systems. Therefore, it is understandable that software
documentation is the one of the most neglected areas in information tech-
nology. However, documentation is one of the most important components
of systems development. Without adequate documentation, the system
can be neither utilized efficiently nor maintained properly.

WHAT EXACTLY IS DOCUMENTATION?

According to Ambler (2002), a document is any artifact external to
source code whose purpose is to convey information in a persistent man-
ner; documentation includes documents and comments in source code. A
model is an abstraction that describes one or more aspects of a problem or
a potential solution.

All professionals in the field agree that documentation promotes soft-
ware quality. There are numerous, well-documented reasons for this. David
Tufflye, a consultant who specializes in producing high-quality documenta-
tion to a predefined standard, says that consistent, accurate project docu-
mentation is known to be a major factor contributing to information sys-
tems quality. He goes on to say that document production, version control,
and filing are often not performed, contributing to a higher number of soft-
ware defects that impact the real and perceived quality of the software, as
well as leading to time and expense spent on rework and higher mainte-
nance costs (Tufflye, 2002).

Marcello Alfredo Visconti proposes a software system documentation
process maturity model that is consistent with — and runs in conjunction
with — the Software Engineering Institute’s (SEI) software process and
capability maturity model. He argues that one of the major goals of soft-
ware engineering is to produce the best possible working software along
with the best possible supporting documentation.

Decades’ worth of empirical data shows that software documentation
processes and products are key components of software quality. These

256

SOFTWARE ENGINEERING HANDBOOK

studies show that poor-quality, out-of-date, or missing documentation is a
major cause of errors in future software development and maintenance
(Visconti, 1993). For example, the majority of defects discovered during
integration testing are design and requirements defects, e.g., defects in
documentation that were introduced before any code was written

Visconti’s four-level documentation maturity model provides the basis
for an assessment of an organization’s current documentation process and
identifies key practices and challenges to improve the process. The four-
level enhanced model appears in Exhibit 19-1.

Exhibit 19-1. Visconti’s Four-Level Documentation Maturity Model

Level 1
Ad hoc

Level 2
Inconsistent

Level 3
Defined

Level 4
Controlled

Keywords Chaos; variability Standards
check-off list;
inconsistency

Product assess-
ment; process
definition

Process assess-
ment; mea-
surement con-
trol; feedback;
improvement

Succinct
Description

Documentation
not a high prior-
ity

Documentation
recognized as
important and
must be done.

Documentation
recognized as
important and
must be done
well.

Documentation
recognized as
important and
must be done
well consis-
tently

Key
Practices

Ad-hoc process;
documentation
not important

Inconsistent
application of
standards

Documentation
quality assess-
ment; docu-
mentation
usefulness;
assurance
process defini-
tion

Process quality
assessment
and measures

Key
Indicators

Documentation
missing or out of
date

Standards
established
and use of
check-off list

SQA-like prac-
tices

Data analysis
and improve-
ment mecha-
nisms

Key
Challenges

Establish docu-
mentation stan-
dards

Exercise qual-
ity control
over content;
assess docu-
mentation
usefulness;
specify
process

Establish pro-
cess measure-
ment; incorpo-
rate control
over process

Automate data
collection and
analysis; con-
tinually striv-
ing for optimi-
zation

Source: Cook, C.R. and Visconti, M. (2000). Software system documentation process maturity
model. http://www.cs.orst.edu/~cook/doc/Model.htm.

257

The Science of Documentation

Key practices as defined by Cook and Visconti (2000) are:

1. Creation of basic software documents
— Consistent creation of basic software development documents
— Consistent creation of basic software quality documents

2. Management recognition of importance of documentation
— Documentation generally recognized as important

3. Existence of documentation policy or standards
— Written statement or policy about importance of documentation
— Written statement or policy indicating what documents must be

created for each development phase
— Written statement or policy describing the contents of docu-

ments that must be created for each development phase
4. Monitor implementation of policy or standards

— Use of a mechanism, such as a check-off list, to verify that re-
quired documentation is done

— Monitor adherence to documentation policy or standards
5. Existence of a defined process for creation of documents

— Written statement to prescribe process for creation of documents
— Mechanism to monitor adherence to prescribed process
— Adequate time to carry out the prescribed process
— Training material or classes about the prescribed process

6. Methods to assure quality of documentation
— Mechanism to monitor quality of documentation
— Mechanism to update documentation
— Documentation is traceable to previous documents

7. Assessments of usability of documentation
— Person or group perception of usability of documents created
— Mechanism to obtain user feedback about usability of created

documentation
8. Definition of software documentation quality and usability measures

— Definition of measures of documentation quality
— Definition of measures of documentation usability

9. Collection and analysis of documentation quality measures
— Collection of measures about quality of documentation
— Analysis of documentation quality measures
— Recording of documentation error data
— Tracking of documentation errors and problem reports to

solutions
— Analysis of documentation error data and root causes
— Generation of recommendations based on analysis of quality

measurements and error data
10. Collection and analysis of documentation usability measures

— Collection of measures about usability of documentation
— Analysis of documentation usability measurement

258

SOFTWARE ENGINEERING HANDBOOK

— Generation of recommendations based on analysis of usability
measurements

— Generation of documentation usage profile
11. Process improvement feedback loop

— Mechanism to feedback improvements to documentation
process

— Mechanism to incorporate feedback on quality of documentation
— Mechanism to incorporate feedback on usability of documentation

An assessment procedure was developed to determine where an organi-
zation’s documentation process stands relative to the model. This enables
mapping from an organization’s past performance to a documentation
maturity level and ultimately generates a documentation process profile.
The profile indicates key practices for that level and identifies areas of
improvement and challenges to move to the next higher level.

Application of the model has a definite financial benefit. The software
documentation maturity model and assessment procedure have been used
to assess a number of software organizations and projects; a cost/benefit
analysis of achieving documentation maturity levels has been performed
using COCOMO that yielded an estimated return on investment of about
6:1 when moving from the least mature level to the next. According to
Visconti, these results support the main claim of this research: software
organizations that are at a higher documentation process maturity level
also produce higher-quality software, resulting in reduced software testing
and maintenance effort (Visconti, 1993).

METHODS AND STANDARDS

The many approaches to producing documentation are practically
unique to each organization. Although the majority of software documen-
tation is produced manually — i.e., done with word processing programs
or with tools such as Microsoft Visio, some systems are designed to ease
the process and will produce “automatic” documentation. Some of the
automatic documentation capabilities are a subset of systems of a wider
range of capabilities; this is the case with many computer-assisted soft-
ware engineering (CASE) tools. These products are designed to support
development efforts throughout the software development life cycle
(SDLC), with documentation just one small part.

An example of one such tool is Hamilton Technologies 001 which is dis-
cussed at length in this handbook. 001 is a CASE tool (now usually called
application development tool in lieu of the term CASE) that surrounds
itself with an intriguing methodology called “development before the fact”
(DBTF). The premise behind 001 and DBTF is that developing systems in a
quality manner begets quality and error-reduced systems. One of the

259

The Science of Documentation

intriguing features of the 001 tool set is that it not only generates program-
ming source code from maps (i.e., models) of a business problem, but also
generates the documentation for the system.

On one end of the documentation spectrum, many companies utilize no
tools other than a word processor and a drawing tool to extract documen-
tation from their reluctant programmers. On the other end, forward-think-
ing companies make significant investments in their software development
departments by outfitting them with tool suites such as 001. The vast
majority of organizations lie somewhere between these two extremes.

The world of client/server has afforded the developer with new oppor-
tunities and decisions to make in terms of which tool set to use. When
Microsoft Office was first introduced, it was utilized mostly for word pro-
cessing. Today, Microsoft Access, the database component of the MS Office
product set, has become a significant player in corporations with a require-
ment for a robust but less complex database than that of the powerhouse
computers that run their back offices (i.e., Sybase, Oracle, Microsoft SQL
Server).

Microsoft Access enables the automated production of several kinds of
documents related to the datasets implemented with the program. The
documents describe schemas, queries, and entity relationship diagrams
(ERDs) as shown in Exhibit 19-2.

Some products are dedicated to producing documentation. One such
product is Doc-o-Matic by toolsfactory.com. It is designed to work with the
Borland Delphi software development environment. The product works
with Delphi’s internal structures, which may consist of: Author, Bugs, Con-
ditions, Examples, Exceptions, History, Ignore, Internal, Notes, Parameters,
Remarks, Return Value, See Also, Todo, and Version (Leahey, 2002). Doc-o-
Matic has been compared to a gigantic parsing routine. As software sys-
tems grow in size and sophistication, it becomes harder for humans to
understand them and anticipate their behavior, says Charles Robert Wal-
lace in his dissertation, “Formal Specification of Software Using Abstract
State Machines.” This method essentially enables walk-through before
code is written. Wallace argues that normal specification techniques aim to
foster understanding and increase reliability by providing a mathematical
foundation to software documentation (Wallace, 2000). His technique calls
for layering information onto a model through a series of refinements.

GENERATING DOCUMENTATION THE RIGHT WAY

At present, many organizations are practicing a “hit or miss ” form of
software documentation. These are usually the companies that follow no
or few policies and procedures and loosely follow standards. Good soft-
ware development is standards based; thus, documentations must also be

260

SOFTWARE ENGINEERING HANDBOOK

standards based. At minimum, software documentation should consist of
the following:

• All documentation produced prior to the start of code development. Most
projects go through a systems development life cycle, which often
starts with a feasibility study, goes on to create a project plan, and
then enters into the requirements analysis and system design phases.
Each of these phases produces one or more deliverables, schedules,
and artifacts (examples of these can be found in the appendices to this
handbook). In sum, the beginnings of your system documentation ef-
fort should include the feasibility study, project plan, requirements
specification, and design specification, where available.

• Program flowcharts. Programmers usually, although not always, ini-
tiate their programming assignment by drawing one or more flow-
charts that diagram the nuts and bolts of the actual program. Systems
analysts can utilize diagrammatic tools such as data flow diagrams
(DFD) or UML-based (unified modeling language) class diagrams

Exhibit 19-2. An Access Entity Relationship Diagram (ERD)

Customer

1,1

Places

0,N

0,N

0,N

Contains

Item

Sales Order

261

The Science of Documentation

(Exhibits 19-3 and 19-4) to depict the entire system from a physical de-
sign level; however, the programmer is often required to utilize flow-
charts (Exhibit 19-5) to depict the flow of a particular component of
the DFD or UML class diagram.

Exhibit 19-3. A DFD

Customer

Customer

Store Manager

1

Get Customer
Membership
Information

2

Create New
Customer Account

Not a Member
Account

Information

3

Verify Customer
Account Status

Pastdue
Customer Won't Pay

Account
Not Valid

4

Scan Products

5

Process Payment

Payment Okay

Rental or
Purchase
Request

Customer DataD1

InventoryD2

Product History
Data

D3

Customer DataD1

6

Check In-stock
Status

Product
Check

Request

InventoryD2

Store Manager

OrdersD4

Vendor

7

Order New
Releases and

Other Products

Product History
Data

D3

8

Move Old / Low
Usage Rentals

To Purchase Area

InventoryD2

Products
Ordered

InventoryD2

OrdersD4

9

Process Received
Products

OrdersD4

10

Process Payment
to Vendor

Invoice

262

SOFTWARE ENGINEERING HANDBOOK

• Use or business cases. The first bullet point recommends including in
your documentation all documentation created during the analysis
and design component of the systems development effort. Use cases
may or may not be a part of these documents — although they should
be. Use cases, an example of which is shown in Exhibit 19-6, provide a
series of end-user procedures that make use of the system in question.
For example, in a system that handles student registration, typical use
cases might include student log in, student registering for the first
time, and a student request for financial aid. Use cases are valuable in
all phases of systems development: 1) during systems analysis, use
cases enable the analyst to understand what the end user wants out of
the new system; 2) during programming, use cases assist the program-
mer to understand the logic flow of the system; and 3) during testing,
use cases can form the basis of the preliminary test scripts.

• Terms of reference. Every organization is unique in that it has its own
vocabulary. Systems people are also unique in that they often use a lin-
go incomprehensible to most end users. A “dictionary” of terms used
is beneficial in clearing up any misunderstandings.

Exhibit 19-4. A UML Class Diagram

+ResourceUsage()

-ID : Long
-percentUsed : Percent
-appointmentID : Long
-resourceID : Long

Resource:: ResourceUsage

+getID()
+Resource()
+setUnitCost()
+getUnitCost() : Money
+setCostUnit()
+getCostUnit() : String
+getResourceType() : String
+setResourceType()
+getDescription() : String
+setDescription()
+getName() : String
+setName()
+getServiceProvider() : ServiceProvider

-ID : Long
-name : String
-description : String
-unitCost : Money
-costUnit : String
-resourceTypeID : Long
-serviceProviderID : Long

Resource:: Resource
0..*

1

Service:: Appointment

10..*
+showCreate(in tOption : String)
+showEdit(in tOption : String)
+showSearch(in tOption : String)
+showList(in tOption : String, in oCollection : Collection)

-ID : Long
-swingAttributes : Collection

ResourceManagementUI:: ResourceUI

ApplicationControllerUI:: IUserInterface

1

1

ServiceProvider:: ServiceProvider

1*

«subsystem»
Application Controller

11

263

The Science of Documentation

Exhibit 19-5. A Flowchart

Apply next season

Download Web

application form

2nd week only

Complete

application

2-week camp

Send payment by

(date)

Review soccer

camp Web site

List previous

camps attended

Submit coach

reference

Accepted?

Preview

Championzone

attendee?

Determine

skill level

Beginner

Advanced

Yes

No

Yes No

264

SOFTWARE ENGINEERING HANDBOOK

• Data dictionary. Although a data dictionary (DD) is usually included in
system design specification (SDS), if it is not, it should be included
here. An excerpt of a DD can be seen in Exhibit 19-7 and in Appendix
K. A data dictionary is “terms of reference” for the data used in the sys-
tem. It describes database, tables, records, fields, and all attributes
such as length and type (i.e., alphabetic, numeric). The DD also should
describe all edit criteria such as the fact that social security numbers
must be numeric and must contain nine characters.

• Program/component/object documentation. Aside from flowcharts, un-
less the programmer is using an automated CASE tool that generates
documentation, the programmer should provide the following docu-
mentation: 1) control sheet (see Appendix N); 2) comments within the
program (Exhibit 19-8); 3) textual description of what the program is
doing, including pseudocode, as shown in Exhibit 19-8.

• All presentation material. It is likely that, at some point, the system
team will be asked to make a presentation about the system. All pre-
sentation paraphernalia such as slides, notes, etc. should be included
in the system documentation.

Exhibit 19-6. A Sample Use Case

Requestor logs into the system to submit a new request:

1. Requestor keys in his log-on ID and six- to eight-digit password,
which are then verified against valid IDs and passwords in the pro-
curement database. If the ID or password does not match, an error
message is displayed on the screen. The requestor is prompted to
re-key the ID or password. The requestor is allowed three attempts
to log in. If unsuccessful, the password is flagged and a message is
displayed to call data security for resolution. If successful, the pro-
curement menu is displayed.

2. The requestor selects the menu option ENTER PURCHASE
REQUEST by pressing the radio button next to that option.

3. The system displays the purchase request order form on the
screen. The requestor keys the department name, number, and
cost center in the appropriate fields. The requestor also keys the
product numbers, selections, and quantities and then presses the
radio button for SUBMIT ORDER.

4. A purchase order number is automatically assigned by the system
and is displayed on the screen as confirmation of the order taken.

5. An e-mail is also sent to the requestor confirming the order.

265

The Science of Documentation

Exhibit 19-7. Data Dictionary

Name: Membership Database

Aliases: None

Where Used/How Used Used by the database management sys-
tem to process requests and return
results to the inquiry and administration
subsystems

Content Description: Attributes associated with each asset
including:
• Membership number = 10 numeric

digits
• Member since date = date
• Last name = 16 alphanumeric characters
• First name = 16 alphanumeric characters
• Address = 64 alphanumeric characters
• Phone number = 11 numeric digits

(1, area code, phone number)
• Assets on loan = array containing

10 strings, each containing 64 alphanu-
meric characters

• Assets overdue = array containing
10 strings each containing 64 alphanu-
meric characters

• Late fees due = 10 numeric digits
• Maximum allowed loans = 2 numeric

digits

Name: Member Data

Aliases: None

Where Used/How Used A file used to validate username and pass-
words for members, librarians, and
administrator when attempting to
access the system. The username and
password entered are compared with
the username and password in this file.
Access is granted only if a match is
found.

Content Description: Attributes associated with each asset
including:
• Member username = 16 alphanumeric

digits
• Member password = 16 alphanumeric

digits

266

SOFTWARE ENGINEERING HANDBOOK

• Test cases (Appendix O) and test plan. Although use cases form the ba-
sis of the initial set of test cases, they are a small subset of test cases.
An entire chapter has been dedicated to software testing, so we will
not prolog the discussion here. Suffice it to say that any and all test
cases used in conjunction with the system — along with the results of
those test cases — should be included in the system documentation.

• Metrics. It is sad to say that most organizations do not measure the ef-
fectiveness of their programmers. Those that do should add this infor-
mation to the system documentation. This includes a listing of all
metrics (formula) used and the results of those measurements. (This
handbook contains many chapters on metrics.) At a minimum, the
weekly status reports and management reports generated from
toolsets such as Microsoft Project should be included in the system
documentation.

• Operations instructions. Once the system is implemented, aside from
the end users that the system was developed for, some computer sup-
port operations personnel may be required to support this system in
some way. Precise instructions for these support personnel are man-
datory and must be included in the documentation for the system.

• End-user help files. Most systems are built using a client/server meta-
phor that is quite interactive. Most systems, therefore, provide end us-
ers with online help. A copy of each help file should be saved as
documentation. Most corporate systems are Windows-based; hence, a
Windows-style format in creating help files (Exhibit 19-9) has become
the de facto standard. Microsoft Help Workshop is often used to assist
in developing these .hlp files, which are compiled from RTF (rich text
format) files.

Exhibit 19-8. Sample Program Comments

//Get cost of equipment

rsEquipment = Select * from Equipment Utilized Where Pothole ID =

NewPotholeID

Loop through rsEquipment and keep running total of cost by

equipment *

rsRepairCrew(“Repair Time”)

Total Cost = Total Employee Cost + Total Equipment Cost +

Material Cost

Update Employee Set Total Cost Where Pothole ID = NewPotholeID

267

The Science of Documentation

• User documentation. Aside from the built-in help file, a user manual
should be included in what is provided to the end user. Increasingly,
this user manual is supplied right on the CD rather than on paper.
There are two different types of end-user manuals. One is more of an
encyclopedia that explains the terms and workings of the system
when the end user has a specific question. The second type is more of
a tutorial.

User tutorials are easy to develop; it is important to approach the task
step by step, going through all the motions of using the software exactly as
a user would. Simply record every button you push and key you press. As
seen in Exhibit 19-10, a table format works well documenting the use of the

Exhibit 19-9. A Typical Help File

268

SOFTWARE ENGINEERING HANDBOOK

SecureCRT program, which is a product of New Mexico-based Van Dyke
Software. Another advantage is that the user documentation development
process serves double duty as a functional test. As the analyst or tech
writer is developing the tutorial, he or she might just uncover some bugs.

MAINTAINING DOCUMENTATION

In his discussion of system documentation for the article “Tools and Evi-
dence,” Scott Ambler (2002) suggests that modeling and documentation
are effective, when employed with sense and restraint, and enhance sys-
tem functionality. He makes a case that there is a need for restraint and that
models should be discarded once they have fulfilled their purpose. As a
project progresses, models are superseded by other artifacts such as other
models, source code, or test cases that represent the information more
effectively. Ambler takes a fresh approach — it is important to know what
to keep, but it is also important to know what to throw away.

Documentation is particularly critical for maintenance work. Code can
be mysterious to maintenance programmers who must maintain the

Exhibit 19-10. Table Format for Developing Tutorials

 1. When you first start the program,
you'll see a screen similar to the
screen at the right. The default
protocol selected is telnet.

 2. Pick the down arrow on the drop-
down box, and select the ssh1
option.

 3. With the ssh1 option selected,
notice that the fields change, now
different from those available on
the telnet screen.

Enter the appropriate Hostname
and Username. Leave the Port,
Cipher, and Authentication options
populated with the default settings.

Steps Screen

269

The Science of Documentation

system for years after the original system was written and the original pro-
grammers have moved on to other jobs (Graham et al., 2000).

Documentation is becoming more important. Ravi Shankar Kalakota
(1996) wrote about organizing practices in his 1996 dissertation, “Organiz-
ing for Electronic Commerce.” Organizing is crucial, he says, and the prob-
lem of organizing has three distinct dimensions:

• Organizing large amounts of data and digital documents
• Organizing business processes and workflows
• Organizing computing and processing

Kalakota offers resolution for each of these challenges, but for our pur-
poses, I will limit discussion to the specific issues.

Distributed documents must be organized such that users and pro-
grams are able to locate, track, and use online documents. The growth of
networking brings with it a corresponding increase in the number of docu-
ments to be organized. Current document organization techniques are
derived from techniques used in file systems and are not sufficient for orga-
nizing the large number of heterogeneous documents that are becoming
available for various purposes.

Second, Kalakota believes that new computing forms must be devel-
oped to process, filter, and customize online documents. He asserts that
the traditional notion of client/server computing is not sufficient to deal
with the complexity and needs of electronic commerce. Third, workflows
need to be structured to take advantage of online documents. Workflows
often dictate organization structure but are difficult to study because they
are essentially complex patterns of interaction between agents (Kalakota,
1996). We can easily characterize the variable properties of sequential
actions, but not real-time patterns for tasks occurring in parallel.

CONCLUSION

Documentation is an often neglected but very necessary component of
the software development life cycle (SDLC). Numerous approaches and
methods are available to software development teams to assist with the
task. Most important are a commitment to documenting software, setting
standards for the organization, and making them stick, that is, adhering to
the standards.

References

Ambler, S.W. (2002). Tools and evidence. Software development. Online. Available: ht-
tp://www.sdmagazine.com/documents/s = 7134/sdm0205i/0205i.htm.

Applied Information Science International. (1996). Entity relationship diagram. [Online].
Available: http://www.aisintl.com/case/olais/pb96/er_model.htm.

270

SOFTWARE ENGINEERING HANDBOOK

Cook, C.R. and Visconti, M. (2000). Software system documentation process maturity model.
http://www.cs.orst.edu/~cook/doc/Model.htm.

Graham, C., Hoffer, J.A., George, J.F., and Valacich, J.S. (2000). Introduction to Business Systems
Analysis. Pearson Custom Publishing, Boston.

Kalakota, R.S. (1996). Organizing for electronic commerce. DAI-A. 57/02. (From University of
Phoenix Online Collection. [ProQuest Digital Dissertations]. Publication number: AAT
9617262. Available: http://www.apollolibrary.com:2118/dissertations/fullcit/9617262.)

Leahey, R. (2002). Doc-O-Matic 1.0: generates docs in WinHelp, RTF, HTML or HTML Help. Del-
ph i In formant . On l ine . Ava i lab le : h t tp : / /www.de lph iz ine .com/productre -
views/2001/07/di200107rl_p/di200107rl_p.asp.

Tufflye, D. (2002). How to write, version and file software development documentation. On-
line. Available: http://tuffley.hispeed.com/tcs20006.htm.

Visconti, M.A. (1993). Software system documentation process maturity model. DAI-B. 55/03.
(From University of Phoenix Online Collection. [ProQuest Digital Dissertations]. Publication
number: AAT 9422184. Available: http://www.apollolibrary.com:2118/dissertations/fullcit/
9422184.)

Wallace, C.R. (2000). Formal specification of software using abstract state machines. DAI-B.
61/02. (From University of Phoenix Online Collection. [ProQuest Digital Dissertations]. IBSN:
0–599–63514–2. Available: http://www.apollolibrary.com:2118/dissertations/fullcit/9959880.)

271

Chapter 20

Survey on IT
Productivity
and Quality

Who among us does not remember the soulful tale of Alice? In her journey
through Wonderland she comes upon the Queen of Hearts who, at one
point in the fantasy, makes sport of the game of chess with live chess
pieces, including our very own Alice. The Queen makes Alice run fast, but
Alice finds that she is merely running in place…running so very fast just to
catch up.

Have productivity and quality risen? Or, like Alice, are more and more
firms merely running in place — too tired from continual day to day oper-
ational battles or too shell-shocked from retrenching to support the new
paradigms of client/server architectures, object orientation, and Intranets
to pay heed to TQM (total quality management)?

Many years ago, sometime in the 1920s, some social scientists were
studying the productivity of workers at a Western Electric plant in Haw-
thorne, Illinois. They discovered that when they turned up the lighting,
productivity went up. They also found that when they turned down the
lighting, productivity went up again. What these social scientists found
was that when the Hawthorne workers realized that people were paying
attention to them, they started to do better work. This became known as
the “Hawthorne effect.”

Even though the jury is still out on the effects of quality programs on the
process of information technology, there is no doubt that the industry is
extremely interested in its potential. According to some industry statistics,
less than 5 percent of IT organizations are doing this sort of thing. Even
though TQM is strongly rooted in many industries as a whole, for example,
the 60 to 70 percent of those in manufacturing who have some sort of qual-
ity program in place, IT tends to be a black hole.

However, interest in the concept is increasing. One should start off the
process by understanding a single principle — that change is painful and

272

SOFTWARE ENGINEERING HANDBOOK

lengthy. In fact, to effectuate any kind of change you need something like a
ten-year plan. Ten years is a long time, however, and management’s
patience is short. So how can you motivate change over that time period?

PLANNING FOR QUALITY

The secret is to make management extremely dissatisfied with the status
quo; to do that, you need to look at the cost of the status quo. One way of
accomplishing this is to examine the cost of poor quality.

By answering questions such as “what are we spending on detecting
defects?” and “what are we spending on repairing defects?” the IT organi-
zation can begin to accumulate the statistics it needs to make the push for
change. The data need not be hard to track; in most cases it is already avail-
able through project management systems that track walkthroughs,
reviews, defect rates, etc. About 40 to 50 percent of the IT budget is spent
on fixing defects due to poor quality. With statistics like this, it should be
rather easy to motivate massive change.

Techniques to introduce TQM programs to the “black hole” of IT vary
from company to company, but some commonalities are shown below:

• Conduct a customer satisfaction survey.
• Get management sponsorship to fix what the surveys found wrong.
• Top management needs to make a visible and personal commitment to

any quality program.
• Customers as well as suppliers need to be involved.
• Define the processes.
• Come up with ways to improve the process.
• Determine metrics to measure the improvement of the process.

In the 1990s Coopers & Lybrand, now PriceWaterhouseCoopers after a
merger, had a substantial TQM federal practice. This group focused on tak-
ing appropriate elements of TQM and applying them to software delivery
organizations. The end result was the development of a specific methodol-
ogy for doing that. This methodology provided a framework for managing
continuous improvement for software delivery.

This group had first-hand experience of the endemic behaviors in most of
us attracted to this business that are contrary to the quality tenets of TQM.
One of these is the “code or die” syndrome. The greater the deadline pres-
sures, the more we focus on “I got to code right now.” This is a quality prob-
lem because it speaks to the fact that we are generally product oriented and
when the pressure is on we fundamentally have no faith in the process.
However, TQM says if you want to improve the quality of the product, you
focus on improving the process. So this is a behavior that gets us into trou-
ble every time. In order to combat behaviors that seem to sabotage the

273

Survey on IT Productivity and Quality

drive toward quality, Coopers & Lybrand modified their four-phase TQM
methodology to suit the tenets of software engineering.

The centerpiece of the assessment phase of the Coopers & Lybrand
methodology is development of metrics by which the quality baseline is
assessed and by which improvements over time can be measured. There is
no specific list of metrics; the choice of metrics depends upon the client
because quality is different things for different people. What you think are
key quality issues should drive what you are trying to measure. In order to
determine the appropriate metrics for any particular client, Coopers con-
sultants utilized a method first developed by NASA and then put into the
public domain. Called goal–question–metric (GQM), it is a disciplined tech-
nique used to refine from key quality issues their individual components
and, ultimately, the metrics that might be derived from them.

The second phase of the Coopers methodology, planning, is based on
what we see today, our vision, or where we want to take ourselves. Here we
look at the highest priority quality issues and think about what we want to
do to build ourselves in that direction. The “plan” developed is actually a
short list of things to do over the next six months. This is actually a list of
“low-hanging fruit” — the list must contain the greatest near-term opportu-
nities to increase quality.

The third phase, process improvement, is actually a phase of experi-
mentation. It is here that the low-hanging fruit can be picked, and if deter-
mined not to have any nutritive value to the process, tossed quickly aside.
Finally, in the fourth phase of the Coopers TQM methodology, integration,
the best things from these experiments are built into the organization.

THE PROCESS OF MEASUREMENT

Organizations that apply measure productivity and quality do so for the
same reasons. Software is becoming more complex and user demands and
expectations are increasing. The need to develop better software, faster,
translates to a need to quantify the project’s progress and the system’s
attributes.

A variety of productivity and quality metrics are available; choosing the
most appropriate one can be as tricky as picking winning lottery numbers:

• Lines of code
• Pages of documentation
• Number and size of texts
• Function count
• Variable count
• Number of modules
• Depth of nesting

274

SOFTWARE ENGINEERING HANDBOOK

• Count of changes required
• Count of discovered defects
• Count of changed lines of code
• Time to design, code, test
• Defect discovery rate by phase of development
• Cost to develop
• Number of external interfaces
• Number of tools used and why
• Reusability percentage
• Variance of schedule
• Staff years of experience with team
• Staff years of experience with language
• Staff years of experience with software tools
• MIPs per person
• Support to development personnel ratio
• Nonproject to project time ratio

Measuring does have its detractors. Many “artists” still refuse to be mea-
sured. Ironically, measuring often produces the unusual effect of increasing
productivity only in the areas that are measured.

In most situations, the term “metric” is used in conjunction with the pro-
gramming process only. However, programming is the smallest part of the
systems development life cycle. For an effective measurement program,
each component of the cycle must include its own measures — or a mea-
sure must be used that encompasses the entire spectrum of development.

The software development process is one of the most complex pro-
cesses a human can perform; it includes numerous formidable tasks.
Although variations abound in the number of executable steps in a life
cycle, most IT organizations perform the same functionality.

Metrics must consider several esoteric items, such as user involvement,
which is positively correlated with productivity increases. Human factors
must also be taken into account, such as the square footage allocated per
programmer. Capers Jones , a prominent researcher in this field, has shown
that a full 78 square feet of floor space increases programmer productivity
more than any application development tool. Design, programming, and
quality factors must also be weighed.

Quality measurements are frequently overlooked in the race to imple-
ment on or before deadline. However, no matter what the time pressure,
certain measures undertaken seriously can enhance the quality of output
of any software investment. The following matrix has proven useful when
filled out by end users:

275

Survey on IT Productivity and Quality

Circle the number applicable to each measure.
Add together for total score. 1 = low to 5 = high

1. How easy is it to use? 1 2 3 4 5

2. How secure is it? 1 2 3 4 5

3. What is the level of confidence in it? 1 2 3 4 5

4. How well does it conform to requirements? 1 2 3 4 5

5. How easy is it to upgrade? 1 2 3 4 5

6. How easy is it to change? 1 2 3 4 5

7. How portable is it? 1 2 3 4 5

8. How easy is it to locate a problem? 1 2 3 4 5

9. Is the response time fast enough? 1 2 3 4 5

10. How easy is it to train staff? 1 2 3 4 5

11. How easy is it to test? 1 2 3 4 5

12. Is there efficient use of computing resources? 1 2 3 4 5

13. Is it easy to couple this system to another? 1 2 3 4 5

14. Does the system minimize storage requirements? 1 2 3 4 5

15. Is the system self-descriptive? 1 2 3 4 5

16. Does the system exhibit modularity? 1 2 3 4 5

17. Is there a program for on-going quality awareness? 1 2 3 4 5

18. Is supplier quality checked? 1 2 3 4 5

19. Is there a quality department? 1 2 3 4 5

20. Is this the right system to be developed? 1 2 3 4 5

Measurement of quality is often thought of as a manufacturing process.
Computer companies that manufacture hardware and software usually
apply metrics to the manufacture of both. Digital Equipment, acquired by
Compaq, which itself was acquired by HP in 2002, was famous for its soft-
ware quality controls. DEC ran upward of 22,000 quality checks on the VAX
Cobol compiler (Compaq recently retired the VAX computer in favor of its
Alpha server (http://www.compaq.com/alphaserver/vax/).

With 22,000 tests, it was impossible to test the compiler thoroughly, so
DEC wrote VaxScan, which looked at many micro-oriented measures such
as rate of change and how much the program was tested. It also measured
the introduction of new errors.

THE ORIGINAL METRIC

Those who measure most often use a simple source-lines-of-code
(SLOC) metric. With this metric, however, there is room for variation. In
their 1986 book, Software Engineering Metrics and Models, published by the

276

SOFTWARE ENGINEERING HANDBOOK

Benjamin/Cummings Publishing Company, Conte, Dunsmore, and Shen
proposed this definition of SLOC:

A line of code is any line of program text that is not a comment or blank
line, regardless of the number of statements or fragments of statements
on that line. This specifically includes all lines containing program
headers, declarations and executable and nonexecutable statements.

The SLOC metric is often further redefined into distinguishing the number
of noncomment source lines of code (NCSLOC) from the lines of code con-
taining comment statements (CSLOC).

Along with SLOC measurements, the weekly time sheet provides other
gross statistics often used for productivity measurement. The total num-
ber of labor hours expended, divided by the total number of NCSLOC, pro-
vides an overall statistic that can be used to compare productivity from
project to project.

One problem with the SLOC measurement is that it does not take into
account the complexity of the code being developed or maintained. Lines
of code and man-months hide some very important things. For example,
the SLOC measurement for a name and address file update program might
be 600 lines of code per day. On the other hand, the output for software
that tracks satellites might be in the range of 40 to 50 lines of code per day.
To look at this output on a purely gross statistical level, one would con-
clude that the name and address project was more productive and efficient
than the satellite project. This conclusion would be wrong.

Starting from this base, two researchers at the Massachusetts Institute
of Technology’s Center for Information Systems Research in Cambridge,
Massachusetts, examined this complexity issue. Chris F. Kemerer and Geof-
frey K. Gill studied the software development projects undertaken by an
aerospace defense contracting firm from 1984 to 1989.

The Kemerer and Gill team began their research by reviewing the origi-
nal measure for complexity as developed by Thomas McCabe, now presi-
dent of McCabe & Associates, a Columbia, Maryland, consulting group, in
his article, “A Complexity Measure.” McCabe proposed that a valid mea-
surement of complexity would be the number of possible paths in a soft-
ware module. In 1978, W.J. Hansen in his article, “Measurement of Program
Complexity by the Pair,” interpreted McCabe’s mathematical formula into
four simple rules that would produce a numerical measure of complexity
(i.e., the higher the number, the more complex):

• Add 1 for every IF, case, or other alternate execution construct.
• Add 1 for every iterative DO, DOWHILE, or other repetitive construct.
• Add 2 less than the number of logical alternatives in a case.
• Add 1 for each AND or OR in an IF statement.

277

Survey on IT Productivity and Quality

The results of the Kemerer and Gill study showed that increased soft-
ware complexity leads to reduced productivity. They recommended using
more experienced staff and reducing complexity of the individual software
module. To reduce complexity, they suggest establishing a complexity
measure that could be in use as the code is written and then adhering to
this preset standard.

THE HP WAY

Quality and productivity have been an explicit part of Cupertino, Califor-
nia-based, Hewlett Packard’s (HP) corporate objectives. To help develop
and utilize company-wide metrics, HP created the software metrics coun-
cil. Today, dozens of productivity and quality managers within HP perform
a variety of functions, from training to communicating the best software
engineering practices to establishing productivity and quality metrics.

HP has adopted a methodology called total quality control (TQC). A fun-
damental principle of TQC is that all company activities can be scrutinized
in terms of the processes involved; metrics can be assigned to each pro-
cess to evaluate effectiveness. HP has developed numerous measure-
ments, as shown in Exhibit 20-1.

The TQC approach places software quality and productivity assessment
high on the list of software development tasks. When projects are first
defined, along with understanding and evaluating the process to be auto-
mated, the team defines the metrics to be used to measure the process.

When HP decided to revolve the future of the company around Risc-
based architecture in the 1990s, software reliability was deemed critical.

Exhibit 20-1. Hewlett Packard TQC Metrics

Metric Goal

Break-even time Measures return on investment; time until
development costs are offset by profits

Time to market Measures responsiveness and competi-
tiveness; time from project go-ahead
until release to market

Progress rate Measures accuracy of schedule; ratio of
planned to actual development time

Post-release defect density Measures effectiveness of test processes;
total number of defects reported during
the first 12 months after product release

Turnover rate Measures morale; percentage of staff leav-
ing

Training Measures investment in career develop-
ment; number of hours per year

278

SOFTWARE ENGINEERING HANDBOOK

The development of the systems software was the largest development
effort in HP’s history, and the first that required multiple divisions to pro-
duce software that would be combined into a single software system.

Charles A. Krueger , a professor at the University of Wisconsin in Madi-
son, has pointed out the productivity paradox of budget versus getting to
market: is it more important to stay within the targeted confines of money
allocated, or to get the product out on time? He quotes a McKinsey & Co.
study indicating that going over budget by 50 percent and getting a prod-
uct out on time reduces profits by only 4 percent. Staying on budget and
getting to market five months late reduces profits to a third. Krueger insists
that productivity is really a measure of how successfully you achieve your
results.

Hewlett-Packard came to the same conclusion as Krueger, so the com-
pany insisted on reliable software and delivery on time. HP established the
systems software certification program to ensure measurable, consistent,
high-quality software through defining metrics, setting goals, collecting
and analyzing data, and certifying products for release. This program
developed four metrics for the Risc project:

• Breadth — measures the testing coverage of user-accessible and inter-
nal functionality of the product.

• Depth — measures the proportion of instructions or blocks of instruc-
tions executed during testing.

• Reliability — measures the stability and robustness of a product and
its ability to recover gracefully from error conditions.

• Defect density — measures the quantity and severity of reported de-
fects and a product’s readiness.

HP’s results were impressive. Defects were caught and corrected early,
when costs to find and fix are lower. Less time was spent in the costly sys-
tem test and integration phases, and on maintenance. This resulted in
lower overall support costs and higher productivity. It also increased qual-
ity for HP’s customers.

HP’s success demonstrates what a corporate-wide commitment to pro-
ductivity and quality measures can achieve. The commitment to these
gains was so strong that HP invested in full-time productivity and quality
managers, which is indeed unique.

THE FUNCTION POINT ADVANTAGE

In 1983, A.J. Albrecht, with IBM at that time, first proposed the function-
point concept in a paper called “Software Function, Source Lines of Code
and Development Effort Prediction: a Software Science Validation.” This
metric is a combination of metrics that assesses the functionality of the
development process (see Appendix S for a more detailed description).

279

Survey on IT Productivity and Quality

The function-point metric assesses the functionality of the software devel-
opment process by first counting the number of external inputs (transac-
tion types), external outputs (report types), logical internal files (nonphys-
ical), external interface files (files accessed by the application but not
maintained or updated by it), and external inquiries.

Using a set of standards for assessing complexity, these components are
then classified as relatively low, average, or high. Once the total number of
function counts is computed according to a statistical formula, the second
step assesses the impact of 14 general system characteristics:

• Data communications
• Distributed functions
• Performance
• Heavily used configuration
• Transaction rate
• Online data entry
• End-user efficiency
• Online update
• Complex processing
• Reusability
• Installation ease
• Operational ease
• Multiple sites
• Facilitates change

These values are then summed to compute what is known as the value
adjustment factor (VAF). The VAF is then multiplied with the total function
count to create the number of function points.

The one aspect of function-point measurement programs that makes
them so valuable is the presence of large databases of information that
companies can use for comparison. SPR (www.spr.com), for example,
maintains a database of over 9000 completed projects. It is used to com-
pare an organization to industry norms — i.e., a benchmark.

Aside from these external comparative databases, many in-house data-
bases have been painstakingly accumulated. As Kemerer states in his the-
sis, “from a control perspective, organizations using a variant method
would have difficulty in comparing their function-point productivity rates
to those of other organizations that switched methods; the new data might
be sufficiently inconsistent as to render trend analysis meaningless.”

Most people are using the function point metric because it offers the
only metric that comes close to matching the economic definition of pro-
ductivity — costs or services produced per unit of labor and expense. In
the 1990s, using Capers Jones’ SPR research base of 400 studied compa-
nies, the national average was calculated to be five function points per

280

SOFTWARE ENGINEERING HANDBOOK

person-month; IT groups averaged eight function points per person-
month. These numbers can dramatically increase with tool usage to the
degree that it is possible to achieve 65 function points per person-month
with a full application tool environment and reusable code. This metric will
decrease when the development environment is new, but will regain
momentum when familiarity with the tool set increases.

American Management Systems was an early believer in the function-
point concept. With over 2200 systems professionals supporting 28 prod-
uct lines, AMS needed a methodology that worked. The company had been
measuring productivity for years, but found that its traditional metrics of
lines of code and work-months was hiding some very important informa-
tion: not all work-months are created equal. The problem was that there
are experienced people and not so experienced people, expensive people
and not so expensive people. If the company could find a way of optimizing
this mix, then AMS would find increased productivity. To this end, AMS
needed a measure that would foster economic productivity. Function
points filled the bill.

Function points were created in an era prior to the Internet and prior to
the introduction of object-oriented systems. As technologies and method-
ologies must grow to meet new business requirements, so too must our
metrics.

Dr. Chris Kemerer, now at the University of Pittsburgh, but then a profes-
sor at MIT’s prestigious Sloan School of Management, wrote a paper enti-
tled, “Towards a Metrics Suite for Object-Oriented Design.” This paper,
authored with Dr. Shyam Chidamber, was presented at the October, 1991,
ACM OOPSLA conference (object-oriented programming, systems, lan-
guages, and applications). Kemerer asserts his position as perhaps the first
person to talk about measurement for object-oriented systems and pro-
poses a series of six metrics that serve to measure the depth and breath of
object-oriented design:

• Metric 1: WMC (weighted methods per class). This relates to the defini-
tion of complexity of an object. The number and complexity of meth-
ods involved are indicators of how how much time and effort is
required to develop and maintain the object.

• Metric 2: DIT (depth of inheritance tree). DIT is a measure of how many
ancestor classes can potentially affect a class. It is useful to have a
measure of how deep a particular class is in the hierarchy so that the
class can be designed with reuse of inherited methods.

• Metric 3: NOC (number of children). NOC is a measure of how many
subclasses will inherit the methods of a parent class. NOC gives an
idea of the potential influence a class has on the design. If a class has
a large number of children, it may require more testing of the methods
in that class.

281

Survey on IT Productivity and Quality

• Metric 4: CBO (coupling between objects). This is a count of the number
of noninheritance-related couples with other classes. Excessive cou-
pling between objects outside the inheritance hierarchy is detrimen-
tal to modular design and prevents reuse. This measure is useful to
determine how complex the testing of various parts of the design is
likely to be.

• Metric 5: RFC (response for a class). The response set is a set of meth-
ods available to the object. Because it specifically includes methods
called from outside the object, it is also a measure of communication
between objects. If a large number of methods can be invoked, the
testing and debugging of the object become more complicated.

• Metric 6: LCOM (lack of cohesion in methods). LCOM uses the notion of
degree of similarity of methods. Fewer disjoint sets imply greater sim-
ilarity of methods. Cohesiveness of methods within a class is desirable
because it promotes encapsulation of objects.

It is easy to pinpoint how Kemerer’s metrics differ from conventional
measurements. Object-oriented metrics are specifically oriented to object-
oriented methodologies, which are quite different from conventional meth-
odologies. The notion is to try to go after those things that are different
about the object-oriented approach.

The easiest one to explain to most people is the notion of inheritance.
Our metric is to measure depth of inheritance. In this way we can deter-
mine to what degree people are using inheritance. The goal here is to
address the optimal mix between complexity and usability. When a pro-
grammer uses no inheritance, then he is not taking advantage of reusability
and therefore negates productivity gains of the object-oriented technique.
When the programmer “goes really deep,” this may also be bad because it
will be hard to test. Indeed it may be too much for one person to keep in
mind.

THE QUALITY EQUATION

Quality and productivity are tightly linked; the approaches used to
address these issues — metrics, methodology, and tools — must be inter-
connected. Simply throwing technology or methodology at the problem is
not enough. Information technology (IT) departments must also use “peo-
pleware” solutions (Exhibit 20-2.).

Ed Yourdon (www.yourdon.com), an esteemed software guru, says that
one way to improve development is to hire better developers. This solu-
tion is the closest thing to a silver bullet.

Rather than spend lots of money trying to bring in a new methodology,
why not simply bring in better people? We know that there is a 25 to 1 dif-
ferential between the best and the worst people and a 4 to 1 differential

282

SOFTWARE ENGINEERING HANDBOOK

between the best and the worst teams, so maybe the best way to improve
productivity and quality is to improve hiring practices.

If you take a random group of 100 people and put them in a room with a
complex programming exercise, one of them will finish 25 times faster than
the others, Yourdon says. Another “peopleware” improvement to produc-
tivity is to help managers improve their skills, as well as to foster a team-
work approach among developers. Yourdon and many others believe that
“peopleware” solutions boost productivity and quality more than any tools
or techniques.

CONCLUSION

TQM is actually a process by which one manages continuous improve-
ment. You need to learn the lessons in as close to real time as possible and
implement lessons learned across the organization. For quality programs
to be successful, you need to get scared enough to act.

References

A.J. Albrecht , A.J. (1983). Software function, source lines of code and development effort pre-
diction: a software science validation, IEEE Trans. Software Eng., 10, 1.

Conte, Dunsmore, and Shen, (1986). Software Engineering Metrics and Models, Benjamin/Cum-
mings Publishing Company, San Francisco.

Hansen, W.J. (1978). Measurement of program complexity by the pair, (Cyclomatic Number,
Operator Count) [ACM SIGPLAN Notices).

Kemerer, C. and Chidamber, S. (1991). Towards a metrics suite for object-oriented design,
ACM OOPSLA Conference (object-oriented programming, systems, languages and applica-
tions).

Keyes, J. (1993). A Survey on IT productivity/quality, in Software Engineering Productivity
Handbook, Keyes, J., Ed., McGraw-Hill, New York.

McCabe, T. (1976). A complexity measure, IEEE Trans. Software Eng., SE-2, 4, 308.

Exhibit 20-2. Layers to Quality and Productivity

Methods Tools

Peopleware Metrics

Quality

Productivity

Section II

This page intentionally left blank

285

This section is a compendium of techniques, guidelines, and philosophies
that will assist the developer in understanding, and then putting into place
a quality and productivity program. The 45 chapters contained in this sec-
tion offer the reader a wealth of information and advice in a multitude of
areas, including management of resources, methods, quality, and metrics.

Each chapter is composed of the following:

Abstract: discussing the goals and principles behind the technique
Procedures/Issues/Polices: a step-by-step implementation section
References: where the reader can obtain a detailed version of the

technique synopsized in the chapter
Selected Bibliography: for further reading

This page intentionally left blank

287

Chapter 21

Putnam’s Software
Equation and SLIM

ABSTRACT

Putnam developed a constraint model called SLIM that would be useful
for projects exceeding 70,000 lines of code. This model assumes that effort
for software projects is distributed similarly to a collection of Rayleigh
curves.

The Norden-Rayleigh curve (Exhibit 21-1) represents manpower as a
function of time. Norden observed that the Rayleigh distribution provides
a good approximation of the manpower curve for various hardware devel-
opment processes. Development effort is assumed to represent only 40
percent of the total life cycle cost. Requirements specification is not
included in the model. Estimation using SLIM is not expected to take place
until design and coding.

Putnam suggests that staffing rises smoothly during the project and
then drops sharply during acceptance testing. The SLIM model is
expressed as two equations describing the relation between the develop-
ment effort and the schedule. The first equation, called the software equa-
tion, states that development effort is proportional to the cube of the size
and inversely proportional to the fourth power of the development time.
The second equation, the manpower-buildup equation, states that the
effort is proportional to the cube of the development time.

PROCEDURES/ISSUES/POLICIES

The software equation is calculated as follows:

Ss = CK1/3 td
4/3

where:

Ss = the estimated size of the software system
K = the total lifecycle effort in programmer years
C = the technology constant

Td = the development time in years

288

SOFTWARE ENGINEERING HANDBOOK

Example:

Ss = 100 K and ymax = 40 people

• Using the προγραµµερποωερ as a constraint, the shortest development
time can be estimated.

• The maximum προγραµµερποωερ occurs at the delivery time (i.e.,
t = td).

• This implies that ymax = (K/td)e-1/2.
• This gives K/td = 65.95.
• Assuming that the technology constant is approximately 1000, we can

substitute into the software equation.
• By solving for K and substituting, we get td = 1.722 years.
• By substituting the value for td, we get K = 113.57 programmer years.
• The development cost is 40 percent of K or 45.26 programmer years.
• The daily productivity of the programmers can be calculated. Assum-

ing 250 workdays per year, the programmer productivity per day is
equal to S/(.4K * 250) lines or 8.837 lines per day.

To allow effort estimation, Putnam introduced the manpower-buildup
equation:

D = E/t3

where D is a constant called manpower acceleration, E is the total project
effort in years, and t is the elapsed time to delivery in years.

The manpower acceleration is 12.3 for new software with many inter-
faces and interactions with other systems, 15 for standalone systems, and
27 for reimplementations of existing systems.

Using the software and manpower-buildup equations, we can solve for
effort:

E = (S/C)9/7 (D4/7)

Exhibit 21-1. The Rayleigh Curve

Time

% of total effort

289

Putnam’s Software Equation and SLIM

 References

Fenton, N.E. and Pfleeger, S.L. (1997). Software Metrics: a Rigorous and Practical Approach,
International Thomson Computer Press. Stamford, CN.

Johnson, K. Software Cost Estimation: Metrics and Models, University of Calgary, Canada.

http://sern.ucalgary.ca/courses/seng/621/W98/johnsonk/cost.htm#The%20Software
%20Equation.

Putnam, L.H. (1978). A general empirical solution to the macro software sizing and estimating
problem, IEEE Transactions on Software Engineering, SE-4:4.

Dr. Shmuel Rotenstreich, Software cost estimation, http://www.seas.gwu.edu/~ shmuel/
cs272/14/index.htm. September 1999. George Washington University, Washington, D.C.

This page intentionally left blank

291

Chapter 22

The COCOMO II
Model

ABSTRACT

COCOMO is very useful when used for custom, build-to-specification
software projects; however, COCOMO II is useful for a much wider collec-
tion of techniques and technologies. COCOMO II provides up-to-date sup-
port for business software, object-oriented software, software created via
spiral or evolutionary development models, and software developed using
commercial off-the-shelf application composition utilities. COCOMO II pro-
vides models for early prototyping efforts and the more detailed early
design and post-architecture models for subsequent portions of the life
cycle.

APPLICATION COMPOSITION MODEL

The application composition model is used in prototyping to resolve
potential high-risk issues such as user interfaces, software–system interac-
tion, performance, or technology maturity. Object points are used for siz-
ing rather than the traditional LOC metric.

An initial size measure is determined by counting the number of
screens, reports, and third-generation components that will be used in the
application. Fenton and Pfleeger (1997) classify objects as simple, medium,
or difficult using the guidelines shown in Exhibits 22-1 and 22-2.

The number in each cell is then weighted according to Exhibit 22-3. The
weights represent the relative effort required to implement an instance of
that complexity level (Fenton and Pfleeger, 1997). The weighted instances
are summed to provide a single object point number. Reuse is then taken
into account. Assuming that r percent of the objects will be reused from
previous projects, the number of new object points (NOP) is calculated to
be:

NOP = (object points) × (100 – r)/100

292

SOFTWARE ENGINEERING HANDBOOK

A productivity rate (PROD) is determined using Exhibit 22-4. Effort can
then be estimated using the following equation:

E = NOP/PROD

THE EARLY DESIGN MODEL

The early design model is used to evaluate alternative software or sys-
tem architectures and concepts of operation. An unadjusted function point

Exhibit 22-1. Object Point Complexity Levels for Screens

Number and Source of Data Tables

Number of Views
Contained Total <4 Total <8 Total 8+

<3 Simple Simple Medium

3–7 Simple Medium Difficult

8+ Medium Difficult Difficult

Exhibit 22-2. Object Point Complexity Levels for Reports

Number and Source of Data Tables

Number of Views
Contained Total <4 Total <8 Total 8+

<3 Simple Simple Medium

3–7 Simple Medium Difficult

8+ Medium Difficult Difficult

Exhibit 22-3. Complexity Weights for Object Points

Object Type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL component — — 10

Exhibit 22-4. Average Productivity Rates Based on Developer’s Experience
and the ICASE Maturity/Capability

Developer’s experi-
ence and capability

Very Low Low Nominal High Very High

ICASE maturity and
capability

Very Low Low Nominal High Very High

PROD 4 7 13 25 50

293

The COCOMO II Model

count (UFC) is used for sizing. This value is converted to LOC using tables
such as those published by Capers Jones (1996), excerpted in Exhibit 22-5.

The early design model equation is:

E = aKLOC × EAF

where a is a constant, provisionally set to 2.45.

The effort adjustment factor (EAF) is calculated as in the original
COCOMO model using the seven Boehm cost drivers shown in Exhibit 22-6.

THE POST-ARCHITECTURE MODEL

The post-architecture model is used during the actual development and
maintenance of a product. Function points or LOC can be used for sizing,
with modifiers for reuse and software breakage. Boehm advocates the set
of guidelines proposed by the Software Engineering Institute in counting
lines of code. The post-architecture model includes a set of 17 cost drivers
and a set of 5 factors determining the project’s scaling component. The five

Exhibit 22-5. Programming Language Levels and Ranges of Source Code
Statements per Function Point

Language Level Min Mode Max

Machine language 0.10 — 640 —

Assembly 1.00 237 320 416

C 2.50 60 128 170

RPGII 5.50 40 58 85

C++ 6.00 40 55 140

Visual C++ 9.50 — 34 —

PowerBuilder 20.00 — 16 —

Excel 57.00 — 5.5 —

Exhibit 22-6. Early Design Cost Drivers

Cost Driver Description

Counterpart Combined
Post-Architecture Cost

Driver

RCPX Product reliability and complexity RELY, DATA, CPLX, DOCU

RUSE Required reuse RUSE

PDIF Platform difficulty TIME, STOR, PVOL

PERS Personnel capability ACAP, PCAP, PCON

PREX Personnel experience AEXP, PEXP, LTEX

FCIL Facilities TOOL, SITE

SCED Schedule SCED

294

SOFTWARE ENGINEERING HANDBOOK

factors (Exhibit 22-6) replace the development modes (organic, semi-
detached, embedded) of the original COCOMO model.

The post-architecture model equation is:

E = aKLOCb x EAF

where a is set to 2.55 and b is calculated as:

b = 1.01 + 0.01 x SUM(Wi)

where W is the set of five scale factors shown in Exhibit 22-7.

The EAF is calculated using the 17 cost drivers shown in Exhibit 22-8.

References and Further Readings

Boehm, B. (1981). Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ.

Boehm, B. (1975). The high cost of software, in Practical Strategies for Developing Large Soft-
ware Systems, Horowitz, E., Ed., Addison-Wesley, Reading, MA, 4–14.

Boehm, B.W., Abts, C., Clark, B., and Devnani-Chulani, S. (1997). COCOMO II Model Definition
Manual, The University of Southern California. http://sunset.usc.edu/research/COCOMOII/in-
dex.html.

Fenton, N.E. and Pfleeger, S.L. (1997). Software Metrics: a Rigorous and Practical Approach, In-
ternational Thomson Computer Press,.

Johnson, K. Software Cost Estimation: Metrics and Models, University of Calgary. http://
sern.ucalgary.ca/courses/seng/621/W98/johnsonk/cost.htm#The%20Software%20Equation.

Jones, C. (1996). Applied Software Measurement, McGraw-Hill, New York.

Exhibit 22-7. COCOMO II Scale Factors

W(i)
Very
Low Low Nominal High Very High

Extra
High

Precedentedness 4.05 3.24 2.42 1.62 0.81 0.00

Development/
Flexibility

6.07 4.86 3.64 2.43 1.21 0.00

Architecture/
Risk Resolution

4.22 3.38 2.53 1.69 0.84 0.00

Team Cohesion 4.94 3.95 2.97 1.98 0.99 0.00

Process Maturity 4.54 3.64 2.73 1.82 0.91 0.00

2
9
5

T
h

e
 C

O
C

O
M

O
 II M

o
d
e
l

Exhibit 22-8. Post-Architecture Cost Drivers

Rating

Cost Driver Description Very Low Low Nominal High Very High Extra High

Product

RELY Required software reliability 0.75 0.88 1.00 1.15 1.39 —

DATA Database size — 0.93 1.00 1.09 1.19 —

CPLX Product complexity 0.70 0.88 1.00 1.15 1.30 1.66

RUSE Required reusability — 0.91 1.00 1.14 1.29 1.49

DOCU Documentation — 0.95 1.00 1.06 1.13 —

Platform

TIME Execution time constraint — — 1.00 1.11 1.31 1.67

STOR Main storage constraint — — 1.00 1.06 1.21 1.57

PVOL Platform volatility — 0.87 1.00 1.15 1.30 —

Personnel

ACAP Analyst capability 1.50 1.22 1.00 0.83 0.67 —

PCAP Programmer capability 1.37 1.16 1.00 0.87 0.74 —

PCON Personnel continuity 1.24 1.10 1.00 0.92 0.84 —

AEXP Applications experience 1.22 1.10 1.00 0.89 0.81 —

PEXP Platform experience 1.25 1.12 1.00 0.88 0.81 —

LTEX Language and tool experience 1.22 1.10 1.00 0.91 0.84

Project

TOOL Software tools 1.24 1.12 1.00 0.86 0.72 —

SITE Multisite development 1.25 1.10 1.00 0.92 0.84 0.78

SCED Development schedule 1.29 1.10 1.00 1.00 1.00 —

This page intentionally left blank

297

Chapter 23

Putnam’s Cost
Estimation Model

ABSTRACT

Putnam’s (1978) cost estimation model is a macroestimation model that
computes the relationship between cost and the amount of time available
for the development effort. The model supports the “mythical man-month”
idea first put forth by Frederick Brooks, who asserted that people and time
are not always interchangeable.

PROCEDURES/ISSUES/POLICIES

The Putnam formula is as shown in Exhibit 23-1.

where

y = instantaneous programmer power
y = total life cycle cost in programmer years
y = time from beginning of project

td = delivery time
e = 2.71828.

Reference

Putnam, L.H. (1978). A general empirical solution to the macro software sizing and estimating
problem, IEEE Transactions on Software Engineering, SE-4:4.

Exhibit 23-1. The Putnam Formula

y = K— e
t

t
2

2

d

–t2

t2d

This page intentionally left blank

299

Chapter 24

Malcolm Baldrige
Quality Award

ABSTRACT

The Malcolm Baldrige Quality Award is an annual award to recognize
U.S. companies that excel in quality achievement and quality management.
The award promotes awareness of quality as an increasingly important ele-
ment in competitiveness, understanding of the requirements for quality
excellence, and sharing of information on successful quality strategies and
on benefits derived from implementation of these strategies.

Although only one part of the examination is related to technology, all
the Baldrige award tenets of quality apply to the IT process. In this chapter,
a synopsis of the requirements is highlighted.

PROCEDURES/ISSUES/POLICIES

1. The award is built upon a number of key concepts:
• Quality is defined by the customer.
• The senior leadership of business needs to create clear quality

values and build the values into the way the company operates.
• Quality excellence derives from well-designed and well-

executed systems and processes.
• Continuous improvement must be part of the management of

all systems and processes.
• Companies need to develop goals, as well as strategic and

operational plans, to achieve quality leadership.
• Shortening the response time of all operations and processes of

the company needs to be part of the quality improvement effort.
• Operations and decisions of the company need to be based

upon facts and data.
• All employees must be suitably trained and developed, and

involved in quality activities.
• Design quality and defect and error prevention should be

major elements of the quality system.
• Companies need to communicate quality requirements to sup-

pliers and work to elevate suppliers’ quality performance.

300

SOFTWARE ENGINEERING HANDBOOK

2. Examination categories/items Maximum points
1.0. Leadership 100

1.1 Senior executive leadership 40
1.2 Quality values 15
1.3 Management for quality 25
1.4 Public responsibility 20

2.0. Information and analysis 70
2.1 Scope and management of quality data and

information 20
2.2 Competitive comparisons and benchmarks 30
2.3 Analysis of quality data and information 20

3.0. Strategic quality planning 60
3.1 Strategic quality planning process 35
3.2 Quality goals and plans 25

4.0. Human resource utilization 150
4.1 Human resource management 20
4.2 Employee involvement 40
4.3 Quality education and training 40
4.4 Employee recognition and performance measurement 25
4.5 Employee well-being and morale 25

5.0. Quality assurance of product and services 140
5.1 Design and introduction of quality products

and services 35
5.2 Process quality control 20
5.3 Continuous improvement of processes 20
5.4 Quality assessment 15
5.5 Documentation 10
5.6 Business process and support service quality 20
5.7 Supplier quality 20

6.0. Quality results 180
6.1 Product and service quality results 90
6.2 Business process, operational and support

service quality results 50
6.3 Supplier quality results 40

7.0. Customer satisfaction 300
7.1 Determining customer requirements and expectations 30
7.2 Customer relationship management 50
7.3 Customer service standards 20
7.4 Commitment to customers 15
7.5 Complaint resolution for quality improvement 25
7.6 Determining customer satisfaction 20
7.7 Customer satisfaction results 70
7.8 Customer satisfaction comparison 70

301

Malcolm Baldrige Quality Award

Reference

United States Department of Commerce, National Institute of Standards and Technology,
Gaithersburg, MD.

This page intentionally left blank

303

Chapter 25

Zachman’s
Framework

ABSTRACT

In his seminal work, Zachman (1987) makes the observation that, just as
a builder needs a detailed set of plans for a building, a systems developer
needs a detailed set of plans for a complex system. He continues this
observation by saying that different types of plans are prepared by differ-
ent parties for different purposes and represent very different views of the
same building. Zachman created an architectural framework that is basi-
cally a “set of representations” of differing orientations and focuses. This
chapter gives a brief overview of Zachman’s framework.

PROCEDURES/ISSUES/POLICIES

1. The framework is a two-dimensional classification of the various
components of an information systems architecture. One dimension
consists of scope description, business model, information system
model, technology model and detailed description. The second di-
mension consists of data description, process description, and net-
work description.

2. Zachman’s framework (see Exhibit 25-1)
3. At the scope description level:

• Data description: a list of entities relevant to the business or
project

• Process description: a list of business processes
• Network description: a list of locations at which the business oper-

ates or at which the processes of interest are performed
4. At the business model level:

• Data description: an entity-relationship diagram
• Process description: possibly a functional flow diagram
• Network description: some form of logistic definition of the enter-

prise

304

SOFTWARE ENGINEERING HANDBOOK

5. At the information system model level:
• Data description: a detailed logical data model with all the neces-

sary data element definitions
• Process description: possibly a detailed data flow diagram with

supporting documentation
• Network Description: plan for system distribution

6. At the technology model level:
• Data description: detailed definition of the external schemas
• Process description: detailed structure chart with complete mod-

ule specifications
• Network description: system architecture of processors, nodes,

and communication lines
7. At the detailed description level:

• Data description: describing actual files, records, fields, etc. as
understood by the data management software

• Process description: consisting of the programs
• Network description: in the form used by the communications

software

Reference

Zachman, J.A. (1987). A framework for information systems architecture, IBM Syst. J., 26(3).

Exhibit 25-1. Zachman’s Framework

Data
Description

Process
Description

Network
Description

Scope Description

Business Model

Information Systems
Model

Technology Model

Detailed Description

305

Chapter 26

Linkman’s Method
for Controlling
Programs through
Measurement

ABSTRACT

A controlled development and maintenance program is essential for
bringing down the cost associated with software development life cycle.
The control mechanism can be implemented first by setting up specific
goals and then selecting the right set of metrics for measurements against
those goals. Goals must be tangible and balanced or they will be too
remote to be considered achievable. Intermediate targets are needed for
monitoring the progress of the project and making sure it is on the right
track. Project data collection and analysis should also be part of the con-
trol mechanism.

A four-step procedure is outlined for establishing targets and means for
assessment (Linkman and Walker, 1991). The procedure is not focused on
any particular set of metrics; rather, metrics should be selected on the basis
of goals. This procedure is suitable for setting up goals for the entire project
deliverables or for any partial product created in the software life cycle.

PROCEDURE

1. Define measurable goals: the project goals establishment process is
similar to the development process for project deliverables. Soft-
ware projects usually start with abstract problem concepts; the final
project deliverables are obtained by continuously partitioning and
refining the problem into tangible and manageable pieces. Final
quantified goals can be transformed from initial intangible goals by
following the same divide-and-conquer method for software deliver-
ables. Three sources of information are helpful to establishing the
targets:

306

SOFTWARE ENGINEERING HANDBOOK

• Historical data is useful under the assumptions that data is avail-
able, development environment is stable, and projects are similar
in terms of type, size, and complexity.

• Synthetic data such as modeling results is useful if models used
are calibrated to specific development environment.

• Expert opinions can be helpful.
2. Maintain balanced goals: the measurable goals are usually estab-

lished on the basis of four factors: cost, schedule, effort, and quality.
It is feasible to achieve just a single goal, but it is always a challenge
to deliver a project with the minimum staff and resources, on time,
and within budget. It needs to be kept in mind that trade-off is al-
ways involved and all issues should be addressed to reach a set of
balanced goals.

3. Set up intermediate goals: a project should never be measured only
at its end point. Checkpoints should be set up to provide confidence
that the project is running on course. The common practice in-
volves setting up quantifiable targets for each phase, measuring the
actual values against the targets, and establishing a plan to make
corrections for any deviations. All four aforementioned factors
should be broken down into phase or activity for setting up interme-
diate targets. Measurements for cost and effort can be divided into
machine and human resources according to software life cycle
phase so that expenditures can be monitored to ensure the project
is running within budget. The schedule should always be defined in
terms of milestones or checkpoints to ensure that intermediate
products can be evaluated and the final product will be delivered on
time. Quality of intermediate products should always be measured
to guarantee the final deliverable will meet its target goal.

4. Establish means of assessment: two aspects are involved in this
activity:
• Data collection: based on project characteristics such as size,

complexity, level of control, etc., a decision should be made in
terms of whether a manual or an automated data collection pro-
cess should be used. If a nonautomated process is applied, then
the availability of the collection medium at the right time should
be emphasized.

• Data analysis: the following two types of analyses should be con-
sidered:
— Project analysis — this type of analysis, consisting of check-

point analysis and continuous analysis (trend analysis), is con-
cerned with verifying that intermediate targets are met to
ensure that the project is on the right track.

— Component analysis — this type of analysis concentrates on
the finer level of details of the end product and is concerned
with identifying those components in the product that may

307

Linkman’s Method for Controlling Programs through Measurement

require special attention and action. The complete process
includes deciding on the set of measures to be analyzed, iden-
tifying the components detected as anomalous using mea-
sured data, finding out the root cause of the anomalies, and
taking actions to make corrections.

Reference

Linkman, S.G. and Walker, J.G. (1991). Controlling programs through measurement, Inf. Soft-
ware Technol., 33, 93–102.

Selected Bibliography

Kitchenham, B.A., Packard, L.M., and Linkman, S.G. (1990). An evaluation of some design met-
rics, Software Eng. J., 5, 50–58.

Linkman, S.G. (1990). Quantitative monitoring of software development by time-based and in-
tercheckpoint monitoring, Software Eng. J., 5, 43–49.

Walker, J.G. and Kitchenham, B.A. (1989). Quality requirements specification and evaluation,
in Measurement for Software Control and Assurance, Kitchenham, B.A. and Littlewood, B., Eds.,
Elsevier Applied Science, New York.

This page intentionally left blank

309

Chapter 27

Kellner’s
Nontechnological
Issues in Software
Engineering

ABSTRACT

Although much of the emphasis in current literature is on the technical
issues of software engineering, a number of substantive nontechnological
problems pose dangers to the effective practice of software engineering. A
lack of software engineering productivity can be caused by managerial,
organizational, economic, political, legal, behavioral, psychological, and
social factors.

To achieve an acceptable level of software engineering productivity, as
much emphasis must be placed on “people” issues as on technological
issues. As Boehm puts it, “Personnel attributes and human relations activ-
ities provide by far the largest source of opportunity for improving soft-
ware productivity” (Boehm, 1981).

PROCEDURES/ISSUES/POLICIES

1. Recognize that the process of software engineering is “sufficiently
confused and incoherent that nontechnological factors impede the
effective application of technology” (Humphrey, 1989).

2. Many nontechnological issues are intertwined with software engi-
neering. Although any of these is a potential impediment, the Kell-
ner panel focused on three:
• The software engineering profession, for the most part, has not

developed a block of capable and competent managers.
• In spite of a concerted effort toward making software develop-

ment an engineering discipline, it is still very much of an individ-
ual creative activity, rather than a team effort.

• Little has been done to reduce performance differences among
individuals or across teams.

310

SOFTWARE ENGINEERING HANDBOOK

3. Poor management produces:
• Unrealistic project plans due to poor planning, scheduling, and

estimation skills
• Unmotivated staff due to inability of management to manage a

creative staff
• Lack of teamwork due to inability to build and manage effective

teams
• Poor project execution due to inadequate organization, delega-

tion, and monitoring
• Technical problems due to lack of management understanding of

disciplines such as quality assurance and configuration manage-
ment

• Inadequately trained staff due to a short-sighted rather than a
long-term perspective

4. Possible solutions to poor management problems:
• Definition of dual career paths for technical and managerial staff
• Training in managerial skills and techniques
• Active mentoring and supervision by senior managers
• Increased delegation of responsibility and matching authority

5. Reasons for lack of teamwork:
• Desire for autonomy
• A culture that reinforces individual efforts more than team efforts
• Concentration of key application knowledge by a few individuals
• Desire for privacy
• The “not invented here” syndrome translated to the “not

invented by me” syndrome
• Large productivity differences from one individual to another
• Political considerations between powerful individuals and man-

agers
6. Possible solutions to teamwork problems:

• Objective assessment of team contributions with appropriate
rewards

• Development of an organizational culture that condones and
rewards group efforts

• Active efforts to disperse crucial application knowledge across
project staff

• Improvements in communication and coordination across organi-
zational layers

• Adoption of “egoless” programming techniques
7. Large performance differences between individuals negate produc-

tivity increases. Boehm estimates that productivity ranges of 3:1 to
5:1 are typical, with some studies documenting differences as high
as 26:1 among experienced programmers (Boehm, 1981). This vari-
ability is often due to:
• Misguided staffing practices

311

Kellner’s Nontechnological Issues in Software Engineering

• Poor team development
• Inattention to the critical role of motivation
• Poor management

8. Techniques to increase effective level of productivity:
• Enhanced training
• Investment in productivity tools (tools, methods)
• Standard practices
• Professional development opportunities
• Recognition
• Effective staffing
• Top talent
• Job matching
• Career progression
• Team balance
• Improved management

References

Boehm, B.W. (1981). Software Engineering Economics, Prentice-Hall, Inc., New York.

Ηυµπηρεψ, Ω.Σ. (1989). Μαναγινγ τηε Σοφτωαρε Προχεσσ, Αδδισον−Ωεσλεψ, Ρεαδινγ, ΜΑ.

Selected Bibliography

Brooks, F.P. (1987). No silver bullet, Computer, 20, 10–19.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design process for
large systems, Commn. ACM, 31, 1268–1287.

Humphrey, W.S., Kitson, D.H., and Kasse, T.C. (1989). The State of Software Engineering Prac-
tice: a Preliminary Report. Tech Rept. CMU/SEI-89-TR-1, Software Engineering Institute, Carn-
egie Mellon University, Pittsburgh.

Kellner, M.I. Software Engineering Institute, with panelists Bill Curtis, Software Engineering In-
stitute, Tom DeMarco, The Atlantic Systems Guild, Kouichi Kisida, Software Research Associ-
ates, Inc., Maurice Schlumberger, Cap Gemeini Innovation, Colin Tully, Independent
Consultant for IEEE, 1991, 144–146.

This page intentionally left blank

313

Chapter 28

Martin and Carey’s
Survey of Success
in Converting
Prototypes to
Operational Systems

ABSTRACT

The use of prototyping has increased within the ranks of MIS groups dur-
ing the last few years; however, a difference of opinion exists as to how a
prototype should be implemented as well as about the steps taken to make
the prototype operational. One school of thought stresses that the proto-
type is never meant to become an operational system. Therefore, the lan-
guages used as well as the platform selected should be experimental. On
the other side of the argument are those stressing that the prototypical
system should be as close to the operational system as possible. This dis-
agreement has left MIS organizations without clear guidelines for the use of
prototypes in their companies.

Martin and Carey (1991) conducted an extensive survey of a sector of
MIS shops within the manufacturing industry and found that “prototype
models were usually not thrown away, prototypes were usually pro-
grammed in the same language as the operational system, prototyping in
third generational languages was common, and prototyping models were
documented as they were developed.” These findings, although contrary
to much of the literature on prototyping, are important in that they open a
fresh perspective on an important topic.

According to Martin and Carey, “prototyping is the process of quickly
building a model of the final software system which is used primarily as a
communication tool to assess and meet the information needs of the user.”

314

SOFTWARE ENGINEERING HANDBOOK

Their survey found that the use of prototyping was born out of some major
difficulties in the traditional software development approach, including:

• End users do not often possess a clear and concise understanding of
what they need and what they want.

• The methodologies and tools currently employed by MIS, data-flow di-
agrams and the like cannot demonstrate the workings of an actual sys-
tem to the liking, or understanding, of a naive end user.

• As the development team grows, so does the complexity of the task of
communication between group members.

• Systems developed along traditional lines are often difficult to learn
and use.

• As the technology becomes more complex, so do the systems created.
As a result, systems are often developed over longer time periods.

• Traditional approaches have been plagued by late delivery and costly
overruns.

• It comes as no surprise to MIS staff that a rather large application devel-
opment backlog exists. According to Martin and Carey, “the users who
requested them are frustrated, disillusioned, and ready to revolt.”

Observed in the abstract, two schools of thought exist concerning pro-
totypes; each has adopted a distinct type of prototype. The iterative type
(labeled Type I by Martin and Carey) implements the final version of the
prototype after a series of modifications. The Martin and Carey Type II pro-
totype, the throwaway, is often built in a fourth generation language and is,
indeed, only a model of the final system. At prototype’s end, this model is
“thrown away” and the system is ultimately implemented in a third gener-
ation language.

PROCEDURES/ISSUES/POLICIES

1. In general, the use of prototyping appears more appropriate for small
decision support systems than for large transaction processing sys-
tems. Decision support systems may beneficially use Type I iterative
systems. However, it has also been found that a transaction process-
ing system might benefit from a Type II throwaway prototype.

2. In planning a prototype, the development team should take note of
possible differences between the prototype and operational envi-
ronments, including:
• Language
• Range of transactions
• Documentation requirements
• Computer architecture
• Access control
• Procedures

315

Martin and Carey’s Survey of Success in Converting Prototypes to Operational

3. The programming language for the ultimate operational system
should be self-documenting. There are inherent differences between
third generation languages of the operational environment and
fourth generation languages of the prototype environment. These
include:
• 4GLs are not as self-documenting as 3GLs.
• 4GLs more than likely have features not available in 3GLs, such as

rapid database inquiry.
• 4GLs often use recursive paths not compatible with the struc-

tured, top–down operational language requirements.
4. Of a system’s inputs, 4.20 percent usually represent 80 percent of

the transaction volume. Therefore, it is this 20 percent that should
be the domain of prototyping, according to Martin and Carey, be-
cause “a prototype is designed to show users what typically will
happen, rather than all that can happen.”

5. Turning a prototype into an operational system requires the devel-
opment team to account for 100 percent of the system’s transac-
tions, rather than the 20 percent accountable in the prototype.

6. Prototypes are often run on a microcomputer because:
• The PC is portable for demonstrations.
• It will not be disrupted by operational problems.
• It will not disrupt operations systems.

7. Systems are composed of more than just software. Systems also in-
clude hardware, people, and data. The procedures used to tie all of
these together in the prototype are far less complex than proce-
dures required in an operational system.

8. Conversion from an iterative prototype to a full operational system
is complex and time consuming. Steps required include:
• Language conversion
• Expansion to full transaction range
• Extensive documentation
• Change from microenvironment to operational platform
• Establishment of access control
• Development of procedures

9. The pain of prototype to operational system conversion can be
eased somewhat by careful development of the prototype. Ap-
proaches that accomplish this goal include:
• The prototype should be programmed in the same language as

the ultimate operational system.
• The prototype should be documented as it evolves.
• The prototype should be developed on the ultimate platform. If

the system is intended for use on a mainframe, then prototype it
on a mainframe

316

SOFTWARE ENGINEERING HANDBOOK

10. The Martin and Carey survey documented the prototyping charac-
teristics discussed above as the techniques used in a segment of
commercial industry. The specific survey results follow:
• Prototype models were not usually thrown away.
• Throwaway prototypes were not actually thrown away; they were

often used for other purposes, such as training.
• Prototypes were usually programmed in the same language as the

operational system.
• Prototyping in 3GLs was not uncommon. According to Martin and

Carey, “the power of reusable code for a 3GL such as COBOL
should not be underestimated.”

• Prototyping models were documented as they were developed.
• The primary goal of the prototype process was user communica-

tions and involvement, not system development efficiency.

Reference

Martin, M.P. and Carey, J.M. (1991). Converting prototypes to operational systems: evidence
from preliminary industrial survey, Inf. Software Technol., 33, 351–356.

Selected Bibliography

Carey, J.M. and McLeod Jr., R. (1987). Use of system development methodology and tools,
J. Syst. Manage., 39, 30–35.

Carey, J.M. (1989). Prototyping:alternative systems development methodology, Inf. Software
Technol., September, 31(8).

Kingler, D.E. (1986). Rapid prototyping revisited, Datamation, 32, 131–132.

Martin, M.P. (1988). The transition between the prototype and the operational environment,
Proc. Western Region of Deciison Sciences Institute (April 1988).

Martin, M.P. (1987). Designing systems for change, J. Syst. Manage., 39, 14–18.

317

Chapter 29

Putnam’s Trends
in Measurement,
Estimation,
and Control

ABSTRACT

Although most MIS managers have read about the different techniques
of measurement, estimation, and control, they are still confused about how
to apply them to their own situations. In addition, a plethora of information
about this topic has served only to confuse these practitioners, rather than
enlighten them.

Putnam estimates that, in the development of complex systems, from 50
to 70 percent of these projects come in late, over budget, or in error. Most
academicians as well as notables in the field, Putnam included, conclude
that one of the major problems is that MIS departments have not devel-
oped the facilities to gauge where they are or where they should be. The
old stand-by, lines of code (LOC), is, according to Putnam, “the worse met-
ric.” Twelve years of Putnam’s research has shown that “both the numera-
tor (number of lines) and the denominator (number of man-months) vary
with a host of factors related to the environment and management prac-
tices in complex, ill-understood, nonlinear ways that cause it to behave
unintuitively” (Putnam, 1991). The result is that the LOC metric is wrong
approximately 90 percent of the time.

In the late 1980s and in the 1990s, emphasis on measurement has been
renewed. MIS shops are now attempting to evaluate the reliability of soft-
ware. In this chapter, a series of issues is raised in this area that the pro-
fessional intent on installing a measurement program will want to review
carefully.

318

SOFTWARE ENGINEERING HANDBOOK

PROCEDURES/ISSUES/POLICIES

1. Putnam defines a set of workable metrics as that which is simple,
single valued, and which the boss understands. The following is the
set that he recommends:
• Quantity of function (such as source lines of code and function

points)
• Schedule (the elapsed calendar time)
• People (the monthly head count)
• Effort (the sum of the people applied over time)
• Defects (the number of valid problem trouble reports over some

time interval. This can easily be converted to mean time to
defect.)

2. Making total quality realistic in a software engineering environment:
• Take quality seriously.
• Take productivity improvement seriously.
• Measure progress with the right metrics.
• Set realistic goals.
• Focus MIS investment and education on the weaker spots.
• Aim for a small gain every day.

3. Use statistical process control on projects. This technique couples
statistical techniques with the metrics outlined above. The basics of
software control:
• Milestone accomplishments (schedule)
• Effort expenditure (in man-months)
• Code production
• Defect identification (trouble reports)

4. These statistics should be captured each month and compared with
the plan.

5. Unfavorable variations indicate slippage and overrun.
6. Statistical software packages should be used because a simple ex-

trapolation to predict the future is not useful. Statistical curve-fitting
techniques, readily available in this type of software, are a desirable
tool for control.

7. Putnam’s outlook for the future:
• Control offices will be established to measure, plan, and control

projects. This will be called the software-data repository and will
be responsible for measuring process–productivity improvement
as well as for generating realistic and consistent work plans for
the individual project teams.

8. Executive managers will begin to take a more active interest in de-
velopment because they realize that it is strategically important to
the organization.

Reference

Putnam, L.H. (1991). Trends in measurement, estimation, and control, IEEE Software, March,
105–107.

319

Chapter 30

Sprague’s Technique
for Software
Configuration
Management in a
Measurement-Based
Software Engineering
Program

ABSTRACT

The role of software configuration management (SCM) has increased in
significance over the last few years. Sprague enumerates several reasons
for SCM’s expanded role:

The size of software projects has grown meaning that there are more
components to manage.

The introduction of CASE tools has increased the number and types of
machine-readable objects that must be maintained.

New computing topologies and application structures have come on the
scene.

These reasons, coupled with an increasing awareness of the competitive
and strategic organizational issues vis-a-vis technology, have placed an
emphasis on being able to control the technology environment.

320

SOFTWARE ENGINEERING HANDBOOK

Sprague’s definition of SCM expands on the traditional meaning, which
is control over the source code. Sprague emphasizes that SCM should con-
sider all of the work products associated with a project including:

• Contracts
• Memorandums
• Letters
• Project plans
• Schedules
• System and software requirements
• Design documentation
• Source, object, and executable code
• Data
• Build and installation files
• Test descriptions, results, and reports
• Systems and network options
• Metrics
• Technical reports
• Education and training documents
• Presentation slides
• Videos
• Business models and plans

SCM is a formal engineering discipline, as described in the 1983 IEEE
standard 828–1983. “Standard for Software Configuration Management
Plans” is the means through which the integrity of the software product is
recorded, communicated, and controlled. Derived from hardware-oriented
configuration management (CM), SCM’s objective is the cost-effective man-
agement of a software system’s life cycle and the resultant configuration.
As Sprague (1991) suggests, “it is the process of ensuring the software and
associated products are visible, traceable, and formally controlled
throughout their evolution.”

Perhaps the most important concept behind SCM is baseline manage-
ment. A baseline is a specification or product, formally reviewed and
agreed upon, which thereafter serves as the basis for further develop-
ment — one that can be changed only through formal change control
procedures.

Four functions are employed to manage the baseline and its products:
configuration identification, configuration control, configuration status
accounting, and configuration auditing. This chapter presents an overview
of SCM as well as a process for implementing it.

321

Technique for Software Configuration Management

PROCEDURES/ISSUES/POLICIES

1. Configuration identification is the process of designating the config-
uration items in a system and recording their characteristics. This
process entails determination of the constituent parts of the soft-
ware and of the relationship of those parts, assignment of a label
and a name to each part, and graphical depiction of the identified
software.

2. Configuration control provides the administrative mechanism for
precipitating, preparing, evaluating, approving or disapproving, and
implementing every change to all the products in a baseline. The
purpose of configuration control is to assure:
• Comprehensive system impact analysis
• Cost and schedule impact analysis
• Optimum and coordinated implementation
• Accurate configuration records
• Supportability

3. Configuration status accounting is the process of collecting, record-
ing, and reporting on configuration control information. The follow-
ing information is typically maintained as well as archived:
• The time at which each baseline was established
• The time at which each item and change was included in the

baseline
• A description of each software configuration item
• The status of each software-related engineering change
• The description of each software change
• The documentation status for each baseline
• The changes planned for each identified future baseline.

4. Configuration auditing is the process of verifying that all required
configuration items have been produced, that the current version
agrees with the specified requirements, that the technical documen-
tation describes the configuration items, and that all change re-
quests have been resolved.

PROCEDURES FOR DEVELOPING AN SCM PROCESS

1. Develop an SCMP.
• The first step is to develop a plan tailored to the needs of the

project and organization. The plan addresses the four compo-
nents of SCM described above. The SCMP should address the
following:

• The characteristics of the work products controlled
• The work products to be controlled
• The different interfaces to be managed

322

SOFTWARE ENGINEERING HANDBOOK

• The expected duration of the project
• The available resources
• The organizational responsibilities of project members
• The identification procedures that will be used on each project
• The procedures for checking items into and out of the software

libraries
• The procedures for managing the change process
• The authority, membership, and decision-making process of

the group charged with this information’s control
• The procedures to create and approve the promotion of a

baseline
• The membership data that will be collected, stored, and

reported
• The procedures to collect, store, and report the measurement

data
• The mechanism to transfer objects between repositories
• The procedures for releasing versions
• The automated tools that will be used to support the SCM pro-

cess
• The procedure for recovering work products in the event of a

disaster
2. Implement the SCMP:

• This step requires that those charged with the SCM take
actions to ensure that it is implemented. This implies that the
SCMP be periodically reviewed — and revised, if necessary.

3. Identify and control the work products.
• This task is accomplished by identifying each object checked

into the repository, securing an electronic or paper copy of the
object, placing the object in a location where it cannot be mod-
ified, and, finally, making a log entry describing the events that
took place during the transaction.

4. Collect, store, and report preliminary measurements.
• This should be done at each phase of the development project.

The benefits derived from collecting and analyzing the mea-
surements at each stage provide the manager with insight into
how the project is doing in terms of cost, schedule, and size.

5. Transfer the work products to the work group responsible for SCM,
who will secure and control it.

6. Deliver the work products to the customer.
7. Collect, store, and report the final measurements to project mem-

bers and users, as well as to senior management.

323

Technique for Software Configuration Management

Reference

Sprague, K.G. (1991). The role of software configuration management in a measurement-based
software engineering program, ACM SIGSOFT Software Eng. Notes, 16, 1–10.

Selected Bibliography

Bryan, W.L. and Siegel, S. (1988). Software Product Assurance: Techniques for Reducing Software
Risk, Elsevier Science Publishing, New York.

Forte, G. (1990). Configuration management survey, CASE Outlook, 90, 24–51.

Humphrey, W.S. (1989). Managing the Software Process, Addison-Wesley Publishing Co., Read-
ing, MA.

Tichy, W.F. (1989). Tools for software configuration management, 11th International Confer-
ence on Software Engineering, May 15–18, 1989.

This page intentionally left blank

325

Chapter 31

Corbin’s
Methodology
for Establishing
a Software
Development
Environment

ABSTRACT

The software development environment (SDE) is actually the integration
of a number of processes, tools, standards, methodologies, and related ele-
ments whose purpose is to provide a framework for building quality soft-
ware (Corbin, 1991). This chapter discusses the elements of SDE and
shows how to develop one.

PROCEDURES/ISSUES/POLICIES

1. The elements of SDE:
• Project management
• Business plan
• Architecture
• Methodologies
• Techniques
• Tools
• Metrics
• Policies and procedures
• Technology platform
• Support
• Standards
• Education and training

326

SOFTWARE ENGINEERING HANDBOOK

2. The benefits of SDE:
• Improved problem definition
• Selection of the “right” problem according to the customer
• Joint customer and IS responsibility and accountability
• Acknowledgment of customer ownership of system
• Reduced costs of systems development and maintenance
• Reusability of software, models, and data definitions
• Acceptance of the disciplined approach to software engineering

using a consistent methodology
• Productivity improvements through team efforts and tools such

as CASE
3. Sample goals of SDE:

• Reduce systems development costs
• Reduce maintenance costs
• Reduce MIS turnover rate
These goals should be quantifiable wherever possible. For example,
the first goal could be stated as “reduce systems development costs
by 50 percent over the next five years.”

4. Architecture: many organizations do not have a formal, documented
architecture. There are three types:
• Business architecture is a model of the business and identifies

such things as processes and entities in the form of models.
• Computing architecture, at a minimum, identifies hardware, soft-

ware, and data communications. This breaks out into compo-
nents such as operating systems, data resource management,
network protocols, and user interface.

• Enterprise architecture is a combination of business and comput-
ing architectures.

5. Business plan:
• Create a steering committee that provides direction to the MIS

function
• Translate the organization’s business plan into an actionable MIS

plan that supports the company’s goals and objectives
• The steering committee should be responsible for funding

projects, setting priorities, resolving business issues, and review-
ing MIS policies and procedures.

6. Education and training: make sure that analysts, programmers, and
users are trained and ready to start the development project. Train-
ing might include the following:
• Software engineering concepts
• Prototyping
• System development life cycle
• Joint application development
• Software quality assurance and testing
• Project management

327

Corbin’s Methodology for Establishing a Software Development Environment

• Data and process modeling
• CASE

7. Methodologies: whether the methodology chosen by the MIS de-
partment is a standard one, supplied from a vendor, or developed in-
ternally, the MIS group must follow one to ensure consistency from
project to project. This will enable staff to be able to move from
project to project without retraining while, at the same time, ensur-
ing consistent deliverables. Questions to ask when selecting a meth-
odology are:
• Does your methodology support the entire systems development

life cycle?
• Does it include maintenance?
• Is it clearly documented?
• Does it focus on deliverables instead of activities?
• Is it CASE tool-independent?
• Can you use your metrics and techniques with it?

8. Project Management: questions to ask include:
• Do you have a formal project management discipline in place?
• Do you have a training program to support this?
• Is a software tool used?
• Do you have program planning and control to help manage the

project?
• Do you get routine reports showing the project work breakdown

structure, status reports, resource loading, and cost projections?
• Is there a formal reporting mechanism done on a timely basis to

resolve problems?
9. Standards: some of the areas in which standards are required are:

• Systems analysis and design
• Data administration
• Database administration
• Systems testing
• Prototyping
• Documentation
• Data entry
• Systems production
Change/configuration management questions to ask:
• Have you identified all of the standards required to support your

SDE?
• Do you have someone responsible for developing and maintain-

ing standards?
10. Support options:

• External consulting
• A sharing arrangement where you can provide services in

exchange for those needed
• User groups
• Special-interest groups

328

SOFTWARE ENGINEERING HANDBOOK

11. Automated tool questions:
• Have you identified the tools you need in the SDE?
• Have they been approved, acquired, and installed?
• Do they support the methodologies?
• Do they support the technology platform?
• Do they support the standards?
• Is technical support available to support the tools?
• Do you have templates for use in systems development?
• Do you have a data dictionary or repository for your data?
• Do you have tools to support each phase of the life cycle?

References

Corbin, D.S. (1991). Establishing the software development environment, J. Syst. Manage., Sep-
tember, 28–31.

329

Chapter 32

Couger’s Bottom-Up
Approach
to Creativity
Improvement
in IS Development

ABSTRACT

The majority of IS organizations use a top–down approach to generating
productivity improvements. In this chapter, a process for generating pro-
ductivity via a series of bottom–up creativity techniques is addressed. The
authors are all staff members of the United Technologies Microelectronic
Center who, upon a six-month review of all available IS literature, found
that very little research had been published in the area of creativity gener-
ation techniques in information systems organization. Couger and co-
workers (1991) decided to cull creativity-generating techniques that had
been proven successful in other disciplines. As a result, a two-pronged
approach was selected for the UTMC creativity program:

• Improvement of the environment for creativity and innovation
• Training in specific techniques for creativity generation and evaluation

The results of the institution of this approach were exciting. According
to the authors, the creativity program more than paid for itself in efficiency
improvements alone — in savings of computer processing time and com-
puter programming time. In addition, the UTMC group saw great improve-
ments in the effectiveness of their systems.

PROCEDURES/ISSUES/POLICIES

1. Survey participants were to obtain perceptions on the environment
for creativity and innovation. This same instrument should be used
to obtain new perceptions as a measurement of the results.

330

SOFTWARE ENGINEERING HANDBOOK

2. Participants were asked to keep a “creativity log” in which they keep
track of their creativity improvements.

3. A training workshop was instituted to teach a variety of creativity
generation and evaluation techniques.

4. One third of the workshop was spent in discussing how to improve
the climate for creativity in the IS organization. The methodology
used for this assessment was to ask the employees to identify posi-
tive and negative contributors to the creativity environment.

5. Creativity generation and evaluation techniques were used:
• Analogy/metaphor. An analogy is a statement about how objects,

people, situations, or actions are similar in process or relation-
ship. Metaphors, on the other hand, are merely figures of speech.
Both of these techniques can be used to create fictional situa-
tions for gaining new perspectives on problem definition and res-
olution.

• Brainstorming. This technique is perhaps the most familiar of all
the techniques discussed here. It is used to generate a large quan-
tity of ideas in a short period of time.

• Blue slip. Ideas are individually generated and recorded on a 3 × 5
in. sheet of blue paper. Because this is done anonymously to
make people feel more at ease, people readily share ideas. Each
idea is on a separate piece of blue paper, so the sorting and
grouping of like ideas is facilitated.

• Extrapolation. A technique or approach, already used by the orga-
nization, is stretched to apply to a new problem.

• Progressive abstraction technique. By moving through progres-
sively higher levels of abstraction, it is possible to generate alter-
native problem definitions from an original problem. When a
problem is enlarged in a systematic way, it is possible to generate
many new definitions that can then be evaluated for their useful-
ness and feasibility. Once an appropriate level of abstraction is
reached, possible solutions are more easily identified.

• 5Ws and H technique. This is the traditional journalistic approach
of “who–what–where–when–why–how.” Use of this technique
serves to expand a person’s view of the problem and to assist in
making sure that all related aspects of the problem have been
addressed and considered.

• Force field analysis technique. The name of this technique comes
from its ability to identify forces contributing to or hindering a
solution to a problem. This technique stimulates creative think-
ing in three ways:
— It defines direction.
— It identifies strengths that can be maximized.
— It identifies weaknesses that can be minimized.

331

Couger’s Bottom-Up Approach to Creativity Improvement in IS Development

• Peaceful setting. This is not so much a technique as it is an envi-
ronment. Taking people away from their hectic surroundings
enables “a less cluttered open mental process.”

• Problem reversal. Reversing a problem statement often provides a
different framework for analysis. For example, in attempting to
come up with ways to improve productivity, try considering the
opposite: how to decrease productivity.

• Associations/image technique. Most of us have played the game,
at one time or another, where a person names a person, place, or
thing and asks for the first thing that pops into the second per-
son’s mind. The linking of combining processes is another way of
expanding the solution space.

• Wishful thinking. This technique enables people to loosen analyti-
cal parameters to consider a larger set of alternatives than they
might ordinarily consider. By permitting a degree of fantasy in the
process, the result just might be a new and unique approach.

6. Follow-up sessions were scheduled for reinforcement. At these
meetings, primarily staff meetings, employees were invited to iden-
tify results of creative activity.

Reference

Couger, J.D., McIntyre, S.C., Higgins, L.F., and Snow, T.A. (1991). Using a bottom–up approach
to creativity improvement in IS development, J. Syst. Manage., September, 23–36.

This page intentionally left blank

333

Chapter 33

Shetty’s Seven
Principles of Quality
Leaders

ABSTRACT

Y. K. Shetty, a professor of management at Utah State University’s Col-
lege of Business and the co-editor of The Quest for Competitiveness (Quo-
rum Books, 1991), suggests that even though most corporate executives
believe that quality and productivity are the most critical issues facing
American business, many do not know how to achieve it. Shetty lists 16
organizations that have vigorously attacked this challenge: Hewlett-Pack-
ard, IBM, Procter and Gamble, Johnson & Johnson, Maytag, Dana Corpora-
tion, Intel, Texas Instruments, 3M, Caterpillar, Delta, Marriott, McDonald’s,
Dow Chemical, Xerox, and General Electric. Shetty’s chapter discusses the
common principles shared by this elite group.

PROCEDURES/ISSUES/POLICIES

Principle 1: Quality improvement requires the firm commitment of top man-
agement. All top management, including the CEO, must be personally com-
mitted to quality. The keyword here is “personally.” Many CEOs pay only
lip service to this particular edit. Therefore, top management must be con-
sistent and reflect its commitment through the company’s philosophy,
goals, policies, priorities, and executive behavior. Steps that management
can take to accomplish this end include:

• Establish and communicate a clear vision of corporate philosophy,
principles, and objectives relevant to product and service quality.
— Channel resources toward these objectives and define roles and re-

sponsibilities in this endeavor.
— Invest time to learn about quality issues and monitor the progress

of any initiatives.
— Encourage communication between management and employees,

among departments, and among various units of the firm and
customers.

— Be a good role model in communication and action.

334

SOFTWARE ENGINEERING HANDBOOK

Principle 2: Quality is a strategic issue.

• It must be a part of a company’s goals and strategies.
• Must be consistent with and reinforce a company’s other strategic

objectives.
• It must be integrated into budgets and plans — the way the company

does business.
• It must be a corporate mission with planned goals and strategies.
• Quality should be at the heart of every action.

Principle 3: Employees are the key to consistent quality.

• The organization must have a people-oriented philosophy.
• Poorly managed people convey their disdain for quality and service

when they work.
• Pay special attention to employee recruitment, selection, and

socialization.
• Reinforce socialization and quality process with continuous training

and education. This should include training in:
— Awareness of quality
— Each employee’s role in the process
— Statistical process control
— Problem-solving techniques

• Incorporate quality into performance appraisal and reward systems.
• Encourage employee participation and involvement.
• Effective communication throughout the department, between de-

partments, and throughout the organization is required to reinforce
the deep commitment of management and create an awareness and
understanding of the role of quality and customer service.

Principle 4: Quality standards and measurements must be customer-
driven. They can be measured by:

• Formal customer surveys
• Focus groups
• Customer complaints
• Quality audits
• Testing panels
• Statistical quality controls
• Interaction with customers

Principle 5: Many programs and techniques can be used to improve quality,
such as:

• Statistical quality control
• Quality circles
• Suggestion systems
• Quality-of-work-life projects
• Competitive benchmarking

335

Shetty’s Seven Principles of Quality Leaders

Principle 6: All company activities have potential for improving product
quality; therefore, teamwork is vital.

• Quality improvement requires close cooperation between managers
and employees and among departments.

• Total quality management involves preventing errors at the point
where work is performed.

• Every employee and department is responsible for quality.

Principle 7: Quality is a never-ending process.

• Quality must be planned.
• Quality must be organized.
• Quality must be monitored.
• Quality must be continuously revitalized.

Reference

Shetty, Y.K. (1991–1992). A point of view: seven principles of quality leaders, Natl. Productivity
Rev., Winter, 3–7.

This page intentionally left blank

337

Chapter 34

Simmons’ Statistics
Concerning
Communications’
Effect on Group
Productivity

ABSTRACT

In this chapter Simmons (1991) details the many factors that dominate
software group productivity. He defines dominator as a single factor that
causes productivity to decline tenfold. The two dominators discussed are
communications and design partition. What follows is a set of rules and
statistics that the reader can use as a comparison in his or her own efforts
to increase productivity.

PROCEDURES/ISSUES/POLICIES

1. Factors that developers must cope with in developing large
systems:
• Personnel turnover
• Hardware/software turnover
• Major ideas incorporated late
• Latent bugs

2. A Delphi survey performed by Scott and Simmons (1974) to uncover
factors that affect productivity found that the main factors are:
• External documentation
• Programming language
• Programming tools
• Programmer experience
• Communications
• Independent modules for task assignment (design partition)
• Well-defined programming practices

338

SOFTWARE ENGINEERING HANDBOOK

3. Improvement statistics:
• Any step toward the use of structured techniques, interactive

development, inspections, etc. can improve productivity by up to
25 percent.

• Use of these techniques in combination could yield improve-
ments of between 25 and 50 percent.

• Change in programming language can, by itself, yield a productiv-
ity improvement of more than 50 percent.

• Gains of between 50 and 75 percent can be achieved by single
high achievers or teams of high achievers.

• Gains of 100 percent can be achieved by database user languages,
application generators, and software reuse.

4. Dominators are factors that can suppress the effects of other fac-
tors and can reduce software group productivity by an order of
magnitude.

5. Poor design partition can dominate group productivity. To obtain
high productivity in the development of large software systems, the
designer must break down the system in chunks that can be devel-
oped in parallel. The difference between great and average design-
ers is an order of magnitude.

6. Communications can dominate productivity. Most project problems
arise as the result of poor communications between workers. If n
workers are on the team, then there are n(n — 1)/2 interfaces across
which communications problems may occur.

7. Productivity of individual programmers varies as much as 26 to 1.
8. An individual working alone has no interruptions from fellow group

members and, therefore, the productivity can be quite high for a mo-
tivated individual. It is estimated that one programmer working 60
hours a week can complete a project in the same calendar time as
two others working normal hours, but at three-quarters of the cost.

9. Small groups of experienced and productive software developers
can create large systems. An example is given of a company, Pyburn
Systems, which scours the country for the best analytical thinkers.
Its senior programmers typically earn $125,000 a year and can be
paid bonuses of two to three times that amount. They work in small
teams, never more than five, to produce large, complex systems. In
comparison, most MIS departments produce large systems using
normal development teams with developers of average ability.

10. In general, the difference between the cost to produce an individual
program to be run by the program author and the cost to produce a
programming system product developed by a software group is at
least nine times more expensive.

11. At some point coordination overheads outweigh any benefits that
can be obtained by the addition of further staff. Statistics that sup-
port this were pioneered during the 19th century in work on a military

339

Simmons’ Statistics Concerning Communications’ Effect on Group Productivity

organization. It was noted that as the number of workers who had to
communicate increased arithmetically, from two to three to four to
five…, the number of communication channels among them in-
creased geometrically, from one to three to six to ten…. From this
study, it was concluded that the upper limit of effective staff size for
cooperative projects is about eight.

12. It has been shown in studies that when the number of staff increased
to 12 or more, the efficiency of the group decreased to less than 30
percent.

13. The productive time of a typical software developer during a work-
ing day can vary from 51 to 79 percent. It was found that the average
duration of work interruption was five minutes for a typical pro-
grammer. The average time to regain a train of thought after an in-
terruption was two minutes. Thus, the average total time spent on
an interruption was seven minutes. If we assume five productive
hours each day, then each interruption takes 2.33 percent of the
working day; ten interruptions would take up 23 percent of the day
and 20 interruptions would take approximately 50 percent.

14. The optimum group size for a software development team is be-
tween five to eight members. The overall design should be parti-
tioned into successively smaller chunks, until the development
group has a chunk of software to develop that minimizes intragroup
and intergroup communications.

References

Scott, R.F. and Simmons, D.B. (1974). Programmer productivity and the Delphi technique,
Datamation, 72–73.

Simmons, D.B. (1991). Communications: a software group productivity dominator, Software
Eng. J., November, 454–462.

Selected Bibliography

Factor, R.M. and Smith, W.B. (1988). A discipline for improving software productivity, AT&T
Tech. J., July/August 1988, 2–9.

Grady, R.B. and Caswell, D.L. (1987). Software Metrics: Establishing a Company-Wide Program,
Prentice-Hall, Englewood Cliffs, NJ.

Jones, C. (1977). Program quality and programmer productivity, IBM Technical Report TR
02.764, January 1977, 42–78.

Simmons, D.B. (1972). The art of writing large programs, Computer, March/April, 43–49.

Software Productivity Metrics Working Group. (1989). Standard for software productivity met-
rics, IEEE, Standard P1045/32.0, November 20, 1989.

This page intentionally left blank

341

Chapter 35

Gould’s Points
on Usability

ABSTRACT

Few in the industry have added usability design to their rostrum of
design issues. However, Gould, Boies, and Lewis (1991) note that this pro-
cess leads to usable, useful, likable computer systems and applications.
The authors present Strong evidence that readers can use to support their
own efforts in this, perhaps, new terrain. This chapter also details a pro-
cess that can be used to design effective and usable systems. In effect, this
chapter proposes:

• Greater reliance on existing methodologies for establishing testable
usability and productivity-enhancing goals

• A new method for identifying and focusing attention on long-term
trends about the effects that computer applications have on end-user
productivity

• A new approach to application development, particularly the develop-
ment of user interfaces

The authors conclude that a three-way split among style of the user
interface, content of the user interface, and the functional code allows
changes to be made in the user interface that still preserve the integrity of
the functional code. Iterative design, a necessity when looking toward
usability, proceeds rapidly. On the style side, a particular style can be pro-
totyped and iteratively engineered. From the set of styles developed over
time, a subset of workable, usable styles will emerge that have attained the
favor of organizations or end users. Ultimately, the best work of the style
side and the functional side of development will be better leveraged.

PROCEDURES/ISSUES/POLICIES:

1. The usability process consists of four activities:
• Early focus on users should be via interviews, surveys, observa-

tions, and participatory design with an aim toward understanding
users’ cognitive, behavioral, and attitudinal characteristics.

342

SOFTWARE ENGINEERING HANDBOOK

• All facets of usability, for example, user interface, help system,
training plan, and documentation, should evolve in parallel,
rather than be defined sequentially and be under one manage-
ment.

• User testing should be early and continual. This should include
observation and measurement of user behavior and careful eval-
uation of feedback. Ultimately, a strong motivation to make
design changes should exist.

• Iterative design must be used. Because the system under design
must be continually modified due to results of behavioral tests
of function, the system must have the ability to be changed
continually.

2. This type of development effort has been used with great success:
• Xerox’s Star system
• Apple’s Lisa system
• IBM Audio Distribution Systems (ADS)
• IBM’s Rexx
• Tektronix’s Graphic Input Workstation
• Boeing’s banking terminal
• Digital Equipment Corporation’s VAX text processing utility
• IBM’s QMF
• Lotus Development Corporation’s Lotus 1–2–3

3. Six interacting, organizational reasons why usability design is not
used:
• Usability is seldom a goal in development.
• There is a belief that usability cannot be measured — even

though there is much evidence to the contrary.
• An apparent conflict between meeting deadlines and achieving

usability exists. Project managers often lack confidence in manag-
ing something that does not have clear goals or the tools to
address problems efficiently as they arise.

• Designers report that software development is not organized to
carry out the process of usability. Iterative design is thought to
be too risky, time consuming, and too difficult.

• Designers need better tools to do iterative design.
• Nearly every new application creates its own user interface,

which creates an enormous amount of work. Also, these inter-
faces are not usually developed by people skilled in user-inter-

face design.

4. Usability metrics can be created. They must be clearly stated, easily
communicated, and verifiable. The results must be made public. Ex-
perience has shown that these results are then taken seriously by
management. This has always been the case in logging system per-
formance data. This operation-room metric is a viable usability met-
ric. Measures here include percent system available, downtime per

343

Gould’s Points on Usability

day, and average user satisfaction rating. Digital Equipment Corpo-
ration has developed an analogous usability engineering approach,
as shown in Exhibit 1.

5. Creation of goals is a group process. The group must decide what
the relevant usability attributes are, how to measure them, and what
the target goals should be. The goals are clearly stated and commu-
nicated, just as they are for other components of the system.

6. End-user activity involves four operations: filling in forms, select-
ing among prescribed choices, manipulating lists, and reading
information.

7. The four end-user operations can be tied to four corresponding
building blocks that are sufficient to describe user interfaces
abstractly:
• Form blocks
• Choice blocks
• List blocks
• Info blocks

8. It is possible to separate the design of these blocks, i.e., the user in-
terface, from functional code. In the process described here, experts
structure their applications in terms of the form, choice, list, and
info blocks. Style designers write rules about how these blocks will
be rendered on an end user’s screen under various circumstances.
The benefits of this approach are that groups can work in parallel
and independently, and it promotes code reuse and iterative design.

9. Content or application experts know the jobs of the end users. They
can structure this knowledge into a computer-executable form. Ap-
plication experts create the user-interface content specifications.

10. Application (content) programmers write the programs.

Exhibit 35-1. Usability Engineering Approach

Attribute
Measuring
Concept

Measuring
Method

Worst
Case

Planned
Level

Best
Case

Now
Level

Installability Install task Time to
install

1 day with
media

1 hour
without
media

10 minutes
with
media

Many
cannot
install

Learning
rate

Fear of
seeming
foolish

344

SOFTWARE ENGINEERING HANDBOOK

11. Style designers have skills in human factors and graphic design.
Their role is mainly of advocacy; they identify problems and de-
scribe solutions. They specify style rules.

12. Style programmers write programs necessary for making an interac-
tion work.

13. Content (application) specifications are created by the application
expert and include the messages to end users, flow of control, con-
nections to function, and guidance to style.

14. Content (application) actions are created by application program-
mers. These are atomic programs with general utility. For example,
a module might transfer the contents of one list to another.

15. Style specifications are created by the style designers. These are the
rules regulating the set of human–computer interaction techniques
used to render content, including interaction methods (e.g., entry
vs. selection), appearance of the end user’s screen, and the interac-
tion devices.

16. The team works with a series of tools. Over time, they build up a li-
brary of well-tested approaches to human interface, which can then
be mapped onto an application’s content blocks.

Reference

Gould, J.D., Boies, S.J., and Lewis, C. (1991). Making usable, useful, productivity-enhancing
computer applications, Commn. ACM, 34,.

Selected Bibliography

Attewell, P. (1990). The productivity paradox, unpublished manuscript.

Good, M., Spine, T.M., Whiteside, J., and George, P. (1986). User-derived impact analysis as a
tool for usabiliuty engineering, Human factors in computing systems, CHI’86 Proceedings,
ACM, New York, 241–246.

Gould, J.D. (1988). How to design usable systems, in Handbook of Human–Computer Interac-
tion, Helander, M., Ed., Elsevier Science North-Holland Publishers, 757–789.

Hartson, R. (1989). User interface management control and communication, IEEE Software,
January, 62–70.

Wiecha, C., Bennett, W., Boies, S., and Gould, J. (1989). Generating highly interactive user in-
terfaces, Proceedings of CHI’88 (Austin, Texas, April 30-May 4, 1989), ACM, New York, 277–282.

345

Chapter 36

Prescott’s Guidelines
for Using Structured
Methodology

ABSTRACT

The science of software engineering is composed of many methodolo-
gies and each has its own variations. In this chapter, Prescott (1991) offers
an itemized set of guidelines for those interested in using structured meth-
odology to ensure their project’s success.

Structured methodology is an approach to defining a particular task and
in defining a solution to that task. It provides a methodology for partition-
ing a complex task into a manageable series of “black boxes.” The underly-
ing organization of this network of black boxes progresses from abstrac-
tion at the top level to details at the lower levels. Not only are the specifics
of each black box charted out, but the interfaces between each of these
black boxes are also specified.

One of the main reasons for using structured methodology is the sheer
complexity and cost of a problem. The discipline associated with this tech-
nique is reflected in the need to document each particular phase of devel-
opment to ensure compliance with demanding requirements for quality,
performance, and reliability.

PROCEDURES/ISSUES/POLICIES

1. Structured methodology will only be successful if:
• The company’s management is willing to make a firm commit-

ment to the substantial time investment required to build a qual-
ity project.

• A software development plan for the development of software is
used. It provides management with the means to coordinate
schedules, control resources, initiate actions, and monitor
progress of the development effort. It also provides detailed
knowledge of the schedule, organization, and resource allocation

346

SOFTWARE ENGINEERING HANDBOOK

planned by the contractor. In addition, it contains definitions and
discussions of software quality and configuration management,
as well as design and programming standards and conventions.

• Walkthroughs of at least five people for up to one and three quar-
ters hours at the most are held in the requirements, design, cod-
ing, and testing phases.

2. A software requirement must be expressed in very clear English.
3. Decompose each function into related subfunctions. For example,

initialization may be decomposed into initialize local variables and
initialize global variables subfunctions.

4. For each function or task and subfunction, a narrative is written that
clearly describes the function in terms of what the function does.
The source of the required data and its destination as output from
the function must also be defined and documented. The narrative
should include the following:
• Module name
• Module called by
• Module purpose
• Inputs
• Outputs
• Unit description

5. Define a local database that will house the data items pertinent to
the data requirements.

6. For each function, a detailed design document must be created that
will, ultimately, be used to create the code. This document contains
the following information:
• Name of function
• Function’s purpose
• Description
• Calling sequence — if this submodule is called by another mod-

ule or calls another module
• Calling parameters — if called or calling, then what are the

parameters passed
• Updates — the files that it updates
• Variables — the variables that it uses
• Algorithm — pseudocoded processing logic such as:

— Clear error flag
— If code entered is equal to code in table
— Update table.

7. Module is then coded using programming standards that enforce
readability and understanding.

8. A test plan is created that takes into consideration schedule, envi-
ronment, and available resources.

9. Test procedures that test each requirement must be documented.
This translates into a series of test cases or scenarios. The test, the

347

Prescott’s Guidelines for Using Structured Methodology

input, and the expected output are documented. This document is
known as a requirements traceability matrix, which establishes the
correspondence between a software product specification and the
successful testing of each such specification.

10. Systems integration and maintenance must be considered.
11. Tools and techniques that assist in the process of structured

methodology:
• Use of formal walkthroughs
• A structured approach to software design, coding, and testing
• Use of structured programming
• The use of standardized coding conventions
• The use of graphics devices such as a functional block diagram

for module specification

Reference

Prescott, J.R. (1991). Using structured methodology for software project success, J. Syst. Man-
age., July, 28–31.

This page intentionally left blank

349

Chapter 37

Kemayel’s
Controllable Factors
in Programmer
Productivity

ABSTRACT

Based on extensive research performed in Tunisia by Kemayel et al., this
chapter seeks to identify the characteristics of the programmer’s work
potential. The impact of certain controllable factors in the productivity of
programmers is investigated. These factors are divided into three catego-
ries: factors pertaining to personnel, factors pertaining to the process, and
factors pertaining to the user community.

PROCEDURES/ISSUES/POLICIES

1. Programmer productivity paradoxes:
• There is an enormous variance in the productivity of programmers.

This variance can be as wide as a factor of one to ten. (Other
researchers report an even wider variance.) There is a large
opportunity to improve programmer productivity within this
wide range.

• Productivity invariance with respect to experience. According to
statistical measures by Boehm (1981), when the experience of a
programmer increases from one month to three years (36-fold
increase), productivity is improved by only 34 percent. This
appears to show that experience has no effect on software
project costs.

• Productivity invariance with respect to tools. According to Boehm,
the difference in productivity between a programmer who uses
no tools at all and one who uses the most up-to-date, powerful
tools available, on the most powerful machines, is no larger than
50 percent.

350

SOFTWARE ENGINEERING HANDBOOK

• Suitability of motivation factors. Studies have shown that program-
mers have a motivation pattern different from that of their man-
agers and those of workers in other industries. This difference
might well explain why some well-intentioned software managers
fail to motivate their programmers.

2. The 33 productivity factors that are proposed can be divided into
three categories:
• Factors related to personnel
• Factors related to the software process
• Factors related to the user community

3. Personnel factors. Two sets of controllable factors are likely to affect
the productivity of data processing personnel: motivation factors
and experience factors.

4. Personnel motivation consists of many factors; 16 derived from re-
search appear below:
• Recognition. This is the reaction of the organization to the pro-

grammer’s performance. Indifference leads to a drop in motiva-
tion, which leads to a decline in productivity.

• Achievement. This represents the satisfaction that the program-
mer gets from doing a challenging task. This implies that the orga-
nization must keep supplying the programmer with challenging
tasks to maintain motivation.

• The work. The nature of the tasks that must be executed is a pow-
erful tool to motivate a programmer.

• Responsibility. This is derived from basic management theory.
That is, if you want something to happen, make someone specifi-
cally responsible for it.

• Advancement. A programmer who feels that he or she has the
possibility of career advancement in the organization is more
motivated than one who does not.

• Salary. A programmer who feels that he or she is paid adequately,
and who anticipates that salary increases will continue on par
with performance, will be more motivated than one who does
not.

• Possibility for growth. This factor measures the possibilities for
professional growth within a programmer’s company.

• Interpersonal relations with subordinates.
• Status. This measures the importance of the worker in his or her

company, e.g., participation at meetings, participation in decision
making, ceremonial functions, usage of restricted services, and
privileges of the corporation.

• Interpersonal relations, superiors. This is controllable to the extent
that the manager has latitude in assigning group leaders.

351

Kemayel’s Controllable Factors in Programmer Productivity

• Interpersonal relations, peers. Because teamwork is a key ingredi-
ent for the success of any group effort, the manager should take
care in dividing staff into working groups.

• Technical supervision. This measures the willingness of the pro-
grammer’s supervisor to help the programmer solve technical
problems, orient efforts, and make choices.

• Company policy and administration. This factor measures how
clearly the command structure of the company is defined, how
rational it is, and how easy it is to determine to whom each
worker reports.

• Working conditions. This factor represents working conditions in
the traditional sense, such as office space, light.

• Factors in personal life. Given that the programmer’s personal life
influences motivation and job performance, the manager can
assign key positions or tasks to those that have the best condi-
tions.

• Job security. This factor is very important.
5. Personnel experience is equally important. Four factors are

discussed:
• Applications domain experience
• Virtual machine experience — the aggregate of hardware, operat-

ing system, utilities, and software packages
• Programming language experience
• Experience with the user community — to what extent the pro-

grammer is familiar with the user community as a working
partner

6. Two classes of controllable factors pertaining to the software pro-
cess have been identified by the authors: project management and
programming environments.

7. Project management consists of four controllable factors:
• Using a goal structure — to what extent the programming team

uses a goal structure, and to what extent the team depends on it
for its day-to-day decision making.

• Adherence to a software life cycle — to what extent a team uses
and depends on a software life cycle.

• Adherence to an activity distribution — to what extent the pro-
gramming team uses a precise definition of life cycle activities,
and to what extent they depend on it for decision making.

• Usage of cost estimation procedures — to what extent the pro-
gramming team uses a software cost-estimation model and to
what extent they depend on it for decision making.

8. Programming environment is composed of four controllable factors:
• Programming tools.To what extent the programmer uses software

tools and how powerful these tools are (i.e., debuggers, editors).

352

SOFTWARE ENGINEERING HANDBOOK

• Modern programming practices. To what extent does the program-
mer use modern programming practices and how powerful are
they? This includes modular programming, program libraries,
and reuse.

• Programming standards. To what extent are standards used, how
stringent are they, and how strictly are they adhered to? Exam-
ples include test standards, verification standards, validation
standards, and standards of unit size.

• Power of equipment used. Barry Boehm introduced two factors
pertaining to the power of equipment used: a factor that mea-
sures memory space limitations and a factor that measures time
limitations.

9. The participation of users has been found to have an important im-
pact on programmer productivity. Well prepared users reduce the
cost of software maintenance.
• Previous education in computing. What is the duration level of the

users’ previous education in computing.
• Experience in computing. To what extent has the user used com-

puters in the past? Previous experience gives users a better
sense of what computers can do for them and enables them to
express their desires more effectively.

• Experience with the type of application. Experience in building
computer systems in the same application domain is valuable.
The major incentive for rapid prototyping is to have a high rating
for this factor.

• Experience with the group of programmers and analysts.
10. Survey results on Tunisian subjects:

• Of the 16 motivation factors, 5 were statistically significant and
account for 18.89 percent of programmer productivity: technical
supervision, working conditions, achievement, responsibilities,
and recognition.

• Of the four personnel experience factors, only two were found to
be statistically significant and account for 7.49 percent of pro-
grammer productivity: experience with the virtual machine and
user community.

• Of the factors used to assess project management, two were
proved significant and explain 5.57 percent of programmer pro-
ductivity: the definition and use of a software life cycle and soft-
ware cost estimation.

• In the programming environment area two factors explained
9.62 percent of programmer productivity: the use of modern
programming practices and the power of equipment used for
development.

353

Kemayel’s Controllable Factors in Programmer Productivity

• Two user factors were found to be significant and explained a
5.33 percent of programmer productivity: experience of the user
community with computers and the experience of the user com-
munity with the group of programmers and analysts.

References

Boehm, B.W. (1981). Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ.

Kemayel, L., Mili, A., and Ouederni, I. (1991). Controllable factors for programmer productiv-
ity: a statistical study, J. Syst. Software, 16, 151–163.

Selected Bibliography

Basili, V.R. and Weiss, D.M. (1984). A methdology for collecting valid software engineering da-
ta, IEEE Trans. Software Eng., SE-10, 728–737.

Mills, H.D. (1983). Programmer Productivity, Little, Brown and Co., Boston, MA.

This page intentionally left blank

355

Chapter 38

AT&T’s “Estimeeting”
Process for
Developing
Estimates

ABSTRACT

This chapter presents a method for estimating a software development
effort in the early phases of a large software-intensive project. For each fea-
ture of the project to be estimated, a “feature team” generates a detailed
feature definition that is used in what the Taff, Borchering, and Hudgins
(1991) term an “estimeeting.” Using this process it is possible to build in
software quality, by design, in the early stages of development and not
added on later in a series of fixes to problems uncovered in testing. Build-
ing in quality requires “front loading” the development process, yielding
better designs and fewer errors that are more easily and cleanly isolated
and repaired.

More complete work in the early stages can serve to identify tools or
special testing needs earlier. If the estimates for a project are too low, then
project staffing will also be too low. As needs become apparent, staff are
“back-end loaded,” which is the reverse of what is desirable for a high-qual-
ity product. The “estimeeting” process described in this chapter can be
used to estimate a software project accurately. The benefits of this pro-
cess, as identified by the authors, are as follows:

• Better estimates. There is an ability to predict resources more
accurately.

• Earlier and closer subsystem involvement. Subsystem owners attend
meetings earlier, see what new features may be down the pike, and as
a result, can make allowances.

• Early direct relationships. The meetings foster teamwork.
• Early expert high-level designs. Byproducts of these meetings are ideas

that are useful for the next level of design.

356

SOFTWARE ENGINEERING HANDBOOK

• Problem detection. There is a better understanding of potential prob-
lems of resources and performance.

• General acceptance of estimates. Results are readily accepted as
official.

• Clearly defined milestones. The process has clearly defined outputs
and events.

• Better transitions to development. Smoother transitions occur between
stages.

• Better quality. Multiexpertise team leads to better definition, require-
ments, and design.

• Features interactions and synergy. This leads to a better understanding
of how all features interact.

• Project knowledge base. This improves the expertise and knowledge
base for estimators, helping to produce more system experts.

• Confidence. The product management organization has increased con-
fidence in the estimates.

PROCEDURES/ISSUES/POLICIES

1. An estimeeting is a standardized working meeting with regularly at-
tending estimators. The meeting capitalizes on the synergy of hav-
ing the key people together. The preparation for and agenda of these
meetings are described. Success requires good feature require-
ments and a high-level design proposal in advance and attendance
by a specific group of experienced people.

2. The front-end process constitutes the selection process through
which feature candidates are picked for development. It begins with
a list of feature candidates and ends when a subset has been ap-
proved for development. This process attempts to balance the con-
flicting needs of business. One of these needs is to respond quickly
to changes in market conditions; a conflicting need is to reduce
“throw-away” effort by deciding early what will be developed. An-
other need is to reduce risks. These conflicting needs can be re-
solved by reviewing the list of features three times, during which the
set of potential features in a release is refined and distilled. Each of
the three iterations generates a list of features for which further
work will proceed but work is stopped on features that do not make
the cuts. These “cut” features may be reconsidered for a later re-
lease. The needs of the market are considered as well as technical
feasibility. Estimates of development cost will play a critical role.

3. Project-planning. Estimates are used for project management once
the project begins. In addition to project planning, long-range plan-
ning is also based on development estimates. Multirelease planning
tries to account for: 1) experienced staff, 2) test facilities, and 3) in-
teractions with other products such as billing, etc.

357

AT&T’s “Estimeeting” Process for Developing Estimates

4. Software is grouped into subsystems. The subsystems are organized
functionally for the various tasks that the ultimate product must
perform. Each subsystem is the responsibility of people knowledge-
able in the details of existing hardware and software and standard
industry practice for the subsystem function.

5. The large size of a project has implications. Project planning and
management have large economic impacts; errors in estimation can
have serious consequences.

6. Estimation can be broken down into two major parts. The first is job
size, which is the size and complexity of the code. The second part
of estimation is the effort required once the size is known. This ef-
fort depends on the productivity of the development organization.

7. In this model, people compare the job they are estimating with their
own experience. Estimates are made on a highly componentized
system. This breaking down of the problem into components is a
key element of this methodology. The model has these advantages:
• The components will better match the past jobs done by the

estimators.
• Statistical errors in estimating the components often cancel, giv-

ing a higher probability that the resultant number is correct.
• Potentially overlooked parts of the job have a better chance of

being exposed.
8. The estimeeting methodology evolved from three principles:

• Estimates are important numbers because they help determine
product content. Underestimating can cause failure to meet com-
mitments with dire consequences for business. Estimates impact
quality because they control the distribution of effort over the
development cycle

• Experienced people give the best values. Estimators compare the
job to be estimated with one from their own experience. There-
fore, the more extensive the experience, the more likely it is that
the estimate will be accurate.

• Cooperative meetings give excellent results. It has been proven
that team consensus improves on the best individual solution.

9. The concept behind the estimeeting is to get into one room people
highly experienced in all the major aspects of feature and subsystem
development and with the authority to represent the technical view-
point of their organizations. In this meeting, they come to a common
understanding of a new feature, agree on an informal, nonbinding,
high-level design proposal, and estimate development effort in their
own areas of expertise.

10. With a preliminary recommendations feature list, a schedule is set
down and for each feature on the list a feature team is formed. Over
a chosen time period, each team produces two outputs — the

358

SOFTWARE ENGINEERING HANDBOOK

external feature requirements (FSPs) and the internal feature design
(FAP).

11. These documents are distributed to estimators, the engineers with
in-depth knowledge of the subsystems. The estimators are not on
feature teams; they represent the development interests of their
subsystems and receive these requirements and design documents
for every feature that impacts their subsystems.

12. Team members are drawn from the concerned organizations (sys-
tems engineering, development). Some individuals join more than
one feature team. Each feature team is responsible for estimeeting
preparation, presentation, and follow-up for its feature. Although
composition of the team may evolve, it is initially composed of:
• Systems engineer — owns and ensures the completeness and

timely delivery of the FSP with the feature’s mandatory and
optional requirements. The engineer presents the requirements
at the estimeeting.

• The feature engineer — owns the technical aspects of the fea-
ture’s operation. Even when the feature is in production, the fea-
ture engineer will serve as a point of contact with a vested
interest in design and resolution of issues. Along with the system
architect, the feature engineer owns and generates the high-level
design proposal (FAP) and identifies impacted subsystems. This
person gives the high-level design and subsystem impact por-
tions of the estimeeting presentation.

• The system architect — works with the feature engineer on the
FAP and ensures its completeness and timely delivery. The sys-
tem architect describes the FAP’s architectural impact during the
estimeeting. In nonestimeeting work, the system architect devel-
ops broad architectural guidelines.

• The planner — is a technical person who participates in the front-
end process early in the release cycle. He or she is knowledge-
able about proposed features when feature teams are formed.
Planners are coordinators of the feature teams and may co-
author the FAP. After the estimeeting, the responsibility for the
feature moves from the planner to the feature engineer. Planners
share their expertise about the features.

• The product manager — is responsible for ensuring that the scope
and design of the feature remains consistent with the strategic
intent and cost goals throughout the estimeeting process.

13. The FAP (feature architecture proposal) can be thought of as an ex-
istence proof for the feature. It is an informal document that does
not require signoff signatures. The intent is to produce this docu-
ment quickly with a minimum cost. It contains:
• Description of new internal architectures where applicable

359

AT&T’s “Estimeeting” Process for Developing Estimates

• High-level functional description of how the feature works from
hardware and software design viewpoints

• Itemization of all impacted areas internal and external to the fea-
ture

• Expected feature performance
• Dependencies and interactions with other new or existing

features
• Open issues of design and architecture and proposed solutions

14. The FSP (feature selection proposal) consists of:
• Feature operation (typical user scenarios)
• Feature interaction with other features
• Feature impact
• Constraints
• Restrictions

15. Contents of subsystem estimation form:
• Feature name and number
• Date estimate made
• Estimator’s name
• Area (subsystem) represented
• Estimator’s experience in this area in years
• Estimator’s preparation time
• Consultation time with FAP authors in hours
• Estimator’s quality assessment (1 to 5 scale) of FSP and FAP
• Estimate for mandatory part of feature
• Estimate for optional part of feature
• Assumptions made to arrive at estimate
• Concerns and uncertainties that could affect the estimate
• Itemized work areas that make up estimate

16. Prior to the first estimeeting, the following package is assembled:
• Cover sheet with meeting specifics and feature team

membership
• People expected to attend
• FSP (external requirements)
• FAP (design and system-impact checklist)
• Subsystem estimation form

17. The estimeeting takes about two hours for a single feature. A mod-
erator begins by introducing the feature team members and may
briefly discuss the agenda and ground rules.

18. The system engineer presents feature description and requirements
and delineates what is optional and mandatory.

19. The system architect and feature engineer jointly present the fea-
ture design. The architect gives the architectural impact perspec-
tive and the feature engineer covers the impact on subsystems.

360

SOFTWARE ENGINEERING HANDBOOK

20. A secretary, often the planner, takes notes and records assumptions
and issues. A question and answer period typically follows the
presentations.

21. Estimators are asked to complete their individual subsystem esti-
mation forms in an “estimate collection” interval. Estimators and en-
gineers consult with each other over finer points.

22. Following the estimeeting, the feature engineer is responsible for re-
solving any open issues resulting from the estimeeting and collect-
ing any outstanding subsystem estimates. The feature engineer then
completes a feature estimate summary form, audits the estimeeting
outputs for completeness, and reports the estimeeting results. The
estimate, FSP, and FAP now become the formal output of the front-
end-process and form the project baseline.

Reference

Taff, L.M., Borchering, J.W., and Hudgins, Jr., W.R. (1991). Estimeetings: development esti-
mates and a front-end process for a large project, IEEE Trans. Software Eng., 17, 839–849.

Selected Bibliography

Lehder, Jr., W.D., Smith, D.P., and Yu, W.D. (1988). Software estimation technology, AT&T Tech-
nol. J., 67, 10–18.

Londeix, B. (1987). Cost Estimation for Software Development. Addison-Wesley, Reading, MA.

Myers. W. (1989). Allow plenty of time for large-scale software, IEEE Software, 6, 92.

361

Chapter 39

Burns’ Framework
for Building
Dependable Systems

ABSTRACT

The role and importance of nonfunctional requirements in the develop-
ment of complex critical applications have, up until now, been inade-
quately appreciated. It has been shown, through experience, that this
approach fails to produce dependable systems.

Nonfunctional requirements include dependability (e.g., reliability,
availability, safety, and security), timeliness (e.g., responsiveness, orderli-
ness, freshness, temporal predictability, and temporal controllability) and
dynamic change management (i.e., incorporating evolutionary changes
into a nonstop system).

The purpose of the framework described in this chapter (Burns and
Lister, (1991) is to:

• Impose a design discipline that ensures that appropriate abstractions
are used at each level of the design

• Allow assertions to be developed that the nonfunctional requirements
can be met by the design if implemented in a particular environment

• Allow interactions between these nonfunctional requirements to be
analyzed so that dependencies can be identified

• Allow the nonfunctional and functional requirements to be traded off
against each other

PROCEDURES/ISSUES/POLICIES

1. A constructive way of describing the process of system design is a
progression of increasingly specific commitments that define prop-
erties of the system design which designers operating at a more de-
tailed level are not at liberty to change. For example, early in the
design there may already be commitments to the structure of a sys-
tem, in terms of module definitions and relationships.

362

SOFTWARE ENGINEERING HANDBOOK

2. Those aspects of a design to which no commitment is made at some
particular level in the design hierarchy are the subject of obligations
that lower levels of design must address. For example, the behavior
of the defined “committed to modules” is the subject of obligations
that must be met during further design and implementation.

3. The process of refining a design — transforming obligations into
commitments — is often subject to constraints imposed primarily
by the execution environment.

4. The execution environment is the set of hardware and software com-
ponents on top of which a system is built. It may impose resource
constraints (e.g., processor speed) and constraints of mechanism
(e.g., data locking).

5. The framework controls the introduction of necessary implementa-
tion details into the design process by distinguishing two phases in
the construction of an architectural design of any application:
• Logical architecture — embodies commitments that can be made

independently of the constraints imposed by the execution envi-
ronment and is aimed at satisfying the functional requirements.

• Physical architecture — takes constraints into account and
embraces nonfunctional requirements.

6. The nonfunctional requirements of an application can be consid-
ered as projections onto the physical architecture. Distinct projects
apply to timeliness, safety, etc. The physical architecture makes it
explicit where projections interact and enables criteria to be devel-
oped that cater for these interactions.

7. The framework is grounded in the object-oriented approach to sys-
tem design. This approach is widely regarded as offering a concep-
tual framework for mastering the complexities of the design
process:
• Objects are an adequate modeling tool for the functional require-

ments of the system.
• They can be used to provide traceability through all stages of the

design process.
• They are an adequate basis for expressing nonfunctional

requirements.
• They provide an appropriate granularity for replication, check-

pointing, dynamic change management, configuration, and
dynamic reconfiguration.

• They assist error containment through encapsulation.
• They can support dynamic security by access right mechanisms

on operations.
• They can represent schedulable entities.
• Commonly encountered standard architectures can be imple-

mented by means of redefined classes and methods.

363

Burns’ Framework for Building Dependable Systems

8. The logical architecture is concerned with defining a set of object
classes, their interfaces, and relationships, which together meet all
the functional requirements. In the logical architecture, communica-
tion between the classes is represented by invocation of methods.

9. The physical architecture is concerned with objects, that is, instanc-
es of the classes defined in the logical architecture. It refines the log-
ical architecture in two ways:
• It instantiates objects from the classes defined in the logical

architecture and maps them onto the target execution
environment.

• It annotates the objects and their methods with attributes (such as
deadlines) derived from the nonfunctional requirements.

Reference

Burns, A. and Lister, A.M. (1991). A framework for building dependable systems, Computer J.,
34, 173–181.

Selected Bibliography

Burns, A. and Wellings, A.J, (1989). Real-Time Systems and Their Programming Languages, Ad-
dison Wesley, Reading, MA.

Burns, A. and Lister, A.M. (1990). An architectural framework for timely and reliable distribut-
ed information systems (TARDIS): description and case study,. YCS. 140, Department of Com-
puter Science, University of York, U.K..

Meyer, B. (1987). Reusability: the case study for object-oriented design, IEEE Software, 4,
50–64.

Meyer, B. (1988). Object-Oriented Software Construction, Prentice-Hall, Inc., Englewood Cliffs,
NJ.

This page intentionally left blank

365

Chapter 40

Avison’s Multiview
Meta-Methodology

ABSTRACT

The proliferation of systems development methodologies has resulted
in much confusion. In fact, it has been estimated that hundreds of more or
less similar methodologies exist. In practice, most organizations have
developed their own methodology. There have been many attempts to
compare methodologies; past research by Avison managed to categorize
methodologies into six broad themes. This chapter describes a contin-
gency framework, called Multiview (Avison and Wood-Harper,1991), which
includes descriptions of relevant techniques and tools. Analysts and users
select those aspects of the approach appropriate to the application, in
effect, creating a unique methodology for each application.

PROCEDURES/ISSUES/POLICIES

1. Problems with methodologies in practice:
• Failure to meet needs of management
• Unambitious systems design
• Inflexibility due to the output-driven design
• User dissatisfaction
• Problems with documentation
• Maintenance workload
• Application backlog

2. Categories:
• Category 1: Systems approach highlights the importance of the

relationship between an organization and its environment, and of
multidisciplinary teams to understand organizations.

• Category 2: Planning approaches involve strategic management in
information systems work so that their needs are analyzed and
information systems are implemented that do more than comput-
erize the operations level applications. This approach attempts
to identify the needs of management and plans the ways of meet-
ing these needs.

366

SOFTWARE ENGINEERING HANDBOOK

• Category 3: In a participative approach all users are expected to
contribute to and gain from any information system; this should
increase the potential for success.

• Category 4: Prototyping enables users to comment on the pro-
posed information system and its inputs, processing, and outputs
before the system has been designed in its final form.

• Category 5: Structured approaches aid the understanding of a
complex problem through functional decomposition and the
associated documentation techniques. This approach tends to
emphasize decision trees, decision tables, data-flow diagrams,
etc.

• Category 6: Data analysis is a useful modeling tool in which the
data model produced is likely to be relevant for a longer period
than models of processes, which can be unstable.

3. It has been suggested that one approach cannot be the answer:
• The tools and techniques appropriate for one set of circum-

stances may not be appropriate for others.
• The fuzziness of some applications requires attack on a number

of fronts.
• As an information system develops, it takes on very different per-

spectives and any methodology adopted should be able to incor-
porate these views.

4. It has been argued that the contingency approach to information
systems development, an approach where the methodology chosen
will depend on the particular circumstances where it will be applied,
might be the solution. The methodology selected will be contingent
on the particular situation according to its level of uncertainty.

5. The choice of tools and techniques used in an application following
a contingency framework will depend on:
• The comprehensiveness and depth of the information systems

design process required
• Whether the designers choose a goal-oriented strategy or an

alternative-oriented strategy. The goal-oriented strategy negoti-
ates on what is to be achieved, and then finds ways to accom-
plish the tasks. The alternative-oriented strategy does not
assume that consensus can be reached on the goals, but rather
that negotiation must occur on how to do things.

• The choice of an appropriate adaptation strategy reflecting the
perception about future events. One choice is to ignore future
requirements, the second is to presume they are predictable, and
the third is to presume that they are unpredictable, but can be
dealt with.

• The choice of an appropriate implementation strategy
6. Multiview is a contingency approach that provides a flexible frame-

work as an alternative to choosing between different methodologies

367

Avison’s Multiview Meta-Methodology

or standardizing on one particular methodology. Multiview is a
blended methodology drawing on aspects from each of the six cate-
gories of methodologies as summarized above. It is an explorative
structure which can be called a meta-methodology.

7. The multiview meta-methodology:
• Step 1: Analysis of human activity. This stage concerns the search

for view of the organization, representing a subjective as well as
objective perception of the problem situation in diagrammatic
and pictorial form. It is used to identify problem themes. Through
debate within the organization, it is possible to identify relevant
systems that may relieve problem themes. The root definition
describes the system on which to focus attention. The root defini-
tion is analyzed to make sure that all necessary elements have
been identified including the owner of the system, the client, the
transformation that takes place, and the environment in which it
takes place.

• Step 2: Analysis of information. At this stage, the entities and func-
tions of the system described are analyzed. By using functional
decomposition, it is possible to break down the main function
(clear in a well-formed root definition) into subfunctions. Using
data-flow diagrams, it is possible to analyze the sequence of
events. In developing an entity model, the problem solver
extracts and names entities, relationships between entities, and
attributes that describe the entities.

• Step 3: Analysis and design of sociotechnical aspects. At this stage,
the problem solver produces a design from an analysis of people
and their needs and the working environment along with consid-
eration for the organizational structure, computers, and the nec-
essary work tasks. The social and technical objectives are set and
alternatives specified and compared so that the best solution can
be selected. Once selected, computer tasks, role tasks, and peo-
ple tasks can be defined. The emphasis at this stage is not on
development, but on a statement of alternatives, according to
important social and technical considerations.

• Step 4: Design of the human computer interface. Decisions are
made as to batch versus online versus command, etc. Specific
conversations and interactions are then designed; users are
expected to be the major contributors of this stage. Technical
requirements to fulfill these human–computer interfaces can then
be designed.

• Step 5: Design of technical aspects. Using the entity model cre-
ated in Step 2 and the technical requirements from Step 4, a
more technical view can be taken by the analyst because human
considerations are already integrated with the forthcoming

368

SOFTWARE ENGINEERING HANDBOOK

technical considerations. The technical design will include the
application subsystems and the nonapplication subsystems.
These include the information retrieval subsystem, database,
database maintenance subsystem, control subsystem, etc.

8. These five stages incorporate five different views that are appropri-
ate to the progressive development of an analysis and design
project. Because it is a multiview approach, it covers computer-
related questions and also matters relating to people and business
functions Each step addresses one of the following five questions:
• How is the information system supposed to further the aims of

the organization using it?
• How can it be fit into the working lives of the people in the organi-

zation who will use it?
• How can individuals concerned best relate to the computer in

terms of operating it and using the output from it?
• What information processing function is the system to perform?
• What is the technical specification of a system that will come

close enough to doing the things written down in the answers to
the other four questions?

Reference

Avison, D.E. and Wood-Harper, A.T. (1991). Information systems development research: an ex-
ploration of ideas in practice, Computer J., 34(2).

Selected Bibliography

Avison, D.E. and Wood-Harper, A.T. (1986). Multiview — an exploration in informal system de-
velopment, Aust. Computer J., 18 ,.

Avison, D.E. and Fitzgerald, G. (1988). Information Systems Development — Methodologies,
Techniques and Tools, Blackwell Scientific Publications, Oxford.

Avison, D.E. and Wood-Harper, A.T. (1990). Multiview: an Exploration in Information Systems
Development, Blackwell Scientific Publications, Oxford.

Davies, L.J. and Wood-Harper, A.T. (1989). Information systems development: theoretical
frameworks, J. Appl. Syst. Anal., 16.

Hirschheim, R. and Klein, H.R. (1989). Four paradigms for information systems development,
Commn. ACM, 32.

Iivari, J.A. (1989). Methodology for IS development as an organizational change: a pragmatic
contingency approach, in Klein & Kumar (1989).

369

Chapter 41

Byrne’s Reverse
Engineering
Technique

ABSTRACT

The problem of reimplementing an existing system in a different pro-
gramming language is a problem around which there are three general
approaches:

• Manually rewrite the existing system.
• Use an automatic language translator.
• Redesign and reimplement the system.

There are problems with each of these approaches. Manually translated
source code often retains the style and flavor of the original implementa-
tion. This approach is labor intensive and error prone. Automatic transla-
tion, a better technique, has problems as well.

The source language may not yield itself to simple translation into the
target language. Most automated translator tools perform the easier parts
of the translation process, leaving the more complex details for a human.
Perhaps the biggest problem with this technique is, as Byrne (1991) sug-
gests, its tendency to replicate the same problems plaguing the original
version — in other words, “garbage in, garbage out.”

Of the three approaches, redesign and reimplementation has the best
chance of producing a successful system; however, this technique has its
disadvantages too. This approach has the highest cost because it is the
equivalent of building a new system. Perhaps the most serious disadvan-
tage is that, for many systems, it may not be possible to redesign from sys-
tem requirements because the requirements may not exist.

Reverse engineering provides a new approach by producing a recon-
structed design that captures the functionality of the system. This chapter
describes a reverse engineering technique that successfully translated a
FORTRAN program into the Ada language.

370

SOFTWARE ENGINEERING HANDBOOK

PROCEDURES/ISSUES/POLICIES

1. Collect information. The reverse engineering process begins by ex-
tracting detailed design information and from that extracting a high-
level design abstraction. Detailed design information is extracted
from the source code and existing design documents. This informa-
tion includes structure charts as well as data descriptions to de-
scribe processing details. In the collect information step, all
possible information about the program is collected. Sources of in-
formation include source code, design documents, and documenta-
tion for system calls and external routines. Personnel experienced
with the software should also be identified. This last requirement is
not to be underestimated; lack of “domain knowledge” can make de-
sign recovery extremely difficult, if not impossible.

2. Examine information. In this step the information collected in step
one is examined to allow the person doing the recovery work to be-
come familiar with the system and its parts. Staff responsible for re-
verse engineering formulate a plan for dissecting and recording the
recovered information. It should be noted that becoming familiar
with the language implementation of the module can bias the re-
verse engineering effort by influencing the perspective of what
should be recovered and how it should be expressed.

3. Extract the structure. The information is reviewed in an attempt to
identify the structure of the program. This is used to create a set of
structure charts where each node in the chart corresponds to a rou-
tine called in the program. Therefore, the chart created actually
records the calling hierarchy of the program. For each edge in the
chart, the data passed to a node and returned by that node must be
recorded. It should be noted that software tools are generally avail-
able to assist in the development of structure charts. Associating
structure chart nodes with source code routines raises the issue of
traceability. In reverse engineering, it is desirable to record the links
between the recovered design and the original source code or doc-
umentation. In this case, it would be desirable to give a node a mean-
ingful name and record the name of the implemented function to
which it corresponds. As the structure chart is recorded, the data
items passed between nodes should also be recorded.

4. Record functionality. For each node, the processing done by that
node is recorded. At this step, the program routines’ functionality as
well as the functionality of system and library routines is described
in English or using a more formal notation. If debugging statements
are used within the program, then they should be recorded as well.
Conditional compilation code, that is, the procedural code that di-
rects the software to a particular hardware platform, needs to be re-
viewed carefully.

371

Byrne’s Reverse Engineering Technique

5. Record data-flow. The recovered program structure and processing
logic can be analyzed to identify the data transformations in the
software that show the actual data processing done in the program.
This information can be used to develop a set of hierarchical data-
flow diagrams that model the software.

6. Record control flow. At this stage the high-level control of the pro-
gram is identified. This refers to the level of control that affects the
overall operation of the software. A problem in this step might be in
distinguishing between low-level control structures that involve the
implementation of a routine and high-level control structures that
serve to control the software operation. The former should be in-
cluded as part of the processing described in the detailed design;
the latter needs to be recorded in a control-flow diagram and its con-
trol specification. Byrne found that there is a temptation to recover
too much of the control structure.

7. Review the recovered design for consistency. At this stage, missing
items are identified and an attempt is made to locate them. The de-
sign is now checked to see if it accurately represents the program.

8. Generate documentation. This last step’s purpose is to generate de-
sign documentation. Information explaining the purpose of the pro-
gram, program overview, history, etc. will be recorded.

Reference

Byrne, E.J. (1991). Software reverse engineering: a case study, Software — Pract. Exp., 21,
1349–1364.

Selected Bibliography

Biggerstaff, T.J. (1989). Design recovery for maintenance and reuse, Computer, 22, 36–49.

Chikofsky, E.J. and Cross II, J.H. (1990). Reverse engineering and design recovery: a taxonomy,
IEEE Software, 7, 13–17.

Choi, S.C and Scacchi, W. (1990). Extracting and restructuring the design of large systems,
IEEE Software, 7, 66–71.

Ricketts, J.A., DelMonaco, J.C., and Weeks, M.W. (1989). Data re-engineering for application
systems, Conference on Software Maintenance, Miami Florida, October 16–19, 174–179.

This page intentionally left blank

373

Chapter 42

Prieto-Diaz’
Reusability Model

ABSTRACT

Software reuse is still far from a standard practice in the software engi-
neering community even though it was first conceived of over 20 years ago.
The problem, according to Prieto-Diaz (1991), is not one of technology but
of unwillingness to address the most important issues influencing software
reuse.

A model for implementing software reuse programs is discussed in this
chapter. This model is based on an incremental strategy and addresses
many issues that were thought to be external to the software process. This
includes managerial, economic, performance, cultural, and technology
transfer issues. The approach addressed here is practical and effective,
and has potential to make reuse a regular practice in the software develop-
ment process.

PROCEDURES/ISSUES/POLICIES

1. Factors that influence reuse include:
• Managerial factors — organizational, motivational, and financial
• Economic factors — integrating reuse in cost/benefit analysis, sys-

tem costing and estimation, pricing criteria, contracting strate-
gies, and support costs

• Legal factors — software copyright, liabilities, proprietary issues,
contractual requirements

2. Justifications for an incremental approach:
• Provides an immediate return on investment
• Builds confidence within the organization
• Easier to manage
• Allows for tuning and refining the reuse process
• Facilitates monitoring and evaluating reuse

3. A key ingredient is management support, which is a common factor
in all successful reuse programs (Raytheon, Toshiba, Hartford). This
commitment is necessary because reuse programs demand changes
in the way software is developed.

374

SOFTWARE ENGINEERING HANDBOOK

4. Inputs to the reuse program include software from existing systems
and requirements for future systems.

5. The products of a reuse program include a series of software cata-
logs, an automated library system, generic architectures, and a col-
lection of reusable components.

6. The assessment report includes: feasibility analysis, domain stabili-
ty assessment, cost/benefit analysis, and an implementation plan.

7. Questions for a feasibility analysis:
• Does the organization have enough financial and human

resources to implement a reuse program?
• Can the organization afford it?
• Is reuse necessary in the organization?
• Does the organization want to do it?
• Is management committed to implementing a reuse program?
• How many systems of the same kind will be produced?
• Are variations from implementation to implementation large or

small?
• Is existing software already available for reuse? What would be

the estimated cost for each alternative?
• Does a critical mass of software engineers exist?
• Is software production large enough to justify a reuse program?

8. Questions for an analysis of domain suitability:
• Is the domain, line of business, broad or narrow?
• Is the domain mature and well understood or is it new and not

well understood?
• Is the domain complex or simple?
• Is the domain stable or rapidly changing?
• Is the domain very technology dependent?
• Is it in a state of developing concepts or does it rely on well-estab-

lished principles, methods, and formalisms?
9. Questions for cost/benefit analysis:

• How much does it cost?
• Is a reuse program economically feasible?
• What alternatives exist for implementing a reuse program?
• What is the scope?
• How big a program is contemplated?
• What are the expectations?
• What is the desired level of reuse (partial, opportunistic, formal,

total)?
10. The following organizational structure is recommended to establish

a successful reuse program:
• Asset management group — provides initiatives, funding, and poli-

cies for reuse.

375

Prieto-Diaz’ Reusability Model

• Identification and qualification group — identifies potential reus-
ability areas and collects and certifies new additions to the
collection.

• Maintenance group — maintains and updates reusable software
components.

• Development group — creates new reusable components.
• Reuser support group — assists and trains users and runs tests

and evaluations of reusable components.
• Librarian — updates and distributes catalogs, classifies new

assets, maintains library system, and manages asset orders. Sev-
eral roles may be assigned to one person. However, staff size for a
large corporate endeavor might exceed ten.

11. A reuse program can be implemented in four basic stages: initiation,
expansion, contraction, and steady state.

12. Stage 1: Initiation. Existing software is analyzed to select potentially
reusable components. Descriptors of these components are extract-
ed manually or automatically and a preliminary index is produced.
A stage 1 catalog is produced. This catalog informs software engi-
neers in the organization about potentially reusable software.

13. Stage 2: Expansion. The size of the catalogs increases as more of the
existing software is identified for reuse. At this point, a classification
scheme is necessary. An initial faceted classification scheme is pro-
duced and included with the stage 2 catalog. Based on the feasibility
study, a case can be made to support an automated library system.
The faceted classification scheme requires the resources of a librar-
ian and a domain expert. A faceted scheme provides basic domain
models in the form of taxonomies and standard descriptions or lex-
icons, which in turn support bootstrapping the domain analysis
process.

14. Stage 3: Contraction. In this stage, domain analysis is the key activity.
Early domain models from stage 2 coupled with more detailed infor-
mation from existing systems and from requirements for future sys-
tems are used for domain analysis. Standard architectures and
functional models are derived and common components are
grouped to support basic generic functions. Redundant and ineffec-
tive components are identified and retired from the collection. This
results in contraction in the size of the collection. The collection and
classification are updated and a stage 3 catalog is made available. In
this stage, a domain analyst, one or more domain experts, a software
engineer, and a librarian are required.

15. Stage 4: Steady State. Now that the essential components have been
identified for a specific domain, these components are progressively
replaced by components supporting domain-specific functions.
These components are reusable because they are designed to plug
directly into the architecture.

376

SOFTWARE ENGINEERING HANDBOOK

Reference

Prieto-Diaz, R. (1991). Making software reuse work: an implmentation model, ACM SIGSOFT,
Software Eng. Notes, 16, 61–68.

Selected Bibliography

Barnes, B.H. and Bollinger, T.B. (1991). Making reuse cost-effective, IEEE Software, 8, 13–24.

Basili, V.R. and Rombach, H.D. (1988). Towards a comprehensive framework for reuse: a reuse-
enabling software evolution environment, Tech. Report CS-TR-2158, Dept of Computer Sci-
ence, University of Maryland, College Park, MD,.

Frakes, W.B. (1991). A survey of software reuse, position paper for the 1st International Work-
shop on Software Reuse, Dortmund, Germany, July 1991.

Freeman, P. (1983). Reusable Software Engineering: Concepts and Research Directions, in Work-
shop on Reusability in Programming, Alan Perlis, ed., 3–26. ITT Programming, Newport, RI.

Prieto-Diaz, R. (1991). Implementing faceted classification for software reuse, Commn. ACM,
34, 88–97.

377

Chapter 43

Farbey’s
Considerations
on Software Quality
Metrics during the
Requirements Phase

ABSTRACT

In this chapter Farbey (1990) expands on the general view of quality as
the difference between what is expected and what is experienced:

quality = expectations – experience

Four questions are addressed:

• Effectiveness. Does the specification, considered as a solution, solve
the right problem?

• Serviceability. Does the specification, considered as a starting point,
provide a firm basis on which to proceed?

• Prediction. Does the requirement specification (together with the sys-
tem test specification) provide useful measures for predicting the final
quality outcome?

• Process. Does the process by which the specification is produced en-
courage effectiveness, serviceability, and quality prediction?

PROCEDURES/ISSUES/POLICIES

1. Effectiveness. The first question concerns the quality of the specifi-
cation as a solution — how well does the specification capture the
problem? The ultimate effectiveness of a system depends not on the
quality of software or specification, but on the degree to which the
problem is correctly perceived. Focus on the specification as a prod-
uct by asking questions like the ones that follow:

378

SOFTWARE ENGINEERING HANDBOOK

• Is the process by which it has been produced conducive to bring-
ing out and clarifying objectives?

• Is it complete in that it exhausts the objectives and needs that are
known?

• Is the specification maintainable?
• Is it readable?
Quality attributes covered here include:
• Functionality. Does the specification capture all of the required

functions?
• Performance. Does the specification meet the users’ demands?
• Usability. Does the specification offer ease of use, learning, and

relearning?
2. Serviceability. The second question concerns the quality of its con-

tent and implications for later system development. The following is
a list of questions of efficiency, in this context meaning “doing things
right:”
• Are the requirements consistent?
• Are the requirements unambiguous?
• Are the requirements compatible with the methods of later devel-

opment stages?
• Are the requirements readable?
• Are the requirements modifiable?
• Are the requirements traceable?
• Are the requirements usable after implementation?
• Are the requirements maintainable?
• Are the requirements in compliance with documentation

standards?
3. Prediction. The third question concerns the value of measures of

quality that will act as predictor measurements for the eventual
quality of the finished software. A predictor metric is used to predict
the value of a property of a system that will become directly observ-
able only during a later stage of system development.

4. Process. Three processes of development are worth considering:
• A life-cycle process such as SSADM (structured systems analysis

and design) is based on a waterfall model. In this model require-
ments specification occurs at an early stage and is then fixed as
any associated metrics would be.

• A prototyping approach offers an early normalization, but also
offers a more flexible model of system development that recog-
nizes the problem of changing requirements.

379

Farbey’s Considerations on Software Quality Metrics During Requirement Phase

• Approaches recognize specifically the social setting in which
requirements specifications takes place. Control of quality during
any process will probably be one of instituting checklists
together with a program for completing them and acting on the
results. Questions to ask at this point include:
— Is the system easy to learn?
— Is the system easy to relearn?
— Is there stability and maturity in the system?

Reference

Farbey, B. (1990). Software quality metrics: considerations about requirements and require-
ment specifications, Inf. Software Technol., 32, 60–64.

Selected Bibliography

Schafer, G. (1988). Functional Analysis of Office Requirements — a Multi-Perspective Approach,
John Wiley & Sons, Chichester, U.K.

Stamper, R. (1984). Information: mystical fluid or a subject for scientific inquiry? Computer J.
Symp., November.

Watts, R. (1988). Measuring software quality NCC, Manchester, U.K.

This page intentionally left blank

381

Chapter 44

Redmill’s Quality
Considerations
in the Management
of Software-Based
Development
Projects

ABSTRACT

It comes as no surprise that the majority of software development
projects are late, over budget, and out of specification. Project managers
point to a number of technical problems, most of which are related to tech-
nical tasks specific to software development. This chapter shows that inad-
equate management and a lack of attention to quality are the main causes
of the problem (Redmill, 1990).

PROCEDURES/ISSUES/POLICIES

1. Most common reasons given by project managers for failure to meet
budget, time scale, and specification are as follows:
• Incomplete and ambiguous requirements
• Incomplete and imprecise specifications
• Difficulties in modeling systems
• Uncertainties in cost and resource estimation
• General lack of visibility
• Difficulties with progress monitoring
• Complicated error and change control
• Lack of agreed-upon metrics
• Difficulties in controlling maintenance
• Lack of common terminology

382

SOFTWARE ENGINEERING HANDBOOK

• Uncertainties in software or hardware apportionment
• Rapid changes in technology
• Determining suitability of languages
• Measuring and predicting reliability
• Problems with interfacing
• Problems with integration

2. Audits of systems development efforts reveal shortcomings in
projects:
• Lack of standards
• Failure to comply with existing standards
• Nonadherence to model in use
• No sign-off at end of stages
• Lack of project plans
• No project control statistics recorded or stored
• No quality assurance (QA) procedures
• No change-control procedures
• No configuration control procedures
• No records of test data and results

3. The three causes for the lack of control of projects:
• Attitude to quality
• Attitude to management
• Attitude to project

4. In finding solutions, the principal reasons for project management
shortcomings should be reviewed, e.g., the project manager:
• Has no experience working where a quality culture predominates
• Has not been trained in TQM (total quality management)
• Has not received adequate management training
• Has not been managed in accordance with TQM principles by

supervisors
• Has not overcome an inclination toward technical matters and

finds that they offer a more friendly environment than the less
familiar affairs of management

5. Solutions:
• Training: project manager and team must be trained in TQM.
• Management commitment: must always be seen to be 100 percent.
• Standards: a comprehensive set of standards for all aspects of

work should be instituted and used. The project life cycle must
be covered as well as other pertinent issues.

• Guidelines, procedures, and checklists: assist workers to meet the
standards and QA agents to check the products.

• Quality assurance: should be carried out at all stages of the life
cycle and for all end-products.

• QA team: should be independent of the development team.

383

Redmill’s Considerations in Management of Software-Based Development

• Audits: should be carried out during the project to ensure that
management and QA procedures are adhered to. The project
manager should always initiate a review of the auditors’ recom-
mendations and of all resulting correction action.

• Planning: the project manager should be fastidious in drawing up
plans and ensuring their use for control. Plans should include the
project plan, stage plans, and a quality plan, which details the
quality requirements of the project.

• Reporting: a reporting system should be instituted to ensure that
problems are quickly escalated to the management level appro-
priate to the action needed.

• Feedback: statistics that assist in project control and the
improvement of quality should be collected, analyzed, and used.

• Continuous review: the whole quality system (components, mode
of operation, and quality of results) should be reviewed and
improved continuously.

• Project manager: must not be too technically involved. Technical
duties should be delegated to a development team manager who
reports to the project manager.

• Nontechnical support team: should be appointed to assist in non-
developmental matters including coordination and interpretation
of resource and time statistics, recording all expenditures and
tracking against budget, and tracking milestones. This team
should report to project manager.

Reference

Redmill, F.J. (1990). Considering quality in the management of software-based development
projects, Inf. Software Technol., 32, 18–22.

Selected Bibliography

Rathbone, M. (1988). Software quality system, Computer Tech., February.

Redmill, F.J. (1987). Difficulties of specifying users’ requirements for computer systems and
methods of mitigating them, Br. Telecommn. Eng., 6, Part 1, April.

Wingrove, A. (1987). Software failures are management failures, in Software Reliability:
Achievement and Assessment, Littlewood, B., Ed., Blackwell, Oxford, U.K.

This page intentionally left blank

385

Chapter 45

Contel’s Software
Metrics in the
Process Maturity
Framework

ABSTRACT

The Contel Technology Center’s software engineering lab has as one of
its prime goals the improvement of software engineering productivity. As a
result of work in this area, Pfleeger and McGowan (1990) have suggested a
set of metrics for which data is to be collected and analyzed. This set of
metrics is based on a process maturity framework developed at the Soft-
ware Engineering Institute at Carnegie Mellon University. The SEI frame-
work divides organizations into five levels based on how mature (i.e., orga-
nized, professional, aligned to software tenets) the organization is. The five
levels range from initial, or ad hoc, to an optimizing environment. Contel
recommends that metrics be divided into five levels as well. Each level is
based on the amount of information made available to the development
process. As the development process matures and improves, additional
metrics can be collected and analyzed.

PROCEDURES/ISSUES/POLICIES

1. Level 1: Initial Process. This level is characterized by an ad hoc ap-
proach to software development. Inputs to the process are not well
defined but the outputs are as expected. Preliminary baseline
project metrics should be gathered at this level to form a basis for
comparison as improvements are made and maturity increases.
This can be accomplished by comparing new project measurements
with the baseline ones.

2. Level 2: Repeatable Process. At this level the process is repeatable in
much the same way that a subroutine is repeatable. The require-
ments act as input and the code as output; constraints are such
things as budget and schedule. Even though proper inputs produce

386

SOFTWARE ENGINEERING HANDBOOK

proper outputs, there is no means to discern easily how the outputs
are actually produced. Only project-related metrics make sense at
this level because the activities within the transitions from input to
output are not available to be measured. Measures at this level can
include:
• Amount of effort needed to develop the system
• Overall project cost
• Software size: noncommented lines of code, function points,

object and method count
• Personnel effort: actual person-months of effort, reported per-

son-months of effort
• Requirements volatility: requirements changes

3. Level 3: Defined Process. At this level the activities of the process are
clearly defined. This additional structured means that the input to
and output from each well-defined functional activity can be exam-
ined, which permits a measurement of the intermediate products.
Measures include:
• Requirements complexity: number of distinct objects and actions

addressed in requirements
• Design complexity: number of design modules, Cyclomatic com-

plexity, McCabe design complexity
• Code complexity: number of code modules, Cyclomatic complexity
• Test complexity: Number of paths to test, of object-oriented devel-

opment, then number of object interfaces to test
• Quality metrics: defects discovered, defects discovered per unit

size (defect density), requirements faults discovered, design
faults discovered, fault density for each product

• Pages of documentation
4. Level 4: Managed Process. At this level, feedback from early project

activities is used to set priorities for later project activities. Activi-
ties are readily compared and contrasted, and the effects of changes
in one activity can be tracked in the others. At this level measure-
ments can be made across activities and are used to control and sta-
bilize the process so that productivity and quality can match
expectation. The following types of data are recommended to be col-
lected. Metrics at this stage, although derived from the following da-
ta, are tailored to the individual organization.
• Process type. What process model is used and how is it correlated

to positive or negative consequences?
• Amount of producer reuse. How much of the system is designed

for reuse? This includes reuse of requirements, design modules,
test plans, and code.

387

Contel’s Software Metrics in the Process Maturity Framework

• Amount of consumer reuse. How much does the project reuse
components from other projects? This includes reuse of require-
ments, design modules, test plans, and code. (By reusing tested,
proven components, effort can be minimized and quality can be
improved.)

• Defect identification. How and when are defects discovered?
Knowing this will indicate whether those process activities are
effective.

• Use of defect density model for testing. To what extent does the
number of defects determine when testing is complete? This con-
trols and focuses testing as well as increases the quality of the
final product.

• Use of configuration management. Is a configuration management
scheme imposed on the development process? This permits trace-
ability, which can be used to assess the impact of alterations.

• Module completion over time. At what rates are modules com-
pleted? This reflects the degree to which the process and devel-
opment environment facilitate implementation and testing.

5. Level 5: Optimizing Process. At this level measures from activities are
used to change and improve the process; this change can affect the
organization and the project as well. Studies by SEI report that 85
percent of organizations are at level 1, 14 percent at level 2, and
1 percent at level 3. None of the firms surveyed had reached levels
4 or 5; therefore, the authors have not recommended a set of metrics
for level 5.

6. Steps to take in using metrics:
• Assess the process: determine the level of process maturity
• Determine the appropriate metrics to collect
• Recommend metrics, tools, and techniques
• Estimate project cost and schedule
• Collect appropriate level of metrics
• Construct project database of metrics data that can be used for

analysis and to track value of metrics over time
• Cost and schedule evaluation: when the project is complete, eval-

uate the initial estimates of cost and schedule for accuracy and
determine which of the factors may account for discrepancies
between predicted and actual values

• Form a basis for future estimates

Reference

Pfleeger, S.L. and McGowan, C. (1990). Software metrics in the process maturity framework,
J. Syst. Software, 12, 255–261.

388

SOFTWARE ENGINEERING HANDBOOK

Selected Bibliography

Boehm, B.W. (1988). A spiral model of software development and enhancement, IEEE Com-
puter, May.

Conte, S.D., Dunsmore, H.E., and Shen, V.Y. (1986). Software Engineering Metrics and Models,
Benjamin-Cummings Publishing Co., Menlo Park, CA.

Humphrey, W. (1989). Managing the Software Process, Addison-Wesley, Reading, MA.

Pfleeger, S.L. (1989). Recommendations for an initial set of metrics, Contel Technology Center
Technical Report CTC-TR-89–017, Chantilly, VA.

389

Chapter 46

Kydd’s Technique
to Induce
Productivity through
Shared Information
Technology

ABSTRACT

Organizations have made large investments in shared information tech-
nology (SIT) over the years under the guise of electronic mail systems, dis-
tributed databases, and group decision support systems. Kydd and Jones
(1989) contend that SIT may not be appropriate for every organization —
that, in order for SIT to be successful, the corporate culture must be one
that supports sharing of information across boundaries. In this chapter,
the authors give general guidelines that can be used concerning conditions
under which high-return SIT can be implemented.

PROCEDURES/ISSUES/POLICIES

1. There are two organizational prerequisites for successful invest-
ment in SIT:
• The organizational culture must be “right,” that is, appropriate

for and supportive of the sharing of information.
• Successful execution of a significant number of jobs must require

timely access to shared information.
2. In “excellent” companies, a great deal of communication takes place

among people in different functional areas. There may also be cross-
functional management of cost, quality, and scheduling. This im-
plies that communication occurs across traditional organizational
boundaries and that information is shared.

3. In traditional American businesses, the organization is through a hi-
erarchical structure in which corporate norms have dictated that

390

SOFTWARE ENGINEERING HANDBOOK

communications paths follow the hierarchy — allowing certain man-
agers to monopolize information. SIT, in contrast, allows workers to
work in a cooperative manner across traditional organizational
boundaries.

4. Rich communications media foster productivity:
• Group meetings
• One-on-one meetings
• Telephone contact

5. Guidelines for implementing high-return SIT:
• Assess the environment within the organization to determine

whether shared information will further the strategic objectives
of the organization. In addition, determine whether or not the cul-
ture of the organization fosters information sharing.

• If SIT is not strategically important, defer SIT until it is.
• If it is strategically important but the culture does not encourage

information sharing, then plan and implement an improvement
program that focuses on a single, measurable objective of strate-
gic importance (such as a quality improvement program) and
requires involvement by everyone in the organization. The objec-
tive is to develop a culture in which everyone is concerned with
continuous improvement, measurable results, and shared infor-
mation. Ensure that management behavior is consistent with the
objectives of the program and that the organization’s reward sys-
tem encourages information sharing.

• If the improvement program is successful, develop a plan for
implementing SIT. This plan should include plans for developing
an information infrastructure with standardized definitions of key
data elements, an information technology infrastructure that pro-
vides access to corporate and external data bases, and a uniform
set of user-friendly tools. This set should include tools that estab-
lish communication protocols between individuals and reinforce
the new collaborative norms.

Reference

Κψδδ, Χ.Τ. ανδ ϑονεσ, Λ.Η. (1989). Χορπορατε προδυχτιϖιτψ ανδ σηαρεδ ινφορµατιον τεχηνολ−

ογψ, Ινφ. Μαναγε., 17, 277�281.

Selected Bibliography

Draft, R.L. and Lengel, R.H. (1986). Organizational information requriements, media richness
and structural design, Manage. Sci., 5, 554–571.

391

Chapter 47

Bellcore’s Software
Quality Metrics

ABSTRACT

The Bellcore quality assurance engineering software (QAES) group for
Bellcore client companies (BCCs) has developed and implemented a com-
prehensive quality assurance program that focuses on resolving the under-
lying problems associated with developing quality software (Hon, 1990).
The objective of QAES’ surveillance program is to develop “cooperative”
relationships that cause vendors to focus on (1) implementing methods
and techniques to improve control of software development, (2) improving
the effectiveness of the underlying process used to develop and support
software, thus improving the quality, and (3) understanding the needs and
requirements of the BCCs. This chapter discusses this approach and
explores measurements utilized whose objectives are to assure adequate
vendor quality control, minimize defects, and optimize buyer satisfaction.

PROCEDURES/ISSUES/POLICIES

1. Assure adequate vendor quality control. Measures have been imple-
mented in the surveillance program to track the accomplishment of
milestone criteria. These include:
• Requirements, design, coding, and unit test-phase measurements:

— Phase deliverable completion
— Number of open correction actions requests
— Review coverage

• Test-phase measurements:
— Test coverage as measured by structure, functions, or paths
— Number of test cases executed and passed
— Number of trouble reports
— Number of open trouble reports by severity
— Trouble report initiation rates
— Product-specific quality, reliability, and stability

2. Minimize defects and improve the effectiveness of the software de-
velopment process:

392

SOFTWARE ENGINEERING HANDBOOK

• Review of software development artifacts (e.g., requirements,
specifications, and code) and testing results provide measurable
evidence about the effectiveness of the implemented software
development process, that is, specific information about the type
and quantity of defects produced.

• Specific measurements used in “real time” to minimize defects
include:
— Average number of defects detected in modules and sub-

systems by type
— Historical system, subsystem, and module fault densities
— Number of defects detected during reviews

3. A long-term approach is to collect comprehensive defect data. Infor-
mation about defect type, its origin, the mechanism used for detec-
tion, and defect severity are required to isolate ineffective processes
and detection mechanisms. Defects found during reviews and test-
ing are classified according to the phase detected (x axis) and origi-
nated (y axis). After defect data is accumulated, simple calculations
will determine the percentage of total defects attributable to certain
phases of the life cycle and the effectiveness of phase defect detec-
tion efforts. For example, the percentage of total defects attribut-
able to “requirements” is calculated as the total number of
requirements defects divided by the total number of defects multi-
plied by 100.

4. Quality and reliability measures include:
• Number and duration of system outages due to software failure
• Number of customer trouble reports
• Customer trouble report cause analysis
• Patch statistics where a patch is defined as an interim fix

5. Buyer support measures include:
• Customer service response time
• Number of open trouble reports
• Site distribution of open fault reports
• Aging of open customer trouble reports by severity
• Time-to-correct customer trouble reports

Reference

Hon, S.E. (1990). Assuring software quality through measurements: a buyer’s perspective,
J. Syst. Software, 13, 117–130.

Selected Bibliography

Grady, R.B. (1987). Measuring and managing software maintenance, IEEE Software, Septem-
ber, 35–45.

Jones, T.C. (1986). Programmer Productivity, McGraw-Hill, New York.

393

Chapter 48

Keyes’ Value
of Information

ABSTRACT

If it will be difficult to make the point that the corporate information
resource is a worthy vehicle to protect with a dictionary workbench, then
calculating the value of information (VOI) will be a useful exercise (Keyes,
1992). It will assist the organization in determining the true worth of its
investment in information. The ultimate goal of this exercise is to assign a
monetary value to each unitary piece of information. In this way an orga-
nization accustomed to assessing relative worth based on bottom-line sta-
tistics can instantly recognize the value of information in terms that it
understands.

PROCEDURES/ISSUES/POLICIES

The following steps should be taken for this assessment:

1. Assign each system (i.e., payroll) a weighting relative to its impor-
tance to the organization. Permissible weights for the entirety of this
exercise are one for a low relative value, two for a middle relative
value, and three for a high relative value.

2. For each data element within a system, assign a weighting that
shows that data element’s importance relative to that system. Again,
use weightings one through three.

3. Multiply these two numbers to get the total weighting of a data ele-
ment relative to all data in the organization.

4. Each data element should have an annotation next to it indicating
the number of systems in which this data element is cross refer-
enced. For example, it is possible that “customer name” is used in
the sales, inventory, and marketing systems. This would give a total
of three systems. The product calculated in instruction three is now
multiplied by the number determined in this instruction.

5. Convert this number to a percentage.
6. Using the last audited net income amount for the organization (for a

quarter or for an entire year), calculate the VOI by multiplying the
percentage calculated in instruction five by the net income amount.

394

SOFTWARE ENGINEERING HANDBOOK

Reference

Keyes, J. (1992). INFOTRENDS: the Competitive Use of Information, McGraw-Hill, New York.

395

Chapter 49

Pfleeger’s Method
for CASE Tool
Selection Based
on Process Maturity

ABSTRACT

A wide variety of computer-assisted software engineering (CASE) tools
are available in the software market for various types of applications in the
software development process. It is not a trivial issue for an organization to
make the appropriate selections and incorporate the CASE tools at the
right stages for its own environment. The five process maturity levels
defined by the Software Engineering Institute can be used as guidelines for
an organization to determine the proper types of CASE tools to use based
on its own process maturity (Pfleeger and Fitzgerald, Jr., 1991).

It is obvious that the CASE tools chosen for a particular project have
direct impacts on its success in terms of productivity, schedule, quality,
etc. Without any clearly defined procedures or guidelines, it is rather diffi-
cult for an organization to make intelligent decisions on selecting proper
CASE tools to use for a particular process and for a particular project. The
method presented here clearly defines the most suitable types of tools to
use based on the software development process maturity of an organiza-
tion. It is valuable for organizations that have already introduced CASE
tools with emphasis on continuous process improvement or organizations
that plan on migrating from no previous CASE tools involvement to a pro-
cess with fully integrated CASE tools support.

PROCEDURES/ISSUES/POLICIES

The table in Exhibit 49-1 describes the characteristics for each process
maturity level defined by the Software Engineering Institute.

396

SOFTWARE ENGINEERING HANDBOOK

Level 1: Initial Process

For this level of process maturity, the inputs to the process are not well
defined; however, the outputs are usually defined. The software process
neither defines nor controls the transition from inputs to outputs. The
CASE tools selection for this level should focus on adding structure and
definition to the inputs and outputs of the process. A tool that structures
and controls the requirements is useful for process at this level of maturity.

Level 2: Repeatable Process

For this level of process maturity, the inputs, outputs, and constraints
are identified for the process. This process is repeatable. Proper inputs will
always produce proper outputs even though there is no mechanism to
keep track of how the outputs are produced. The process at this level is
completely dependent on individuals working on the project. The CASE
tools selection for this level should focus on documenting and retaining
the information produced in the software development process and mak-
ing it available to other members in the project team. Tools for require-
ments modeling, specification, and analysis are useful and project manage-
ment tools will help track the project constraints at this level of process
maturity.

Level 3: Defined Process

For this level of process maturity, the process is now refined into activi-
ties according to various phases in the development cycle. The entry and
exit criteria for all activities in the process are clearly defined. The inputs
for any particular activity should be ready and evaluated before the actual
activity takes place. The inputs and outputs associated with each activity
are considered intermediate products. The CASE tools selection for this
level should focus on measuring the characteristics of the intermediate
products to ensure the goals are met and to monitor the process devia-
tions. CASE tools should be selected to produce, analyze, and organize
those intermediate products at this level of process maturity.

Exhibit 49-1. Software Engineering Institute’s
Process Maturity Levels

Level Characteristics

5. Optimizing Improvement fed back to process

4. Managed Measured process (quantitative)

3. Defined Process defined, institutionalized

2. Repeatable Process dependent on individuals

1. Initial Ad hoc

397

Pfleeger’s Method for CASE Tool Selection Based on Process Maturity

Level 4: Managed Process

For this level of process maturity, the software development process
tends to be dynamic in the sense that feedback and experience learned
from early project activities can be used to determine and modify the pri-
ority of later project activities. The effectiveness of process factors such as
reuse, testing, and reviews can be evaluated. The causal analysis can be
done throughout the development process to prevent future mistakes and
to analyze defects injected in the early activities. The software develop-
ment process is now carefully controlled rather than just monitored. The
CASE tools selection for this level should focus on collecting and analyzing
process-wide metrics for confidence measurement and course correction
to allow management and control of the development process.

Level 5: Optimizing Process

This is the ultimate level of process maturity. Projects in this level are
fully dynamic in terms of real-time intra- and interprocess improvements
and modifications. The software process evolves and corrects itself. The
CASE tools selection for this level should focus on dynamic evaluation,
configuration, and reconfiguration of an environment based on the current
status of the process to ensure product confidence level is met. Process
programming and process simulation tools should be considered for pro-
cess at this level of maturity.

Reference

Pfleeger, S.L. and Fitzgerald, Jr., J.C. (1991). Software metrics tool kit: support for selection,
collection and analysis, Inf. Software Technol., September, 33(7).

Selected Bibliography

Boehm, B.W. (1988). A spiral model of software development and enhancement, Computer,
May.

Guidelines: a framework for the evaluation and comparison of software development tools
(FIPS Publication 99), National Bureau of Standards, Gaitherburg, MD, March, 1983.

Humphrey, W. (1989). Managing the Software Process, Addison-Wesley, Reading, MA.

Pfleeger, S.L. and McGowan, C.L. (1990). Software metrics in a process maturity framework,
J. Syst. Software, July.

This page intentionally left blank

399

Chapter 50

McCabe’s
Complexity Metric

ABSTRACT

McCabe’s (1976) metric to assess the complexity of software is perhaps
one of the most well-known and well-used metrics. It is presented here in a
simplified format.

PROCEDURES/ISSUES/POLICIES

McCabe’s proposal for a cyclomatic complexity number was the first
attempt to quantify the “flow of control” complexity of software objec-
tively. The metric is computed by decomposing the program into a
directed graph that represents its flow of control. The cyclomatic complex-
ity number is then calculated using this formula:

V(g) = edges — nodes + 2

In its shortened form, the cyclomatic complexity number is a count of deci-
sion points within a program with a single entry and a single exit plus one.

Reference

McCabe, T.A. (1976). Complexity measure, IEEE Trans. Software Eng., December, 308–320.

This page intentionally left blank

401

Chapter 51

Halstead’s Effort
Measure

ABSTRACT

In the 1970s, Maurice Halstead (1977) developed a theory regarding the
behavior of software. Some of his findings evolved into software metrics.
One of these is referred to as “effort” or just “E,” and is a well-known com-
plexity metric.

PROCEDURES/ISSUES/POLICIES

The effort measure is calculated as:

E = Volume/Level

where Volume is a measure of the size of a piece of code and Level is a mea-
sure of how “abstract” the program is. The level of abstracting varies from
almost zero for programs with low abstraction to almost one for programs
that are highly abstract.

Reference

Halstead, M. (1977). Elements of Software Science, Elsevier, New York.

This page intentionally left blank

403

Chapter 52

DEC’s Overview
of Software Metrics

ABSTRACT

Nowhere are productivity and quality more important than in a hard-
ware/software vendor. Digital Equipment Corporation’s view of productiv-
ity and quality is presented in this chapter and provides a fine overview of
the principles of this book (DEC, 1990). DEC was later acquired by Compaq,
which itself has been acquired by HP.

PROCEDURES/ISSUES/POLICIES

1. Software productivity: why do we care?
• Expectations of customers and users
• Increasing complexity
• Effective use of technology
• Missed opportunities
• Shortage of skilled software developers
• Increasing need for higher-quality software

2. Productivity: what do we really want?
• Better products
• Better focus
• Better resource utilization
• Better control

3. Productivity: why measure?
• Quantify the project’s progress
• Quantify attributes of the software system

4. Why use metrics?
• Understand and manage the process
• Measure the impact of change to the process: new methods,

training
• Know when a goal has been met: usability, performance, test

coverage
5. Software system metrics:

• Characterization of the parts of the system
— Requirements
— Specifications

404

SOFTWARE ENGINEERING HANDBOOK

— Code
— Documentation
— Tests
— Training

• Attributes include
— Usability
— Maintainability
— Extendibility
— Size
— Defect level
— Performance
— Completeness

6. Software development process metrics:
• Characterizations of the process of developing the system
• Attributes include cost of development, predictability of sched-

ule, rate of defect discovery, and repair
7. Characteristics of metrics

• Collectable
• Reproducible
• Pertinent
• System independent

8. Questions to ask:
• How is time spent on a project?
• Has the defect rate gone down?
• What tools are being used?
• What are the reasons for rework?
• Are problem reports under control?
• Is this a reasonable schedule?

9. Caveats:
• Behavior modifies toward what is being measured
• Measure the attributes that are important
• Measure multiple attributes

— Size versus quality
— Source code versus source + comments
— Executable lines of code versus data declarations

10. Product metrics:
• Size: lines of code, pages of documentation, number and size of

test, token count, function count
• Complexity: decision count, variable count, number of modules,

size/volume, depth of nesting
• Reliability: count of changes required by phase, count of discov-

ered defects, defect density = number of defects/size, count of
changed lines of code

405

DEC’s Overview of Software Metrics

11. Process metrics:
• Complexity: time to design, code, and test, defect discovery rate

by phase, cost to develop, number of external interfaces, defect
fix rate

• Methods and tool use: number of tools used and why, project infra-
structure tools, tools not used and why

• Resource metrics: years experience with team, years experience
with language, years experience with type of software, MIPS per
person, support personnel to engineering personnel ratio, non-
project time to project time ratio

• Productivity: percent time to redesign, percent time to redo, vari-
ance of schedule, variance of effort

12. What is productivity?
• How do you define it?
• In what context?
• What about quality and predictability?
• Productivity itself is not the goal

13. Classes of productivity:
• Product: quality, reliability, bug rate, maintainability, complexity

level
• People: how much is done in a unit of time, effects of training,

type of problem, morale, creativity versus discipline
• Process: what can be automated and at what cost, predictability

of what and when delivered, getting problems out of the system
and getting control in

14. Operational definitions:
• Identify the attributes
• Determine the metric and measuring technique
• Measure to understand where you are
• Establish worst, best, planned cases
• Modify process
• Remeasure to see what has changed
• Reiterate
• Work with data that is already available
• Determine additional data to collect and method of collection

15. Software quality dimensions:
• Software capabilities
• Publications
• Packaging
• Installability
• Ease of use
• Performance
• Reliability
• Maintainability
• Compatibility

406

SOFTWARE ENGINEERING HANDBOOK

• Evolvability
• Cost
• Timeliness

16. The relative cost of fixing problems:
• Just before code 1
• During code 1.5
• Just before test 10
• During test 60
• In the field 100

Reference

Digital Equipment Corporation. (1990). Software metrics: an overview — tools for managing
software development, company presentation.

407

Chapter 53

Hewlett Packard’s
TQC (Total Quality
Control) Guidelines
for Software
Engineering
Productivity

ABSTRACT

Engineering productivity is extremely important to HP because the com-
pany relies on new product development to maintain its competitive
strength. On average, HP introduces one new product every business day;
70 percent of HP’s engineers are involved in software development and half
of all R&D projects are exclusively devoted to software development.

It was this significant investment in software development that
prompted HP’s president to issue a challenge to achieve a tenfold improve-
ment in software quality within five years. He also asked that new product
development time be reduced by 50 percent.

This chapter points out the techniques Hewlett Packard (1989) utilized
to meet this vast quality and productivity challenge.

PROCEDURES/ISSUES/POLICIES

1. HP’s productivity equation:

Productivity = function of doing the right things * function of
doing things right

2. Cultural and organizational issues are addressed to be able to moti-
vate and support positive changes. Productivity managers are used
in each division:

408

SOFTWARE ENGINEERING HANDBOOK

• Understand productivity and quality issues
• Evaluate, select, and install CASE tools
• Communicate best software engineering practices
• Training
• Establish productivity and quality metrics
• A group productivity council created to share the best R&D prac-

tices across divisions
• Metrics definition
• Metrics tracking
• Productivity councils
• Software quality and productivity assessment
• Communication of best practices

3. A software metrics council was created composed of R&D and QA
managers and engineers whose objective was to identify key soft-
ware metrics and promote their use.

4. Project/product quality metrics:
• Break-even time measures return on investment. It is defined as

time until development costs are offset by profits. The three num-
bers plotted are: R&D investment in dollars, operating profit in
dollars and time, and sales revenue in dollars and time.

• Time-to-market measures responsiveness and competitiveness. It
is defined as time from project go-ahead until release to market.

• Kiviat diagram measures variables that affect software quality
and productivity. It is a bull’s eye chart that graphs results of
quality and productivity assessment.

5. Process quality metrics:
• Progress rate measures accuracy of the schedule. It is defined as

the ratio of planned to actual development time.
• Open, critical, and serious KPR measures effectiveness of sup-

port processes. It is defined as the number of service requests
classified as known problems (of critical or serious severity level)
that are not signed off.

• Post-release defect density measures effectiveness of design and
test processes. It is defined as the total number of defects
reported during the first 12 months after product shipment.

6. People quality metrics:
• Turnover rate measures morale; it measures the percent of engi-

neers leaving company.
• Training measures investment in career development. It is

defined as the number of hours per engineer per year.
7. Basic software quality metrics:

• Code size (KNCSS, which is thousands of lines of noncomment
source statements)

• Number of prerelease defects requiring fix
• Prerelease defect density (defects/KNCSS)

409

TQC Guidelines for Software Engineering

• Calendar months for prerelease QA
• Total prerelease QA test hours
• Number of post-release defects reported after one year
• Post-release defect density (defects/KNCSS)
• Calendar months from investigation checkpoint to release

8. Strategy for code reuse:
• Share code (use exactly as is) whenever possible.
• If sharing is not possible, try to leverage (minimal modifications).
• If neither sharing nor leveraging is possible, look for similar algo-

rithms (design reuse).
• As a last resort, invent something new.

9. The systems software certifications program was established to en-
sure measurable, consistent, high-quality software. The four metrics
chosen were:
• Breadth — measures the testing coverage of user-accessible and

internal functionality of the product.
• Depth — measures the proportion of instructions or blocks of

instructions executed during the testing process.
• Reliability — measures the stability and robustness of a product

and its ability to recover gracefully from error conditions.
• Defect density — measures the quantity and severity of reported

defects found and a product’s readiness for use.

Reference

Hewlett Packard. (1989). Software Engineering Productivity, company report.

This page intentionally left blank

411

Chapter 54

Motorola’s Six Sigma
Defect Reduction
Effort

ABSTRACT

In 1987 Motorola set in motion a five-year quality improvement program
called Six Sigma. The term “six sigma” is one used by statisticians and engi-
neers to describe a state of zero defects. This program has resulted in pro-
ductivity gains of 40 percent, as well as winning the Malcolm Baldrige
National Quality Award in 1988 (Rifkin, 1991). Benefits include:

• Increased productivity by 40 percent
• Reduced backlog from years to months
• Increased customer service levels
• Shifted IS time from correcting mistakes to value-added work
• More motivated staff
• Saved $1.5 billion in reduced cost

PROCEDURES/ISSUES/POLICIES

1. Identify your product. Determine what service or product you are
producing. IS must align what they do with what the customers
want.

2. Identify customer requirements. IS must determine what the cus-
tomer perceives as a defect-free product or service. The unit of work
that the user is dealing with must be considered, for example, a gen-
eral ledger system in which the user worries about defects per jour-
nal voucher and not defects per thousand lines of code.

3. Diagnose the frequency and source of errors. Four categories of met-
rics were established to target defect reduction:
• New software development
• Service delivery
• Cycle time
• Customer satisfaction, which is composed of a detailed service

with the intent of validating the first three metrics

412

SOFTWARE ENGINEERING HANDBOOK

4. Define a process for doing the task. Motorola refers to this process
as mapping, but closely aligned to the re-engineering process. The
process involves using personal computer-based tools to determine
flow-through of processes and answering the following questions:
• Which processes can be eliminated?
• Which processes can be simplified?

5. Make the process mistake proof. By streamlining a process and elim-
inating any unnecessary steps, it is possible to make the process
mistake proof. By using metrics, a process control mechanism is put
into place so that problems can be addressed before they affect
output.

6. Put permanent control measures in place. Once Six Sigma is
reached, this level must be maintained. At this step, the Six Sigma
metrics are set up to be used to monitor the process continuously:
• Monthly quality review meetings are held where each person dis-

cusses his or her metric, its trend, diagnosis of source cause of
errors, and action plan to correct them.

Reference

Rifkin, G. (1991). No more defects, Computerworld, July, 59–62.

413

Chapter 55

Lederer’s
Management
Guidelines for Better
Cost Estimating

ABSTRACT

Inaccurately estimating software project costs wastes limited resources,
fails to make expected contributions, and ultimately destroys the credibil-
ity of estimators and developers. This chapter results from a study by Led-
erer and Prasad (1992) of the cost-estimating practices reported by 115
computing managers and professionals.

PROCEDURES/ISSUES/POLICIES

1. Causes of inaccurate estimates: (listed in order of descending value)
• Frequent requests for changes
• Overlooked tasks
• Users lack understanding of their own requirements
• Insufficient communication between user and analyst
• Poor or imprecise problem definition
• Insufficient analysis when developing estimate
• Lack of coordination between systems development, technical

services, operations, etc.
• Lack of an adequate methodology or guidelines for estimating
• Changes in information systems department personnel
• Insufficient time for testing
• Lack of historical data regarding past estimates and actuals
• Lack of setting and review of standard duration for use in

estimating
• Pressure from managers, users, or others to increase or reduce

estimate
• Inability to anticipate skills of project team members
• “Red tape”

414

SOFTWARE ENGINEERING HANDBOOK

• Lack of project control comparing estimates and actuals
• Users lack data processing understanding
• Inability to tell where past estimates failed
• Reduction of project scope or quality to stay within estimate,

resulting in extra work later
• Lack of careful examination of estimate by management
• Lack of participation in estimating by systems analysts and pro-

grammers who develop system
• Performance reviews do not consider whether estimates were

met
• Lack of diligence by systems analysts and programmers
• Removal of padding from the estimate by management

2. Influences on the estimate: (listed in order of descending value)
• Complexity of proposed system
• Required integration with other systems
• Complexity of programs in system
• Size of the system in number of functions
• Capabilities of the project team members
• Size of the system in number of programs
• Project team’s experience with the application
• Anticipated frequency or extent of potential changes in user

requirements
• Project team’s experience with the programming language
• Data management system
• Number of project team members
• Extent of programming or documentation standards
• Availability of software productivity tools
• Development mode (batch or online)
• Particular programming language used
• Project team’s experience with the hardware
• Availability of testing aids
• Availability of test time on the hardware
• Computer memory and secondary storage constraints
• Size of the system in number of lines of code

3. The uses of cost estimates: (listed in order of descending value)
• Staff projects
• Control or monitor project implementation
• Select proposed projects for implementation
• Schedule projects
• Quote charges to users for projects
• Audit project success
• Evaluate project developers
• Evaluate project estimators

415

Lederer’s Management Guidelines for Better Cost Estimating

4. Software packages in use: (listed in order of descending value)
• Estimacs
• Spectrum/Estimator
• In-house package
• Project Workbench
• Nolan/Prompt
• AGS PAC III
• DEC/VAX Software Project Manager
• Microsoft Project

5. Guideline one: Assign the initial estimating task to the final develop-
ers. There are two schools of thought concerning the estimation
process. One is that a separate group of people should be given the
responsibility of estimating all software projects — much in the
same way as a professional estimator estimates construction
projects. This study found that this was not valid; the best estimates
come from the ultimate developers of the product.

6. Guideline two: Delay finalizing the initial estimate until the end of a
thorough study. If the estimators cannot come up with an accurate
estimate, then they should delay announcing it until it can be as ac-
curate as possible. Project overruns are a direct result of improvis-
ing an estimate. The researchers found that coming up with an
estimate under pressure serves no purpose because revising an es-
timate may not correct it.

7. Guideline three: Anticipate and control user changes. Estimators
should thoroughly understand the user requirements that motivat-
ed the proposed system before they estimate the costs. By doing so,
they can probably reduce and therefore control the frequent re-
quests for changes.

8. Guideline four: Monitor the progress of the proposed project. The
study found that the percentage of large projects that overrun their
estimates and the percentage of those for which formal monitoring
of project progress compares it to its project plan were negative.
Thus, formal monitoring is important.

9. Guideline five: Evaluate proposed project progress by using inde-
pendent auditors. The monitoring of a project is usually done by
those involved with it. The survey shows, however, that more accu-
rate estimates occur when independent auditors are present. Ap-
parently, an independent evaluation is an advance warning to
estimators and developers that computing management is con-
cerned about creating an accurate estimate and meeting it. It also
makes it harder to cheat. Within systems analysts and program-
mers, 25 percent refrain from accurately reporting their actual
hours in order to meet the estimates; 36 percent of computing de-
partments postpone the delivery of part of a project and then claim
on-time delivery for the rest of the project, and 68 percent of the

416

SOFTWARE ENGINEERING HANDBOOK

projects in this study had programmers work disproportionately
harder in the final days of the project to meet the targeted comple-
tion date.

10. Guideline six: Use the estimate to evaluate project personnel. Great-
er accuracy is found in estimating when such evaluation is done.
The authors recommend informing personnel in advance of the in-
tended use of the estimate and giving favorable recognition to per-
sonnel whose projects meet their estimates.

11. Guideline seven: Computing management should carefully study and
approve the cost estimate. For 58 percent of an organization’s large
projects, a cost/benefit analysis is used to justify systems develop-
ment. Computing management approval, rather than user manage-
ment approval, increases estimating accuracy.

12. Guideline eight: Rely on documented facts, standards, and simple
arithmetic formulas rather than on guessing, intuition, personal
memory, and complex formulas.

13. Guideline nine: Do not rely on cost estimating software for an accu-
rate estimate. The study found that the use of software estimating
packages had no significant effect on reducing overruns.

Reference

Lederer, A.L. and Prasad, J. (1992). Nine management guidelines for better cost estimating,
Commn. ACM, 35, 51–59.

Selected Bibliography

Albrecht, A.J. (1979). Measuring application development productivity, GUIDE/SHARE Appl.
Dev. Symp. Proc., February, 83–92.

Conte, S.D., Dunsmore, H.E., and Shen, V.Y. (1986). Software Engineering Metrics and Models,
Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA.

Lederer, A.L., Mirani, R., Neo, B.S., Pollard, C., Prasad, J., and Ramamurthy, K. (1990). Informa-
tion system cost estimating: a management perspective, MIS Q., 14, 159–178.

417

Chapter 56

Kanter’s
Methodology
for Justifying
Investment
in Information
Technology

ABSTRACT

A survey of over 100 corporate CEOs found that 64 percent felt that their
organizations were not getting the most for their information systems
investments (Kanter, 1990). This short chapter focuses on how to justify
the IS function.

PROCEDURES/ISSUES/POLICIES

1. Decide whether or not you need to justify the past or whether you
want to work only on new expenditures. A strong argument can be
made for comprehensive budgeting of past activities as a base point
for future planning.

2. Once a scoping is made, budgets can be sorted by many categories
such as specific department and activity or by qualitative breakouts
such as architecture, skills mix, and systems development.

3. Many IS executives measure information technology expenditures
against industry averages. To assure balance, analyze by major ap-
plication areas such as marketing, manufacturing, or finance. Use
one or more third-party yardsticks to measure strategic or compet-
itive advantage applications such as:
• Computerworld Premier 100 — based on a six-part formula that

includes:

418

SOFTWARE ENGINEERING HANDBOOK

— Annual IS budget as percent of revenue (30 percent)
— Market value of equipment as percent of revenue

(15 percent)
— Company profitability over five years (15 percent)
— Percent of IS budget for people (10 percent)
— Percent of IS budget on education (15 percent)
— Number of PCs/Terminals as percent of total headcount (15

percent) (percent = weighting value)
• CIO Magazine Top 100 —MIS operations evaluated by experts on

four factors that foster a competitive edge:
— Demonstrated importance of customer service
— Not who you know, but how you connect to them
— Value of information as equal to money as an asset
— Illuminate shifts in IS usage

• Nolan, Norton — IT expenditure by industry compared to total
revenue, then application portfolio by function, compared to
business strategy and broken out by spending for:
— Institutional systems
— Professional support
— Physical automation
— External support

• SoCal Gas Company — based on a University of St. Louis method,
company evolved a four-point plan:

• Economic impact (65 pts)
• Strategic alignment (22)
• MIS support (13)
• Definitional uncertainty (plus/minus pts)
• Rivard & Kaiser — value placed on intangible and probabilistic

returns including:
— Incremental analysis
— Value analysis
— Expected value
— Worst/most likely/best case analysis

• Index Group PRISM — broad use of questionnaires to measure
user satisfaction and performance within corporate culture and
strategy guidelines

4. Conduct a qualitative survey, application by application, of all major
systems. Have two groups respond. For each application, IS staff
should rate cost/value in terms of maintainability, adequacy of hard-
ware/software, staffing requirements, etc. Each user department
should rate effectiveness of each application in terms of mission, ful-
fillment, timeliness, adequacy, method of reporting, productivity
benefit, etc. This survey permits:

419

Kanter’s Methodology for Justifying Investment in Information Technology

• Gain alignment and consensus for action
• Make cuts
• Clearly identify high-ROI applications

5. The next step is to assess future costs. Best approach builds on ba-
sic value analysis as represented by return-on-investment measure-
ment. In this instance, it is important to place value on intangible
benefits and strategic uses of information technology.

Example: Placing terminals in customers’ offices has an intangible value
unless you ask: how much more will that customer buy? How many cus-
tomers do we normally lose in a year, and how many will we keep now? The
answers can be found by extrapolation, projection, or survey.

The expected-value method can be used to assess the probabilities of
certain outcomes. This allows you to draw and adjust quantified value con-
clusions of the type that senior management will respect.

Example: Assume average annual downtime for a paper mill is two weeks
with each down week costing $2 million. A new information system has a
goal of reducing downtime by improving maintenance decisions. If the
assumption is made that a 50 percent chance downtime can be reduce 10
percent, then these are tangible figures that can be brought to management.

Reference

Kanter, J. (1990). It’s time to justify your organization’s investment in information technology,
Cambex STOR/age, 1, from a paper prepared for MIS sponsors of Babson College’s Center for
Information Management.

This page intentionally left blank

421

Chapter 57

The “Make–Buy”
Decision

ABSTRACT

Many projects can make use of package software to satisfy part or all of
a functional requirement. In making this decision, the purchase cost of the
package must be weighed against the development costs estimated as part
of the planning step. As part of this process the questions in this chapter
should be answered.

PROCEDURES/ISSUES/POLICIES

1. Does the vendor-supplied software meet all functional requirements
defined in the scope of the plan? If not, what percentage of the func-
tion will need to be enhanced or added locally? What costs are asso-
ciated with these enhancements?

2. Has the vendor-supplied software been developed using software
engineering methods? Is it maintainable? Does a good documenta-
tion base exist? What documentation is supplied with the package?

3. Does the vendor-supplied software meet human interface require-
ments for the system to be developed?

4. Does the vendor-supplied software already have a user base? How
many users are working in an environment identical to (hardware,
operating system, database)? Are current users happy with the
package and with vendor’s support of the package? Is there a user
group?

5. What is the vendor’s policy on software maintenance and on error
correction and reporting? What are the vendor’s rates for future ad-
aptation or enhancement of the software? Does a maintenance con-
tract exist? Is the vendor the original developer of the package?

6. Will the vendor supply source code or will the source code be
placed in escrow?

7. Have adequate benchmark and validation tests been conducted on
the vendor’s software?

8. Is there more than one candidate vendor package? Have all the can-
didates been evaluated? Have benchmark tests been conducted?

422

SOFTWARE ENGINEERING HANDBOOK

9. How are new releases of the package handled? How long are the old-
er releases supported? What is the frequency (based on past perfor-
mance) of new releases?

10. Is special training required to use the package? To operate the pack-
age? Is training conducted at the local site? Is any cost associated
with training?

Reference

 General Electric Company. (1986). Software Engineering Handbook, McGraw-Hill, New York.

423

Chapter 58

Software Selection
from Multiple
Packages

ABSTRACT

Many projects can make use of package software to satisfy part or all of
a functional requirement. In making this decision, the purchase cost of the
package must be weighed against the development costs estimated as part
of the planning step. The decision is further complicated when more than
one software package is evaluated. This chapter provides a recommended
evaluation procedure.

PROCEDURES/ISSUES/POLICIES

1. Cost — the real cost of vendor-supplied software (purchase price +
cost to modify + cost to add + maintenance fee)

2. Service and support — based on other users with identical
environments

3. Documentation — for users and local maintenance
4. Expandability and flexibility — to address future applications or

changes in environment
5. Reputation — of the vendor and the vendor-supplied software
6. Stability — based on the age of the package and the number of re-

leases over the past two years
7. Machine or operating system dependency — based on programming

languages used, special features tied to special hardware
8. Completeness — of function and performance based on software

scope

A software evaluation matrix should be developed to evaluate software
packages against each other. First, establish a weight factor, based on
importance, for each characteristic. Grade each candidate package on a

424

SOFTWARE ENGINEERING HANDBOOK

scale of one to ten for each characteristic listed above. The final grade for
each package is:

Σ [(characteristic)k(weighting factor)k]

where k = 1 to 8.

Reference

General Electric Company. (1986). Software Engineering Handbook, McGraw-Hill, New York.

425

Chapter 59

The Boehm
COCOMO Model

ABSTRACT

COCOMO (constructive cost model) describes factors that affect the
ultimate cost of computer software. The factors fall into four broad catego-
ries: product, computer, personnel, and project. Each of these factors is
assigned quantitative values.

The software development effort is modeled as a nonlinear function of
the number of estimated lines of code to be developed. COCOMO equa-
tions take the form of:

m = c1 * KLOCa*PROD[fi]

where:

m = number of person-months for development effort
c1 = model coefficient
a = model exponent
fi = cost factors (i = 1 to 16)

Each model cost factor is assigned values based on the degree of its
importance and impact.

PROCEDURES/ISSUES/POLICIES

1. Product cost factors
• Required software reliability: degree to which effort will be

expended to assure software reliability (number of reviews, qual-
ity assurance effort)

• Data base size: size and complexity of the database to be devel-
oped or integrated (number of information elements, access
methods)

• Software product complexity: logical and structural complexity of
the software to be developed

2. Computer cost factors
• Execution time constraints: degree to which program execution time

is tied to successful accomplishment of software requirements
• Memory constraint: memory limitations

426

SOFTWARE ENGINEERING HANDBOOK

• Environmental volatility: frequency and extent to which the envi-
ronment external to the software (i.e., operating system, hard-
ware, etc.) will change during development

• Computer turnaround time: responsiveness of the programming
environment

3. Personnel cost factors
• Analyst capability: experience and expertise
• Application experience: experience of development personnel

with user application domain
• Programmer capability: experience and expertise
• Environment expertise: experience and expertise with software

environment
• Language experience: experience and expertise in programming

language
4. Project cost factors

• Programming practices: use of modern programming practices
during project

• Software tools: availability of software tools for each of the soft-
ware engineering steps

• Schedule constraints: the degree to which scheduling constraints
will affect the application of software engineering techniques

5. Other cost considerations
• Language: Cost per source instruction in assembly language is

about twice the cost per source instruction in a higher level
language.

• Real-time applications: Cost per instruction is about five times
that of conventional applications.

• Point on learning curve: An experienced programming group
requires 50 to 100 percent more effort to develop an unfamiliar
program than some variant of a familiar program.

• Amount of documentation: Documentation costs run about 10 per-
cent of the total software development cost.

• Amount of previous software used: The cost of adapting existing
software into a new project may be determined by estimating the
modification and interface costs for the new application.

• Representations of development environment: The added cost
required to adapt software to actual operational conditions can
be quite significant — up to 95 pecent — but can only be esti-
mated subjectively.

Further Readings

Boehm, B. (1981). Software Engineering Economics, Prentice-Hall, New York.

Boehm, B. (1975). The high cost of software, in Practical Strategies for Developing Large Soft-
ware Systems, Horowitz, E., Ed., Addison-Wesley, Reading, MA, 4–14.

427

Chapter 60

IEEE Standard
Dictionary of
Measures to Produce
Reliable Software

ABSTRACT

The IEEE standards were written with the objective of providing the soft-
ware community with defined measures currently used as indicators of
reliability. By emphasizing early reliability assessment, this standard sup-
ports methods through measurement to improve product reliability. This
chapter presents a subset of the IEEE standard easily adaptable by the gen-
eral IS community.

PROCEDURES/ISSUES/POLICIES

1. Fault density. This measure can be used to predict remaining faults
by comparison with expected fault density, determine if sufficient
testing has been completed, and establish standard fault densities
for comparison and prediction.

Fd = F/KSLOC

where:

F = total number of unique faults found in a given interval resulting
in failures of a specified severity level

KSLOC = number of source lines of executable code and nonexecutable
data declarations in thousands

2. Defect density. This measure can be used after design and code in-
spections of new development or large block modifications. If the
defect density is outside the norm after several inspections, it is an
indication of a problem.

428

SOFTWARE ENGINEERING HANDBOOK

where:

Di = total number of unique defects detected during the ith design or
code inspection process

I = total number of inspections
KSLOD = in the design phase, the number of source lines of executable

code and nonexecutable data declarations in thousands

3. Cumulative failure profile. This is a graphical method used to predict
reliability, estimate additional testing time to reach an acceptably
reliable system, and identify modules and subsystems that require
additional testing. A plot is drawn of cumulative failures versus a
suitable time base.

4. Fault-days number. This measure represents the number of days that
faults spend in the system from their creation to their removal. For
each fault detected and removed during any phase, the number of
days from its creation to its removal is determined (fault-days). The
fault-days are then summed for all faults detected and removed, to
get the fault-days number at system level, including all faults detect-
ed and removed up to the delivery date. In cases where the creation
date of the fault is not known, the fault is assumed to have been cre-
ated at the middle of the phase in which it was introduced.

5. Functional or modular test coverage. This measure is used to quantify
a software test coverage index for a software delivery. From the sys-
tem’s functional requirements, a cross reference listing of associat-
ed modules must first be created.

Functional (Modular) Test Coverage Index =

where:

FE = number of the software functional (modular) requirements for which
all test cases have been satisfactorily completed

FT = total number of software functional (modular) requirements

6. Requirements traceability. This measure aids in identifying require-
ments that are missing from or in addition to the original
requirements.

TM = * 100%

∆∆

∆ι
ι 1=

Ι

∑
ΚΣΛΟ∆
−−−−−−−−−−−−−−−−−−−−−=

ΦΕ

ΦΤ
−−−−−−−

Ρ1

Ρ2
−−−−−−−

429

IEEE Standard Dictionary of Measures to Produce Reliable Software

where:

R1 = number of requirements met by the architecture
R2 = number of original requirements

7. Software maturity index. This measure is used to quantify the readi-
ness of a software product. Changes from previous baselines to cur-
rent baselines are an indication of current product stability.

SMI =

where:

SMI = maturity index
MT = number of software functions (modules) in the current delivery
Fa = number of software functions (modules) in the current delivery that

are additions to the previous delivery
Fc = number of software functions (modules) in the current delivery that

include internal changes from a previous delivery
Fdel = number of software functions (modules) in the previous delivery

that are deleted in the current delivery

The software maturity index may be estimated as:

SMI =

8. Number of conflicting requirements. This measure is used to deter-
mine the reliability of a software system resulting from the software
architecture under consideration, as represented by a specification
based on the entity–relationship-attributed model. A list of the sys-
tem’s inputs and outputs and a list of the functions performed by
each program are reqiured. The mappings from the software archi-
tecture to the requirements are identified. Mappings from the same
specification item to more than one differing requirement are exam-
ined for requirements inconsistency. Additionally, mappings from
more than one spec item to a single requirement are examined for
spec inconsistency.

9. Cyclomatic complexity. This measure is used to determine the struc-
tured complexity of a coded module. The use of this measure is de-
signed to limit the complexity of the module, thereby promoting
understanding of the module.

C = E – N + 1

where:

C = complexity
N = number of nodes (sequential groups of program statements)
E = number of edges (program flows between nodes)

ΜΤ Φα Φχ Φδελ+ +()�

ΜΤ

−−−

ΜΤ Φχ�

ΜΤ

−−−−−−−−−−−−−−−−−−

430

SOFTWARE ENGINEERING HANDBOOK

10. Design structure. This measure is used to determine the simplicity of
the detailed design of a software program. The values determined
can be used to identify problem areas within the software design.

where:

DSM = design structure measure
P1 = total number of modules in program
P2 = number of modules dependent on input or output
P3 = number of modules dependent on prior processing (state)
P4 = number of database elements
P5 = number of nonunique database elements
P6 = number of database segments
P7 = number of modules not single entrance/single exit

The design structure is the weighted sum of six derivatives deter-
mined by using the primitives given above.

D1 = designed organized top down
D2 = module dependence (P2/P1)
D3 = module dependent on prior processing (P3/P1)
D4 = database size (P5/P4)
D5 = database compartmentalization (P6/P4)
D6 = module single entrance/exit (P7/P1)

The weights (Wi) are assigned by the user based on the priority of
each associated derivative. Each Wi has a value between 0 and 1.

11. Test coverage. This is a measure of the completeness of the testing
process from developer and user perspectives. The measure relates
directly to the development, integration, and operational test stages
of product development.

TC(%) =

where:

program functional primitives are either modules, segments, statements,
branches, or paths

data functional primitives are classes of data
requirement primitives are test cases or functional capabilities

∆ΣΜ
Ωι∆ι

ι 1=

6

∑=

ιµπλεµεντεδ χαπαβιλιτιεσ()
ρεθυιρεδ χαπαβιλιτιεσ()

−−−

∗
προγραµ πριµιτιϖεσ τεστεδ()
τοταλ προγραµ πριµιτιϖεσ()
−− ∗ 100%

431

IEEE Standard Dictionary of Measures to Produce Reliable Software

12. Data or information flow complexity. This is a structural complexity
or procedural complexity measure that can be used to evaluate: the
information flow structure of large scale systems, the procedure and
module information flow structure, and the complexity of the inter-
connections between modules and the degree of simplicity of rela-
tionships between subsystems, as well as to correlate total
observed failures and software reliability with data complexity.

weighted IFC = length * (fanin * fanout)2

where:

IFC = information flow complexity
fanin = local flows into a procedure + number of data structures from

which the procedure retrieves data
fanout = local flows from a procedure + number of data structures that the

procedure updates
length = number of source statements in a procedure (excluding com-

ments)

The flow of information between modules and subsystems needs to
be determined through the use of automated techniques or charting
mechanisms. A local flow from module A to B exists if one of the fol-
lowing occurs:
a. A calls B
b. B calls A and A returns a value to B that is passed by B
c. A and B are called by another module that passes a value from

A to B
13. Mean time to failure. This measure is the basic parameter required

by most software reliability models. Detailed record keeping of fail-
ure occurrences that accurately track time (calendar or execution)
at which the faults manifest themselves is essential.

14. Software documentation and source listings. The objective of this
measure is to collect information to identify the parts of the soft-
ware maintenance products that may be inadequate for use in a soft-
ware maintenance environment. Questionnaires are used to
examine the format and content of the documentation and source
code attributes from a maintainability perspective. The question-
naires examine the following product characteristics:
a. Modularity
b. Descriptiveness
c. Consistency
d. Simplicity
e. Expandability
f. Testability

432

SOFTWARE ENGINEERING HANDBOOK

Two questionnaires, the software documentation questionnaire and the
software source listing questionnaire, are used to evaluate the software
products in a desk audit.

For the software documentation evaluation, the resource documents
should include those that contain the program design specifications, pro-
gram testing information and procedures, program maintenance informa-
tion, and guidelines used in preparation of the documentation. Typical
questions from the questionnaire include:

1. The documentation indicates that data storage locations are not
used for more than one type of data structure.

2. Parameter inputs and outputs for each module are explained in the
documentation.

3. Programming conventions for I/O processing have been established
and followed.

4. The documentation indicates the resource (storage, timing, tape
drives, disks, etc.) allocation is fixed throughout program execution.

5. The documentation indicates that there is a reasonable time margin
for each major time-critical program function.

6. The documentation indicates that the program has been designed
to accommodate software test probes to aid in identifying process-
ing performance.

The software source listings evaluation reviews high-order language or
assembler source code. Multiple evaluations using the questionnaire are
conducted for the unit level of the program (module). The modules
selected should represent a sample size of at least 10 percent of the total
source code. Typical areas include:

1. Each function of this module is an easily recognizable block of code.
2. The quantity of comments does not detract from the legibility of the

source listings.
3. Mathematical models as described or derived in the documentation

correspond to the mathematical equations used in the source
listing.

4. Esoteric (clever) programming is avoided in this module.
5. The size of any data structure that affects the processing logic of

this module is parameterized.
6. Intermediate results within this module can be selectively collected

for display without code modification.

Reference

IEEE Standard of Measures to Produce Reliable Software. Standard 982.1–1988. IEEE Standards
Department. Piscataway, NJ.

433

IEEE Standard Dictionary of Measures to Produce Reliable Software

Note:

The information contained herein is copyrighted information of the IEEE, extracted from IEEE
Std. 982.1–1988, IEEE Standard Dictionary of Measures to Produce Reliable Software. This in-
formation was written within the context of IEEE Std 982.1–1988 and the IEEE takes no respon-
sibility for or liability for damages resulting from the reader’s misinterpretation of said
information resulting from the placement and context of this publication. Information is re-
produced with the permission of the IEEE.

This page intentionally left blank

435

Chapter 61

IEEE Framework
for Measures

ABSTRACT

Software reliability measurements take place in an environment that
includes user needs and requirements, a process for developing products
meeting those needs, and a user environment within which the deliver soft-
ware satisfies those needs. This measurement environment establishes a
framework for determining and interpreting indicators of software reliabil-
ity. This chapter provides IEEE’s recommended process for measurement.
This process formalizes the data collection practices in development and
support and provides for product evaluation at major milestones in the life
cycle. It also relates measures from one life cycle phase to another. It is the
basis for reliability measurement of a product.

PROCEDURES/ISSUES/POLICIES

The process can be described in nine stages, which may overlap or occur
in different sequences depending on organization needs. Each of these
stages in the measurement process influences the production of a deliv-
ered product with the potential for high reliability. Other factors influenc-
ing the measurement process include the following: a firm management
commitment to continually assess product and process maturity, or stabil-
ity, or both during the project; use of trained personnel in applying mea-
sures to the project in a useful way; software support tools; and a clear
understanding of the distinctions among errors, faults, and failures.

1. Product measures:
• Errors, faults, and failures is the count of defects with respect to

human cause, program bugs, and observed system malfunctions.
• Mean time to failure and failure rate is a derivative measure of

defect occurrence and time.
• Reliability growth and projection is the assessment of change in

failure-freeness of the product under testing or operation.
• Remaining product faults is the assessment of how fault-free the

product is in development, test, or maintenance.

436

SOFTWARE ENGINEERING HANDBOOK

• Completeness and consistency is the assessment of the presence
and agreement of all necessary software system parts.

• Complexity is the assessment of complicating factors in a system.
2. Process measures

• Management control measures address the quantity and distribu-
tion of error and faults and the trend of cost necessary for defect
removal.

• Coverage measures allow one to monitor the ability of developers
and managers to guarantee the required completeness in all the
activities of the life cycle and support the definition of corrective
actions.

• Risk, benefit, and cost evaluation measures support delivery deci-
sions based on technical and cost criteria. Risk can be assessed
based on residual faults present in the product at delivery and
the cost with the resulting support activity.

3. Errors, faults, and failures:
• Errors — human action that results in software containing a fault.
• Faults — accidental condition that causes a functional unit to fail

to perform its required function. It is also a manifestation of an
error in software that, if encountered, may cause a failure.

• Failure — termination of the ability of a function unit to perform
its required function. It is also an event in which a system or sys-
tem component does not perform a required function within
specified limits. A failure may be produced when a fault is
encountered.

4. Stage 1: Plan organizational strategy. Initiate a planning process.
Form a planning group and review reliability constraints and objec-
tives, giving consideration to user needs and requirements. Identify
the reliability characteristics of a software product necessary to
achieve these objectives. Establish a strategy for measuring and
managing software reliability. Document practices for conducting
measurements.

5. Stage 2: Determine software reliability goals. Define the reliability
goals for the software being developed in order to optimize reliabil-
ity in light of realistic assessments of project constraints, including
size scope, cost, and schedule.
• Review the requirements for the specific development effort, in

order to determine the desired characteristics of the delivered
software. For each characteristic, identify specific reliability
goals that can be demonstrated by the software or measured
against a particular value or condition. Establish an acceptable
range of values. Consideration should be given to user needs and
requirements.

• Establish intermediate reliability goals at various points in the
development effort.

437

IEEE Framework for Measures

6. Stage 3: Implement measurement process. Establish a software reli-
ability measurement process that best fits an organization’s needs.
Review the rest of the process and select stages that best lead to op-
timum reliability. Add to or enhance these stages as needed. Consid-
er the following suggestions:
• Select appropriate data collection and measurement practices

designed to optimize software reliability.
• Document the measures required, the intermediate and final mile-

stones when measurements are taken, the data collection
requirements, and the acceptable values for each measure.

• Assign responsibilities for performing and monitoring measure-
ments and provide necessary support for these activities from
across the internal organization.

• Initiate a measure selection and evaluation process.
• Prepare educational material for training personnel in concepts,

principles, and practices of software reliability and reliability
measures.

7. Stage 4: Select potential measures. Identify potential measures that
would be helpful in achieving the reliability goals established in
stage 2.

8. Stage 5: Prepare data collection and measurement plan. Prepare a data
collection and measurement plan for the development and support
effort. For each potential measure, determine the primitives needed
to perform the measurement. Data should be organized so that infor-
mation related to events during the development effort can be prop-
erly recorded in a database and retained for historical purposes.
• For each intermediate reliability goal identified in stage 2, identify

the measures needed to achieve this goal. Identify the points dur-
ing development when the measurements are to be taken. Estab-
lish acceptable values or a range of values to assess whether the
intermediate reliability goals are achieved.

• Include in the plan an approach for monitoring the measurement
effort. The responsibility for collecting and reporting data, verify-
ing its accuracy, computing measures, and interpreting the
results should be described.

9. Stage 6: Monitor the measurements. Once the data collection and re-
porting begins, monitor the measurements and the progress made
during development, so as to manage the reliability and thereby
achieve the goals for the delivered product. The measurements as-
sist in determining whether the intermediate reliability goals are
achieved and whether the final goal is achievable. Analyze the mea-
sure and determine if the results are sufficient to satisfy the reliabil-
ity goals. Decide whether a measure result assists in affirming the
reliability of the product or process being measured. Take correc-
tive action.

438

SOFTWARE ENGINEERING HANDBOOK

10. Stage 7: Assess reliability. Analyze measurements to ensure that reli-
ability of the delivered software satisfies the reliability objectives
and that the reliability as measured, is acceptable.
• Identify assessment steps that are consistent with the reliability

objectives documented in the data collection and measurement
plan. Check the consistency of acceptance criteria and the suffi-
ciency of tests to demonstrate satisfactorily that the reliability
objectives have been achieved. Identify the organization respon-
sible for determining final acceptance of the reliability of the soft-
ware. Document the steps in assessing the reliability of the
software.

11. Stage 8: Use software. Assess the effectiveness of the measurement
effort and perform necessary corrective action. Conduct a follow-up
analysis of the measurement effort to evaluate reliability assess-
ment and development practices, record lessons learned, and eval-
uate user satisfaction with the software’s reliability.

12. Stage 9: Retain software measurement data. Retain measurement
data on the software throughout the development and operation
phases for use by future projects. This data provides a baseline for
reliability improvement and an opportunity to compare the same
measures across completed projects. This information can assist in
developing future guidelines and standards.

Reference

IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software.
Standard 982.2–1988. June 12, 1989. IEEE Standards Department, Piscatawy, NJ.

439

Chapter 62

Gillies’ Method
for Humanization
of the Software
Factory

ABSTRACT

In order to introduce computer-assisted software engineering technol-
ogy successfully to an organization, human issues such as goals, objec-
tives, fears, job impacts, etc. must be taken into consideration first. A
method is presented here to address those human issues and at the same
time to develop a quality definition that is agreed upon by the entire soft-
ware development community of an organization (Gillies, 1991). The
method takes the following approach:

• Educate people about quality.
• Resolve different viewpoints of quality.
• Reach a realistic consensus view of quality that is achievable by all

parties.

The CASE technology has been widely used in the computer software
industry for many years. As more CASE tools become available and CASE
technology becomes mature, it is more noticeable that CASE education is
beyond technology; the human issues must also be focused on such that
when those issues are addressed, the CASE users such as software devel-
opment staff will be more likely to perceive that the new technology will
serve as an aid to the staff instead of a threat to jobs. The method
described here should be considered part of CASE education for the
introduction of any new CASE technology to an organization to ensure
that the cooperation of staff will help in realization of the potential of new
technology.

440

SOFTWARE ENGINEERING HANDBOOK

PROCEDURE

1. Educate People about Quality.

The following definitions of quality from various sources can serve as a
starting point for education on quality:

Quality is the degree of excellence.

— The Oxford English Dictionary

The totality of features and characteristics of a product or services that
bear on its ability to satisfy specified or implied needs

— The International Organization for Standardization

The transcendent view: relates quality to innate excellence.

The product-based view: the economist’s view — the higher the quality,
the higher the cost.

The user-based view can be summarized as fitness for purpose.

The manufacturing view: quality measured in terms of conformance to
requirements.

The value-based view: the ability to provide what the user wants at an
affordable cost.

— Garvin

Quality means the degree of user satisfaction. Previously, good quality
meant that a national or an in-house standard was satisfied, This is nec-
essary, but it is not sufficient alone for producing high-quality products.
Quality depends upon user satisfaction,

• Software match to specification

• Specification match to user needs

— Yasuda

It is important to realize that the purpose of a starting point for a discus-
sion of quality is to understand that the definition of quality varies dramat-
ically from different viewpoints. Any one of these quality definitions is not
sufficient by itself but is necessary to be considered for reaching a corpo-
rate consensus on quality.

2. Resolve Different Viewpoints of Quality. Establish Relationship
Characteristics.

This is done by a two-part exercise involving an enabler and a mix of per-
sonnel from developers and users. The first part of the exercise focuses on
reaching a consensus on quality that reflects the beliefs of all parties. The

441

Gillies’ Method for Humanization of the Software Factory

second part focuses on understanding the interrelationship and conflicts
that exist between different quality criteria. Relationships between charac-
teristics are classified in terms of trade-offs (if A is enhanced, B is
degraded), affinity (if A is enhanced, B is affected), and resonance (if A is
enhanced, B is enhanced).

The purpose of establishing the relationship between quality character-
istics is for people to have realistic expectations. All quality criteria are
desirable, but perfection is almost impossible to achieve with all aspects of
quality characteristics included. Previous experiences indicate that the
success of quality improvement is based on critical criteria, not the entire
set. The relationships help people to appreciate clearly the consequences
of emphasizing only those characteristics.

3. Reach a Realistic Consensus View of Quality.

The purpose of this step is to ensure a higher probability for the accep-
tance of quality definition and improvement. It is noted that, if all parties
involved feel that the quality consensus takes their special needs into con-
sideration and understands the needs of others, then it is more likely that
the quality consensus will be accepted. In an environment where quality
consensus is reached and clearly defined, CASE technology can then be
introduced as the means to achieve specific goals identified in the quality
consensus model. This obviously increases the likelihood of CASE being
viewed as an aid rather than a hindrance to the software developer.

Reference

Gillies, A.C. (1991). Humanization of the software factory, Inf. Software Technol., 33, 641–646.

Selected Bibliography

Gavin, D. (1984). What does product quality mean? Sloane Manage. Rev., 4.

Gilb, T. (1988). Principles of Software Engineering Management, Addison- Wesley, Reading, MA.

International Organization for Standardization (ISO), www.iso.ch, Switzerland (1986).

Yasuda, K. (1989). Software quality assurance activities in Japan, in Japanese Perspectives in
Software Engineering, Matsumoto, Y., Ed., Addison-Wesley, Reading, MA.

This page intentionally left blank

443

 Chapter 63

Pfleeger’s Approach
to Software Metrics
Tool Evaluation

ABSTRACT

The process and environment for software development are constantly
changing as technology advances. Different projects usually utilize differ-
ent quantified data for their usage in terms of project management, control,
and forecast. For an organization that employs software metrics tools in its
software development environment, it is not uncommon to have a wide
range of software metrics tools available for various projects. Often prod-
uct managers make the selection of tools based on sources such as previ-
ous experience, vendor specifications, input from other groups, etc. As
more software metrics tools are acquired, it becomes more important to
identify the characteristics common to each tool and to store this informa-
tion in a repository. The repository is desirable because the comparison
can be easily made against various tools in order to select the best set of
tools for a particular use.

Software metrics are widely used in understanding, managing, and con-
trolling the software development process. Attempts have been made to
quantify the characteristics of various aspects of the software develop-
ment process in terms of metrics. Software metrics tools are often used to
collect and analyze data specific to project process maturity, development
environment, and management needs and preferences. The approach sug-
gested here describes a comprehensive way to collect essential informa-
tion for each software metrics tool, and a project metrics database that
supports monitoring, decision making, trend analysis, predictions, and set-
ting up standards for future projects.

PROCEDURES/ISSUES/POLICIES

Pfleeger and Fitzgerald, Jr. (1991) describe a two-stage approach to eval-
uation below.

444

SOFTWARE ENGINEERING HANDBOOK

1. First Stage: paper evaluation.

This stage includes activities involving reviewing the product literature
and documentation from various sources such as vendors, third-party
evaluations, etc. The first level of information is a set of basic tool data col-
lected according to the following sample categories:

• Tool name
• Vendor name
• Vendor address
• Contact
• Evaluation date

The tool information is then further refined by following a scheme
known as faceted classification, which defines orthogonal facets as inde-
pendent indices used to group similar objects. Each facet uniquely
describes an attribute of an object that cannot be described by any other
facet. The repository storing the evaluation result will be organized
according to the facets employed. The following set of facets is suggested:

• Purpose of the tool
• MS = list of 5-seep.2
• Platform
• Target application

2. Second Stage: extended evaluation.

This stage involves the use of a tool in a real-life setting with hands-in
evaluation. The results of the evaluation are recorded as the third level of
information according to the following sample categories:

• Version number
• Platform evaluated
• Operation system run on
• Cost
• Tool strength

The fourth level of information is collected by performing subjective
evaluation of the tool’s strengths and weaknesses. The sample categories
are listed below:

• Performance and speed
• Data import and export
• User interface
• Documentation
• Tool accuracy
• Vendor support
• Cost

445

Pfleeger’s Approach to Software Metrics Tool Evaluation

For each category, a raw score is obtained based on evaluation results;
a weight based on project needs and goals is assigned. The final score for
each category is computed by multiplying the raw score by the assigned
weight. The overall rating of the tool is calculated by summing the final
score of each category. The repository will hold all four levels of informa-
tion for each tool evaluated. Project managers can then retrieve the level of
information desired and build the software metrics tools kit based on inter-
ests and needs.

Reference

Pfleeger, S.L. and Fitzgerald, Jr., J.C. (1991). Software metrics tool kit: support for selection,
collection and analysis, Inf. Software Technol., 33, 477–482.

Selected Bibliography

Humphrey, W. (1989). Managing the Software Process, Addison-Wesley, Reading MA.

Pfleeger, S.L. (1989). Recommendations for an initial set of software metrics, Technical report
CTC-TR-89–017 Contel Technology Center, Chantilly, VA.

Pfleeger, S.L. and McGowan, C.L. (1990). Software metrics in a process maturity framework,
J. Syst. Software, July.

Prieto-Diaz, R. and Freeman, P. (1987). Classifying software for reusability, IEEE Software,
January.

This page intentionally left blank

447

Chapter 64

Maiden’s Method for
Reuse of Analogous
Specifications
through Human
Involvement in Reuse
Process

ABSTRACT

The concept of software reuse has been applied in various software
deliverables such as design, coding, test cases, etc., and has been realized
with the advance of CASE tools revolution. An alternative paradigm is pro-
posed by Maiden (1991) for reuse of specifications during requirement
analysis through the concept of analogy. The analogy recognition process
is knowledge intensive and requires involvement from a software analyst in
a pragmatic approach to perform problem classification, reusable specifi-
cation candidate selection, and customization of the selected reusable
specification for the new problem domain.

Specification reuse is a concept that should be implemented at some
level higher than reusable code or reusable design. Reusable code or reus-
able design addresses only an isolated piece-wise solution that usually is
identified at the design or coding phase of the software life cycle. Reusable
specification must be identified during the requirement analysis; thus, it
provides a better picture of software productivity and quality during those
early stages of software life cycle and avoids costly faults and omissions
that could happen in its later phases.

448

SOFTWARE ENGINEERING HANDBOOK

PROCEDURES

A good definition or analogy can be found from Carbonell (1985):

Analogical problem solving consists of transferring knowledge from
past problem-solving episodes to new problems that share significant
aspects with corresponding past experience — and using transferred
knowledge to construct solutions to new problems.

Analogy is not a process that matches for syntactic similarities; it basi-
cally transfers a network of domain and method knowledge representing
solution in its entirety. Analogy is concerned with finding the affinities
between the problem domains rather than just the reusable specifications.
This domain and method knowledge is best presented by a set of intercon-
nected causal relations constrained by abstraction. Normally domain and
method knowledge are separately stored in the existing systems, but
expert software engineers usually memorize abstract and concrete specifi-
cations in a form integrated with domain and method knowledge. Method
and problem domain knowledge is usually required by intelligent CASE
tools to assist the analytic problem-solving process. This indicates that
specifications reuse must be a human-supported task; the important role
of the software analyst must be emphasized to achieve a successful anal-
ogy process.

The analogy process for specification reuse can never be achieved
solely by software tools. It involves the following steps in which extensive
analyst participation is essential:

1. Retrieve the correct specification from a repository. Considerable
knowledge is obviously needed to understand different problem do-
mains and the analogy between them. The analyst is required to
bring knowledge of the target domain to the process, which requires
that key features of the new problem be defined and applied as in-
puts to the reusable specifications retrieval mechanism. The key
features are used to match critical features of those candidate soft-
ware engineering problems in the repository. This is normally an it-
erative process of retrieval and understanding.

2. Selection of candidate specifications under the same problem cate-
gory. The requirement analyst must use his knowledge of the target
and the reusable domains to understand each candidate and com-
pare it against the functional and nonfunctional requirements of the
target problem. Supports such as diagnostics and explanation tools
are needed for the analyst to identify possible misconceptions
about the analogy and to guide him during specification reuse so
that the most appropriate specification will be selected.

3. Customization of the selected specification to the new domain. This
also requires an analyst with extensive knowledge of the target and
reusable domains to make successful modifications of a reusable

449

Maiden’s Method for Reuse of Analogous Specifications

specification. Functional requirements of the new problem should
be tested against the analogous specifications. Prototyping is appro-
priate to provide confidence that the reused specification will most
likely meet the target problem requirements.

References

Carbonell, J.G., (1985). Derivational analogy: a theory of reconstructive problem solving and
expertise acquisition, Technical report CMU-CS-85–115 Computer Science Department, Carn-
egie-Mellon University, Pittsburgh, PA.

Maiden, N.A.M. (1991). Saving reuse from the noose: reuse of analogous specification through
human involvement in reuse process, Inf. Software Technol., 33, 780–790.

Selected Bibliography

Maiden, N.A.M. (1991). Analogy as a paradigm for specification reuse, Software Eng. J., 6, 3–15.

Maiden, N.A.M. and Sutcliffe, A.G. (1991). Analogical matching for specification reuse, in Proc.
6th Knowledge-Based Software Eng. Conf., IEEE Computer Society Press.

This page intentionally left blank

451

Chapter 65

Tate’s Approaches
to Measuring Size
of Application
Products with CASE
Tools

ABSTRACT

Computer-assisted software engineering (CASE) tools have been widely
used in the software development environment. CASE tools have evolved
and are now equipped with the capability to generate end products in var-
ious forms, including programming language source codes, graphical user
interface, data dictionary entries, etc. This implies that counting lines of
code (LOC) in many cases is no longer adequate for measuring productiv-
ity as well as process performance. Methods such as dictionary token
counts, vector metrics, and function metrics are considered as alternative
approaches for productivity measurements.

Measuring the size of the CASE application product is basically an
attempt to measure the technology productivity and the development pro-
ductivity. Technology productivity indicates the performance of a specific
type of CASE technology or CASE tool. Development productivity focuses
on the performance of an individual developer or a development group.
Because software deliverables may come in various forms, it is necessary
to include all objects of the end products in order to make comprehensive
measurements. These measurements can then be used to produce tangible
productivity numbers such as development cost, development effort, or
time-per-unit size of the job done, etc.

452

SOFTWARE ENGINEERING HANDBOOK

PROCEDURE

The overall size of any software product basically should consist of rep-
resentations from all object types delivered for the end product, and can
be determined by one of the following two ways (Tate and Verner, 1991).

1. Find a common measure, for example, lines of code counts, for all
objects.

2. Construct a composite measure that is a function of different weight-
ed objects. This is commonly known as function points or function
weight.

Three different types of measurements are listed as possible approaches
for measurement of CASE application products (CAPs).

1. Dictionary token counts. CASE tools are concerned with a wide array
of object types, e.g., source codes, entities, relationships, data
types, data flows, graphical interfaces, forms, etc. All objects should
be entered in a dictionary as tokens or fields. Those tokens can then
be weighted and added together to form a single measurement. The
following advantages are noted: tokens are simple and easy to
count; tokens provide a useful measure across many CASE tools; a
token can be considered as an atomic decision instance that the de-
veloper makes, thus better representing the software development
effort as a whole. It is noted that tokens are most suitable for general
purposes and for objective target sizes.

2. Size metric vectors. This approach implies that a concept such as
size has more than one dimension and should not be represented in
a single value. Many objects, such as data-flow diagrams, data mod-
els, user interfaces, etc., can be sized separately. The size metric
vectors should be tailored based on the objects involved in the end
products. It is noted that size metric vectors should not replace
common or composite size metrics. They are simply complementa-
ry to one another.

3. Function metric vectors (composite units of size measure). One com-
mon composite measure is function points. The composite mea-
sures provide early size measures based on a partial system model.
The success of composite measures is based on the purpose for
which they are constructed and their suitability for that purpose.
Some possible purposes include the forecast of
• Downstream effort and cost for particular stages and CAP parts,

or for a completed CAP
• Downstream development time for similar categories
• Downstream size in tokens or lines of source or machine code

453

Maiden’s Method for Reuse of Analogous Specifications

Composite metrics are most suitable for particular purposes because
they assign weights to different component types and object counts can be
tailored for special needs.

Reference

Tate, G. and Verner, J.M. (1991). Approaches to measuring size of application products with
CASE tools, Inf. Software Technol., 33, 622–628.

Selected Bibliography

Basili, V.R. and Rombach, H.D. (1988). The TAME project: towards improvements oriented
software environments, IEEE Trans. Software Eng., 14, 758–773.

Verner, J., Tate, G., Jackson, B., and Hayward, R. (1989). Technology dependence in function
point analysis: a case study and critical review, in Proc. llth Int. Conf. Software Eng., Pittsburgh,
PA.

Verner, J. (1989). A generic model for software size estimation based on component partition-
ing, Ph.D. Thesis, Massey University, New Zealand.

This page intentionally left blank

Section III

This page intentionally left blank

457

Appendices

These 19 appendices are filled with guides, templates, forms, and filled-out
examples for every facet of software engineering.

This page intentionally left blank

459

Appendix A

System Service
Request Form

460

SOFTWARE ENGINEERING HANDBOOK

System Service Request

Requestor Request Date Needed Date

________________________________ Urgency: � Low � Medium � High
Requestor Department

________________________________ Request Type: � Maintenance
Secondary Contact (Fix or Modify System)

� New Development
(New Capability)

Description:

� Please attach documentation: Screen shots with annotations for required changes
are required for any maintenance to screens. This can be done by hitting the “print
screen” key and pasting into a Word document. Provide program or function name
if known.

� Additional information or interaction with other systems if pertinent.
� Can you provide test data?

Questions? Need Assistance? Call ext. xxx
or e-mail xxx@xxxx.com

461

Appendix B

Project Statement
of Work

TABLE OF CONTENTS

Project Information .. 462
Project Request... 462
Project Number and Title .. 462
Executive Sponsor or Delegate ... 462

Project Definition.. 462
Background ... 462
Project Objectives .. 463
Business Units Involved... 463

Internal ... 463
External .. 463
Business Impacts .. 463
Business Benefits .. 464

Risks ... 464
Risk Rating ... 464
Identified Risks.. 464
Risk Mitigation .. 464

Proposed Solution.. 465
Current ... 465

Proposed Solution.. 465
Project Scope .. 465

Inclusions... 465
Exclusions.. 465
Security Statement ... 466

Project Approach ... 466
Project Management .. 466
Methodology ... 466
Deliverables... 467

Key Project Deliverables.. 467
Approvals... 467

Acceptance Criteria.. 467
Assumptions.. 467
Key Facts.. 469

462

SOFTWARE ENGINEERING HANDBOOK

Issue Management ..469
Change Management ..469
Communication Plan ..470
Project Status ..470
Project Team..471
Project Team Roles and Responsibilities...471
Project Estimates and Costs..471
Research and Experimentation Tax Credit Eligibility471

Appendix B-1: Statement of Work Approval ..477
Appendix B-3: Potential Tax Credit Tests ..482
Appendix B-4: Change Management Form and Instructions.....................483

Procedure...483
Procedure...484

Appendix B-6: List of Requirements Scheduled for Release ??487

Project manager: <name>
Created: <date>
Last updated: <date>
Created by: <name>

PROJECT INFORMATION

Project Request

This project has been requested to provide various business lines new
or improved functionality within the <application name> System. Some of
the requested changes will be beneficial for the customer also.

Project Number and Title

This project will be referred to as the “?? Project.” The project number
is ??.

Executive Sponsor or Delegate

The business group head for this project is <group head name> of <com-
pany name> and the executive sponsor is <executive sponsor name>,
group technology executive.

PROJECT DEFINITION

Background

There are several requirements requested for Release ??. These require-
ments will be funded by various business lines and will benefit several dif-
ferent areas as well as the customer in many cases.

463

Project Statement of Work

Release ?? is one of two remaining releases scheduled for <year> by the
enterprise. The planned implementation date for Release ?? is <date>. This
release will be coordinated with the <project name> scheduled between
<month> and <month> <year>.

Project Objectives

To provide more functionality and data accessibility in the ?? system
to the business lines and the customer in the least amount of time
for the most reasonable cost

Business Units Involved

Internal. Impacts to the following applications were determined in the
initial data gathering phase of this project. Certain applications have been
defaulted to testing only because no response was obtained during the
data gathering phase. Formal sizing has been gathered from all impacted
applications as a part of the requirements phase of this project. This list
represents the internal interfaces.

Internal Applications/Areas: Impacts:

1. Application name: No development — setup and testing
needed

2. Application name: Application name — Development, test-
ing needed

Application name — Development

Application name — Testing needed

3. Application name: Development, testing needed

Subsystem name Testing needed

Subsystem name No development; setup and testing needed

Subsystem name Testing needed

External. The external organizations impacted by this project include:

Third party package name New process and procedures; develop-
ment, testing needed

Business Impacts. This project will have the following business impacts:

1. Changes for all <application name> customers
2. Changes for wholesale sales and relationship managers
3. Changes for regional managers
4. Changes for operations
5. Changes for central implementation and regional implementation

centers

464

SOFTWARE ENGINEERING HANDBOOK

Business Benefits. This project will have the following business
benefits:

1. Improved presentation of customer statements and reports
2. Productivity gains on automating various processes.
3. Productivity gains on making specific data more readily available to

analysts for problem resolution
4. Compliance with corporate branding standards

Risks

Risk Rating. The risk score for this project is 82. As a result of the risk
rating, this project has been rated as a medium-risk project. There is addi-
tional risk due to some of the requested changes to be implemented in con-
junction to the release implementation date. There is a conflict between
the release date and the upgrade date. See Appendix B-2 Risk Assessment
form.

Identified Risks. The risks identified for this project include the
following:

• Late deliverables if resource constraints
• Resource constraints if work needed on other higher priorities such

as production issues
• Retaining key project team resources
• Conflicting project priorities
• Communication, coordination, and task management of all affected

applications is necessary for successful implementation
• Risk of impacted customers due to the complexity of some changes

Risk Mitigation. The following actions will be taken to address the iden-
tified risks.

• Hire contractors as necessary to assist the team in completing the as-
signed tasks.

• Work with business lines early in the requirements gathering phase to
document detailed requirements.

• Produce more accurate estimates due to detailed business require-
ments.

• Hold regularly scheduled meetings to keep all affected applications up
to date on tasks.

• Include adequate checkpoint reviews in the project process to ensure
accurate and complete information.

• Coordinate testing with all impacted applications to ensure the chang-
es are correct.

465

Project Statement of Work

PROPOSED SOLUTION

Current

Not all functionality was built into the new <application name> system
from the old <application name> system. This lack of functionality is caus-
ing many manual work-arounds and in some cases loss of revenue. Some of
the requested changes also position <application name> in compliance
with the <company name> strategic standards.

PROPOSED SOLUTION

The <application name> management team is working with the project
manager to ensure that detailed business requirements are fully docu-
mented and to prioritize those requirements based on business need.
Those requirements have been sized and presented to the various busi-
ness lines. A resource plan will be updated to reflect the number of
resources available during the Release ?? timeframe. The business lines
will then obtain funding for the requirements that can be completed in that
Release ?? timeframe. The project plan will be updated and an issues log
and task plan will be maintained throughout the term of the project.

PROJECT SCOPE

Inclusions

The scope of this project includes the following:

• Defining and communicating the business requirements to all affected
applications that are included in the Release ?? requirements.

• Assessing and managing the impacts to the various Operational/Sup-
port Groups/Business Lines.

• Participation in development of customer, department, and vendor
communications.

• Participation in development of customer or internal training.
• Participation in development of user documentation and procedures.
• Participation in regression testing.
• Validation of requirements, design, development, and unit and system

testing of application changes necessary to the applications listed in
the Business Units Involved.

• Changes needed for other applications requirements.

A list of the requirements scheduled for Release ?? is attached as Appendix
B-6.

Exclusions

The scope of this project does not include the following:

466

SOFTWARE ENGINEERING HANDBOOK

• Any non-<APPLICATION NAME> accounts
• <APPLICATION NAME> (??) application conversion (although it is a

dependency).

Security Statement

The security plan is prepared to ensure that appropriate controls are
designed to meet security policy and standards. The plan should identify
risks and exposures to information, systems, and networks that may result
from any exceptions to the standards. The system managers are responsi-
ble for ensuring that the security plans are updated or created for all
systems.

PROJECT APPROACH

Project Management

<Project Manager name> has been assigned to manage the project. The
responsibilities of the project manager will be:

• Establish and execute a project plan
• Ensure completion of project estimates, as required
• Track actual costs against budget/planned costs
• Assist in maintaining the overall project direction
• First point of escalation of project issues
• Obtain project resource commitments
• Define project milestones
• Create and maintain a project issues log
• Schedule and conduct project status meetings
• Complete project status meeting minutes
• Complete project status reports
• Contact lists for all project participants with defined roles and

responsibilities
• Ensure detailed test plans are complete
• Participate in the post event review
• Communicate with the other end-to-end project managers
• Close the project

Methodology

This project will follow the <methodology name> methodology. One
overall project manager will be assigned as the end-to-end project manager
as well as the technical lead. This project manager will manage the details
of the <APPLICATION NAME> system development efforts. The project
manager will maintain a common format for issues, project plans, and tech-
nical requirements. The project manager will provide day-to-day manage-
ment for the technical team and provide a roll up of all issues, plans, and
requirements.

467

Project Statement of Work

Deliverables

Key Project Deliverables. Key deliverables from this project include:

• Statement of work
• Risk assessment
• Project change requests
• Project requirements document
• Design documents
• Communication plan
• Data security plan
• Resource plan
• Critical success factors document
• Master test plan
• Training plan
• Implementation plan
• Post-implementation review

Approvals. Approval of key project deliverables must be received from
the individuals listed in Exhibit B-1. See Appendix B-1 for a signature sheet.

Acceptance Criteria

This project will be considered completed when the following accep-
tance criteria have been met:

• Each system change has passed all levels of test successfully and is
implemented into production successfully.

• Delivered system functionality meets agreed-upon functionality
• No undue fallout up to two weeks after implementation.

Assumptions

The following assumptions are made for this project:

1. Resources assumption — the key resource assumptions for labor,
space, and equipment are:
• Technical lead will be identified and assigned.
• A test coordination leader is identified and assigned for <APPLI-

CATION NAME>.
• Testing assumptions in general:

1. Test coordination with all affected applications will be man-
aged by an assigned resource from testing. Other testing
resources will be drawn from each of the applications.

2. Testing by all affected applications will be conducted at the
specified time established by release management for this
release.

• All business line resources are available to the overall project.
• Project support resources are available to the overall project.

4
6
8

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K

Exhibit B-1. Approval of Key Project Deliverables

Deliverables

Area 1 2 3 4 5 6 7 8 9 10 11 12 13

<manager name> Operations Manager A A A A A A R A A A A A A

<manager name> Technical Manager A A A A A A R A A R R A A

<manager name> TM Product Manager A A A A A A A A A A A R A

<manager name> Operations Manager A A A A A A R A A A A A A

<manager name> Project Manager A A A A A A R A A A R A A

<manager name> Wholesale Services A A A A A A R A A R A R A

<manager name> Wholesale Integration A A A A A A R A A A A R A

Audit Representative R R R R R R R R R R R R R

Note: A = Approval required; R = Review only

469

Project Statement of Work

2. Production support has the highest priority for resources. Other re-
source issues will be addressed and prioritized at the steering com-
mittee meeting level.

3. The Release ?? key dates will not be changed and various phases of
the project will start and end on time.

Key Facts

Key facts identified for this project include the following:

• If the ?? requirement is not implemented with this release, we will con-
tinue to lose revenue at the rate of approximately $?? a month.

• If the new statement paper and logo requirement are not implemented
with this release, <APPLICATION NAME> will continue to be out of
compliance with enterprise standards.

• If <requirement> is not implemented with this release, there will be
staffing impacts to the operations group.

• All <APPLICATION NAME> and <application name> related changes
must be implemented concurrently.

• If <requirement> is not implemented, there will be customer and oper-
ational impacts.

• If the file format changes are not made, there will be customer
impacts.

• If the <requirement> changes are not made, there will be customer
impact.

Issue Management

Project related issues will be tracked, prioritized, assigned, resolved,
and communicated as follows:

• The project manager and participants will report issues that are iden-
tified throughout the life of the project.

• The project manager will maintain a log of all issues and report on the
status of issues.

• The project manager will assign the priority to and ownership of the
issue. If necessary, the executive sponsors will assist the project man-
ager in assigning appropriate ownership for resolution.

• Individual team members assigned to resolve the issue will be respon-
sible for communicating the issue status to the project manager.

See Appendix B-5 for the issue log template.

Change Management

A change management procedure will be used by this project to help
ensure that changes impacting the project are assessed, understood, and
agreed upon by stakeholders before the change is made or before initiating

470

SOFTWARE ENGINEERING HANDBOOK

specific actions to accommodate the change. The purpose of this proce-
dure is to control change and impacts to the project and not to discourage
change.

A project change request form (PCR) must be submitted to the project
manager for any changes that impact the project’s cost, schedule, or
scope. The project manager will review the proposed change request with
the project team members affected by the change to assess the impact of
the change. The project manager will present the change request to the
steering committee to approve or reject the request. The decision will be
communicated to the requester and project team.

See Appendix B-4 for the project change request form and instructions.

Communication Plan

A project communication plan will be completed. This plan identifies the
approach that will be used to share information with key internal and
external parties throughout the project. The key elements of the communi-
cation plan include:

• Who must receive the information
• What length intervals the information will be shared
• Who will provide the information
• What medium will be used

Project Status

The status of this project will be communicated in multiple ways (see
Exhibit B-2). These include:

• Weekly project team status meeting
• Weekly project management status meeting
• Monthly project status reporting to the business lines
• Monthly online project status reporting to the PMO
• Project plan updates

Exhibit B-2. Project Schedule and Major Milestones

Milestone Start Date Completion Date

Requirements <date> <date>

Analysis <date> <date>

Design <date> <date>

Development <date> <date>

Testing <date> <date>

Implementation <date> <date>

Post-Implementation support <date> <date>

Project closure <date> <date>

471

Project Statement of Work

A meeting agenda will be published prior to the meetings so that partici-
pants can be prepared for the meeting. Meeting minutes will be distributed
after the meeting so that the team is aware of the discussion at the meeting.

Project Team

The Project Organization Chart is shown in Exhibit B-3.

Project Team Roles and Responsibilities

Roles and responsibilities of team members are listed in Exhibit B-4.

Project Estimates and Costs

Project estimates and costs are listed in Exhibit B-5.

Research and Experimentation Tax Credit Eligibility

An evaluation was completed for this project to determine if the project
qualifies as an eligible R&E activity. The result of the evaluation indicates
that it does not qualify as an eligible R&E activity. See Appendix B-3 for the
completed R&E Tax Credit evaluation.

Exhibit B-3. Project organization.

Boxes in bold are the
Core Management Project Team.

<name>
Technology
Manager

<name>
Project Manager

<name>
Group Technology

Manager

<name>
Group Technology

Executive

<name>
Chief Information

Officer

<name>
Operations
Manager

<name>
Operations
Manager

<name>
Group Operations

Executive

<name>
Product Management

Manager

<name>
Operations Area

Manager

<name>
EVP, Chief of

Technology & Opers

<name>
EVP, Head of Comm

& Corp Banking

<name>
Chief Operating Oficer

and Vice Chairman

<name>
GEVP

Wholesale Banking

<name>
President
and CEO

<name>
Project Management

Manager

<name>
Project Management

Manager

<name>
Commercial Rel Mgmt

Manager

Documentation/Training/
Communication

Technical Staff

Test Coordinator
System Development

Audit

472

SOFTWARE ENGINEERING HANDBOOK

Exhibit B-4. Project Team Roles/Responsibilities

Area Individuals Roles/Responsibilities

Project manager <name> First point of escalation of project issues
Obtain project resource commitments
Complete project estimates, as required
Establish and execute a project plan
Define project milestones
Create and maintain a project issues log
Schedule and conduct project status meetings
Complete project status meeting minutes
Compete project status reports
Monitor and manage financial status of project
Participate in the post-implementation review

meeting
Communicate with the other end-to-end

project managers
Close the project

Technical lead <name> Review and approve change requests
Create systems project plan
Participate in weekly project status meetings
Conduct system training, as needed
Conduct system status meetings
Assist in user acceptance testing
Ensure system testing is completed
Complete the technical design and review
Review and approve the project plan
Develop the systems support plan
Develop system conversion programs, as

needed
Complete system development and unit test-

ing
Update system documentation
Complete production support plan
Ensure technical activities are included in the

project timeline
Ensure technical resources are available to

complete technical activities

Technical systems
manager

<name> Review and approve business requirements
Approve project plan
Review and approve change requests
Review and approve project plan
Review and approve user design
Review test plans
Review and approve the project

implementation plan
Review and approve the support plan

(continued)

473

Project Statement of Work

Exhibit B-4. (continued) Project Team Roles/Responsibilities

Area Individuals Roles/Responsibilities

Product manage-
ment project lead

<name> Complete product research and analysis
Review product implementation workflow
Define business requirements
Approve project plan
Review and approve change requests
Review and approve project plan
Communicate product changes and delivery

plan to project team and line staff
Review and approve user design
Perform gap analysis of old product vs. new

product
Review and approve customer transition

workflow
Complete product risk assessment
Define product pricing structure
Review test plans
Resolve product issues
Assist with development of customer commu-

nications
Review the project implementation plan
Review and approve the support plan

Operations project
leader

<name> Review and approve change requests
Create operations project plan
Participate in weekly project status meetings
Conduct operations team status meetings, as

necessary
Participate in user acceptance testing
Train operations staff, as needed
Provide operations requirements
Review and approve the technical design
Review and approve user design
Review and approve the project plan
Update operations documentation
Develop the operations support plan
Review the project implementation plan
Review and approve the support plan
Ensure operations resources are available to

complete operation activities

Customer services
project leader

<name> Review and approve change requests
Participate in weekly project status meetings
Participate in user acceptance testing
Train customer services staff, as needed
Provide customer service requirements
Review and approve the technical design
Review and approve user design

(continued)

474

SOFTWARE ENGINEERING HANDBOOK

Exhibit B-4. (continued) Project Team Roles/Responsibilities

Area Individuals Roles/Responsibilities

Customer services
project leader

<name> Review and approve the project plan
Update customer service documentation
Review the project implementation plan
Review and approve the support plan
Ensure customer services resources are avail-

able to complete customer service activities

Integration project
leader

<name> Review and approve change requests
Participate in weekly project status meetings
Participate in user acceptance testing
Train implementation staff, as needed
Provide implementation requirements
Review and approve the technical design
Review and approve user design
Review and approve the project plan
Update Implementation documentation
Review the project implementation plan
Review and approve the support plan
Ensure implementation resources are avail-

able to complete Implementation activities

Documentation
and training

<name> Coordinate with various bank training groups
to ensure proper updates are made to docu-
mentation and to assess the need for training

Test coordination <name> Identification of testing participants, organiza-
tion of test team, and definition of responsi-
bilities

Coordinate cross-project testing dependen-
cies with other testing project leads

Identification of business and operations end
users that may need to validate

Confirm testing environment provided will
meet needs

Schedule testing with dependencies based on
design, training, and conversion schedule

Completion of test plan and approval
Completion of test scripts and approval
Establish and communicate testing schedule
Communicate testing status with project team
Monitoring of test cycles
Ensure validation complete
Track testing issues for fixes to be made and

ensure appropriate resolution
Obtain testing signoffs
Types of testing to manage for CTG:
IAT (integrated application testing)
UAT (user acceptance testing)

475

Project Statement of Work

Exhibit B-5. Project Estimates and Costs

Description Dollars

Capital (hardware/software) (if applicable) N/A

Labor costs

Employee # hours $

Contract labor # hours $

Total labor Hours $

Test CPU (if applicable) N/A

Test dasd (if applicable) N/A

Other (list all)a Travel/training $

Depreciation N/A

Software N/A

Teleconference $ not budgeted

Training N/A

Total dollars Total $a

a Ball Park Estimate

This page intentionally left blank

477

Appendices

APPENDIX B-1: STATEMENT OF WORK APPROVAL

Project Number ??

Project Name <APPLICATION NAME> Release ?? Project

Phase Name Design

Authorization

Name Signature Approval Date

<name>

Operations manager

<name>

Technology manager

<name>

Project manager

<name>

Treasury management product management

<name>

Operations manager

<name>

Client services

<name>

Wholesale integration

478

SOFTWARE ENGINEERING HANDBOOK

APPENDIX B-2: SUPPORT DOCUMENTATION RISK ASSESSMENT FORM

Project Number F1250 Application <APPLICATION NAME>

Project Title <application name> Release ?? Project Manager <name>

Date <date>

1. Type of Project: 2 5. Number of years the project
manager has been a project
manager:

0

- Maintenance (correct problems) 1 - More than three 0

- Enhancement (add new features) 2 - One to three 5

New development: replace existing

automated system

3 - Less than one 10

New development: replace manual

system

5

New development: develop system

to support new business

6

- Implementation of software

package in-house

6

- Outsourcing to external vendor 6

- Re-engineering of system’s

architecture

6

2. Impact to Business Operations:
(includes
data/staffing/monetary)

10 6. Number of years (on average)
business group area has worked
with specific application to be
developed:

0

- Limited change to business

operation

5 - More than three 0

- Medium change to business

operation

10 - One to three 5

- Major change to business

operation

20 - Less than one 10

3. Number of years business
organization has been in
business:

0 7. Number of years (on average)
technology project team has
worked with specific application
to be developed:

2

- More than three 0 - More than three 0

- One to three 2 - One to three 2

- Less than one 4 - Less than one 4

4. Number of years the business
group and technology group
have worked together:

0 8. Number of years technology team
has performed the duties they
will be asked to perform on the
project (i.e., analysis, design,
coding, testing):

0

- More than three 0 - More than three 0

- One to three 2 - One to three 4

- Less than one 4 - Less than one 8

479

Appendices

APPENDIX B-2: (CONTINUED)

9. Number of years (average)
technology team has worked
with the technology to be used
on the project (e.g., CICS,
PACBASE, IMS):

0 14. Number of years the project
technology has been used in the
organization:

4

- More than three 0 - More than three 0

- One to three 3 - One to three 4

- Less than one 6 - Less than one 8

10. Number of vendors involved: 4 15. Amount and level of documentation
currently available:

5

- One 2 - Extensive, detailed documentation 1

- Extensive documentation, but not

detailed

2

- Two 4 - Limited documentation, but

detailed

4

- Three or more 8 - Limited or no documentation, not

detailed

5

11. Number of project team members: 8 16. Number of organizational entities
(besides systems) that need to be
involved:

18

- One to five 2 - None to two 3

- Six to ten 4 - Three to five 9

- 11 to 15 8 - More than five 18

- 16 or more 12

12. Approximate length of time to
complete project:

10 17. Availability of business partner to
technology group:

4

- Less than four months 5 - Assigned to desired level of

involvement and available to DP

immediately when needed

0

- Four to seven months 10 - Assigned to desired level of

involvement, but likely not

available immediately when

needed

4

- Seven to twelve months 15 - Not assigned to the desired level of

involvement

16

- More than 12 months 25

13. Impact to Customer: 20 18. Legal/regulatory impact: 0

Limited product/portfolio customer

base affected

5 - Limited legal/regulatory

ramifications

0

Partial product/portfolio customer

base affected

10 - Moderate legal/regulatory

ramifications

5

Entire product/portfolio customer

base affected

20 - Significant legal/regulatory

ramifications

10

480

SOFTWARE ENGINEERING HANDBOOK

APPENDIX B-2: (CONTINUED)

19. Estimated costs for
hardware/software/conversion:

0 24. Project requirements: 0

- Less than $600,000 0 Requirements are clear, complete

and stable

0

- $600,000 to $3,000,000 5 Requirements are documented, but

some unclear, incomplete, or

unstable information

5

- More than $3,000,000 10 Minimal or no requirements

documented

10

20. Number of interfaces: 5 25. Service or functionality provided
to customers or end-users by the
technology:

18

- Less than four 0 Maintenance 3

- Four to twelve 5 Standard enhancement 6

- Twelve or more 10 Extended functionality 9

New functionality/service/

product/architecture

18

 21. Technology options
explored/researched:

0 26. Can sizing and capacity for
technology be evaluated and
incorporated into design?

10

Three or more 0 Current and future sizing and

capacity analysis is identified

2

Two 2 Only current sizing and capacity

analysis is identified

5

One 5 No sizing and capacity analysis can

be identified

10

None 10

22. Was this technology option
selected as a second choice
based upon cost or schedule?

0 27. Changes to existing systems,
including infrastructure,
necessary in order to implement
the technology:

2

No 0 Limited 2

Yes 4 Moderate 5

Significant 10

23. Technology used in the project: 0 28. Number of dependencies on other
projects, changes, services,
vendors, suppliers, or contractors:

15

None of the technology used is new 0 None 0

New to the business line 5 One 5

New to the organization 10 Two or more 15

New to the industry 20

481

Appendices

APPENDIX B-2: (CONTINUED)

29. Number of applications or systems
impacted:

10 33. Type of third-party connectivity
(nonorganization connectivity)
used in project or technology:

5

One or less 5 No third-party connectivity 0

Two or three 10 Existing third-party connectivity

involved

5

Four to twelve 15 New third-party connectivity

involved

10

More than 12 25

30. Incorporation of the corporate
business continuity planning
process into the design of the
project:

4 34. Outage during the implementation
of the technology:

0

Extensive involvement in the

systems design

0 No outage required 0

Minimal involvement in the systems

design

4 Outage after business hours 4

No involvement in the systems

design

8 Outage during business hours 8

No contingency plan exists 12

31. Impact to the customer or
environment if the technology
fails:

5 35. Level of training necessary for
customers and end users:

5

No impact 0 None 0

Limited impact 5 Limited training necessary 5

Moderate impact 10 Extensive training necessary 10

Significant impact 20

32. Impact to the customer or
environment if the exit plan must
be executed:

4 36. Amount of training
materials/documentation
budgeted and necessary for
customers and end users to use
the new technology:

4

Limited impact 2 Limited or no documentation

needed

2

Moderate impact 4 Limited documentation, but

detailed

4

Significant impact 8 Extensive documentation, but not

detailed

6

Extensive and detailed

documentation

8

482

SOFTWARE ENGINEERING HANDBOOK

APPENDIX B-3: POTENTIAL TAX CREDIT TESTS

The following analysis evaluates if this project qualifies as an eligible
R&E activity.

Yes No Qualification Tests

� � First test

Do the activities qualify as research in the laboratory or ex-
perimental sense by:

1. Relating to, or supporting, the development or improve-
ment of a product

2. Intending to discover information that would eliminate un-
certainty concerning the development or improvement of
a product or process

� � Second test

Is the research undertaken for the purpose of discovering in-
formation that is technological in nature?

� � Third test

Do the activities undertaken include the elements of the pro-
cess of experimentation (i.e., were alternative designs evalu-
ated using the scientific method or did the development of
the final design require experimentation)?

APPENDIX B-2: (CONTINUED)

37. Formal RFP process used during
technology selection:

0 38. Level of vendor support necessary
for the technology after
implementation:

5

RFP process followed 0 No support necessary 0

RFP process followed, but only one

response

3 Minor support necessary, i.e.,

maintenance

5

RFP process NOT followed 6 Major support necessary, i.e.,

programming, upgrades, etc.

10

Score Range Risk:

0 to 60 Low

61 to 110 Medium

111+ High

Total Score ________________

Risk Level ________________

483

Appendices

Yes No Qualification Tests (continued)

� � Fourth test

Is the activity being conducted for a permitted purpose: new
or improved function, performance, reliability, quality, or sig-
nificant cost reduction?

If software is developed for internal management function it
does not qualify for tax credit unless it meets the following
three-part test :

Yes No

� � First test

Is the software innovative in that it results in a
reduction of costs or improvement in speed that
is substantial and economically significant?

� � Second test

Does the development involve significant eco-
nomic risk in that the company commits sub-
stantial resources to the development and there
is substantial uncertainty, because of technical
risk, that such resources would not be recov-
ered in a reasonable period?

� � Third test

Is the software in development commercially
available (i.e., can the software be obtained
elsewhere and used for the intended purpose
without modifications that would satisfy the
first and second tests above)?

APPENDIX B-4: CHANGE MANAGEMENT FORM AND INSTRUCTIONS

Procedure

At the conclusion of the requirement phase of the project, the require-
ments will be considered static and unchangeable because they will form
the basis for subsequent project activities. In the event that a change is
necessary, the following process must be followed in order to ensure that
the change is implemented into the project plan and impacts are ade-
quately assessed.

A change is identified as a result of an issue or of some change to the
project environment (for example, regulatory or competitive changes).
The person who is requesting the change completes a project change

484

SOFTWARE ENGINEERING HANDBOOK

request form and sends it to the project manager. This form will require the
following information from the requester:

• Date of the request —the date the request form is filled out
• Requester — the name of the individual requesting the change
• Description of change — a detailed description of the requested

change
• Business reason for change — a detailed description of the business

reason why the change must be implemented as part of this project
1. The project manager will review the change request with all

impacted team members to determine the project tasks that will
be added or impacted by the change request and estimate the
impacts of the change.

2. After assessing the impact of the requested change on the project
and completing an estimated cost and schedule impact, the
request will be presented to the executive sponsors and either
approved or denied.

3. The project manager will contact the requester by sending a com-
pleted change request form to the requester with the final deci-
sion and informing the impacted areas of the decision. If the
change request is denied, the project manager will include a rea-
son in the “reason for denial” section.

4. A copy of the project change request form will be included in the
project file for permanent record and the project task plan will be

updated accordingly.

Procedure

Complete the change control form.

Submit to <APPLICATION NAME> application systems manager or team
leader.

Systems will estimate the effort.

Systems will respond within ten business days indicating if the change can
be absorbed in the release requested.

If the request can be absorbed, work will be queued as appropriate.

If the request cannot be absorbed, the systems group will call a meeting to
discuss reprioritizing requirements or moving the request to another
release.

See bottom of form for approval instructions.

485

Appendices

Project Change Request Form

<APPLICATION NAME> Release ??
Change Control Request Form

Instructions Requester must complete this side of form.

Name of Change

Date Requested

Release Requested
(cannot request change control on any
release scheduled to move to ET in 60
days or less)

Funding Source

Estimated Hours to Complete

Estimated Dollars to Complete
(number of hours multiplied by the cur-

rent development rate of $100.00)

Cost Savings Realized by Implementing
this Request
(describe in dollars the savings realized
on a monthly or yearly basis)

State the Requirements

Current Work-Around Being Employed

Background or Other Important Facts

Operations Approval
Must have operations mgmt. approval

before submission to systems for esti-
mating

Insert approval e-mail in this section and
copy operations mgmt. on the e-mail
when sent to systems

Product approval
Must have Product Mgmt. approval

before being submitted to Systems for
estimating

Insert approval e-mail in this section and
copy product mgmt. on the e-mail when
sent to systems

Systems Approval
Approval will be granted after the esti-

mate is completed

Insert approval e-mail in this section and
copy systems mgmt. on the e-mail when
the response is e-mailed to operations
and product mgmt. within ten business
days of the request

4
8
6

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K

APPENDIX B-5: ISSUES LOG

<APPLICATION NAME> Release ?? Issues Log

Issue #
Open
Date

Opened
By Issue Description

Assigned
To Due Date

Closed
Date Status Priority Comments/Resolution

OPEN ISSUES

CLOSED ISSUES

Priority Codes: High = Show Stopper — cannot continue without issue resolution; Medium = Caution — may continue without immediate
resolution; Low = Not Critical — can continue without issue resolution.

Status Codes: (A)ctive; (R)esolved; (D)eferred; (P)ending

487

Appendices

APPENDIX B-6: LIST OF REQUIREMENTS SCHEDULED FOR RELEASE ??

<APPLICATION NAME> New File Format

New File Format

New <APPLICATION NAME> Stmt Paper and Logo

This page intentionally left blank

489

Appendix C

Feasibility Study
Template

PURPOSE

• To provide a structured method to focus on problems, identify objec-
tives, evaluate alternatives, and aid in the selection of the best
solution

• To improve confidence that the recommended action is the most via-
ble solution to the problem

• To assure that projects requiring information systems resources can
be done, should be done, and will be done

WHO SHOULD USE

• Individuals who must solve a problem, respond to an opportunity, or
meet a mandate that involves the use of information systems should
use the feasibility study, which is the initial justification needed to de-
termine if a project is “doable.”

RESPONSIBILITIES

This section describes each participant’s role in the feasibility study
process.

• Executive management ensures that the project is a priority, the pro-
posed alternative represents a good business decision, and capital
will be provided to support the project.

• Staff management assigns work, monitors progress, and verifies the
work activities involved in preparing the feasibility study.

• Requester prepares the feasibility study including data gathering,
analysis, preparation, and presentation functions.

• End user validates problem statement and recommended solution.
• Information systems staff provides technical advice and assistance to

help define the current environment.
• Fiscal or budget officer assists in cost determination and validates fi-

nancial data contained in the document.

490

SOFTWARE ENGINEERING HANDBOOK

DEFINITION

• A feasibility study is a controlled process for identifying problems,
opportunities, or mandates, determining objectives, describing cur-
rent situations and successful outcomes, and assessing the range of
costs and benefits associated with several alternatives for solving a
problem.

OUTLINE FOR PREPARING A FEASIBILITY STUDY

• Part 1: describe problem
• Part 2: identify success factors
• Part 3: describe current situation
• Part 4: consider approaches
• Part 5: prepare solution analysis
• Part 6: prepare implementation schedule
• Part 7: obtain management approval
• Part 8: prepare supporting documentation

The amount of detail will vary. Some feasibility studies may be one to two
pages, others may run considerably longer. Length and detail of the study
should be commensurate with the complexity and novelty of the effort.

PART 1: DESCRIBE PROBLEM

As answers depend upon the questions asked, so do solutions depend
upon the problem statement. Otherwise, you will not know if the solution
is an appropriate and adequate way to fix the problem. Your job here is to
write a concise statement of the problem to be solved, opportunity avail-
able to you, or mandate to which you must respond.

Task 1: Describe the Problem, Opportunity, or Mandate

Step 1: Identify the Problem, Opportunity, or Mandate
• Problems adversely affect clients or members within your organi-

zation. Do you have a problem that should be resolved?
• Opportunities are potentially favorable — other departments

with which you work or circumstances that may allow your
department to operate more effectively or efficiently. Is an oppor-
tunity available to your department that could be realized?

• Mandates are statutory or managerial requirements of your
department to do something new or different. Are you faced with
a task that must be done?

Step 2: Describe the Problem
• Try to keep your description to one paragraph. It should discuss

what you are unable to do now, not what you want to do (ends)
or how you want to do it (means).

491

Feasibility Study Template

Task 2: Support Your Statement

Step 1: Explain who or what prompted your department into action
on the subject. Try to keep your description to one paragraph.

Step 2: List affected parties. Explain briefly how the following are af-
fected or what they are currently unable to do:
• Clients your department serves
• Other departments with which you work
• Groups or individuals inside your department

Task 3: Validate the Statement

Step 1: Test the statement — verify that your description is not a
symptom, solution, or someone else’s problem.

Step 2: Critique for accuracy — ask several affected parties to critique
the problem statement for accuracy, completeness, and authenticity.

Step 3: Amend if necessary.
Step 4: Obtain concurrence — if you identified someone in task 2,

step 1, as initiating the study, obtain concurrence that your state-
ment is accurate

PART 2: IDENTIFY SUCCESS FACTORS

Your job in this part of the study is to determine what results must be
achieved to satisfy the problem defined in part 1. Also, identify items that
would contribute to the success of your project.

Task 1: Write a Scenario for Success

You cannot see the future, but visualizing the way things should be can
be a step in making things come true. Some techniques you may find useful
in determining desired outcomes are:

Step 1: Assemble a think tank —a small group of your staff who are
knowledgeable of the project.

Step 2: Time travel — have the group pick a time in the future that
would be appropriate to assess the project’s positive performance
in solving the problem. Probably six to twelve months would be ap-
propriate in most cases.

Step 3: List players — include affected parties identified in part 1
along with the individuals and groups who will be responsible for
this project.

Step 4: Describe success in functional terms — satisfaction from new
products, services, or capabilities; limitations of time or money; re-
solved issues or mandates; existing policy or operations consider-
ations; performance characteristics such as reliability or ease of
use; or any other factors that would be important to the affected

492

SOFTWARE ENGINEERING HANDBOOK

parties identified in part 1 or the individuals and groups responsible
for the project.:
• Example: The group leader starts out with, “Imagine that it is one

year from now — our boss is elated and congratulates everyone
for fixing our problem.” The group leader then asks everyone,
‘What results caused the boss to say this?” Under the title
“BOSS,” list each item. Add a new category, “SELF.” What should
happen in the next year to make YOU feel that excitement from
success?

Step 5: Consolidate the requirements and develop success factors.
Review the requirements of each group for common themes. Devel-
op a list of outcomes that must occur (success factors) to satisfy all
the requirements.

Task 2: Rank and Evaluate The Key Success Factors

Step 1: Rank the success factors. List the factors from most to least
important.

Step 2: Evaluate the factors. Underline the success factors that abso-
lutely must get done to distinguish from those that could be done.

Task 3: Set Objectives

Ask yourself who needs to do what by when to accomplish the priori-
tized list of success factors.

Task 4: Validate the Objectives

Start with the first item on the list of success factors. Describe:

• What must be done?
• Who will be responsible?
• When must it be completed?

Repeat the process for each success factor.

Step 1: Achievable and doable? Are the objectives achievable and will
you know when they have been accomplished?

Step 2: Acceptable? Will the affected parties concur that meeting
these objectives will allow them to do what they were unable to do
to in an acceptable time frame?

Step 3: Harmonious? Are the objectives logical? Do they work toward
the same end or do they contradict each other?

Step 4: Capable? Is each individual capable of achieving the objec-
tives assigned?

493

Feasibility Study Template

Step 5: Say yes! If you say yes to the preceding steps — good job!
• Examples of objective statements:

— By May, 2003, DMV’s project manager, Otto Mobile, will re-
duce the citizen’s average waiting time at DMV offices to
less than five minutes.

— By December, 2004, without increasing personnel, Ida Fixit
of the license section will use an online licensing system to
certify 3000 automobile mechanics.

PART 3: DESCRIBE CURRENT SITUATION

Providing a “snapshot” of your organization allows others to understand
your environment. Things that may appear obvious to you may not be
obvious to others (even in your work group). Documenting the important
features of your organization, work processes, products, and clients will
bring the pieces together in an understandable format. Your job in this part
of the study is to identify how things are done now and what resources are
available.

Task 1: Describe How Things Are Done Currently

Step 1: Describe your organization. Briefly explain the structure and
purpose. For example, 30 employees conduct environmental studies
required for project approvals. They are organized in four work
groups: the administration unit has five employees, including the
section manager…

Step 2: Explain the purpose of each group. Support the description
used in step 1.
• For example, the administration unit is responsible for personnel,

budget, policy, and clerical support…
Step 3: Describe the information flow. Include the data’s source, des-

tination, method of filing (manual and automated), and frequency.
(Often a flow diagram is useful for this step.)

Step 4: Develop your assessment. Identify strengths and weaknesses
of the system. Give it an overall grade.

Task 2: List Existing Resources

Step 1: People: in task 1 you described the organizational structure,
purpose, and business functions. In this step identify their skills and
availability.

Step 2: Tools: list what types of mechanical and electronic tools are
available (in terms of access and capacity) and how they are used.
This step primarily will describe your existing automation and uses.
Include what systems you need to access outside your organization.

494

SOFTWARE ENGINEERING HANDBOOK

Step 3: Funds: identify how much money is available and whether it is
from general fund, department revenue, federal, grant, or other
sources.

PART 4: CONSIDER APPROACHES

Chance dictates the future when you do not have information about
your choices. During a feasibility study, chance and doubt are replaced
with control and confidence. You will know what is in each box and can
make an informed choice. Your job in this part is to list practical
approaches, describe them in a consistent format, and select the best
alternative. For comparison, always include retaining the current system
for a baseline.

Task 1: Identify Approaches

Step 1: List the approaches that merit consideration. Approaches you
will want to consider include:
• Retaining the current system
• Reorganizing
• Expanded manual operations
• Modifying the current system
• Adding new or expanding automation

Complete tasks 2 through 5 for each approach.

Task 2: Determine Life Cycle

Step 1: Determine life cycle. How many years do you expect to use the
system that you select for solving the problem?

Task 3: Estimate Costs

Step 1: New costs: estimate the cost of new resources required to de-
velop and operate the project for this approach. Quantify these val-
ues in categories of personal services, services and supplies, and
capital investment through the project life cycle.

Step 2: Use of existing resources: estimate the amount of existing re-
sources required to develop and operate the project with this ap-
proach. List the people and the hours required throughout the
project life cycle.

Step 3: Describe adverse impacts: describe any adverse environmen-
tal, organizational, or procedural impacts from this approach.

495

Feasibility Study Template

Task 4: Estimate Benefits

Step 1: Tangible: identify anticipated benefits in three categories:
• Cost savings: estimate anticipated dollar savings in categories of

cost reduction, new revenue, or reimbursements tied directly to
this method throughout the life cycle.

• Staff time to be gained: list people or positions and estimate the
staff time to be gained throughout the project life cycle.

• New products or services: describe what they are and list the
recipients.

Step 2: Intangible: describe any new potential, increased control, or
other advantages that would come from this approach (i.e., im-
proved worker morale).

Task 5: Evaluation

Step 1: Assessment: rate each approach for its ability to solve your
problem and meet your success factors.

Step 2: Special consideration: are any assumptions, conditions, factors,
variables, or practices for or against one or more of the approaches?

Task 6: Select Approach

Step 1: Reduce your list of approaches to a manageable number. If you
have more than three, eliminate any that are too costly or obviously
unacceptable. Provide justification for deciding to eliminate them.

Step 2: Compare the costs and benefits. Use the project life cycle to
calculate the net difference of new costs to develop and operate ver-
sus anticipated dollars to recover and staff time required versus an-
ticipated hours to be gained. Compare these figures and your
assessments of the adverse and beneficial aspects of each approach.

Step 3: Recommend approach: select the approach you believe is best
for your department.

Step 4: Give reasons: discuss the significant reasons for your choice
of this option.

PART 5: PROVIDE SOLUTION ANALYSIS

TASK 1: IMPACT ANALYSIS

Step 1: Describe impacts of recommended approach. Your review
should include any changes or new requirements for the following:
• Training
• Modifications to space and facilities

496

SOFTWARE ENGINEERING HANDBOOK

• Staffing effects (+ or –)
• Changes in procedures
• Changes in forms
• Impacts to manual or automated systems
• Individual resistance to change
• Organizational changes
• Security
• Procurement requirements

PART 6: PROVIDE IMPLEMENTATION SCHEDULE

Your job in this part is to identify critical implementation elements and
establish reporting milestones.

Task 1: Plan

Step 1: Identify activities. List the major tasks. Include checkpoints
for review and approval. Consider tasks relating to procurement, in-
stallation, and commissioning.

Step 2: Add logic. Rank the tasks in the order they must be performed.
A diagram is useful for more complex plans.

Step 3: Assign resources. Identify who is responsible for completing
each task.

Task 2: Schedule

Step 1: Estimate the duration. Determine if hours, days, weeks, or
months are the appropriate time unit. Estimate a duration for each
activity. Milestones will not have duration.

Step 2: Schedule the activity. Review the logic and duration of each ac-
tivity against your target completion and the availability of each re-
source. Assign forecasts for activity starts and compilation.
(Computer-assisted project management tools may be useful for
complex schedules.)

For further assistance see project management guideline.

PART 7: OBTAIN MANAGEMENT APPROVAL

Your job in this part is to obtain key players’ endorsement and your
management’s approval.

Task 1: Endorsement

Review your findings with end users, the data processing manager, key
program managers, department budget analyst, and the department
administrator to verify they agree with your recommendation. An example
of a formal authorization is shown below.

497

Feasibility Study Template

Task 2: Obtain Formal Authorization

We have read through this feasibility study and concur with its recom-
mendations. We believe this project can be done, should be done, and will
be done.

This page intentionally left blank

499

Appendix D

Sample Cost/Benefit
Analysis Worksheets

5
0
0

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K
Cost/Benefit Study

Form 1: Developmental Costs
Project Name: Division:
Alternative:
Date: Prepared by:

CATEGORIES
Fiscal
Year

Fiscal
Year

Fiscal
Year

Fiscal
Year

Fiscal
Year

TOTAL
(Years)

1 2 3 4 5 6

PERSONAL SERVICES

New Personnel $0

Benefits Package (O.P.E) $0

Other (Specify) $0

Subtotal $0 $0 $0 $0 $0 $0

SERVICES & SUPPLIES
Training and Education $0

Travel and Lodging $0

Outside Professional Services $0

Supplies $0

Maintenance $0

Billable Computing Services $0

Equipment and Software $0

Telecommunications $0

Facility $0

Utilities $0

Other (Specify) $0

$0

$0

Subtotal $0 $0 $0 $0 $0 $0

5
0
1

S
a

m
p

le
 C

o
st/B

e
n

e
fit A

n
a

lysis W
o
rk

sh
e
e
ts

CAPITAL OUTLAY

Equipment and Software $0

Facility $0

Other (Specify) $0

$0

$0

Subtotal $0 $0 $0 $0 $0 $0

TOTAL DEVELOPMENT COSTS $0 $0 $0 $0 $0 $0

CURRENT PERSONNEL ALLOCATED TO PROJECT

Project Staff 0.0

Administrative Staff 0.0

Support Staff 0.0

Other (Specify) 0.0

0.0

TOTAL ALLOCATED HOURS 0.0 0.0 0.0 0.0 0.0 0.0

List assumptions in calculating these costs

5
0
2

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K
Cost/Benefit Study

Form 2: Operating Costs
Project Name: Division:
Alternative:
Date: Prepared by:
(Do not fill in shaded areas)

CATEGORIES Fiscal Year Fiscal Year Fiscal Year Fiscal Year Fiscal Year
LIFE CYCLE

(Years)

1 2 3 4 5 6

PERSONAL SERVICES

New Personnel $0

Benefits Package (O.P.E) $0

Other (Specify) $0

Subtotal $0 $0 $0 $0 $0 $0

SERVICES & SUPPLIES

Training and Education $0

Travel and Lodging $0

Outside Professional Services $0

Supplies $0

Maintenance $0

Billable Computing Services $0

Equipment and Software $0

Telecommunications $0

Facility $0

Utilities $0

Other (Specify) $0

$0

$0

5
0
3

S
a

m
p

le
 C

o
st/B

e
n

e
fit A

n
a
lysis W

o
rk

sh
e
e
ts

Subtotal $0 $0 $0 $0 $0 $0

REDUCED REVENUE $0

$0

Subtotal $0 $0 $0 $0 $0 $0

CAPITAL OUTLAY

Equipment and Software $0

Facility $0

Other (Specify) $0

$0

$0

Subtotal $0 $0 $0 $0 $0 $0

TOTAL OPERATING COSTS $0 $0 $0 $0 $0 $0

CURRENT PERSONNEL ALLOCATED TO PROJECT

Project Staff 0.0

Administrative Staff 0.0

Support Staff 0.0

Other (Specify) 0.0

0.0

TOTAL ALLOCATED HOURS 0.0 0.0 0.0 0.0 0.0 0.0

List assumptions in calculating these costs

5
0
4

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K
Cost/Benefit Study

Form 3: Tangible Benefits
Project Name: Division:
Alternative:
Date: Prepared by:
(Do not fill in shaded areas)

CATEGORIES Fiscal Year Fiscal Year Fiscal Year Fiscal Year Fiscal Year
LIFE CYCLE

(Years)

1 2 3 4 5 6

COST REDUCTION

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

Subtotal $0 $0 $0 $0 $0 $0

REVENUE/REIMBURSEMENT

$0

$0

$0

$0

$0

$0

$0

5
0
5

S
a

m
p

le
 C

o
st/B

e
n

e
fit A

n
a

lysis W
o
rk

sh
e
e
ts

Subtotal $0 $0 $0 $0 $0 $0

TOTAL BENEFITS $0 $0 $0 $0 $0

HOURS ACCRUED TO PROJECT

LIST RECIPIENTS & ESTIMATED HOURS

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

TOTAL ACCRUED HOURS 0.00 0.00 0.00 0.00 0.00 0.00

List assumptions in calculating these costs

506

SOFTWARE ENGINEERING HANDBOOK

Cost/Benefit Study

Form 4: Intangible Costs (–) and Benefits (+)
Project Name: Division:
Alternative:
Date: Prepared by:

+/– DESCRIPTION RECIPIENTS Examples of Intangible Benefits

1. Reduced turnaround time

2. Improved customer satisfaction

3. Compliance with mandates

4. Enhanced interagency communication

5
0
7

S
a

m
p

le
 C

o
st/B

e
n

e
fit A

n
a

lysis W
o
rk

sh
e
e
ts

Cost/Benefit Study

Form 5: Final Discounted Costs (–) and Benefits (+)
Project Name: Division:
Alternative:
Date: Prepared by:
(Do not fill in shaded areas)
(For sample discount rate, see table below)

FISCAL
YEAR BENEFITS – COSTS = NET BENEFITS × DISCOUNT RATE =

PRESENT
VALUE

FY 1 $0 $0 $0 $0

FY 2 $0 $0 $0 $0

FY 3 $0 $0 $0 $0

FY 4 $0 $0 $0 $0

FY 5 $0 $0 $0 $0

NET BENEFITS $0
DISCOUNTED

NET BENEFITS

Final Personnel Costs and Benefits (Hours)

Fiscal
Year

Accrued
Hours

Allocated
Hours

Net
Hours

FY 1 0.00 – 0.00 = 0.00

FY 2 0.00 – 0.00 = 0.00

FY 3 0.00 – 0.00 = 0.00

FY 4 0.00 – 0.00 = 0.00

FY 5 0.00 – 0.00 = 0.00

Totals: 0.00 0.00 0.00

5
0
8

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K
Cost/Benefit Study (continued)

Discount Rate Table

Years 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13%

1 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.9009 0.8929 0.8850

2 0.9426 0.9246 0.9070 0.8900 0.8734 0.8573 0.8417 0.8264 0.8116 0.7972 0.7831

3 0.9151 0.8890 0.8638 0.8396 0.8163 0.7938 0.7722 0.7513 0.7312 0.7118 0.6931

4 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.7084 0.6830 0.6587 0.6355 0.6133

5 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 0.6499 0.6209 0.5935 0.5674 0.5428

6 0.8375 0.7903 0.7462 0.7050 0.6663 0.6302 0.5963 0.5645 0.5346 0.5066 0.4803

7 0.8131 0.7599 0.7107 0.6651 0.6227 0.5835 0.5470 0.5132 0.4817 0.4523 0.4251

8 0.7894 0.7307 0.6768 0.6274 0.5820 0.5403 0.5019 0.4665 0.4339 0.4039 0.3762

9 0.7664 0.7026 0.6446 0.5919 0.5439 0.5002 0.4604 0.4241 0.3909 0.3606 0.3329

10 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.4224 0.3855 0.3522 0.3220 0.2946

509

Appendix E

Sample Business
Use Case

PROCUREMENT SYSTEM USE CASES

Team C’s project is to develop and implement a procurement system for
JCE. The company currently handles its purchase orders manually. A few
external entities will interact with this procurement system. Different
menus are displayed depending on the user’s access. Orders are allowed
for entry as long as the user is authorized for the order amount requested.
If the order amount exceeds the user’s authorized amount, a message is
displayed on the screen. Due to limited knowledge of procurement sys-
tems, ideas were gathered from EventHelix.com Inc., which is dedicated to
developing tools and techniques for real-time and embedded system devel-
opment. Following are ten of the use cases for the procurement system.

Requestor

The requestor requests a product (see Exhibit E-1), requests a change in
the product, or cancels an ordered product. The requestor can make
requests by telephone, fax, or keying the information directly into the sys-
tem, if authorized.

Requestor Logs into the System to Submit a New Request:

1. Requestor keys in his log-on ID and six- to eight-digit password,
which are then verified against valid IDs and passwords in the pro-
curement database. If the ID or password does not match, an error
message is displayed on the screen. The requestor is prompted to
re-key the ID or password. The requestor is allowed three attempts
to log in. If unsuccessful, the password is flagged and a message is
displayed to call data security for resolution. If successful, the pro-
curement menu is displayed.

2. The requestor selects the menu option ENTER PURCHASE REQUEST
by pressing the radio button next to that option.

3. The system displays the purchase request order form on the screen.
The requestor keys the department name, number, and cost center
in the appropriate fields. The requestor also keys the product

510

SOFTWARE ENGINEERING HANDBOOK

numbers, selections, and quantities and then presses the radio but-
ton for SUBMIT ORDER.

4. A purchase order number is automatically assigned by the system
and is displayed on the screen as confirmation of the order taken.

5. An e-mail is also sent to the requestor confirming the order.

Requestor Logs into the System to Change an Existing Request:

1. Requestor keys in his log-on ID and six- to eight-digit password,
which are then verified against valid IDs and passwords in the pro-
curement database. If the ID or password does not match, an error
message is displayed on the screen. The requestor is prompted to
re-key the ID or password. The requestor is allowed three attempts
to log in. If unsuccessful, the password is flagged and a message is
displayed to call data security for resolution. If successful, the pro-
curement menu is displayed.

2. The requestor selects the menu option CHANGE EXISTING PUR-
CHASE ORDER REQUEST by pressing the radio button next to that
option.

3. The system displays the change purchase order form on the screen.
The requestor keys the purchase order number and presses the
SUBMIT radio button.

4. The system finds the purchase order and displays the order request
information on the screen. The fields that can be changed are open
for change; all other fields are protected. The requestor keys the
needed changes such as quantity, color, or type, as appropriate and
then presses the radio button for SUBMIT CHANGE.

5. A message is displayed on the screen as confirmation of the order
changes.

Exhibit E-1. Requestor Use Case

Requester

Submits
new request

Changes
existing
request

Cancels
existing
request

Displays
P.O. order

form

Displays
existing

P.O. data

Displays
existing

P.O. data

Validates
password

Displays
menu

options

Stores new
P.O. data

Assigns
P.O.

number

Sends
confirmation

email

Stores
changed
P.O. data

Stores
canceled
P.O. data

Uses

Uses

511

Sample Business Use Case

6. An e-mail is also sent to the requestor confirming the order changes.

Requestor Logs into the System to Cancel an Existing Request:

1. Requestor keys in his log-on ID and six- to eight-digit password,
which are then verified against valid IDs and passwords in the pro-
curement database. If the ID or password does not match, an error
message is displayed on the screen. The requestor is prompted to
re-key the ID or password. The requestor is allowed three attempts
to log in. If unsuccessful, the password is flagged and a message is
displayed to call data security for resolution. If successful, the pro-
curement menu is displayed.

2. The requestor selects the menu option CANCEL EXISTING PUR-
CHASE ORDER by pressing the radio button next to that option.

3. The system displays the cancel purchase order form on the screen.
The requestor keys the purchase order number and presses the
SUBMIT radio button.

4. The system finds the purchase order and displays the order request
information on the screen. The requestor presses the radio button
for CANCEL ORDER.

5. A message is displayed on the screen as confirmation of the can-
celed order.

6. An e-mail is also sent to the requestor confirming the order
cancellation.

Purchasing Agent

The purchasing agent requests a product (see Exhibit E-2), requests a
change in the product, or cancels an ordered product when the request is
telephoned or faxed to the purchasing department.

Purchasing Agent Logs into the System to Submit a New Request:

1. Purchasing agent keys in his log-on ID and six- to eight-digit pass-
word, which are then verified against valid IDs and passwords in the
procurement database. If the ID or password does not match, an er-
ror message is displayed on the screen. The purchasing agent is
prompted to re-key the ID or password. The purchasing agent is al-
lowed three attempts to log in. If unsuccessful, the password is
flagged and a message is displayed to call data security for resolu-
tion. If successful, the procurement menu is displayed.

2. The purchasing agent selects the menu option ENTER PURCHASE
REQUEST by pressing the radio button next to that option.

3. The system displays the purchase request order form on the screen.
The purchasing agent keys the department name, number, and cost
center in the appropriate fields. The purchasing agent also keys the
product numbers, product selections, and quantities. If this order is

512

SOFTWARE ENGINEERING HANDBOOK

for a department other than the purchasing agent’s department, he
flags the order in a special field to indicate that this order is an au-
thorized over-ride. The purchasing agent presses the radio button
for SUBMIT ORDER.

4. A purchase order number is automatically assigned by the system
and is displayed on the screen as confirmation of the order taken.

5. An e-mail is also sent to the original requestor confirming the order.

Purchasing Agent Logs into the System to Change an Existing Request:

1. Purchasing agent keys in his log-on ID and six- to eight-digit pass-
word, which are then verified against valid IDs and passwords in the
procurement database. If the ID or password does not match, an er-
ror message is displayed on the screen. The purchasing agent is
prompted to re-key the ID or password. The purchasing agent is al-
lowed three attempts to log in. If unsuccessful, the password is
flagged and a message is displayed to call data security for resolu-
tion. If successful, the procurement menu is displayed.

2. The purchasing agent selects the menu option CHANGE EXISTING
PURCHASE ORDER REQUEST by pressing the radio button next to
that option.

3. The system displays the change purchase order form on the screen.
The purchasing agent keys the purchase order number and presses
the SUBMIT radio button.

4. The system finds the purchase order and displays the order request
information on the screen. The fields that can be changed are open

Exhibit E-2. Purchasing Agent Use Case

Purchasing Agent

Submits
new request

Changes
existing
request

Cancels
existing
request

Updates
negotiated

prices

Displays
P.O. order

form

Displays
existing
P.O. data

Displays
existing

P.O. data

Validates
password

Displays
menu

options

Stores new
P.O. data

Assigns
P.O.

number

Sends
confirmation

email

Stores
changed
P.O. data

Stores
canceled
P.O. data

Uses

Uses

Displays
list of raw
materials

Stores updíd
raw material

data

513

Sample Business Use Case

for change; all other fields are protected. The purchasing agent keys
the needed changes such as quantity, color, or type, as appropriate.
If this change is for a department other than the purchasing agent’s
department, he flags the order in a special field to indicate that this
change is an authorized over-ride. The purchasing agent presses the
radio button for SUBMIT CHANGE.

5. A message is displayed on the screen as confirmation of the order
changes.

6. An e-mail is also sent to the original requestor confirming the order
changes.

Purchasing Agent Logs into the System to Cancel an Existing Request:

1. Purchasing agent keys in his log-on ID and six- to eight-digit pass-
word, which are then verified against valid IDs and passwords in the
procurement database. If the ID or password does not match, an er-
ror message is displayed on the screen. The purchasing agent is
prompted to re-key the ID or password. The purchasing agent is al-
lowed three attempts to log in. If unsuccessful, the password is
flagged and a message is displayed to call data security for resolu-
tion. If successful, the procurement menu is displayed.

2. The purchasing agent selects the menu option CANCEL EXISTING
PURCHASE ORDER by pressing the radio button next to that option.

3. The system displays the cancel purchase order form on the screen.
The purchasing agent keys the purchase order number and presses
the SUBMIT radio button.

4. The system finds the purchase order and displays the order request
information on the screen. If this cancel is for a department other
than the purchasing agent’s department, he flags the order in a spe-
cial field to indicate that this cancel is an authorized over-ride. The
purchasing agent presses the radio button for CANCEL ORDER.

5. A message is displayed on the screen as confirmation of the can-
celed order.

6. An e-mail is also sent to the original requestor confirming the order
cancellation.

Purchasing Agent Logs into the System to Update Negotiated Prices:

1. Purchasing agent keys in his log-on ID and six- to eight-digit pass-
word, which are then verified against valid IDs and passwords in the
procurement database. If the ID or password does not match, an er-
ror message is displayed on the screen. The purchasing agent is
prompted to re-key the ID or password. The purchasing agent is
allowed three attempts to log in. If unsuccessful, the password is
flagged and a message is displayed to call data security for resolu-
tion. If successful, the procurement menu is displayed.

514

SOFTWARE ENGINEERING HANDBOOK

2. The purchasing agent selects the menu option UPDATE PRICES by
pressing the radio button next to that option.

3. The system displays another menu with various options for chang-
ing prices. The purchasing agent selects the RAW MATERIAL PRICES
radio button.

4. The system displays on the screen a list of the raw materials listed
in the database. The purchasing agent selects the appropriate raw
material by paging through the list of raw materials and clicking the
left side of the mouse button over the raw material name or by key-
ing the name of the raw material in the SEARCH field and pressing
the SUBMIT radio button.

5. The system finds the raw material in the database and displays the
raw material’s specifications on the screen. Some of the information
displayed is price, suppliers, supplier codes, description, raw mate-
rial ID, etc. Because the purchasing agent has authorization to up-
date these fields, he changes the price of the raw material and
presses the SUBMIT radio button.

6. The system returns to the raw material list and the new price is
reflected.

7. The system records this status change in the historical database
and reports the change on the monthly status report log.

Receiving Department

The receiving department (Exhibit E-3) receives the purchase order for
the raw material, checks it for accuracy and good condition, and places the
raw material into stock.

Receiving Department Receives the New Purchase Order:

1. Receiving department receives an e-mail notifying it of the new pur-
chase order. Receiving agent logs into the procurement system to
verify and accept the order. Receiving agent keys in his log-on ID and
six- to eight-digit password, which are then verified against valid IDs
and passwords in the procurement database. If the ID or password
does not match, an error message is displayed on the screen. The re-
ceiving agent is prompted to re-key the ID or password. The receiv-
ing agent is allowed three attempts to log in. If unsuccessful, the
password is flagged and a message is displayed to call data security
for resolution. If successful, the procurement menu is displayed.

2. The receiving agent selects the menu option ACCEPT NEW PUR-
CHASE ORDER by pressing the radio button next to that option.

3. The receiving agent keys the purchase order number and presses
the SUBMIT radio button.

515

Sample Business Use Case

4. The system displays a list of the raw materials needed for the new
purchase order on the screen. The receiving agent reviews the pur-
chase order against the raw materials list and also examines the raw
materials. If the order and raw materials meet required guidelines,
the receiving agent presses the radio button for ORDER ACCEPTED.

5. The raw materials are then placed into stock/inventory, a bill is sent
to accounts payable in accounting, and an e-mail is sent to the pur-
chasing agent notifying him of the acceptance.

6. If the order and raw materials do not meet the required guidelines,
the receiving agent flags the order in a special field to indicate that
this order or raw materials are unacceptable. The receiving agent
presses the radio button for ORDER DENIED.

7. An e-mail is sent to the purchasing agent notifying him of the denial.

Accounting Department

The accounting department (see Exhibit E-4) has a division called
accounts payable, which verifies the unit cost on the purchase order
against the unit cost on the invoice, and closes out purchase orders.

Exhibit E-3. Receiving Department Use Case

Exhibit E-4. Accounting Department Use Case

Receiving

Department

Receives
new P.O.

Displays
accept new
P.O. data

Validates
password

Displays
menu

options

Raw materials
placed into

stock

Displays raw
materials
for P.O.

Sends
confirmation

email

Uses

Uses

Accounting Department

Closed out
P.O.

Purchases
equipment >

$2000

Displays
P.O. order &

invoice

Displays
P.O. order

form

Validates
password

Displays
menu

options

Transaction
posts to G/L

Check or
EDI tran is
submitted

Sends
confirmation

email

Assigns
P.O.

number

Closed P.O.
stored in
database

Uses

Uses

If > $2000,
bar-coded

property tag
created

Data logged
into assets
database

516

SOFTWARE ENGINEERING HANDBOOK

Accounts Payable Closes out a Purchase Order:

1. Accounts payable (A/P) receives an e-mail notifying them of the pur-
chase order invoice. The A/P agent logs into the procurement sys-
tem to verify and accept the order. A/P agent keys in his log-on ID
and six- to eight-digit password, which are then verified against valid
IDs and passwords in the procurement database. If the ID or pass-
word does not match, an error message is displayed on the screen.
The A/P agent is prompted to re-key the ID or password. The A/P
agent is allowed three attempts to log in. If unsuccessful, the
password is flagged and a message is displayed to call data security
for resolution. If successful, the procurement menu is displayed.

2. The A/P agent selects the menu option CLOSE OUT PURCHASE OR-
DER by pressing the radio button next to that option.

3. The A/P agent keys the purchase order number and presses the
SUBMIT radio button.

4. The system displays the purchase order as well as its associated in-
voice. The A/P agent verifies the unit cost on the purchase order
against the unit cost on the invoice. If the verification is approved,
the A/P agent presses the radio button for SUBMIT PAYMENT.

5. A check or an EDI transaction is submitted, depending on the sup-
plier’s request, for payment of the invoice. An e-mail is sent to the
purchasing agent notifying him of the payment approval. The trans-
action is then posted to the general ledger and the purchase order
is closed.

6. If the verification is not approved, the A/P agent presses the radio
button for PAYMENT DENIED.

7. An e-mail is sent to the purchasing agent notifying him of the pay-
ment denial.

The accounting department monitors equipment with a value over $2000.
The equipment can be purchased through the procurement system pro-
vided proper authorization has been obtained.

Accounting Agent or Authorized Person Purchases Equipment Priced Greater
Than $2000:

1. The accounting agent logs into procurement system to order equip-
ment priced greater than $2000. Accounting agent keys in his log-on
ID and six- to eight-digit password, which are then verified against
valid IDs and passwords in the procurement database. If the ID or
password does not match, an error message is displayed on the
screen. The accounting agent is prompted to re-key the ID or pass-
word. The accounting agent is allowed three attempts to log in. If un-
successful, the password is flagged and a message is displayed to
call data security for resolution. If successful, the procurement
menu is displayed.

517

Sample Business Use Case

2. The accounting agent selects the menu option ENTER PURCHASE
REQUEST by pressing the radio button next to that option.

3. The system displays the purchase request order form on the screen.
The accounting agent keys the department name, number, and cost
center in the appropriate fields. The accounting agent also keys the
product numbers, product selections, and quantities and then
presses the radio button for SUBMIT ORDER.

4. A purchase order number is automatically assigned by the system
and is displayed on the screen as confirmation of the order taken.

5. An e-mail is also sent to the accounting agent confirming the order.
6. If the equipment requested is priced greater than $2000, the system

assigns a bar-coded equipment property tag. The property tag num-
ber is logged into the database.

7. Once the equipment purchase order is closed out, the information
about the equipment is also logged into the company assets data-
base along with the property tag number.

This page intentionally left blank

519

 Appendix F

Sample Project Plan

TABLE OF CONTENTS

1. Goals and Objectives ... 520
1.1 System Statement of Scope .. 520

1.1.1 General Requirements... 520
1.1.2 Database Administration Interface.................................... 520
1.1.3 Online Help ... 520
1.1.4 Training ... 521

1.2 System Context .. 521
1.3 Major Constraints.. 521

1.3.1 Security ... 521
1.3.2 Database.. 521

2. Project Estimates.. 521
2.1 Historical Data Used for Estimates ... 521
2.2 Estimation Techniques Applied and Results 522

2.2.1 Process-Based Estimation... 522
2.2.2 LOC-Based Estimation... 522

2.3 Project Resources.. 524
2.3.1 People.. 524
2.3.2 Minimal Hardware Requirements 525
2.3.3 User Server Side... 525
2.3.4 User Client Side .. 525
2.3.5 Minimal Software Requirements .. 525

3. Risk Management.. 526
3.1 Scope and Intent of RMMM Activities... 526
3.2 Risk Management Organizational Role ... 526
3.3 Risk Description... 526

3.3.1 Description of Risks... 526
3.4 Risk Table ... 528

3.4.1 Probability and Impact for Risk ... 528
4. Project Schedule... 528

4.1 Deliverables and Milestones .. 528
4.2 Work Breakdown Structure .. 529

5. Project Team Organization.. 529
5.1 Team Structure .. 529

5.1.1 Conceptual Planning.. 529
5.1.2 Software Design and Development 529

520

SOFTWARE ENGINEERING HANDBOOK

5.1.3 Editing, Master Testing, and Maintenance........................529
5.1.4 Training and User Documentation529

6. Tracking and Control Mechanisms...534
6.1 Quality Assurance Mechanisms...534
6.2 Change Management and Control ...534

1. GOALS AND OBJECTIVES

The online resource scheduling system (ORSS) is a Web-based scheduling
system designed for colleges, universities, and schools. The purpose of
this system is to provide an online service for the faculty to reserve any
type of resource such as computer systems, VCRs, projectors, and video-
tapes. This scheduling system can accept the requestors’ orders, make a
schedule for the orders, and perform some critical checks. It will enable
the faculty to place their orders at any time and from any place. The system
will be able to create new orders and update old orders.

1.1 System Statement of Scope

1.1.1 General Requirements

The following general requirements were specified for our project titled
ORSS:

• A Web-based application allowing users easy access and use
• The ability to originate or update resource reservations
• The ability to link to the faculty database to verify “authorized users”
• A method to maintain and update a resource database
• The ability to limit simultaneous reservations against total resources

available
• A way to search for resources available
• A method to disallow duplication of “special” classrooms
• The ability to disallow duplicate orders from the same user
• A method to print a confirmation from the Website
• The ability to send e-mail confirmations to the user
• The ability to print a daily list

1.1.2 Database Administration Interface

There will be a need for the resource center office to maintain the data-
base of the resources and to link to the faculty database to verify “autho-
rized users.” If neither of these databases exists, Global Associates will
need to create them and train personnel in their maintenance and
administration.

1.1.3 Online Help

We will need to develop an online help program for this system, which
will include a detailed help menu and “online” telephone assistance.

521

Sample Project Plan

1.1.4 Training

We will need to conduct training for the resource center staff as well as
for all full-time faculty. We may consider a training manual for the adjunct
faculty or conduct training sessions at times that they are available

1.2 System Context

Multiple users will be using the product simultaneously from many dif-
ferent locations. The only requirement is access to the Internet.

1.3 Major Constraints

1.3.1 Security

This project will be uploaded to a server that will be exposed to the out-
side world, so we need to research and develop security protection. We will
need to know how to configure a firewall and how to restrict access to
“authorized users.” We will need to know how to deal with load balance if
the amount of visits to the site is very large at one time.

1.3.2 Database

We will need to know how to maintain the database in order to make it
more efficient, and what type of database we should use. We will also have
a link to the faculty database to verify the users.

2. PROJECT ESTIMATES

This portion of the document provides cost, effort, and time estimates
for the project using two estimation techniques — process-based and lines
of code (COCOMO II model).

2.1 Historical Data Used for Estimates

We obtained the following data according to “2001 Computer Industry
Salary Survey” from EDP Staffing Service Inc. for the Northeast:

Job Function: Web Developer (Java/ASP)
Low US$ 79,500
Median US$ 92,500
High US$ 105,500

Job Function: Sr. Database Analyst/Admin.
Low US$ 78,100
Median US$ 87,200
High US$ 105,900

Low is the salary paid at the 25th percentile of all respondents in this data
set; median is the 50th percentile and high is the 75th percentile (EDP Staff-
ing Service Inc., 2001).

522

SOFTWARE ENGINEERING HANDBOOK

We estimate labor cost per month for two Web programmers and one
database analyst using the low salary level. (The low salary level is used
due to the slowdown in the U.S. economy.) Note that 15 percent overhead
is added in the average labor cost per month

$(((79,500/12)*2 + (78,100/12)*1)/3) * 1.15 ≈ $7,500

Note: Members’ roles will be discussed in the section on project team
organization.

2.2 Estimation Techniques Applied and Results

Two estimation techniques have been used to generate two indepen-
dent results for higher accuracy.

• Process-based
• Lines of code (LOC) → COCOMO II Model

2.2.1 Process-Based Estimation

The process is divided into smaller tasks for process-based estimation
purposes. We estimated, in person-months, the effort required to perform
each task. We defined the following software functions as:

• User interface UI
• Database management DB
• Report generation RG
• Bug fixing BF
• Program integration PI

Based on the historical data obtained, the estimated effort is approxi-
mately 7.5 person-months and the estimated project cost is $7500 × 7.5 ≈
$56,250 (see Exhibit F-1).

2.2.2 LOC-Based Estimation

The estimates in Exhibit F-2 are based on “best-effort” estimation from
previous programming experiences and existing software size.

The estimates for LOC are plugged into the COCOMO II formula for effort
and duration estimation. The basic COCOMO II model is used (See
Exhibit F-3).

Results in Exhibit F-4 indicate that total effort is 8.8 person-months to
finish the project. Because we have three team members, we will finish the
project in approximately three months. Based on that calculation, the esti-
mated project cost will be $7500 × 3 × 3 ≈ $67,500.

5
2
3

S
a

m
p

le
 P

ro
je

ct P
la

n

Exhibit F-1. Process-Based Estimation Table

Activity → Cust.
Comm. Planning

Risk
Analysis

Engineering Construction Release

Cust. Eval. TotalsTask → Analysis Design Code Test

Function

↓

UI 0.50 0.20 0.05 0.10 0.30 0.50 0.80 0.10 2.55

DB — 0.30 0.10 0.20 0.30 0.20 0.20 — 1.30

RG 0.20 0.20 0.02 0.05 0.40 0.40 0.10 0.05 1.42

BF 0.20 0.10 0.02 0.10 0.10 0.30 0.10 0.05 0.97

PI 0.02 0.10 0.05 0.20 0.10 0.30 0.50 — 1.27

Total 0.92 0.90 0.24 0.65 1.20 1.70 1.70 0.20 7.51

% Effort 12.25 11.98 3.20 8.66 15.98 22.64 22.64 2.66 100.0

524

SOFTWARE ENGINEERING HANDBOOK

2.3 Project Resources

2.3.1 People

This project requires two Web developers and one database analyst in
order to be finished in time. The developers must have adequate experi-
ences in Web designing and have knowledge in HTML, JavaScript, Photo-
shop, ASP (VB Script), and Access. Experience on how to set up a Web
server is preferred. The database analyst should be able to analyze, design,
and maintain an efficient and secure database. The candidates must also
have good personal communication skills.

Exhibit F-2. LOC-Based Estimation

Functions Estimated LOC

User interface UI 1000

Database management DB 500

Report generation RG 500

Bug fixing BF 500

Program integration PI 200

Total estimated lines of codes 2700

Exhibit F-3. COCOMO II

525

Sample Project Plan

2.3.2 Minimal Hardware Requirements

Development

Three IBM PC or compatibles with the following configurations:

• Intel Pentium III 700 MHz processor
• 512 MB SDRAM
• 40G hard disk space
• Internet connection

2.3.3 User Server Side

IBM PC or compatible with the following configurations:

• Intel Pentium IV 1.7GHz processor
• 512 MB SDRAM
• 80G hard disk space
• Internet connection

2.3.4 User Client Side

IBM PC or compatible with the following configurations:

• Intel Pentium III 450MHz processor
• 128 MB SDRAM
• 20 GMB Hard disk space
• Internet connection

2.3.5 Minimal Software Requirements

Development

• Windows 2000 Professional Version
• FrontPage 2000 or DreamWeaver 4.0
• Microsoft Access 2000

User Server Side

• Windows 2000 Server Version with Internet Information Server (IIS)
• Microsoft Access 2000

Exhibit F-4. Total Effort Estimate

Project Name ORSS
Total Size 2700
Total Effort 8.764317

Overall
Schedule

(%)
Schedule
(Months)

Effort
(%) Effort Staff

Plans and requirements 16.23 1.187959 7.00 0.6135 0.516434

Product design 24.12 1.764864 17.00 1.4899 0.84422

Programming 55.53 4.063943 63.65 5.5785 1.372679

Integration and test 20.35 1.489218 19.35 1.6959 1.138782

526

SOFTWARE ENGINEERING HANDBOOK

User Client Side

• Windows 98 or higher operating system
• Internet Explorer Browser 4.0 or Netscape Navigator 4.0

3. RISK MANAGEMENT

3.1 Scope and Intent of RMMM Activities

This project will be uploaded to a server that will be exposed to the out-
side world, so we need to develop security protection. We will need to
configure a firewall and restrict access to “authorized users” through the
linked faculty database. We will need to know how to deal with load bal-
ance if the amount of visits to the site is very large at one time.

We will need to know how to maintain the database in order to make it
more efficient, what type of database we should use, who should have the
responsibility to maintain it, and who should be the administrator. Proper
training of these personnel is very important so that the database and the
system contain accurate information.

3.2 Risk Management Organizational Role

The software project manager must track the efforts and schedules of
the team. They must anticipate any “unwelcome” events that may occur
during the development or maintenance stages and establish plans to
avoid these events or minimize their consequences.

It is the responsibility of everyone on the project team — with the regu-
lar input of the customer — to assess potential risks throughout the
project. Communication among everyone involved is very important to the
success of the project. In this way, it is possible to mitigate and eliminate
possible risks before they occur. This is known as a proactive approach or
strategy for risk management.

3.3 Risk Description

This section describes risks that may occur during this project.

3.3.1 Description of Risks

Business Impact Risk:

This risk would entail that the software produced does not meet the
needs of the client who requested the product. It would also have a busi-
ness impact if the product no longer fits into the overall business strategy
for the company.

527

Sample Project Plan

Customer Characteristics Risks:

This risk is the customer’s lack of involvement in the project and non-
availability to meet with the developers in a timely manner. Also, the cus-
tomer’s sophistication as to the product being developed and ability to use
it are part of this risk.

Development Risks:

Pressman (2001) describes this as “risks associated with the availability
and quality of the tools to be used to build the product.” The client-pro-
vided equipment and software on which to run the product must be com-
patible to the software project being developed.

Process Definition Risks:

Does the software being developed meet the requirements as originally
defined by the developer and client? Did the development team follow the
correct design throughout the project? These are examples of process
risks.

Product Size:

The product size risk involves the overall size of the software being built
or modified. Risks involved would include the customer not providing the
proper size of the product to be developed or if the software development
team misjudges the size or scope of the project. The latter problem could
create a product that is too small (rarely) or too large for the client and
could result in a loss of money to the development team because the cost
of developing a larger product cannot be recouped from the client.

Staff Size and Experience Risk:

This would include appropriate and knowledgeable programmers to
code the product as well as the cooperation of the entire software project
team. It would also mean that the team has enough team members who are
competent and able to complete the project.

Technology Risk:

Technology risk could occur if the product being developed is obso-
lete by the time it is ready to be sold. The opposite effect could also be a
factor: a product so “new” that the end users would have problems using
the system and resisting the changes made. The “newness”of a techno-
logical product could also result in problems using it. This type of risk
would also include the complexity of the design of the system being
developed.

528

SOFTWARE ENGINEERING HANDBOOK

3.4 Risk Table

The risk table provides a simple technique to view and analyze the risks
associated with the project. The risks were listed and then categorized
using the description of risks listed in the previous section. The probability
of each risk was estimated and then its impact on the development process
was assessed. A key to the impact values and categories appears at the end
of the table.

3.4.1 Probability and Impact for Risk

The table in Exhibit F-5 is the sorted version of the risk table by proba-
bility and impact. Exhibit F-5 was sorted first by probability and then by
impact value.

4. PROJECT SCHEDULE

Following are the master schedule and deliverables planned for each
stage of the project development life cycle and their respective planned
completion dates.

4.1 Deliverables and Milestones

See Exhibit F-6 for deliverables and milestones.

Exhibit F-5. Risks Table (sorted)

Risks Category
Probability

(%) Impact

Customer will change or modify requirements PS 70 2

Lack of sophistication of end users CU 60 3

Users will not attend training CU 50 2

Delivery deadline will be tightened BU 50 2

End users resist the system BU 40 3

Server may not be able to handle larger num-
ber of users simultaneously

PS 30 1

Technology will not meet expectations TE 30 1

Larger number of users than planned PS 30 3

Lack of training of end users CU 30 3

Inexperienced project team ST 20 2

System (security and firewall) will be hacked BU 15 2

Note: Impact values: 1 — catastrophic; 2 — critical; 3 — marginal; 4 — negligible.

Category abbreviations: BU — business impact risk; CU — customer characteristics
risk; PS — process definition risk; ST — staff size and experience risk; TE — technol-
ogy risk.

529

Sample Project Plan

4.2 Work Breakdown Structure

See Exhibit F-7 for a work breakdown structure.

5. PROJECT TEAM ORGANIZATION

The structure of the team and the roles of the team members are defined
in this section. The project team organization is divided into four parts:

1. Conceptual planning
2. Software design and development
3. Editing, master testing, and maintenance
4. Training and user documentation

5.1 Team Structure

We separate part of the team project by following the responsibilities of
the team members and dividing the functions of the system.

5.1.1 Conceptual Planning

• Interview and specify software scope
• Database re-engineering
• Overall process specifications
• Draft documentation

5.1.2 Software Design and Development

• Database design and development
• User interface and control facilities
• Function development
• Report generation
• Draft documentation

5.1.3 Editing, Master Testing, and Maintenance

• Maintenance system
• Integration testing
• Report software errors
• System documentation

5.1.4 Training and User Documentation

• Training sessions
• User documentation

This organization of the project team allows the project planner to know
the area of responsibility for each team member and all of the functions of
the team project.

5
3
0

S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
N

D
B

O
O

K

Exhibit F-6. Deliverables and Milestones

Activities Deliverable From Date To Date Milestone

Meetings Weekly meetings 02/04/02 05/07/02 05/07/02

Assess functional requirements 02/18/02 02/22/02

Demonstrate system 02/19/02 02/27/02

Requirements Evaluation of testing needs 02/25/02 02/27/02

Assess nonfunctional requirements 02/18/02 02/27/02

Final requirements specification 02/27/02 03/01/02 03/01/02

Quality assurance plan 02/04/02 02/06/02

Project plan 02/07/02 02/15/02

Requirements document 02/18/02 03/01/02

Design document 03/04/02 03/15/02

Documentation User guide 04/30/02 05/02/02

Final project notebook 04/29/02 05/03/02

Maintenance plan 04/29/02 05/03/02 05/03/02

Programmer Training Web design training 03/01/02 03/07/02

Database design training 03/08/02 03/12/02 03/12/02

5
3
1

S
a

m
p

le
 P

ro
je

ct P
la

n
Preliminary Design Brainstorming 03/13/02 03/14/02

Architectural layout 03/15/02 03/20/02 03/20/02

Detailed Design Design user interface 03/21/02 04/01/02

Database design 03/21/02 04/01/02 04/01/02

Build database 04/02/02 04/04/02

Coding User interface of campus version 04/05/02 04/19/02

User interface of in-house version 04/05/02 04/19/02 04/19/02

Integration Testing In-house testing 04/22/02 04/26/02

Necessary modifications 04/23/02 04/26/02 04/26/02

Post-Test On-campus testing 04/29/02 05/03/02

Necessary modifications 04/30/02 05/03/02 05/03/02

Modification “Clean up” & finalized for delivery

Additional “perks” 05/06/02 05/07/02 05/07/02

Faculty Training In-house training 05/08/02 05/08/02

Campus training 05/09/02 05/10/02 05/10/02

532

SOFTWARE ENGINEERING HANDBOOK
E

x
h

ib
it

 F
-7

.
W

o
rk

 B
re

a
k

d
o

w
n

 S
tr

u
ct

u
re

(a
)

533

Sample Project Plan
(b

)

534

SOFTWARE ENGINEERING HANDBOOK

6. TRACKING AND CONTROL MECHANISMS

6.1 Quality Assurance Mechanisms

• Careful monitoring of the project
• Maintaining close contact with the client by using weekly meetings

and regular e-mail contacts to communicate
• Periodic status meetings in which each team member reports on his

or her progress and problems
• Careful monitoring of each phase as it relates to the milestone dates

listed in Chapter 4
• Paying careful attention to all of the testing results, making needed

changes as quickly and reasonably as possible, and then retesting the
changes

6.2 Change Management and Control

• A change request is submitted and evaluated to assess technical mer-
it, potential side effects, overall impact on other configuration objects
and system functions, and the projected cost of the change.

• An engineering change order is generated for each approved change.
• Access control and synchronization control are implemented.
• The change is made, and appropriate software quality assurance

(SQA) activities are applied.
• Appropriate version control mechanisms are used to create the next

version of the software.

References

EDP Staffing Service Inc. (2001). Data: 2001 computer industry salary survey. http://www.edp-
staffing.com/salary.html.

Pressman, R.S. (2001). Software Engineering: a Practitioner’s Approach, 5th ed., McGraw Hill,
New York, 117–118.

535

Appendix G

Sample SRS

TABLE OF CONTENTS

1. Introduction .. 537
1.1 Purpose... 537
1.2 Scope... 537
1.3 Definitions, Acronyms, and Abbreviations................................... 537
1.4 References .. 538
1.5 Overview... 538

2. Overall Description .. 539
2.1 Product Perspective.. 539

2.1.1 System Interfaces... 540
2.1.2 User Interfaces ... 540
2.1.3 Hardware Interfaces... 540
2.1.4 Software Interfaces .. 540
2.1.5 Communications Interfaces.. 541
2.1.6 Memory Constraints.. 541
2.1.7 Operations .. 541
2.1.8 Site Adaptation Requirements ... 542

2.2 Product Functions ... 542
2.3 User Characteristics.. 542
2.4 Constraints ... 543

2.4.1 Regulatory Policies .. 543
2.4.2 Hardware Limitations .. 543
2.4.3 Interfaces to Other Applications.. 543
2.4.4 Parallel Applications.. 543
2.4.5 Audit Requirements... 544
2.4.6 Control Functions .. 544
2.4.7 High Order Language Functions... 544
2.4.8 Signal Handshaking Protocols.. 544
2.4.9 Reliability Requirements... 544
2.4.10 Criticality of the Application .. 544
2.4.11 Safety and Security of the System.................................... 544

2.5 Assumptions and Dependencies ... 545
2.6 Apportioning of Requirements .. 545

3. Specific Requirements ... 545
3.1 External Interface Requirements ... 545

3.1.1 User Interfaces ... 545

536

SOFTWARE ENGINEERING HANDBOOK

3.1.2 Hardware Interfaces...547
3.1.3 Software Interfaces...548
3.1.4 Communications Interfaces ..549

3.2 Software Product Features ...552
3.3 Inquiry Subsystem (Process 1.0) ...553

3.3.1 Member Access (Process 1.1) ..554
3.3.2 Process Remote Access (Process 1.2)...............................558

3.4 Database Management System (Process 2.0)...............................559
3.4.1 Process Query (Process 2.1)...559
3.4.2 Manage Data (Process 2.2)..562
3.4.3 Manage Files (Process 2.3)..562

3.5 Administration Subsystem (Process 3.0)563
3.5.1 Process Administrator Access (Process 3.1)....................564
3.5.2 Process Librarian Access (Process 3.2)566

3.6 Performance Requirements..568
3.7 Design Constraints...569
3.8 Software System Attributes ..569

3.8.1 Reliability ..569
3.8.2 Availability...569
3.8.3 Security..570
3.8.4 Maintainability..570
3.8.5 Portability..570

3.9 Logical Database Requirements...570
3.9.1 Types of Information..570

3.10 Other Requirements ..570
4. Metrics ...572

4.1 Function Point Metric..573
4.1.1 Completing the Function Point Table573
4.1.2 Calculating the VAF ..573
4.1.3 Computing the Final FP Value ...573
4.1.4 Conclusion ..573

4.2 Other Metrics ...574
4.2.1 Source Code Size Metrics ..574
4.2.2 Code Understandability Metrics ..575
4.2.3 Function Metrics ..575

Revision Chart

Version Primary Author(s) Description of
Version

Date Completed

Final Project Team 2 Draft created for
distribution and
review comments.

03–11–02

537

Sample SRS

1. INTRODUCTION

1.1 Purpose

The purpose of this software requirements specification is to capture
requirements for developing a library management system for a small- to
medium-sized library. The document is intended for use by all stakehold-
ers involved in the development of such a system. Stakeholders include
customer representatives (marketing personnel) and software representa-
tives (analysts, developers, and testers). This document has been pre-
pared to capture the requirements of all stakeholders so that those
requirements are traceable to the end product. Capturing requirements in
the early stages of the development cycle reduces the risk of schedule slip-
page or budget overspending and enables developers to develop the sys-
tem in a more efficient manner.

1.2 Scope

The ACME Library Management System is intended for use in a small- to
medium-sized library, such as a library in a small town or on a college cam-
pus. It is not intended to support very large libraries such as the New York
Public Library. The system includes the hardware and software to support
the day-to-day operation of the library. It provides services to members,
librarians, and administrators. These services have been designed to help
users get their jobs done faster and more efficiently. The system also pro-
vides services to remote users via the Internet.

The goal is to provide a system that is responsive, efficient, reliable,
easy to use, and easy to maintain. The system must provide a good user
experience for all users.

1.3 Definitions, Acronyms, and Abbreviations

Definitions for some of the common terms used throughout this docu-
ment are:

• Administrator — a person responsible for administering the system
• Asset database — a database that contains information about all the

assets in the library
• Librarian — a person responsible for serving the needs of the

members
• Member — a person that has a membership number and password to

gain access to the system from a member terminal on the library
premises

• Member database — a database that contains information about all
members of the library

• Public — a person that accesses the services of the library from a re-
mote terminal via the Internet

538

SOFTWARE ENGINEERING HANDBOOK

The following acronyms and abbreviations are used in this document:

• ADO — active data object
• DBMS — database management system
• GUI — graphical user interface
• IIS — internet information server
• LAN — local area network
• ODBC — open database connectivity

1.4 References

• Roger Pressman, Software Engineering, “A Practitioner’s Approach” —
5th edition, McGraw-Hill, January 2001

• Web site associated with the book immediately above at:
http://www.mhhe.com/engcs/compsci/pressman/student_index.html

• Course web site at: http://www.newartech.com/se
• Thomas Connolly, “Database Systems” — 3rd edition, Addison-Wesley,

2002
• Ian Summerville, “Software Engineering,” 5th edition, Addison-Wesley,

1995
• Edward Yourdon, “Modern Structured Analysis,” Prentice Hall, 2000
• Suzanne Robertson, James Robertson, “Mastering the Requirement

Process,” Addison-Wesley, 1999
• Some useful background information on function points is located at:

htpp://ourworld.compuserve.com/homepages/softcomp/fp-
faq.htm#WhatAreFunctionPoints

• Product documentation for Microsoft Windows 2000 Server is located at:
http://www.microsoft.com/windows2000/en/server/help

• Product documentation for Microsoft Internet Information Server (IIS) is
located at:
http://www.microsoft.com/windows2000/en/server/iis/

• Product documentation for Microsoft SQL Server is located at:
http://www.microsoft.com/qul/techinfo/productdoc/2000/books.asp

1.5 Overview

The remainder of this document describes the system requirements for
the ACME library management system. The next section contains a
description of the overall system, assumptions, dependencies, con-
straints, and its intended users. The third section on specific requirements
contains a detailed description of system requirements necessary for test-
ing the ACME library management system. The fourth section on metrics-
contains information on the function points metric that was chosen to
gauge the size of the system relative to other systems of this type devel-
oped by our company.

539

Sample SRS

2. OVERALL DESCRIPTION

2.1 Product Perspective

The ACME library management system provides the hardware, soft-
ware, and interfaces to support the various system users. For each user
type, the system will operate in a different mode:

• Public mode — for library members and users accessing the system
via the Web

• Private mode — for librarians
• Administration mode — for administrators

In each mode, a user has access to a different set of services helping to con-
trol access to the system and maintain the integrity of the data stored in
the library databases.

PCs placed at strategic locations throughout the library provide the
hardware interfaces through which members access the system. There are
also PCs at the librarian and administrator desks. At the librarian’s desk, a
bar code reader provides an additional hardware interface. This reader
enables the librarian to scan membership cards and asset bar codes, thus
alleviating the need to enter the information manually.

Web browsers running on the various PCs provide the user interfaces to
the system. A system access page is displayed on each PC type and each
user must enter a username and password to gain access. Depending on
the user type and the PC from which the system is accessed, different ser-
vices are accessible:

• Members have access to services such as the ability to check the sta-
tus of any checked-out assets with overdue fees (if applicable), search
for an asset in the library, reserve, etc.

• Librarians have access to services such as the ability to check in or
check out assets, the ability to accept payment of overdue fees, etc.

• Administrators have access to services such as the ability to add an
asset, remove an asset, check the status of an asset, etc.

In addition, remote users can browse the library’s Web page and access
a subset of the member services with some additional services for remote
users, such as the ability to enter a home location and get directions to the
library from that location.

The system also has a number of software interfaces to other software
products. These software products include the internet information server
(IIS) and a database management system (DBMS). The IIS provides support
for the Web pages that make up the user interface and the DBMS hosts
databases for membership and asset information and processes all infor-
mation queries generated by the system.

540

SOFTWARE ENGINEERING HANDBOOK

The communication interfaces include the library’s previously installed
Ethernet network, which is used to interconnect the various system com-
ponents, its previously installed Internet gateway that provides access for
remote users, and a firewall to restrict access to selected services.

2.1.1 System Interfaces

System interfaces for the ACME library management system include
interfaces of the following types:

• User interfaces — describe how users (members, librarians, and ad-
ministrator) access and interact with the system.

• Hardware interfaces — describe the hardware components in the sys-
tem, such as PCs, bar code reader, etc. and how they connect to the
system.

• Software interfaces — describe how the software being developed in-
terfaces with other major software components in the system, such as
the operating system, the IIS, and the DBMS.

• Communication interfaces — describe how the various components in
the system communicate with each other.

2.1.2 User Interfaces

All user interfaces are implemented in HTML format and displayed
inside an Internet web browser. Because the system is designed to support
members of the public from a wide variety of backgrounds, the graphical
user interface (GUI) will be designed to be both intuitive and easy-to-user.
The same look-and-feel will be used for members, remote users, librarians,
and administrators. (See Section 3.1.1.)

2.1.3 Hardware Interfaces

Hardware interface requirements for the ACME library management sys-
tem include the following:

• Each PC will be equipped with a 10/100 BASE-T Ethernet network in-
terface card that will enable the PC to connect to a hub or router on
the LAN.

• The bar code reader will connect directly to the serial port on the li-
brarian’s PC and use serial transmission to communicate with the PC.
(See Section 3.1.2 for specific requirements.)

2.1.4 Software Interfaces

The software developed for the ACME library management system
must interoperate with several other software components in the system
including:

541

Sample SRS

• The operating system running on each PC
• The Internet information server running on the administrator’s PC
• The DBMS running on the administrator’s PC

See Section 3.1.3 for specific requirements.

2.1.5 Communications Interfaces

The communication interfaces in the system include:

• Remote users use their home telephone lines to access the remote ser-
vices provided by the ACME library management system.

• The bar code reader connects to the librarian’s PC via the PC’s serial
port.

See Section 3.1.4 for specific requirements.

2.1.6 Memory Constraints

To support reliable and efficient operation of the various PCs running
the Microsoft Windows operating system, the following memory configura-
tions are required for the PCs associated with each of the user types:

• Member’s PC — 128 MB
• Librarian’s PC — 128 MB
• Administrator’s PC — 512 MB

The larger memory size on the administrator’s PC reflects the fact that
this PC is running the IIS and the DBMS. Also, the administrator’s PC has a
much higher disk space requirement: 1 GB, as opposed to the disk space
requirement of 200 MB for member and librarian PCs.

2.1.7 Operations

The system will experience most use during normal opening hours of
the library 9:30 a.m. to 9:30 p.m. During this time the system will be capable
of sustaining service without undue delays in processing requests by mem-
bers or the librarian. The system will be capable of handling multiple client
requests without dropping a request.

Membership and asset data will be stored in databases managed by the
DBMS system. The database information will be automatically backed up
each night at 2:00 a.m. This will provide one level of protection against data
loss should a failure occur.

A procedure will be developed to provide instructions for the adminis-
trator to perform a recovery operation in the event of a failure during day-
time hours. The objective of such a procedure will be to bring the system
back into normal operation within two hours.

542

SOFTWARE ENGINEERING HANDBOOK

2.1.8 Site Adaptation Requirements

The system will use the library’s previously installed Ethernet network.
The network is a 10BASE-T network and therefore the PCs will need to be
equipped with network interface cards that support the 10BASE-T network
type. The system will also use the library’s existing Internet gateway. The
gateway will connect to the library’s network and provide firewall protec-
tion against remote users’ accessing unauthorized services.

2.2 Product Functions

The ACME library management system will control user access and pro-
vide services to the various user types. The different users and the ser-
vices provided for each user are:

• Members
— Check the status of checked-out assets
— Search for an asset
— Reserve an asset
— View list of coming events
— View library floor map
— View general library information

• Remote User
— Search for an asset
— Get library directions
— View list of coming events
— View library floor map
— View general library information

• Librarian
— Check out or check in an asset
— Assess and collect fees
— Print overdue notices
— Reserve assets
— Determine asset status
— Determine member’s records
— Read membership card and asset numbers with bar code reader

• Administrator
— Manage library assets
— Maintain membership
— Generate reports

2.3 User Characteristics

Because the ACME library management system is intended for small-to
medium-sized libraries, people from many different educational back-
grounds will want to take advantage of the services provided by the library.

543

Sample SRS

Remote users should not require any special skills to access and use the
library services provided.

Similarly, user interfaces for librarians should be simple enough that
only the most basic training will be required. Librarians should not need
any special skills to use the system.

The administrator must be a qualified engineer knowledgeable about
the Internet information server and database management systems in gen-
eral. The administrator will need sufficient knowledge to be able to
converse with customer support organizations should problems arise fol-
lowing the deployment of the system.

2.4 Constraints

2.4.1 Regulatory Policies

The system will comply with all local regulatory policies. The gateway
providing access to remote users will comply with FCC regulations for the
transmission of data via the Internet.

2.4.2 Hardware Limitations

The different user PCs must meet the requirements specified in
Exhibit G-1. These requirements are critical to reliable and efficient use of
the system.

2.4.3 Interfaces to Other Applications

The ACME library management system will be a Windows-based system
and consequently all PCs must be running the Windows operating system.
In addition, other system components must be interoperable with the
Windows operating system. The system uses two other major applications,
that is, an IIS and a DBMS. The servers for these products are hosted on the
administrator’s PC.

2.4.4 Parallel Applications

The ACME library management system will use the client/server archi-
tecture and therefore be capable of handling multiple service requests con-
currently. For example, during busy periods many users may request a
search for an asset when the librarian needs to perform an asset check-out

Exhibit G-1. PC Requirements

PC Memory Disk Requirements

Member 128 MB 200 MB

Librarian 128 MB 200 MB

Administrator 512 1 GB

544

SOFTWARE ENGINEERING HANDBOOK

operation for another member. In these circumstances, the system will pro-
cess all requests without significant delays. (See Section 3.6 Performance
Requirements for more information.)

2.4.5 Audit Requirements

No auditing functions are required in this system.

2.4.6 Control Functions

The only control functions provided in the system are those functions
used to manipulate the data in the asset and membership databases.

2.4.7 High Order Language Functions

The ACME library management system uses a DBMS to manage the data-
bases for membership and asset information. The system will use struc-
tured query language (SQL) to query for and update any information in the
database.

2.4.8 Signal Handshaking Protocols

The ACME library management system will use cookies to help identify
users attempting to access the system via the Internet. This will provide
another level of security.

2.4.9 Reliability Requirements

The DBMS software will provide a backup capability to ensure protec-
tion of the data in the database. In addition, the DBMS software provides a
transaction recording feature that can be used to keep track of all transac-
tions during normal daytime operation. If a failure occurs, the transaction
record can be used to roll back to the last successful transaction so that a
minimum amount of information is lost.

2.4.10 Criticality of the Application

Although failure of the system will never be life threatening, providing a
reliable and continuous service to users is one of the key requirements of
the system. When a failure occurs, system downtime will be kept to a min-
imum. The target is to have the system operational within two hours fol-
lowing a serious failure.

2.4.11 Safety and Security of the System

Access to the ACME library management system by remote users will be
controlled by the Internet gateway installed on the library premises. The
gateway will provide a firewall that allows access to a subset of the ser-
vices provided to library members. In addition, the IIS and the DBMS pro-
vide extensive security features to help protect data in the system. All sys-

545

Sample SRS

tem components must comply with regulations for equipment in a public
location.

2.5 Assumptions and Dependencies

The ACME library management system uses equipment already
installed at the library premises, including the existing network and the
Internet gateway.

Over time, the technologies employed by the ACME library management
system may change. New versions of the IIS and the DBMS will become
available. New features will help the administrator maintain the databases,
improve the response time for simultaneous transactions, and prompt the
development of new features for librarians and members.

2.6 Apportioning of Requirements

The ACME library management system will be designed so that new fea-
tures for member, librarian, or administrator can be added very easily. The
combination of the IIS and the DBMS provide the mechanism through
which the data stored in the membership and asset databases can be used
in many different ways to provide new services.

3. SPECIFIC REQUIREMENTS

3.1 External Interface Requirements

3.1.1 User Interfaces

All user interfaces will be HTML-based and will be displayed in a web
browser.

3.1.1.1. Process Member Access Screens

• Validate membership screen (see Exhibit G-2)
• Reserve asset screen (see Exhibit G-3)
• Request search screen (see Exhibit G-4)
• Request status screen (see Exhibit G-5)
• Coming event screen (see Exhibit G-6)
• Get library directions screen (see Exhibit G-7)
• View floor map screen (see Exhibit G-8)
• View general information screen (see Exhibit G-9)

3.1.1.2. Process Librarian Access Screens

• Check out asset screen (see Exhibit G-10)
• Check in asset screen (see Exhibit G-11)
• Generate reports screen (see Exhibit G-12)

546

SOFTWARE ENGINEERING HANDBOOK

3.1.1.3. Process Administrator Access Screens

• Manage library assets (see Exhibit G-13)
• Maintain membership (see Exhibit G-14)
• Generate reports (see Exhibit G-15)

Exhibit G-2. Member Screen: Validate Membership

Exhibit G-3. Member Screen: Reserve Asset

547

Sample SRS

3.1.2 Hardware Interfaces

The hardware interfaces in the ACME library management system
include:

• The connection of PCs to the LAN using 10/100BASE-T network inter-
face cards

• The connection of the bar code reader to the librarian’s PC using the
serial port

Exhibit G-4. Member Screen: Request Search

Exhibit G-5. Member Screen: Request Status

548

SOFTWARE ENGINEERING HANDBOOK

3.1.3 Software Interfaces

The software developed for the ACME library management system
must interoperate with several other software components in the system
including:

• Microsoft Windows 2000 — The member and librarian PCs will run Mi-
crosoft Windows 2000 standard version. The administrator’s PC will
run Windows 2000 Server version to host the other servers in the
system (see below). For detailed product documentation on Windows
2000 Server, please refer to http://www.microsoft.com/windows2000/
en/server/help.

• Internet Information Server (IIS) — IIS is a group of Internet servers (in-
cluding a Web or hypertext transfer protocol server and a file transfer
protocol server) with additional capabilities for Microsoft’s Windows
Server operating systems. IIS also includes a set of programs for build-
ing and administering Web sites, a search engine, and support for
writing Web-based applications that access databases. It is these ca-
pabilities that the ACME library management system will use to fulfill
its requirements. The IIS is tightly integrated with Windows 2000 Serv-
ers, resulting in faster Web page serving. For detailed product docu-
mentat ion , p lease re fer to ht tp : / /www.micoros f t .com/
windows2000/en/server/iis/.

• Database Management System (DBMS) — The ACME library manage-
ment system will use Microsoft SQL Server 2000 as the DBMS of
choice. The interface between the system and DBMS will use an open
database connectivity (ODBC) connection. Applications will use the
active data object (ADO) library to access the database. For detailed

Exhibit G-6. Member Screen: Coming Events

549

Sample SRS

product documentat ion , p lease re fer to ht tp : / /www.mi -
crosoft.com/qul/techinfo/productdoc/2000/books.asp.

3.1.4 Communications Interfaces

The ACME library management system requires communication inter-
faces to interconnect the various system components and to enable
remote users to access the services allowed by the firewall in the Internet
gateway. The communication interfaces are supported by the operating
system and other subsystems:

(a)

(b)

Exhibit G-7. Member Screen: Get Library Directions

550

SOFTWARE ENGINEERING HANDBOOK

• Windows supports most commercially available LAN interfaces for
connection to communications servers or hosts. These include all
normal communications APIs, and specific socket interfaces for all
major TCP/IP vendors.

• Also, the Windows Sockets interface provides access to vendor-inde-
pendent TCP/IP. Direct support is provided for synchronous cards for
polled VIP connections; several commercial gateways for X.25 and
TGX connections are also supported.

Exhibit G-8. Member Screen: View Floor Map

Exhibit G-9. Member Screen: General Information Display

551

Sample SRS

• For the firewall, a set of three layers of protocols standardizes the way
in which the host system interfaces with users. Physical layer: defines
the transmission media permissible under fire wire and the electrical
and signaling characteristics of each. Link layer: describes the
transmission of data in the packets. Transaction layer: defines a
request–response protocol that hides the lower layer details of fire-
wall from applications.

Exhibit G-10. Librarian Screen: Check Out Asset

Exhibit G-11. Librarian Screen: Check In Asset

552

SOFTWARE ENGINEERING HANDBOOK

3.2 Software Product Features

The Acme library management system comprises three major software
subsystems: the inquiry subsystem, the database management system,
and the administration subsystem. Their interactions are illustrated in the
Exhibit G-16.

Exhibit G-12. Librarian Screen: Generate Reports

Exhibit G-13. Administrator Screen: Manage Library Assets

553

Sample SRS

3.3 Inquiry Subsystem (Process 1.0)

The inquiry subsystem is responsible for handling transactions and
requests between the library and the user. Users fall into two categories:
member and public. A member is allowed to view his membership status,
perform searches, and reserve library assets. A public user is allowed to
perform searches and request library information. The inquiry subsystem
is decomposed into two major processes to handle these user actions.
Exhibit G-17 illustrates their data flows.

Exhibit G-14. Administrator Screen: Maintain Membership

Exhibit G-15. Administrator Screen: Generate Reports

554

SOFTWARE ENGINEERING HANDBOOK

3.3.1 Member Access (Process 1.1)

3.3.1.1. Purpose

The purpose of this function is to process member requests for status,
process search requests, and allow members to reserve assets. Member-
ship is validated with a comparison between the member-entered

Exhibit G-16. Level 1 Data-Flow Diagram

Asset

Database

2.0

Database

Management

System

Member

1.0

Inquiry

Subsystem

3.0

Admin.

Subsystem

Membership

Database

Membership Number,

Password,

Status Request,

Search Input,

Reservation Request

Status,

Search Results,

Resevation

Confirmation

Public

Status Request,

Search Input,

Status

Search Results,

Asset Information

Updates

Membership

Information

Updates

Validated Status

Requests,

Search Request,

Asset Reservation

Member Status,

Search Results,

Reservation

Confirmation,

Updates

Manager Librarian

555

Sample SRS

password and the password stored in the membership info store. The store
receives updates from the DBMS.

3.3.1.2. Stimulus/Response Sequence

This functionality will be triggered whenever a member submits a
request via a member terminal. (Refer to Exhibit G-18.) Stimulus is in the
form of messages and member input. Responses are in the form of mes-
sages and member output.

3.3.1.3. Associated Functional Requirements

• Validate membership (Process 1.1.1): This process validates a mem-
ber’s membership number and password. The member’s membership
number and password are compared to the information in the mem-
ber data store for validity.
— Inputs: The inputs to this process are membership number and

password from the member and member info from the member
data store. The member data store receives updates from the DBMS
(Process 2.0).

— Processing: This process accepts the membership number and
password from the user and reads the corresponding member info
from the member data store. If the password given by the member

Exhibit G-17. Inquiry Subsystem (Process 1.0) Data-Flow Diagram

Member

1.1

Process

Member

Access

Membership

Number,

Password,

Status Request,

Search Input,

Reservation

Request

1.2
Process

Public

Access

Status Request,

Search Input

Status,

Search Results

Member Status,

Asset Status,

Reservation

ConfirmationValidated Status

Request,

Search Request,

Asset Reservation

Status,

Search Results,

Reservation

Confirmation

Status Request,

Search Request
Asset Status

Public

556

SOFTWARE ENGINEERING HANDBOOK

matches the password in the member data store then the process
passes a validation message to the request status and request asset
processes. If the password does not match, then no message is
sent. The process also sends a login response to the member based
on the outcome of the password comparison.

— Outputs: The outputs of this process are a validation message and a
log-in response. The validation message is sent to the request sta-
tus and reserve asset processes and is used to validate requests
and reservations. The login response is sent to the member’s termi-
nal and indicates whether or not the password was successful.

• Request status (Process 1.1.2): The purpose of this function is to gener-
ate validated status requests from members.
— Inputs: The inputs to this process are a status request message from

the member’s terminal and a member status message from the
DBMS (Process 2.0).

— Processing: This process accepts a status request message from a
member and a validation request from the validate membership

Exhibit G-18. Process 1.1 Data-Flow Diagram

Member
Data

Member
Status

Member
Info

Updates

1.1.1
Validate

Membership

Membership Number
Password

Login Response Member

Validation

Validation

Status

Status Request

1.12
Request
Status

Validated
Status

Request

Search Input

Reservation
Request

Search Results

1.14
Request
Search

Search
Request

Reservation

1.13
Reserve

Asset

Asset
Status

Reservation
Confirmation

Asset
Reservation

557

Sample SRS

process and generates a validated status request message. The val-
idated status request message is sent to the DBMS process (Pro-
cess 2.0). This process also accepts a member status message from
the DBMS process and sends a status message to the member’s
terminal.

— Outputs: The outputs of this process are the status message that is
sent to the member’s terminal and the validated status request
message sent to the DBMS (Process 2.0).

• Reserve asset (Process 1.1.3): The purpose of this function is to gener-
ate reserve library assets through member requests.
— Inputs: The inputs to this process are a reservation request message

from the member’s terminal and reservation confirmation message
from the DBMS (Process 2.0).

— Processing: This process accepts reservation request messages
from the member’s terminal and a validation message from the
validate member process. If the reservation request originates from
a validated member, the reservation request message is translated
into an asset reservation message and sent to the DBMS process
(Process 2.0). This process also accepts reservation confirmation
messages from the DBMS process and translates them into reserva-
tion messages destined for the member’s terminal.

— Outputs: The outputs from this process are an asset reservation
message to the DBMS and a reservation message to the member’s
terminal.

• Request Search (Process 1.1.4)
— Inputs: The inputs to this process are a search input message from

the member’s terminal and an asset status message from the DBMS
process (Process 2.0).

— Processing: This process accepts the search input message from the
member terminal and generates a search request message destined
for the database management process. The search input message
must have at least one field (as defined in the data dictionary) that
is not null. This field is used to create the search asset message. The
asset status message from the DBMS process is accepted and trans-
lated into a search results message destined for the member termi-
nal. Unsuccessful searches will have null values in the fields of the
asset status message. The null values will be translated into a
search result message indicating that the item was not found. If the
search was successful, the asset status message will be translated
into a search results message indicating the status of the asset.

• Outputs: The outputs of this process include the search request
message destined for the DBMS and the search results message
destined for the member terminal.

558

SOFTWARE ENGINEERING HANDBOOK

3.3.2 Process Remote Access (Process 1.2)

3.3.2.1. Purpose

The purpose of this function is to process public requests for library
information and to process search requests.

3.3.2.2 Stimulus/Response Sequence

This functionality will be triggered whenever the public user submits
requests via the Internet. Stimulus is in the form of messages and public
input; responses are in the form of messages and public output. Refer to
Exhibit G-19 for their interaction.

3.3.2.3. Associated Functional Requirements

• Request library information (Process 1.2.1): This process handles info
request messages for library information from the public terminal.
The public terminals are connected to the Acme library management
system via the Internet.

Exhibit G-19. Process 1.2 Data-Flow Diagram

Updates

Library
Data

Library
Information

Info
Pages

Info Request

Public

Search Input

Search Results

Asset
Status

Search
Request

1.2.1

Request

Library

Information

1.2.2

Request

Search

559

Sample SRS

— Inputs: The inputs to this process are the info request messages
from the public terminal and library information messages from the
library data store. The library data store receives updates from the
DBMS (Process 2.0).

— Processing: This process accepts the info request message from the
public terminal and selects the appropriate Web page to send to the
public terminal.

— Outputs: The output of this process is a Web page for display on the
public terminal.

• Request Search (Process 1.2.2)
— Inputs: The inputs to this process are a search input message from

a public terminal and an asset status message from the DBMS pro-
cess (Process 2.0).

— Processing: This process accepts the search input message from the
public terminal and generates a search request message destined
for the DBMS process. The search input message must have at least
one field (as defined in the data dictionary) that is not null. This
field is used to create the search asset message. The asset status
message from the database management process is accepted and
translated into a search results message destined for the public ter-
minal. Unsuccessful searches will have null values in the fields of
the asset status message. The null values will be translated into a
search result message indicating that the item was not found. If the
search was successful, the asset status message will be translated
into a search results message indicating the status of the asset.

• Outputs: The outputs of this process include the search request
message destined for the DBMS and the search results message
destined for the public terminal.

3.4 Database Management System (Process 2.0)

The DBMS maintains the asset and membership databases. The asset
database stores information about the library’s books, magazines, videos,
CD ROMS, and library equipment. The membership database stores infor-
mation about the library’s patrons and members. The DBMS provides the
necessary interfaces between the physical storage units and the inquiry
and administration subsystems. It handles the transactions and requests
between the databases and the two subsystems: inquiry and administra-
tion. Exhibit G-20 illustrates their data flows.

3.4.1 Process Query (Process 2.1)

3.4.1.1. Purpose

The purpose of this function is to process queries from the various
users. Queries include searches, status requests, and reservation requests.

560

SOFTWARE ENGINEERING HANDBOOK

3.4.1.2. Stimulus/Response Sequence

This functionality will be triggered whenever a request is sent by
another process. No direct interaction with the user is available. The
response is in the form of messages sent to the requesting process. Refer
to the Exhibit G-21.

3.4.1.3. Associated Functional Requirements

• Query Decomposition (Process 2.1.1)
— Inputs: The inputs to this process are search member request mes-

sages and search request messages from other processes and re-
sponses from the manage file process.

Exhibit G-20. Database Management System (Process 2.0) Data-Flow Diagram

2.1

Process

Query

Member Status

Asset Status

Asset Reservation

2.2

Manage

Data

Asset Update Request

Member Update

Request

Response

Query

Member Request

Search Request

Reservation

Confirmation

DML Update

Asset

Database

Membership

Database

Asset Information

Updates

Updates

Asset Update

Member Information

2.3

Manage

Files

561

Sample SRS

— Processing: This process transforms the high-level queries (mem-
ber request, search request) into a relational algebra query. It also
checks that the query is syntactically and semantically correct.

— Outputs: The outputs from this process are member status, asset
status, and asset reservation messages. It also generates relation al-
gebra query messages for the code generator process, as well as as-
set update request messages destined for the request reservation
process.

Exhibit G-21. Process 2.1 Data-Flow Diagram

2.1.1

Query

Decomp.

Member Status
Asset

Status

Asset Reservation

Response

Rel. Algebra

Query

Member Request
Search

Request

2.1.2

Code

Generator

Query

Asset Update

Request

562

SOFTWARE ENGINEERING HANDBOOK

• Code Generator (Process 2.1.2)
— Inputs: The inputs to this process are relation algebra query mes-

sages from the query decomposition process.
— Processing: This process transforms the relational algebra query

messages into runtime code for execution. It also checks that the
query is syntactically and semantically correct.

• Outputs: The outputs from this process query messages destined
for the manage file process.

3.4.2 Manage Data (Process 2.2)

3.4.2.1. Purpose

The purpose of this function is to manage and maintain the meta-data
for the database catalog. It also generates the data manipulation language
for updating the membership database and asset database.

3.4.2.2. Stimulus/Response Sequence

The stimulus for this function is requests for update messages from
other processes within the Acme library management system. The
responses include member status, asset status, and asset reservation mes-
sages. See Exhibit G-22 for an illustration of the data flow.

3.4.2.3. Associated Functional Requirements

• DDL Compiler (Process 2.2.1)
— Inputs: The inputs to this process are the asset update request and

member update request messages from other processes and the ta-
ble messages from the database catalog store.

— Processing: This process accepts requests for updates to the mem-
ber and asset databases and generates the appropriate code to
update them. It maintains the database catalog and uses the infor-
mation for generation of the appropriate DML update messages.

• Outputs: The outputs from this process are the DML update code
to the manage file process and member status and asset status
messages to other processes. The Asset Reservation message is
also generated.

3.4.3 Manage Files (Process 2.3)

3.4.3.1. Purpose

The purpose of this function is to manipulate the underlying storage
files and manage the allocation of storage space on disk. It establishes and
maintains the lists of structures defined in the internal schema for the
membership and asset databases.

563

Sample SRS

3.4.3.2. Stimulus/Response Sequence

The stimuli for this function are queries and DML updates. The
responses are member information and asset information messages.

3.5 Administration Subsystem (Process 3.0)

The administration subsystem (see Exhibit G-23) provides application
software to handle transactions at the librarian’s terminals and at the
administrator’s terminals. Transactions at the librarian’s terminal include
checking in and checking out books, searches, asset status, and bar code
reading of books and membership cards. Transactions at the administra-
tor’s terminals include creation and deletion of library assets, creation and
deletion of memberships, and report generation.

Exhibit G-22. Process 2.2 Data-Flow Diagram

2.2.1

DDL

Compiler

Member Status

Asset Status

Asset Reservation

DML Update

Asset Update Request

Member Update

Request

Database

Catalog

Tables

564

SOFTWARE ENGINEERING HANDBOOK

3.5.1 Process Administrator Access (Process 3.1)

3.5.1.1. Purpose

The purpose of this function is to process administrator requests and
transactions.

3.5.1.2. Stimulus/Response Sequence

This functionality will be triggered whenever the administrator submits
requests or transactions to the system. Stimulus is in the form of messages
and other administrator generated input. Responses are in the form of
messages and terminal output. Refer to Exhibit G-24 for their interaction.

3.5.1.3. Associated Functional Requirements

• Manage assets (Process 3.1.1): The purpose of this feature is to allow
the administrator to control and manage the library assets by the
ACME library management system. The administrator can choose the
following actions: create asset, delete asset, or check asset status.
— Inputs: The inputs to this process are create asset, delete asset, and

asset request messages from the administrator terminal. It also ac-
cepts the asset status and asset update response messages from
the DBMS process (Process 2.0).

Exhibit G-23. Administration Subsystem (Process 3.0) Data-Flow Diagram

Administrator

3.1

Process

Admin.

Access

Create Member

Delete Member
Member Request

Create Asset

Delete Asset

Asset Request

3.2

Process

LIbrarian

Access

Member Status

Asset Response

Member Request

Asset Request

Asset Check In

Asset Check Out

Report Request

Member Update

Response

Member Status

Asset Update

Response

Asset Status
Member Update

Request

Member Request

Asset Update Request

Asset Request

Asset Status
Status Report

Status Request

Member Request

Asset Update Request

Member Update

Request

Asset Status

Member Status

Librarian

565

Sample SRS

— Processing: This process accepts the create asset and delete asset
messages from the administrator’s terminal and generates asset up-
date messages destined for the DBMS process. This process re-
sponds with an asset update message indicating success or failure
of the update; this message is relayed to the administrator’s termi-
nal in the status message. Update requests messages are also
accepted from the administrator’s terminal and translated into
search request messages destined for the DBMS process. The asset
status response message is sent to the administrator’s terminal.

— Outputs: The outputs of this process are the asset update request
and search request messages destined for the DBMS process and
the status messages destined for the administrator’s terminal.

• Maintain membership (Process 3.1.2): The purpose of this process is to
provide the library administrator with mechanisms to maintain and
manage the member information of the ACME library management
system. The administrator can choose the following actions: create
member, delete member, or check member status.
— Inputs: The inputs to this process are create member, delete mem-

ber, and member request messages from the administrator termi-
nal. It also accepts the member status and member update
response messages from the DBMS process (Process 2.0).

— Processing: This process accepts the create member and delete
member messages from the administrator’s terminal and generates
member update messages destined for the DBMS process. This pro-
cess responds with a member update message indicating success
or failure of the update. This message is relayed to the administra-
tor’s terminal in the status message. Update requests messages are

Exhibit G-24. Process 3.1 Data-Flow Diagram

Asset Update
Request

Search Request

Asset Update
Request

Asset Status

3.1.1
Manage
Assets

Status

Status

Create Asset
Delete Asset

Asset Request

Create Member
Delete Member

Member Request

Report Request

Administrator

Report

3.1.2
Maintain

Membership

Member Update
Request
Member
Request

Member Update
Request
Member
Status

Asset
Request
Member
Status

Asset Status
Member Status

3.1.3
Generate
Report

566

SOFTWARE ENGINEERING HANDBOOK

also accepted from the administrator’s terminal and translated into
search request messages destined for the database management
process. The member status response message is sent to the ad-
ministrator’s terminal.

— Outputs: The outputs of this process are the member update re-
quest and search request messages destined for the DBMS process
and the status messages destined for the administrator’s terminal.

• Generate report (Process 3.1.3): The purpose of this process is to allow
the administrator to generate reports of library assets and member
status controlled by the ACME library management system. The ad-
ministrator can choose the following: generate asset report or gener-
ate membership report.
— Inputs: The inputs to this process are the member status and asset

status from the DBMS process and the report request message from
the administrator’s terminal.

— Processing: This process accepts the report request from the admin-
istrator’s terminal and generates the appropriate member request
and asset request messages destined for the DBMS process (pro-
cess 2.0) based on a predefined set of reports. This process receives
the member status and asset status messages from the DBMS pro-
cess and formats them into the necessary fields of the report mes-
sage. The report message is sent to the administrator’s terminal.

• Outputs: The outputs of this process are the member request and
asset request messages destined for the DBMS process and the
report message destined for the administrator’s terminal.

3.5.2 Process Librarian Access (Process 3.2)

3.5.2.1. Purpose

The purpose of this function is to process the librarian’s requests and
transactions.

3.5.2.2. Stimulus/Response Sequence

This functionality will be triggered whenever the librarian submits
requests or transactions to the system. Stimulus is in the form of messages
and librarian input. Responses are in the form of messages and terminal
output. Refer to Exhibit G-25 for their interaction.

3.5.2.3. Associated Functional Requirements

• Check-Out Process (Process 3.2.1): This process handles check out of li-
brary assets.
— Inputs: The inputs to this process are the member information from

the card reader, the asset information from the bar code reader, and
the check-in request from the librarian’s terminal. Member update

567

Sample SRS

responses and asset update responses are also accepted from the
DBMS (Process 2.0).

— Processing: This process accepts the member information, asset in-
formation, and check-in request and generates a member update re-
quest and asset update request destined for the DBMS. The
member update request and asset update request fields are modi-
fied to indicate a member is checking out an asset. Member update
responses and asset update responses are received from the DBMS,
formatted, and sent to the librarian’s terminal.

— Outputs: The outputs of this process are the member update re-
quest and asset update request destined for the DBMS and member
update responses and asset update responses destined for the
librarian’s terminal.

• Check-In Process (Process 3.2.1): This process handles check in of
library Assets.
— Inputs: The inputs to this process are the asset information from the

bar code reader and the check-in request from the librarian’s termi-
nal. Member update responses and asset update responses are also
accepted from the DBMS (Process 2.0).

— Processing: This process accepts the asset information and check-in
request and generates a member update request and asset update
request destined for the DBMS. The asset update request fields are
modified to indicate an asset has been returned. Member update

Exhibit G-25. Process 3.2 Data-Flow Diagram

Card Reader

3.2.1
Check Out
Process

3.2.3
Generate

Report

Report

Member Update
Response

Asset Update
Response

Member Update
Request

Asset Update Request

Asset Request
Member Request

Asset Status
Member Status

Librarian
Bar Code
Reader

3.2.2
Check

InProcess

Asset
Information

Member Information

Check In
Request

Check Out
Request

Report
Request

Member Update
Request

Asset Update Request

Member Update
Response

Asset Update
Response

Member Update
Response

Asset Update
Response

Member Update
Response

Asset Update
Response

568

SOFTWARE ENGINEERING HANDBOOK

responses and asset update responses are received from the DBMS,
formatted, and sent to the librarian’s terminal.

— Outputs: The outputs of this process are the asset update request
destined for the DBMS and asset update responses destined for the
librarian’s terminal.

• Generate Report (Process 3.2.3): The purpose of this process is to allow
the librarian to generate reports of library assets and member status
controlled by the ACME library management system. The administra-
tor can choose the following: generate asset report or generate mem-
bership report.
— Inputs: The inputs to this process are the member status and asset

status from the DBMS process and the report request message from
the librarian’s terminal.

— Processing: This process accepts the report request from the librar-
ian’s terminal and generates the appropriate member request and
asset request messages destined for the DBMS process (Process
2.0) based on a predefined set of reports. It receives the member
status and asset status messages from the DBMS process and for-
mats them into the necessary fields of the report message. The re-
port message is sent to the librarian’s terminal.

• Outputs: The outputs of this process are the member request and
asset request messages destined for the DBMS process and the
report message destined for the librarian’s terminal.

3.6 Performance Requirements

The ACME library management system will support up to five member
PCs, two librarian PCs, and one administrator PC. The bar code reader at
the librarian’s desk will be capable of reading membership cards and bar
codes on assets with no noticeable delay. The response time should be no
greater than 0.5 seconds.

Under normal operating conditions, a user (member, librarian, or
administrator) can expect a response from the system within five sec-
onds. Time-consuming operations such as search operations that require
the retrieval of a large amount of data from the database will be designed
with performance in mind. For example, part of the result set can be dis-
played while the query continues in parallel. More results are displayed if
requested by the user.

The system will be capable of handling up to ten simultaneous transac-
tions (including transactions to handle remote users) without any notice-
able degradation of service to the supported users and without dropping
any of the requested services.

569

Sample SRS

The existing Internet gateway will not impose any degradation of perfor-
mance on the system. Response to remote users is partly dependent on
Internet traffic and therefore cannot be the sole responsibility of the ACME
library management system.

The system will be tested to ensure conformance to the performance
requirements mentioned in this section. A separate functional test specifica-
tion will be developed containing details of on-site tests required to test the
system under normal and load conditions. User interaction (including
remote users) will be simulated to get a reading on how well the system
performs and provide indications of how to improve performance if neces-
sary. The response time for each service provided for each user type will
be measured and evaluated.

Databases will need to be tuned to optimize queries against them. Such
tuning can only be done effectively after the databases are populated and
the system is up and running.

3.7 Design Constraints

The location of the PCs for members, librarians, and administrator must
conform to the limitations imposed by the network topology. For example,
if a PC connects to a hub or router, it must be located as close to the hub
or router as deemed necessary by the specification.

3.8 Software System Attributes

3.8.1 Reliability

The system must be properly installed and tested by ACME engineers.

The software and hardware used by the system will be compatible to
increase the reliability of the overall system. Where possible, software from
a single vendor will be used to improve interoperability and reliability.

3.8.2 Availability

The system will remain operational even when the library is not open to
the public. It is anticipated that the administrator will perform many tasks
during periods of lower activity, such as when the library is closed. Also,
the system needs to remain operational to provide service to remote users
accessing the system via the Internet.

The system will not be available, even via the Internet, while the data-
bases are backed up. This operation will be performed during the early
hours of the morning when the system is not expected to be used.

570

SOFTWARE ENGINEERING HANDBOOK

3.8.3 Security

The system will provide a number of different security features. First, all
members must log into the system at member PCs and must provide a
username and password before gaining access to the system. Similarly, the
librarian and administrator access the system via their respective PCs and
are authenticated by username and password. Second, remote users
access the system via a gateway that provides a firewall. The firewall allows
access to services designated as remote access services, but blocks access
to all other services, such as administrator services. Cookies will also be
used to aid in identifying remote users.

The DBMS provides a high level of security. Security profiles for the dif-
ferent user types will be created so that specific users have only the per-
missions (create, update, delete) on selected data objects. For example,
only the administrator will have create and delete permissions in the asset
database. Stored procedures will be used to maintain referential integrity
in the databases.

3.8.4 Maintainability

The system will be designed so that it will be easily extensible; that is,
new services for each user type (member, librarian, and administrator) can
be added using the same paradigm. While developers are required to
extend the system, the code to develop new services is not expected to be
complex. Software from a single vendor will be used to improve interoper-
ability and reliability.

3.8.5 Portability

This section is not applicable. The system will integrate PCs running the
Windows platform. There is no requirement to port the system to any other
platform.

3.9 Logical Database Requirements

3.9.1 Types of Information

The types of data that will be stored in the database will be the standard
numeric, string, date, and enumeration data types. Information members
and assets will be stored in databases. Username and passwords for user
access will be stored in a separate file

Exhibit G-26 shows the data dictionary that identifies by name each
piece of data that will be stored by the ACME library management system
and the general type of each piece of data.

3.10 Other Requirements

Not applicable.

571

Sample SRS

Exhibit G-26. Data Dictionary Entries for the ACME Library Management
System

Name: Asset Database

Aliases: None

Where Used/How
Used:

Used by the DBMS to process requests and return results to the
inquiry and administration subsystems

Content
Description:

Attributes associated with each asset including:
• Asset Number = 16 Numeric Digits
• ISBN Number = 16 Alphanumeric Characters
• Library of Congress Classification Number = 16 Alphanumeric

Digits
• Asset Title = 64 Alphanumeric Characters
• Author = 32 Alphanumeric Characters
• Dewey Decimal Classification Number = 16 Numeric Digits
• Media Type = Enumeration {BOOK | MAGAZINE | CDROM |

REFERENCE}
• Status = Enumeration {IN | OUT | LOST | MISSING |

DUE_DATE}
• Category = Enumeration {FICTION | NONFICTION}
• Published = 32 Alphanumeric Characters
• Keywords = 64 Alphanumeric Characters
• Date Acquired = Date
• Location = 16 Alphanumeric Characters

Name: Membership Database

Aliases: None

Where Used/How
Used

Used by the DBMS to process requests and return results to the
inquiry and administration subsystems

Content
Description:

Attributes associated with each asset including:
• Membership Number = 10 Numeric Digits
• Member Since Date = Date
• Last Name = 16 Alphanumeric Characters
• First Name = 16 Alphanumeric Characters
• Address = 64 Alphanumeric Characters
• Phone Number = 11 Numeric Digits (1, area code, phone

number)
• Assets on Loan = Array containing 10 strings each containing

64 Alphanumeric Characters
• Assets Overdue = Array containing 10 strings each containing

64 Alphanumeric Characters
• Late Fees Due = 10 Numeric Digits
• Maximum Allowed Loans = 2 Numeric Digits

Name: Member Data

Aliases: None

Where Used/How
Used

A file used to validate username and passwords for members,
librarians, and administrator when attempting to access the
system. The username and password entered are compared with
the username and password in this file. Access is granted only if
a match is found.

(continued)

572

SOFTWARE ENGINEERING HANDBOOK

4. METRICS

As part of our company’s metrics program, the project team used the
function points metric to gauge the relative size of the ACME library man-
agement system. The function points metric is suitable for GUI-based, cli-
ent/server systems and provides valuable information for the ongoing
measurement of productivity within the organization. The FP value for the
system can be compared with FP values of previous projects to gain an esti-
mate of the relative size of the system. The function point value is calcu-
lated in the three steps:

1. Complete the function point table.
2. Calculate the value adjustment factor (VAF).
3. Compute the final function points (FP) value.

Each of these steps is described in the following sections and a conclusion
is drawn in the final section.

More detailed information on the use of function points as a valuable
metric is available at: http://ourworld.compuserve.com/homepages/soft-
comp/fpfaq.htm#WhatAreFunctionPoints.

Exhibit G-26. (continued)

Content
Description:

Attributes associated with each asset including:
• Member Username = 16 Alphanumeric Digits
• Member Password = 16 Alphanumeric Digits

Name: Library Data

Aliases: None

Where Used/How
Used

Files maintained by the administrator and used to provide general
information about the library

Content
Description:

HTML files for:
• General Library Information (Policy, etc.)
• Coming Events
• Library Floor Map
• Library Directions Screen

Name: Database Catalog

Aliases: None

Where Used/How
Used

Used by the DDL compiler process

Content
Description:

Contains detailed information about the various objects in the
databases including tables, indices, integrity constraints,
security constraints, etc.

573

Sample SRS

4.1 Function Point Metric

4.1.1 Completing the Function Point Table

The completed function point table for the ACME library management
system is shown in Exhibit G-27.

4.1.2 Calculating the VAF

The total degree of influence (TDI) factor, an interim factor necessary for
the calculation of the VAF, is calculated by answering the questions in the
table shown in Exhibit G-28. The options for the degree of influence range
from not applicable (0) to absolutely essential (5). The total value is calcu-
lated by summing the values in the rows.

Using the TDI factor, the VAF can be calculated using the following
formula:

VAF = (TDI * 0.01) + 0.65
VAF = (31 * 0.01) + 0.65 = 0.96

4.1.3 Computing the Final FP Value

The final FP value can be calculated using the formula:

FP = Count Total (“FP metric” section) * VAF (“other metrics” section)
FP = 1235 * 0.96 = 1186

4.1.4 Conclusion

An FP value of 1186, when compared with the historical data maintained
for other projects, does not indicate a very large or complex system. The
data for this project will be captured so that it can be used for comparison
with other projects.

Exhibit G-27. ACME Library Management System Function Point Table

Weighting Factor

Measurement Parameter Count Simple Average Complex Total

Number of user inputs 55 3 4 6 165

Number of user outputs 60 4 5 7 240

Number of user enquiries 55 3 4 6 220

Number of files 30 7 10 15 210

Number of external
interfaces

80 5 7 10 400

Count Total 1235

574

SOFTWARE ENGINEERING HANDBOOK

4.2 Other Metrics

Our company employs other metrics to assess the quality of the soft-
ware product. Metrics are used to measure the quantity and quality of the
source code by measuring various aspects of the code and the lines of
codes (LOC). The metrics are described in the following categories:

• Source code size metrics
• Code understandability metrics
• Function metrics

4.2.1 Source Code Size Metrics

4.2.1.1. LOC Metric

A common basis on which to estimate a software project is the LOC met-
ric. LOCs are used to determine time and cost estimates; the LOC estimate
becomes the baseline to measure the degree of work performed on a
project. Once a project is underway, the LOC becomes a tracking tool that
can measure the degree of progress on a project. Experienced developers
can gauge an LOC estimate using prior knowledge of previous projects.

Exhibit G-28. Total Degree of Influence (TDI) Factor

General System Characteristic
Degree of
Influence

1. Does the system require reliable backup and recovery? 4

2. Are data communications required? 1

3. Are there distributed processing functions? 3

4. Is performance critical? 2

5. Will the system run in an existing, heavily utilized operational
environment?

1

6. Does the system require online data entry? 3

7. Does the online entry require the input transaction to be built over
multiple screens or operations?

2

8. Are the master files updated online? 0

9. Are the inputs, outputs, files, or enquires complex? 2

10. Is the internal processing complex? 2

11. Is the code designed to be reusable? 3

12. Are conversion and installation included in the design? 2

13. Is the system designed for multiple installations in different
organizations?

1

14. Is the application designed to facilitate change and ease of use by
users?

5

Total Degree of Influence (TDI) 31

575

Sample SRS

4.2.1.2. Effective Lines of Code

An effective line of code is the measurement of all lines that are not com-
ments, blank lines, or standalone braces or parentheses. This measure-
ment more closely represents the quantity of work performed. It is com-
mon for programmers to use a single brace or parenthesis on a line to
denote a specific block of code. A single character on a line should not
really count as a line of code. This type of coding style can therefore
increase the LOC metric by 20 to 40 percent.

4.2.2 Code Understandability Metrics

4.2.2.1. Comment Line Metric

The number of comments in a source program is a measure of the care
taken by the programmer to make the source code and algorithms under-
standable. Code that is not well commented is very difficult to maintain.
Comments can occur by themselves on a physical line or be co-mingled
with source code. A line is considered a comment line if the physical line
contains a comment.

4.2.2.2. Blank Line and White Space Metric

The number of blank lines within a program determines the readability.
White space highlights the logical grouping of constructs and variables.
Programs that use few blank lines are difficult to read and more expensive
to maintain.

4.2.3 Function Metrics

4.2.3.1. Function Count Metric

The total number of functions within a program determines the degree
of modularity. This metric is used to quantify the average number of LOC
per function, maximum LOC per function, and the minimum LOC per
function.

4.2.3.2. Average LOC/Function Metric

The average LOC/function indicates how the code meets the accepted
standard. The accepted industry standard of 200 LOC/function is desired
as the average. Functions that have a larger number of lines of code per
function are difficult to understand and difficult to maintain. They provide
a good indication that a function should be broken into smaller functions.

4.2.3.3. Maximum LOC/Function Metric

Although the average LOC per function gives an interesting source code
trend, the maximum LOC per function gives an indication of the largest
function in the system.

576

SOFTWARE ENGINEERING HANDBOOK

4.2.3.4. Minimum LOC/Function Metric

An LOC value of 2 may indicated that functions are just prototypes and
will need to be completed later.

Selected Bibliography

Connolly, T. (2002). Database Systems, 3rd ed., Addison-Wesley, Reading, MA.

Pressman, R. (2001). Software Engineering, a Practitioner’s Approach, 5th ed., McGraw-Hill,
New York. (Web site associated with Pressman’s book at: http://www.mhhe.com/engcs/comp-
sci/pressman/stundent_index.html).

Robertson, S. and Robertson, J. (1999). Mastering the Requirements Process, Addison-Wesley,
Reading, MA.

Summerville, I. (1995). Software Engineering, 5th ed., Addison-Wesley, Reading, MA.

Yourdon, E. (2000). Modern Structured Analysis, Prentice Hall, New York.

Course web site at: http://www.newartech.com/se.

Some useful background information on function points is located at: http://ourworld.com-
puserve.com/homepages/softcomp/fpfaq.htm#WhatAreFunctionPoints.

Product documentation for Microsoft Windows 2000 Server is located at: http://www.mi-
crosoft.com/windows2000/en/server/help.

Product documentation for Microsoft Internet Information Server (IIS) is located at: ht-
tp://www.microsoft.com/windows2000/en/server/iis/.

Product documentation for Microsoft SQL Server is located at: http://www.mi-
crosoft.com/qul/techinfo/productdoc/2000/books.asp.

577

Appendix H

Sample Survey

Does your company recognize that Y2K certification is an ongoing effort
and that modifying any program or file structure from now on will have Y2K
ramifications? (i.e., a program has already been Y2K certificated and now
needs changes made for some reason unrelated to Y2K. Scenario 1: the pro-
grammer creates new code that is not Y2K compliant. Scenario 2: the pro-
grammer inserts new code making existing Y2K-compliant code noncom-
pliant some time in the future.) The established change management
process will not detect new code that is not Y2K compliant. To depend
solely on established change management processes or comprehensive
Y2K types of testing as ongoing Y2K certification vehicles will delay pro-
duction implementation and adversely affect the company’s bottom line. In
light of this problem, we are researching the feature set of a possibly auto-
mated Y2K certification and quality assurance tool that protects your com-
pany’s Y2K investment and reduces your ongoing certification and quality-
assurance labor cost. Your input is greatly appreciated.

If you were to search for a tool that prevents Y2K recontamination by auto-
mating an ongoing automated certification process, what would be the
desired features of the tool? In the feature list below, please rate the impor-
tance of that feature using the scale of 1 to 5, with 1 being the most important.

MANAGEMENT ASPECTS (YOU MAY WANT TO COMPLETE THE
TECHNICAL PART OF THE SURVEY FIRST):

1. The tool is used as part of program
development cycle to improve quality 1 2 3 4 5

2. The tool is used as part of program development
cycle to enforce standards 1 2 3 4 5

3. The tool has the flexibility of being used on an
as-needed basis 1 2 3 4 5

4. The tool has the flexibility of being made a
mandatory part of the process 1 2 3 4 5

5. The tool is also useful for non-Y2K-related
certification 1 2 3 4 5

6. If this tool would not be useful beyond Y2K,
why not? ___

578

SOFTWARE ENGINEERING HANDBOOK

7. Given the potential savings in labor and the protection
of your investment, what price would you pay for a
product such as this? (ballpark figure) ________

8. What features would interest you in a tool such as this? __________

TECHNICAL ASPECTS:

1. Is the tool enabled during compile time and does
it generate diagnostics similar to those now familiar
to programmers (e.g., Level E or Level W)? 1 2 3 4 5

2. The tool works under MVS 1 2 3 4 5
3. The tool works under VSE 1 2 3 4 5
4. The tool works under AS/400 1 2 3 4 5
5. The tool works under UNIX 1 2 3 4 5
6. The tool works under other platforms (name) 1 2 3 4 5
7. The tool can be run on a PC 1 2 3 4 5
8. The tool has the ability to link source with copybook

and subroutines 1 2 3 4 5
9. The tool runs outside or front-end change

management process 1 2 3 4 5
10. The tool interfaces with CA/Librarian or CA/Panvalet 1 2 3 4 5
11. The tool can support IBM Millennium Language

Extensions 1 2 3 4 5
12. The tool permits user input of dates or other

variables for verification and does this in an expert
system rules-based format 1 2 3 4 5

13. The tool can uncover nonobvious date and year
references (e.g., wy, which might mean work year) 1 2 3 4 5

14. The tool has the ability to detect source code
changes from baseline 1 2 3 4 5

15. The tool has the ability to electronically store all
compiler listings for automated retrieval, version
control, audit, and reduction of storage space 1 2 3 4 5

16. The tool provides automated source code
management 1 2 3 4 5

17. The tool has the ability to map all program
relationships based on program calls and track
compilation and linkage editor LIBRARY and INCLUDE
statements to identify out of sync conditions 1 2 3 4 5

Thank you for your input. Your responses will be kept private.

579

Appendix I

Sample Architectural
Design

TABLE OF CONTENTS

1 Introduction .. 579
1.1 Purpose... 580
1.2 Scope... 580

2 Overall System Architecture ... 580
2.1 Description ... 580
2.2 Major Subsystems ... 582

3 Layers... 582
3.1 Presentation ... 582
3.2 Application ... 583
3.3 Domain.. 584
3.4 Business Infrastructure .. 585
3.5 Technical Services... 585

3.5.1 Persistence Subsystem ... 585
3.5.2 Logging Subsystem .. 586
3.5.3 Rule Engine Subsystem ... 586
3.5.4 SOAP .. 587
3.5.5 Security ... 587

3.6 Foundation ... 587
3.6.1 Relational Database ... 587
3.6.2 String and Math Utilities ... 588

4 Interpackage and Interlayer Coupling ... 588
4.1 Presentation Interactions ... 588
4.2 Application Interactions ... 588
4.3 Domain Interactions.. 588
4.4 Business Infrastructure Interactions .. 589
4.5 Technical Services Interactions... 590
4.6 Foundation Interactions ... 590
4.7 Summary... 590

1 INTRODUCTION

This section provides an introduction to the Dog E-DayCare system’s archi-
tectural design.

580

SOFTWARE ENGINEERING HANDBOOK

1.1 Purpose

The purpose of this document is to provide a logical architectural view
of the Dog E-DayCare system. This document will describe the system in
terms of its conceptual organization, using the layers architectural pattern.

1.2 Scope

The Dog E-DayCare system will connect dog owners to dog care service
providers by providing a Web-based forum to locate, purchase, and moni-
tor dog care services. The Dog E-DayCare system will allow dog owners to
search for dog care service providers within a location of their choice,
based on their specific needs. Once a dog owner selects a service, the Dog
E-DayCare system will permit the user to communicate with the selected
dog care service provider, submit all required information, schedule, and
pay for services. Depending upon the dog care service provider selected,
dog owners will also be able to view their dogs online, receive an update of
the dog’s status, and participate in discussion forums and chat rooms ded-
icated to dog care.

The Dog E-DayCare system will support dog care service providers
through two different forums: client software resident on the dog care ser-
vice provider’s workstations and through a Web-based forum. The system
will notify dog care service providers of potential clients and permit them
to communicate with dog owners and access information submitted by
dog owners seeking a dog care service provider. In using the Dog E-DayCare
system, dog care service providers will be able to coordinate scheduling of
multiple clients, relay updates and messages, and bill their clients. In addi-
tion, in an effort to foster a greater sense of community, discussion forums
and chat rooms will also be available for dog care service providers, to be
used as a service for their clients.

The Dog E-DayCare system will maintain information about dog care ser-
vice providers, dog owners, and their dogs. Information will be stored in a
database accessible to dog care service providers and dog owners. This
access will be through a Web-based forum for the dog owners and a com-
bination of client software and a Web-based forum for the dog care service
providers.

2 OVERALL SYSTEM ARCHITECTURE

This section provides an overview of the Dog E-DayCare system’s archi-
tectural design.

2.1 Description

The Dog E-DayCare application is composed of six layers containing var-
ious subsystems that interact with each other in order to accomplish the

581

Sample Architectural Design

many functions involved within the system. The six layers are: presenta-
tion, application, domain, business infrastructure, technical services, and
foundation.

• The presentation layer is responsible for representing the range of
user interfaces required for the Dog E-DayCare system. Each package
contains the classes responsible for displaying information through a
browser and through a client workstation.

• The application layer can be described as the mediator between the
presentation and domain layers. Its responsibility is to provide the
session façade for each request coming from a specific user interface.
The application layer “directs traffic” between the presentation and
domain layers.

• The domain layer contains the packages and classes that implement
domain-level services. The domain layer handles application layer re-
quests and implements domain-level business rules.

• The business infrastructure layer contains a package and classes that
implement business infrastructure-level services. Services include
those that pertain to establishing a sense of community for Dog E-Day-
Care clients.

• The technical services layer includes the subsystems that provide
high-level technical services and frameworks; it consists of the persis-
tence, logging, rule engine, and SOAP subsystems. The persistence
framework is a general-purpose, reusable, and extendable set of types
that provides functionality to support persistent objects. The persis-
tence subsystem provides the service to domain layer subsystems.
The logging and tracing functionalities can be organized as the logging
subsystem in the technical services layer, which provides these func-
tions for the upper layers such as domain, presentation, and applica-
tion layers. The rule engine subsystem provides a full capability to
“reason” based on a provided set of knowledge in the form of declara-
tive rules. This will provide the system with the potential capability of
adding complex schedule rules and work flow management. The SOAP
subsystem is a lightweight protocol for exchange of information in a
decentralized, distributed environment. SOAP allows remote method
invocation from subsystems deployed to client-to-server subsystems.

• The foundation layer includes subsystems and packages that pro-
vide low-level technical services, including a relational database,
and string and math utilities. The relational database is required to
provide the application with storage location for all pertinent data;
this subsystem supports the persistent subsystem in the technical
services layer. The String and math utilities subsystem provides the
packages and functions that will support many of the upper layer
subsystems.

582

SOFTWARE ENGINEERING HANDBOOK

2.2 Major Subsystems

The diagram in Exhibit I-1 represents the layers and the subsystems
involved in accomplishing the functions within the Dog E-DayCare
application.

3 LAYERS

This section provides an in-depth understanding of the Dog E-DayCare
system’s architectural design from a layers perspective.

3.1 Presentation

The presentation layer will consist of several packages representing the
range of user interfaces required for the Dog E-DayCare system. Each pack-
age would contain classes responsible for displaying information through
a browser and through a client workstation. A brief description of each
package in the presentation layer is provided below.

• SearchUI creates the screens that allow customers to search for ser-
vice providers by type of service, location of service, cost of service,
etc.

• OrderUI is responsible for the interfaces that allow users to select an
order, place an order, revise an order, track an order, and cancel an
order.

Exhibit I-1. Application

Presentation Layer
Application Layer

Domain Layer

Business Infrastructure

Foundation Layer - Relational Database, String

and Math Utilities

Tecnical Services - Persistence, Logging,

 Rule Engine, SOAP

Internet and Client
Application

Each layer provides the
unique functions, whose

interactive nature
serves to link the dog
owner (client) with the
Service Care Provider.

583

Sample Architectural Design

• WebCamUI would create the interfaces necessary for selection and
viewing of a customer’s dog while in the care of a service provider.

• PaymentUI handles the interfaces necessary for service providers to
request payment (i.e., bill), track payment, and confirm payment, as
well as the interfaces necessary for customers to provide payment in-
formation, make a payment, and track status of payment.

• WelcomeandTipsUI handles display of text information to the user, e.g.,
welcome text, help screens, or tips of the day.

• CommunicateUI provides all the interfaces to receive feedback, hold a
discussion, submit a rating, or participate in a chat.

• SecurityUI is responsible for the log-in, registration, and related admin-
istrator interfaces.

• ManageContentUI provides the interfaces for system administrators to
manage text content.

The objects within the presentation layer would be developed based on
the Javax Swing package using JFrame, JPanel, JLabel, and JButton, and
will also employ HTML to display text (see Exhibit I-2).

3.2 Application

The application layer (Exhibit I-3) can be described as the mediator
between the presentation and domain layers. The project team felt it was
necessary to include an application layer because of the multiple user
interfaces required for the Dog E-DayCare system. This layer contains
packages that correspond to each of the presentation packages, providing
the session façade for each request coming from a specific user interface.
The application layer will be implemented using Enterprise Java Beans
Object (see the section on application interactions for further details).

Exhibit I-2. Presentation Layer

 Presentation Layer

SecurityUI ManageContentUI

SearchUI OrderUI WebCamUI PaymentUI

CommunicateUI

WelcomeAndTipsUI

These packages are
responsible for display
of information in both
a web browser and a
client workstation.

584

SOFTWARE ENGINEERING HANDBOOK

3.3 Domain

The Dog E-DayCare domain layer diagram (Exhibit I-4) contains the
packages and classes that implement domain-level services. Services
include service provider, service, resource, order, customer, owner, pay-
ment, and contact information. Each of these subsystems was described in

Exhibit I-3. Application Layer

Exhibit I-4. Domain Layer

 Application Layer

Security

Session

Facade

ManageContent

Session

Facade

Search

Session

Facade

Order

Session

Facade

WebCam

Session

Facade

Payment

Session

Facade

Communicate

Session

Facade

WelcomeandTips

Session

Facade

These packages are
responsible for
mediation between the
presentation and
domain layers.

 Dog E-DayCare Domain Layer

 Resource

ResourceUsage Resource

StaffMember Kennel PlayArea

 ServiceProvider

ServiceProvider

 ContactInformation

Address Email Phone

 Customer

Customer BillingInformation

 Owner

AnimalOwner Animal Dog

 Service

ServiceServiceSchedule ResourceRequirement

DayCare Grooming LongTermBoarding

 Order

Order OrderLineItem

 Payment

Invoice Payment

585

Sample Architectural Design

detail in the software requirements specification. The domain layer han-
dles application layer requests and implements domain-level business
rules. Separating domain-level services from the other layers achieves a
higher degree of cohesion, with a corresponding lower level of coupling.

3.4 Business Infrastructure

The Dog E-DayCare business infrastructure layer diagram (Exhibit I-5)
contains a package and classes that implement business infrastructure
level services. Services included are those that pertain to establishing a
sense of community for Dog E-DayCare clients. Those community-oriented
services are discussion forums, feedback, ratings, and chat. This sub-
system was described in detail in the software requirements specification.

3.5 Technical Services

The technical services layer (Exhibit I-6) includes subsystems that pro-
vide high-level technical services and frameworks.

3.5.1 Persistence Subsystem

The Dog E-DayCare system requires string and retrieving information in
a persistent storage mechanism such as a relational database. To lower
coupling and promote high cohesion, the project team proposes a persis-
tence framework in the technical services layer of architectural design.

Exhibit I-5. Infrastructure Layer

Exhibit I-6. Technical Services Layer

 Dog E-DayCare Business Infrastructure Layer

 Communication

Communication DiscussionForum Thread

FeedBack Rating Chat

Dog E-Daycare Technical Services Layer

Log4JPersistence JessSOAP Security

586

SOFTWARE ENGINEERING HANDBOOK

The persistence framework is a general-purpose, reusable, and extendable
set of types that provides functionality to support persistent objects. This
subsystem provides service to domain layer subsystems. The basic function-
ality of the persistence subsystem should provide functions such as:

• Storing and retrieving objects in a persistent storage mechanism
• Commit and rollback transactions

Building an industrial-strength object persistence framework can con-
sume man-years of effort; the many subtle issues involved require special-
ized expertise. Based on the tight implementation timeline of the project,
the project team is in favor of using an open source or a commercial off-the-
shelf package to achieve the functionality. Many of these packages are
available. A final selection will be made later in the project timeline through
an evaluation process. The following is a good resource for information on
persistence frameworks:

http://www.ambysoft.com/persistenceLayer.html.

The persistence subsystem relies on the foundation layer subsystems,
such as the relational database subsystem, to function.

3.5.2 Logging Subsystem

To improve the supportability of the Dog E-DayCare system, it is essen-
tial to develop logging and tracing functionality as a core component of the
system. These functionalities can be organized as the logging subsystem in
the technical services layer, which provides these functions for upper lay-
ers such as the domain, presentation, and application layers.

The project team has conducted a preliminary study and chosen to
acquire the Log4J package from the Apache’s Jakarta project to provide
the functionality. The choice is based on the fact that the Log4j package is
a Java open source system that can fully integrate with the system with
the required functionality. Log4J also has a large user and developer
community.

3.5.3 Rule Engine Subsystem

To provide enhanced supportability and extendibility for the scheduler
subsystem, the project team is considering the inclusion of a rule engine
subsystem to provide full capability to “reason” based on a provided set of
knowledge in the form of declarative rules. This will provide the system
with the potential capability of adding complex schedule rules and work
flow management.

587

Sample Architectural Design

3.5.4 SOAP

To allow remote method invocation from subsystems deployed to client-
to-server subsystems, the project team has chosen to use simple object
access protocol (SOAP).

SOAP is a lightweight protocol for exchange of information in a decen-
tralized, distributed environment. It is an XML-based protocol that con-
sists of three parts: an envelope that defines a framework for describing
what is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined data types, and a convention
for representing remote procedure calls and responses. SOAP can be used
in combination with a variety of protocols such as HTTP.

The advantage of SOAP is that it is based on industry standards like XML
and HTTP. It is platform independent and can be used inside and across
network boundaries such as a firewall.

3.5.5 Security

The security subsystem manages the users and roles of the system and
controls access to the system by users.

3.6 Foundation

The Dog E-DayCare foundation layer (Exhibit I-7) includes subsystems
and packages that provide low-level technical services. Those services
include a relational database, and string and math utilities.

3.6.1 Relational Database

The project team has chosen to use a relational database as the persis-
tent storage mechanism for storing the system information. The relational
database subsystem supports the persistent subsystem in the technical
services layer.

Exhibit I-7. Foundation Layer

 Dog E-DayCare Foundation Layer

Relational Database String Utilities Math Utilities

588

SOFTWARE ENGINEERING HANDBOOK

3.6.2 String and Math Utilities

String and math utilities will also be used in the system. They are pack-
aged in string and math utilities subsystems that will support many of the
upper layer subsystems.

4 INTERPACKAGE AND INTERLAYER COUPLING

This section provides an in-depth understanding of the Dog E-DayCare
system’s coupling among layers, packages, and classes.

4.1 Presentation Interactions

The packages in the presentation layer are highly coherent and have no
explicit dependencies among them. (Within the packages, there would be
dependencies among the various classes.) The most relevant interactions
for the presentation layer are those with the application layer, with each
presentation package having a counterpart session façade package in the
application layer.

4.2 Application Interactions

The application layer has no significant interactions among its pack-
ages. Nevertheless, it has critical interactions with the presentation and
the domain layers. As mentioned above, the application layer’s primary
function is to direct traffic between these layers.

The presentation layer may ask the domain layer for information. The
request is received at the application layer and the corresponding session
façade is invoked. This session, in turn, takes the request to the domain
layer, where the information is processed and retrieved. The domain layer
then sends the information back to the presentation layer via the applica-
tion layer’s session façade. Each session is an integral part of the overall
system architecture. The session bean is accessed by a single client at a
time (a session) and then is removed by the server. Its “life span” is the
length of time it takes to service a request.

The session objects will be implemented using the Enterprise Java
Beans Object.

4.3 Domain Interactions

There are several interactions among the packages of the Dog E-DayCare
system’s domain layer, as well as between the domain layer and other lay-
ers in the system.

Within the domain layer, the service provider package is coupled to the
service package and the contact information package. The service package

589

Sample Architectural Design

is coupled to the order and resource packages. In turn, order is coupled to
customer and payment classes. Finally, customer is coupled to the owner,
payment, and contact information packages.

The domain layer also interacts across the Dog E-DayCare system archi-
tecture. The domain layer’s service provider and customer packages are
coupled to the business infrastructure layer’s communication package.
They are also coupled to the technical services layer’s security package.
These interlayer interactions are diagrammed in Exhibit I-8.

4.4 Business Infrastructure Interactions

Within the business infrastructure layer’s communication package, the
communication class interacts with the feedback, rating, chat, and discus-
sion forum classes. The latter in turn depends on the thread class. With
respect to the preceding description of the domain layer, the business
infrastructure layer interacts with the domain layer. It also interacts with
the foundation layer (see Exhibit I-9).

Exhibit I-8. Domain Layer Interactions

 Dog E-DayCare Domain Layer Interaction

 Resource

ResourceUsage Resource

StaffMember Kennel PlayArea

 ServiceProvider

ServiceProvider

 ContactInformation

Address Email Phone

 Customer

Customer BillingInformation

 Owner

AnimalOwner Animal Dog

 Service

ServiceServiceSchedule ResourceRequirement

DayCare Grooming LongTermBoarding

 Order

Order OrderLineItem

 Payment

Invoice Payment

590

SOFTWARE ENGINEERING HANDBOOK

4.5 Technical Services Interactions

Within the technical services layer (Exhibit I-10), the persistence, Jess,
and security subsystems depend on Log4J subsystem to log information.

4.6 Foundation Interactions

Subsystems inside the foundation layer no significant interactions. Nev-
ertheless, there are interactions between the foundation layer and the
technical services layer.

4.7 Summary

Many of the interlayer interactions have been described earlier; how-
ever, the following provides an overall summary along with a diagram that
illustrates the interactions:

• The presentation layer is coupled with the application layer in that the
application layer maintains session information. For each functional
area, a session façade package in the application layer is coupled with
the corresponding package in the presentation layer.

• The application layer packages are coupled with the corresponding
packages in the domain layer as they use the operations in the domain
layer to execute the system functions.

Exhibit I-9. Business Infrastructure Layer Interaction

Exhibit I-10. Technical Services Layer

 Dog E-DayCare Business Infrastructure Layer Interaction

 Communication

Communication DiscussionForum Thread

FeedBack Rating Chat

Dog E-Daycare Technical Services Layer

SOAP SecurityPersistence Log4J Jess

591

Sample Architectural Design

• In the domain layer, ServiceProvider and customer packages are cou-
pled with the communication package in the business infrastructure
layer. The ServiceProvider and customer packages are also coupled
with the security subsystem in the technical services layer. The ser-
vice package is also coupled with the Jess subsystem to obtain sup-
port for rule-based processing. In general, the packages in the domain
layer are coupled with the persistence and logging subsystems. They
also rely on the SOAP package to pass remote function invocations.

• The technical services layer’s persistence subsystem is coupled with
the relational database subsystem in the foundation layer. The string
and math utilities packages are coupled with any package in the sys-
tem that uses their functions.

Exhibit I-11 shows the interlayer coupling of the subsystems to different
system layers.

592

SOFTWARE ENGINEERING HANDBOOK

Exhibit I-11. Interlayer Coupling of the Subsystems to Different System Layers

Domain Layer

ServiceProvider Service Order Resource Customer Owner Payment ContactInformation

Technical Services Layer

Persistence Log4J Jess SOAP Security

Foundation Layer

Relational Database String Utilities Math Utilities

Presentation Layer

SearchUI OrderUI

WebCamUI

PaymentUI

WelcomeAndTipsUI

Communication SecurityUIManageContentUI

Application Layer

Search Session Facade

Order Session Facade Security Session Facade

Payment Session Facade

ManageContent Session Facade

Business Services Layer

Communication

593

Appendix J

Sample SDS

TABLE OF CONTENTS

1 Introduction .. 594
1.1 System Overview... 594
1.2 Purpose... 594
1.3 Document Overview.. 595
1.4 Supporting Material .. 595
1.5 Definitions and Acronyms .. 595

2 Design Considerations ... 596
2.1 Assumptions and Dependencies ... 596

2.1.0 Frequency of Use.. 596
2.1.1 Database Requirement .. 596
2.1.2 Track Resources... 596
2.1.3 User.. 596

2.2 Drivers and Constraints.. 596
2.2.0 Memory Constraints.. 596
2.2.1 Regulatory Policies .. 597
2.2.2 Hardware Limitations .. 597
2.2.3 Interfaces to Other Applications.. 597
2.2.4 High Order Language Requirements 597
2.2.5 Reliability Requirements... 597
2.2.6 Criticality of the Application .. 597
2.2.7 Security Constraints .. 597
2.2.8 Databases.. 597

2.3 System Environment ... 598
2.3.0 User Interfaces ... 598
2.3.1 Software Interfaces .. 600
2.3.2 Communications Interfaces.. 600

2.4 Processes, Policies, Conventions, and Tactics 600
2.5 Design Methodology ... 600
2.6 Risks and Volatile Areas.. 600

2.6.0 Performance Risks ... 600
2.6.1 Technology Risks ... 600

3 Architecture .. 601
3.1 Overview... 601
3.2 Subsystem, Component, or Module 1…n..................................... 602

3.2.0 Sub Element 1…n... 602

594

SOFTWARE ENGINEERING HANDBOOK

3.3 Strategies ..602
3.3.0 Strategy 1…n...602

4 High-Level Design ...602
4.1 ORSS: DFD Level 1: see Exhibit J-1 ...602
4.2 Procedures..604

5 Low-Level Design ..610
5.1 Procedures and Details ...610
5.2 Processes and Details..612
5.3 Data Dictionary Entries for ORSS ..625

6 Appendix..628
6.1 Use Cases ..628
6.2 User Interface Screens ..631

REVISIONS

1 INTRODUCTION

1.1 System Overview

The Online Resource Scheduling System is a Web-based scheduling sys-
tem designed for colleges, universities, and schools. The purpose of this
system is to provide an online service for the faculty to reserve any type of
resource such as computer systems, VCRs, projectors, and videotapes.
This scheduling system can accept the requestors’ orders, make a sched-
ule for the orders, and do some critical checks. It will enable the faculty to
be able to submit their orders at any time and from any place. The system
will be able to create new orders and update old orders.

1.2 Purpose

The purpose of this software requirement specification is to produce a
Web-based (online) scheduling system that will be used at colleges, univer-
sities, and schools. The faculty will be able to reserve equipment, class-
rooms, films, and other peripherals to be used during their classes. The
staff of the resource center will be able to monitor these resources and to
see what equipment is needed, by whom, at what time, and for what date.
The resources will be maintained in a database created by ORSS that will
be an easy method to keep track of the equipment. By testing these speci-
fications as we progress through the design stage, we will be able to find

Version Primary Author(s) Description of
Version

Date Completed

First Draft Initial draft to be
submitted and
reviewed for
comments.

4/14/2002

595

Sample SDS

errors and misjudgments as they occur instead of at the end of the project.
This will save time in the long run; because mistakes are identified and cor-
rected earlier, project development will not be delayed.

1.3 Document Overview

This document describes the proposed online registration system and
the system requirements necessary to make the registration system effec-
tive. The second section describes design considerations, assumptions
and dependencies, drivers and constraints, design methodology, and risks.
The third section describes the different architecture styles and how they
are incorporated into our design of the online resource scheduling system.
The fourth section describes the high-level design, including DFD level 1
and 12 different processes. The fifth section describes the low-level design,
including the procedures and details. We have included the structured
English description of the different processes here, as well as the data dic-
tionary. The last section is an appendix that describes use cases and
includes the user interface screens.

1.4 Supporting Material

Roger Pressman, Software Engineering, “A Practitioner’s Approach” — 5th
edition, McGraw-Hill, January 2001.

“Handbook of Software Engineering Productivity,” editor Jessica Keyes,
McGraw-Hill, 1993

http://www.laynetworks.com/users/webs/cs10.htm

http://www.mhhe.com/engcs/compsci/pressman/student_index.mhtml

http://www.newarttech.com/se

http://www.uburst.com/uReserve

1.5 Definitions and Acronyms

• Campus user interface —the sign-on page allowing the faculty to con-
nect to the system

• IIS — Internet information server

• JSP — Java server page

• Materials — a table in the resource database that is an in-house cata-
log of all available films and videos by type and format

• ORSS — online resource scheduling system, which is a Web-based
scheduling system providing an online service for faculty to reserve
any type of resource

• SSL — secure socket layer

596

SOFTWARE ENGINEERING HANDBOOK

2 DESIGN CONSIDERATIONS

2.1 Assumptions and Dependencies

2.1.0 Frequency of Use

ORSS is designed for continuous 24 hours a day, 7 days a week opera-
tion. This demands a high-availability architecture, which often requires a
back-up server that needs to be in sync with the primary server. Clustering
can also be used to supply high availability.

2.1.1 Database Requirement

• A faculty directory service is available now and will continue to be
available to integrate directly with ORSS.

• A resource database is not available now and needs to be created and
maintained by the database administrator of ORSS.

2.1.2 Track Resources

It is always assumed that the user will check out and return the reserved
resource as scheduled. Currently no automatic mechanism traces the sta-
tus of the resource. Either the administrator manually logs the activity or
a future enhancement is added when a scanner and bar code system can
automate this data entry effort.

2.1.3 User

The ORSS is designed for colleges, universities, and schools. Most of the
users of this system are faculty. The user interface is designed so that the
users can access the system more easily. For the basic education of users,
they should have the knowledge to operate the computer, such as entering
the system online, turning the system on, inputting data such as password,
and information about the resource needed. This knowledge will require a
minimum education level of middle school or higher. Moreover, faculty
members should have the ability to use the Internet. Because most of the
users of the system are the faculty of the school, they should have this
knowledge (and a higher education level). The users do not need to have
more than a basic technical knowledge. A help menu will include a detailed
help list; this menu will help a user who does not understand when using
and accessing the process.

2.2 Drivers and Constraints

2.2.0 Memory Constraints

Because we need to run I.E. or Netscape on the Windows operating sys-
tem, the client’s computer must have at least 64 MB of memory. The server
must have at least 128 MB of memory because it will need to do a lot of data
processing.

597

Sample SDS

2.2.1 Regulatory Policies

The data will be transmitted over the Internet and needs to allow online
processing.

2.2.2 Hardware Limitations

The memory for the client site computer will be limited to at least 64 MB
of memory because the user needs to access our Website by using a Web
browser that must run on a Windows platform. The memory for the server
needs to be at least 128 MB. The bandwidth should be at least 512 Kbps
because many users could possibly access the server at the same time.
The hard drive for our server must have at least 8 GB of space in order to
store a lot of data (i.e., the databases).

2.2.3 Interfaces to Other Applications

The online resource scheduling system will be Windows based so that
all of the systems work with each other; therefore, the system must be Win-
dows compliant. The ORSS will be a Web-based system. We use ADO as an
interface with the MS Access databases.

2.2.4 High Order Language Requirements

ORSS uses a client/server architecture that makes use of the JavaScript,
HTML, and ASP.

2.2.5 Reliability Requirements

ORSS will have a UPS installed so that, if the power is lost, the system
will continue to operate as normal and no information will be lost.

2.2.6 Criticality of the Application

The server must run 24 hours a day, 7 days a week. The system will
need to perform some checks so that the users do not make conflicting
requests or complete the orders incorrectly. Moreover, a clustering tech-
nology is needed to make sure that the server is always running.

2.2.7 Security Constraints

Security is the most important issue in our system. To avoid hackers
invading our system, we need to set up a firewall and apply a security
patch. This product will be uploaded to a server exposed to the outside
world, so we need to research and develop adequate security protection.
We will need to know how to configure a firewall and how to restrict access
to only “authorized users.” We will need to know how to deal with load bal-
ance if the amount of visits to the site is very large at one time.

2.2.8 Databases

We will need to know how to maintain the different databases in order to
make them more efficient, and the appropriate type of database that we

598

SOFTWARE ENGINEERING HANDBOOK

should use. We will also have a link to the faculty database to verify the
users.

2.3 System Environment

The ORSS has three interfaces: user, software, and communications
interfaces.

• The user interface allows the user to interact with the system, provid-
ing Web pages that will display information. It also provides the differ-
ent forms for users to use to input their requests.

• The software interface comprise ORSS and the operating system, the
IIS, and the databases.

• The communications interface allows users to utilize campus net-
works or their ISP from home in order to use the system through the
Internet.

2.3.0 User Interfaces

ORSS allows the user to make requests through a Website. The user inter-
face will be composed of several Web pages that will be displayed on the
user’s Web browser. There should be two different versions of the user
interface: one for the faculty and one for the resource center staff. Each of
them will include many pages that have different purposes.

Campus version:

• Campus log-on
• Make request
• Update request
• Search resource
• Confirmation

The user gains access to the ORSS by entering user name and a unique
numeric password. Once the user has correctly entered name and pass-
word into ORSS, he will be able to make requests, update old requests, and
search all of the resources from the resource database. Clicking the items
in the user menu can activate each of these functions.

The Request Form page allows the user to select the equipment and
materials needed for reservations. Users can select equipment by clicking
the dropdown list and checking the boxes that contain all of the equip-
ment types. There is a total of five kinds of equipment (audio, video, digi-
tal, projection, and PCs) to use during presentations; each category con-
sists of several pieces of equipment. The user should be able to select the
equipment by checking the check box beside the type of equipment. Also,
the user will be able to select the quantity needed.

599

Sample SDS

In the Request Form, the user will be able to enter material numbers and
titles for requests in one of two ways. One is to let the system automatically
fill out the textboxes after the user selects specific items in the Search
Material page. Another way is for the users to fill out the material numbers
and titles (if they know them). Users need to fill out their general informa-
tion before they submit requests. The general information includes name,
department, phone number, etc.

The Search Material page helps users to find out the material numbers
and titles that they want by using some keywords. The page must be able
to pass the result to the Request Form after the user clicks the “select” but-
ton. The Confirmation page needs to display all of the information about
that specific request, and needs to have a “print” button that will allow
users to print out their confirmations. The Search Resource page will allow
users to do two types of searching. One is to search the materials and the
other one is to search for the equipment. Users who want to search the
materials can enter the material number or the material title to make a
query. When the users want to search the equipment, they can enter the
equipment name or the equipment type to make a query.

Resource Center Version:

• Resource center staff log on
• Request form
• Search request
• Update request
• Search resource
• Add new resource
• Update resource
• Display daily list

The resource center system has the same functions as the campus ver-
sion plus additional functions to be used only by the employees who work
in resource center.

The Display Request page provides an interface for the user to make a
daily report of requests for a specific date. The Search Request form will
allow users to search a specific request by entering the confirmation num-
ber of that request or any information on the request, such as user name,
extension number, date required, or room number. The system must allow
users to update requests (modify or cancel requests). This function will be
implemented by the Update Request form. The Search Resource form
allows the users to search for a specific resource by entering the resource
name, resource number or resource type. The resource center user will be
able to add new resources or update the resources. This function will be
implemented by the Update Resource form.

600

SOFTWARE ENGINEERING HANDBOOK

2.3.1 Software Interfaces

Client site:

• The ORSS will run on any Windows operating system with a browser
on the client’s computer.

Server site:

• The server side needs to run on the Windows NT operating system or
Windows 2000 professional operating system that has the IIS. The Win-
dows 2000 server can also be used to run this program.

• The operating system also needs Microsoft Access to use for the data-
bases.

• The software will be designed and coded in ASP, JavaScript, and
HTML.

2.3.2 Communications Interfaces

The users can access campus networks or their ISP from their homes in
order to use the system through the Internet.

2.4 Processes, Policies, Conventions, and Tactics

Not applicable.

2.5 Design Methodology

Global Associates used a traditional structured approach in designing
the ORSS. We used the linear sequential model, which begins at the system
level and progresses through analysis, design, coding, testing, and support.

2.6 Risks and Volatile Areas

2.6.0 Performance Risks

The system needs to ensure that the following cross checks are in place
in order to function adequately:

• The user cannot make a request for weekends.
• Notice of 24 hours is required for reservations.
• The system must not allow a user to reserve the same materials at the

same time.
• The system must not allow a user to use the same equipment in the

same room at the same time.

2.6.1 Technology Risks

The following enhancements need to be implemented to ensure that the
product retains its competitive edge:

601

Sample SDS

• Confirmation messages (e-mail) need to be sent to the user reserving
the resource.

• Some type of alert needs to be sent to a user when a resource is over-
due or a reserved resource becomes unavailable for some reason.

• Tracking of the equipment by order and faculty is very important.
• A bar code and scanner system needs to be implemented to log the

check-out and check-in activities of the resources. This way the sys-
tem will have real time information about the resource’s availability.

• The user needs to be held accountable for violating certain rules, like
reserving a certain item without actually using it, returning an item
late, damaging the item, etc. The penalty may include a fine, or tempo-
rary or permanent suspension of certain privileges.

• We need to add equipment repair information and a possible database
for these records.

• Automated monthly reports by equipment usage and room usage are
necessary.

3 ARCHITECTURE

3.1 Overview

This section will analyze architectural styles and how they are incorpo-
rated into our design of the online resource scheduling system.

Data-centered architectures access a data store, which is a file or a data-
base, as the center of their operation. This data store is also accessed by
other components that may modify the data in the data store — adding,
deleting, or updating any information contained in the data store. The
ORSS design has the Material data store (D3), the Equipment data store
(D4), and the Resource_Schedule data store (D5) that may be accessed by
other components and updated. The Equipment and Material data stores
may only be modified (adding or deleting inventory) by the resource cen-
ter staff; the Resource_Schedule data store is actively modified as each res-
ervation is made or updated. The latter database also sends out confirma-
tions pertaining to the reservations made. This system also relies on the
Faculty and the Resource_Staff data stores, which are passive. These are
used to compare log-in names and passwords to authorize access. Each cli-
ent can access the data and act independently of other clients.

Data-flow architecture style is used when input data is transformed into
output data. A set of components (“filters”) is connected by “pipes” that
transmit data from one component to the next. Each filter works indepen-
dently of the components before or after it. The ORSS DFD level 1 reflects
how each filter (bubble in DFD) has several pipes remitting information
from one filter to another. If the data flow collapses into a single line of
pipes and filters, it is called a batch sequential pattern.

602

SOFTWARE ENGINEERING HANDBOOK

Call and return architectures incorporate main program/subprogram
architectures or remote procedure call architectures. The former uses a “con-
trol hierarchy” in which a main program calls upon a number of program
components (functions), which in turn may call upon other components.
The latter style has the components of the former architectural style dis-
tributed across many computers on a network. This style makes it rela-
tively easy for a software designer to modify, but it does not lend itself to
the ORSS system design.

Object-oriented architectures use the techniques of object-oriented pro-
gramming. The components of a system use the encapsulation principle in
which the data about the object and the operations that must be used to
manipulate the data are “packaged” together. Communication between
components is by way of message passing. This architectural method is
very good for reusability.

Layered architectures use a number of different layers, each of which is
defined. At the outer layer, the components service user interface opera-
tions. At the inner layer, components perform operating system interfac-
ing. Intermediate layer components include application software functions
and provide utility services. This is not applicable to our system.

3.2 Subsystem, Component, or Module 1…n

Not applicable.

3.2.0 Sub Element 1…n.

Not applicable.

3.3 Strategies

Not applicable.

3.3.0 Strategy 1…n.

Not applicable.

4 HIGH-LEVEL DESIGN

4.1 ORSS: DFD Level 1: see Exhibit J-1.

List of procedures:

• Campus user interface
— Campus_Login (Process # 1)
— Campus_Menu (Process # 3)

• Resource center user interface

603

Sample SDS

— ResourceCenter_Login (Process # 2)
— ResourceCenter_Menu (Process # 4)

• Make/update requests
— Make_Request (Process # 5)

• Check_Request (Process # 6)
• Save_Request (Process # 7)
• Display_Confirmation (Process # 8)

— Update_Request (Process # 9)
• Check_Request (Process # 6)
• Save_Request (Process # 7)
• Display_Confirmation (Process # 8)

• Request information
— Search_Request (Process # 10)

• Search resource
— Search_Resource (Process # 11)

• Add/update resource
— Add_Resource (Process # 12)
— Update_Resource (Process # 13)

Exhibit J-1. ORSS: DFD Level 1

ORSS: DFD Level 1

Faculty

2.0
Resource

Center user
interface

1.0
Campus

user
interface

Resource
Center
Staff

Resource
Center
Staff

6.0
Request

information

5.0
Add/Update
resources

4.0
Search

resources

3.0
Make/Update

requests

Faculty
Faculty Name
Password

Staff Name
Password

Confirmation number
/Request
 information

Confirmation number
/Request
 information

Resource
information

Resource
information

Resource
information

Resource
information

Request
information

Resource ID
or Name

Resource ID
or Name

Date or
Confirmation
Number or
Faculty name

Confirmation

604

SOFTWARE ENGINEERING HANDBOOK

4.2 Procedures

Exhibit J-2. Process 1: Campus Login

Exhibit J-3. Process 2: Resource Center Login

Process # 1

Campus_Login

Faculty

Faculty

1.1
Get

Username
Password

1.2
Check

Username
Password

D1 Faculty

Faculty_Name

Faculty_Name

Faculty_Name

Password

Password

Password

To process # 3
Campus_Menu

Error Message

Valid_Faculty_Name

Process # 2

Resource Center_Login
Resource
Center Staff

Password

Password

Password

Staff_Name

Staff_Name

Staff_Name

D2 Resource_Staff

2.1
Get

Username
Password

2.2
Check

Username
Password

To process # 4
Resource Center_menu

Error Message

Valid_Staff_Name

Resource
Center Staff

605

Sample SDS

Exhibit J-4. Process 3: Campus Menu

Exhibit J-5. Process 4: Resource Center Menu

Process # 3

Campus_Menu

Faculty

3.1
Display_

Menu

Logoff

Valid_Faculty_Name

Information Option
Search_Resource

Option

Update_Resource

Option
Make_Request

To process # 9
Update_Request

To process # 11
Search_Resource

To process # 5
Make_Request

Process # 4

ResourceCenter_Menu

Resource
Center Staff

4.1
Display_

Menu

Logoff

Valid_Staff_Name

Information
Option
Search_Request

Option
Search_Resource

Option
Update_Request

Option
Make_Request

To process # 5
Make Request

Option
Update_Resource

Option
Add_Resource

To process #12
Add_Request

To process #13
Update_Resource

To process # 9.0
Update_Request

To process # 11
Search_Resource

To process #10
Search_Request

606

SOFTWARE ENGINEERING HANDBOOK

Exhibit J-6. Process 5: Make Request

Exhibit J-7. Process 6: Check Request

Process # 5

Make_Request

5.1
Request_

Form

5.2
Check_

Valid_Fill

Request_
information

Request_
information

Valid
Request_
information

To process # 6
Check_Request

Process # 6

Check_Request

6.2
Check_

Condition

6.1
Request_

Form

Valid
Request_
Information

Valid
Request_
Information

Valid
Request_
Information

Material_Information Equipment_Information

Request_
Information

To process # 7
Save_Request

D5 Resource_Schedule

D3 Material D4 Equipment

607

Sample SDS

Exhibit J-8. Process 7: Save Request

Exhibit J-9. Process 8: Display Confirmation

Valid
Request_Information

Valid
Request_Information

D5 Resource Schedule

7.1
Save_

Request

Process # 7

Save_Request

8.1
Display_

Confirmation

Confirmation_Number

Request_Information

Faculty

Process # 8

Save_Confirmation

608

SOFTWARE ENGINEERING HANDBOOK

Exhibit J-10. Process 9: Update Request

Exhibit J-11. Process 10: Search Request

Process # 9

Update_Request

9.2
Request_

Form

9.1
Valid_

Number

6.0
Check_
Request

7.0
Save_

Request

8.0
Display_

Confirmation

Request_
Information

Request_
Information

Request_
Information

Request_
Information

Confirmation_
Number

Confirmation_
Number

Process # 10

Search_Request

10.2
Search

by confirm.
number

10.1
Search

requests
by date

10.3
Search

by faculty
name

10.4
Search
by room

10.5
Display_
Report

D5 Resource Schedule

Date

Request_
Information

Request_Information

Request_
Information

Request_
Information

Request_
Information

Confirmation_
number

Faculty_
Name

Room

Request
information
by date

Request
_Information
by confirm.
number

Resource_
Information
by faculty name

609

Sample SDS

Exhibit J-12. Process 11: Search Resource

Exhibit J-13. Process 12: Add Resource

Process # 11

Search_Resource

11.1
Search

by material
number

11.3
Search

by
equipment

name

11.2
Search

by material
title

11.4
Search

by
equipment

type

11.5
Display
/Print
report

D3 Material

D4 Equipment

Catalog_Number

Material_
Information

Material_
Information

Material_Information

Material_Information

Equipment
Information

Equipment
_Type

Equipment
_Name

Material_Title

Equipment_Information

Resource
Information

Process # 12

Add_Resource

12.2
Add_

Equipment

12.1
Add_

Material

Equipment_Information

Updated
Catalog_Information

Updated
Equipment_Information

Material_Information

D3 Material

D4 Equipment

610

SOFTWARE ENGINEERING HANDBOOK

5 LOW-LEVEL DESIGN

5.1 Procedures and Details

The following are the procedures and their details.

Campus_Login

Program will redirect Campus Login page to Campus Main Menu page if
the user name and password match with valid name and password.

ResourceCenter_Login

Program will redirect Resource Center Login page to Resource Center
Main Menu page if the user name and password match with valid name and
password.

Campus_Menu

After the user (faculty) logs on ORSS, the campus menu will display on
the screen. It allows the user to make decisions to make/update the
request or to search resources.

Exhibit J-14. Process 13: Update Resource

Process # 13

Update_Resource

13.2
Update_

Equipment

13.1
Update_
Material

Equipment_Information

Updated
Catalog_Information

Updated
Equipment_Information

Material_Information

D3 Material

D4 Equipment

611

Sample SDS

Resource Center_Menu

After the user (staff) logs on ORSS, the resource center menu will display
on the screen. It will open other Web pages when the user makes his selec-
tion.

Make_Request

This allows the user to make a new request. When he selects “make a
new request,” a blank request form will display on the screen. The proce-
dure will check some information after the user submits the request.

Check_Request

The process will compare the new request with the requests in the data-
base asking for equipment or materials at the same time. The purpose of
this procedure is to make sure that no conflict between a new request and
existing requests occurs.

Save_Request

Save request to database if the new request is acceptable.

Display_Confirmation

Display a confirmation page to the user. This page will include all of the
information about the reservation that the user just requested.

Update_Request

Allow user to enter request number. Retrieve the requested information
from the database. After the user modifies the reservation, the form is
checked and if everything is ok, then it is saved.

Search_Requests

Procedure will search requests in the database and display all that
match the conditions.

Search_Resources

Procedure will search the resources in the database and display all that
match the conditions.

Add_Resource

This will allow resource center staff to add new resources to the data-
base.

Update_Resource

This allows resource center staff to update resource information or
delete resources from the database.

612

SOFTWARE ENGINEERING HANDBOOK

5.2 Processes and Details

Process #1

• Name: (Campus_Login)
• Number: 1
• Name: Campus_Login
• Description: The faculty member will log in to ORSS with the user-

name and password through this process. Once he enters his name
and password, the system will check whether or not the name and
password are valid. If valid, the system will allow the user to make the
reservation.

• Input data: Faculty member’s name and password from log-in form
• Output data: Valid faculty member’s name to the cookie; error

messages
• Type of process: Manual check
• Process logic:

Begin

Display S1: (Campus Login Screen)

Accept user name and password from Campus Login Screen.

Check if the user name or the password is empty.

If Username or password is empty, display a

message:”Sorry, please complete form.” Give a link

to go back to the CampusLogin.htm page.

Else

Execute SQL for checking whether username and password

is in “Faculty” database.

If Username exists, check if the password is correct.

If password does not match the user, then display a

message: “Sorry, Your password is incorrect.” Give

a link to go back to the CampusLogin.htm page.

Else

Create Cookie for this user.

Display S2: (Campus Menu).

End if

Else

Display a message:“ No such user. Please try again.”

Give a link to go back to the Campus Login

Screen.

End if

End if

End Procedure

613

Sample SDS

Process #2

• Name: (ResourceCenter_Login)
• Number: 2
• Name: ResourceCenter_Login
• Description: Resource center staff member will log in to ORSS with the

username and password through this process. Once name and pass-
word are entered, the system will check whether or not they are valid.
If valid, then the system will allow the user to make the reservation.

• Input data: Resource center staff member’s name and password from
login form

• Output data: Resource center staff member’s name to the cookie; er-
ror messages

• Type of process: Manual check
• Process logic:

Begin

Display S3: (Resource Center Login Screen)

Accept user name and password from login form

Check if the user name or the password is empty.

If Username or password is empty, display a

message:“Sorry, please complete form,” Give a link

to go back to the ResourceCenterlogin.htm page.

Else

Execute SQL for checking whether username and password

is in “ResourceCenter_Login” database.

If Username exists, check if the password is correct.

If password does not match, display a

message:“Sorry, Your password is incorrect,”

Give a link to go back to the

ResourceCenterlogin.htm page.

Else

Create Cookie for this user.

Display S4: (Resource Center Menu).

End if

Else

Display a message:“No such user. Please try again.”

Give a link to go back to the Resource Center

Login Screen.

End if

End if

End Procedure

614

SOFTWARE ENGINEERING HANDBOOK

Process #3

• Name: (Campus_Menu)
• Number: 3
• Name: Campus_Menu
• Description: Campus_Menu process will display a menu on the

screen. It allows the user to be able to make a new request, update an
existing request, and search for resources by clicking items in the
menu.

• Input data: Faculty member’s name as the cookie
• Output data: Option: make request, update request, search resources
• Type of process:
• Process logic:

Begin

If Cookie is empty then

Display S1: (Campus Login Screen)

Else

Display S2: (Campus Menu Screen)

1. Make New Request

2. Update Request

3. Search Resources

4. Log Off

If user selected “Make New Request” Then

Display S5: (New Request Screen)

End if

If user selected “Update Request” Then

Display S6: (Update Request Screen)

End if

If user selected “Search Resources” then

Display S7: (Search Resources Screen)

End if

If user selected “Log off” then

Delete Cookie

Display S1: (Campus Login Screen)

End If

End If

End Procedure

Process #4

• Name: (ResourceCenter_Menu)
• Number: 4
• Name: ResourceCenter_Menu
• Description: ResourceCenter_Menu process will display a menu on

the screen. It allows the user to be able to make new requests, update

615

Sample SDS

requests, search for requests, add resources, update resources, and
search resources by clicking items in the menu.

• Input data: Staff’s name as the cookie
• Output data: Option: make request, update request, display request,

add new resource, update resource, search resource
• Type of process:
• Process logic:

Begin

If Cookie is empty then

Display S3: (Resource Center Login Screen)

Else

Display S4: (Resource Center Menu Screen)

1. Make New Request

2. Update Request

3. Search Requests

4. Add Resource

5. Update Resource

6. Search Resources

7. Log Off

If user selected “Make New Request” Then

Display S5: (New Request Screen)

End if

If user selected “Update Request” Then

Display S6: (Update Request Screen)

End if

If user selected “Display Request” Then

Display S8: (Display Request Screen)

End if

If user selected “Add New Resource” Then

Display S9: (New Resource Screen)

End if

If user selected “Update Resource” Then

Display S10: (Update Resource Screen)

End if

If user selected “Search Resources” Then

Display S7: (Search Resources Screen)

End if

If user selected “Log off” Then

Delete Cookie

Display S1: (Campus Login Screen)

End If

End If

End Procedure

616

SOFTWARE ENGINEERING HANDBOOK

Process #5

• Name: (Make_Request)
• Number: 5
• Name: Make_Request
• Description: Make_Request process will allow the user to make a new

request. When the user selects “make a new request,” a blank request
form will display on the screen. The user will be asked to complete all
of the required information on that form before he submits it. If he for-
gets to fill out any required information, an error message will be dis-
played on the screen until all of the required information has been
filled out.

• Input data: Option to make a new request
• Output data: All of the information about the new request
• Type of process:
• Process logic:

Begin

If Cookie is empty then

Display S3: (Resource Center Login Screen)

Else

Display S5: (New Request Screen)

If user submits request form then

Check if user finished all of the required textboxes.

If the user name is empty, then

Display a message:“Please enter your name.”

End if

If the required date is empty then

Display a message:“Please enter the required

date.”

End if

If the required time is empty then

Display a message:“Please enter the required

time.”

End if

If required room is empty then

Display a message:“Please enter the required

room.”

End if

Call Check_Request Procedure

End if

End if

End Procedure

617

Sample SDS

Process #6

• Name: (Check_Request)
• Number: 6
• Name: Check_Request
• Description: Check_Request process will compare the new request

with existing requests in the database that have asked for equipment
or materials at the same time. If there is a conflict, then the procedure
will display the error message on the screen. The user can cancel the
order or go back to the previous page to change his request.

• Input data: All of the information about a request that has not been
checked

• Output data: All of the information about the request that has been
checked

• Type of process: Manual check
• Process logic:

Begin

Redirect Check.asp page.

Check if the required date and required time are valid or

not.

If required date < today then

Display a message: “Please check your required date.”

End if

If required day = Saturday or Sunday then

Display a message: “Cannot deliver on Weekend.”

End if

If required time > 5:00PM or < 8:00AM then

Display a message: “Cannot deliver at non-office hour

time.”

End if

If request form does not reserve any resource then

Display a message: “Please select at least one piece of

equipment or material.”

Give a link to go back to the request form page.

End if

Do cross check in order to avoid conflict.

Execute SQL that will read database “Request” Where

date_required = Date_Required, and time_required =

Time_Required.

Do while not rs.eof

If resource has been reserved then

Display error message: “Resource has been reserved.”

Give a link to go back to the request form page.

End if

If the room has been reserved then

618

SOFTWARE ENGINEERING HANDBOOK

Display error message: “Room has been reserved for

another class.”

Give a link to go back to the request form page.

End if

Loop

If everything is ok then call Save_Request Procedure

End Procedure

Process #7

• Name: (Save_Request)
• Number: 7
• Name: Save_Request
• Description: Save_Request process will save request into request da-

tabase.
• Input data: All of the information about a request that has been

checked
• Output data: All of the information about the request that has been

checked (include a confirmation number)
• Type of process:
• Process logic:

Begin

Redirect Save.asp page.

Generate a confirmation Number.

Execute SQL that will open “Request” database.

Add new request to the database.

Update Request Database

Close Database

Call Display_Confirmation Procedure.

End Procedure

Process #8

• Name: (Display_Confirmation)
• Number: 8
• Name: Display_Confirmation
• Description: Display_Confirmation process will display on the screen

all of the information that the user just entered. This information
should contain a confirmation_Number generated by our system after
the check_request procedure accepts all of the information from the
user. This page will provide a print button so that the user may print
a hard copy of the confirmation page. Also, the procedure will auto-
matically send a confirmation e-mail to the user.

• Input data: All of the information about a request that has not yet been
checked

619

Sample SDS

• Output data: All of the information about the request that has been
checked

• Type of process:
• Process logic:

Begin

Display S11: (Confirmation Screen)

If user clicks print button, then

Print out the confirmation page.

End if

Automatically send a confirmation email to the user.

End Procedure

Process #9

• Name: (Update_Request)
• Number: 9
• Name: Update_Request
• Description: Update_Request will allow the user to modify his/her re-

quest after he/she has submitted it. The procedure will ask the user to
enter the request number (confirmation number) and retrieve this re-
quest from the database. The user can modify the request and resub-
mit it. After submitting the changed request, the procedure will check
to verify that all of the required information has been completed.

• Input data: Option to update request; confirmation_Number of the
request

• Output data: All of the information about the request from database
• Type of process:
• Process logic:

Begin

Display S6: (Update Request Screen)

Accept the confirmation number after submiting the

request form.

Execute SQL that will read database “Request” Where

Confirmation_Number = ConfirmationNumber.

If the Confirmation_Number does not exist, then

Display an error message to the user.

Else

Read each field value of that specific request and fill

out the corresponding textbox in update request

form.

End if

After user modifies the request then

Check if user completed all of the required textboxes.

If the user name is empty, then

Display a message: “Please enter your name.”

620

SOFTWARE ENGINEERING HANDBOOK

End if

If the required date is empty then

Display a message: “Please enter the required date.”

End if

If the required time is empty then

Display a message: “Please enter the time that is

required.”

End if

If required room is empty then

Display a message: “Please enter the room that is

required.”

End if

Call Check_Request Procedure

Call Save_Request Procedure

Call Display_Confirmation Procedure

End Procedure

Process #10

• Name: (Search_Request)
• Number: 10
• Name: Search_Request
• Description: The Search_Request procedure will retrieve all requests

that match the conditions that the user entered. The user can search
requests four different ways. If the user selects to search a single re-
quest by entering its confirmation_number, then the procedure will re-
trieve that request from the database and display all information
about that request on the screen. If the user selects to search requests
that match a specific room, specific name, or specific required date,
then the procedure will retrieve all of the requests from the database
that match the condition and display the list on the screen.

• Input data: Option to search request; Confirmation_Number,
Date_Required, Faculty_Name, Room

• Output data: All of the information about the requests
• Type of process:
• Process logic:

Begin

Display S8: (Display Request Screen)

List an Option List that allows users to make their

decision if they want to search request by date,

by faculty name or by confirmation number.

Accept condition after user submits form.

If Option = faculty_name then

Execute SQL that will open “Request” database where

User_Name = UserName.

Do while not rs.eof

621

Sample SDS

Display each request one line by one line on the

Screen.

Loop

Close rs, Close database.

End if

If Option = Confirmation_Number then

Execute SQL that will open “Request” database where

Confirmation_Number = ConfirmationNumber.

Display all of the information about that specific

request on the screen.

Close rs, Close database.

End if

If Option = Date_Required then

Execute SQL that will open “Request” database where

Date_Required = DateRequired.

Do while not rs.eof

Display each request one line by one line on the

Screen.

Loop

Close rs, Close database.

If user clicks “print” button on the screen then

Print all of the requests of that specific date.

End if

End if

If Option = Room then

Execute SQL that will open “Request” database where Room

= Room.

Do while not rs.eof

Display each request one line by one line on the

Screen.

Loop

Close rs, Close database.

If user clicks “print” button on the screen then

Print all of the requests of that specific date.

End if

End if

End Procedure

Process #11

• Name: (Search_Resource)
• Number: 11
• Name: Search_Resource
• Description: Search_Resource procedure will retrieve all of the re-

sources that match the conditions that the user requested. The user
can search two types of resources: Materials and Equipment. In order

622

SOFTWARE ENGINEERING HANDBOOK

to search the materials, he must obtain the Material_Number or the Ti-
tle of the material. If the user wants to search the equipment, he must
obtain the type of equipment or the name of the equipment. Our
procedure will search the resources in the database and display the in-
formation on the screen.

• Input data: Option to search resource; Material_Number, Title,
Equipment_Name, Equipment_Type

• Output data: All of the information about the resources
• Type of process:
• Process logic:

Begin

Display S7: (Search Resource Screen)

This page will allow user to enter the condition of the

resources that he wants to search.

Accept search condition.

If search type = Material then

If search method = equal_to then

Execute SQL that will open “Material” database where

Material_Number = MaterialNumber or

Material_Title = MaterialTitle

Display briefly information on each Material that

matches the condition on the screen line by

line.

End if

If search method = like then

Execute SQL that will open “Material” database where

Material_Number like MaterialNumber or

Material_Title like MaterialTitle

Display briefly information on each Material that

matches the condition on the screen line by

line.

End if

End if

If search type = Equipment then

If search method = equal_to then

Execute SQL that will open “Equipment” database

where Equipment Number = Equipment Number or

Equipment_Type = EquipmentType

Display briefly information on the equipment that

matches the condition on the screen line by

line.

End if

If search method = like then

623

Sample SDS

Execute SQL that will open “Equipment” database

where Equipment_Number like EquipmentNumber or

Equipment_Type like EquipmentType

Display briefly information on each piece of

equipment that matches the condition on the

screen line by line.

End if

End if

End Procedure

Process #12

• Name: (Add_Resource)
• Number: 12
• Name: Add_Resource
• Description: Add_Resource procedure will allow user to add new re-

sources into the database. It will check what kind of resource the user
wants to add and provide the user with different forms to fill out. Also,
the procedure will check whether or not all of the required informa-
tion that the user has filled out is complete. If everything is accept-
able, then the procedure will save that resource in the equipment
database or the material database.

• Input data: The option to add a new resource
• Output data: All of the information about a new resource
• Type of process:
• Process logic:

Begin

Display S11: (Add Resource Screen)

This screen will display an option list that allows user

to make his decision to add equipment or material.

If option = Material then

Display S12: (New Material Screen)

Accept resource form after user submits it.

Check if the user has completed all of the required

information about the material.

If some required information is missing then

Display a message: “Please complete the information.”

Redirect New Material Screen.

End if

Execute SQL that will open “Material” database.

Add new resource to the database.

Close database.

End if

If option = Equipment then

Display S13: (New Equipment Screen)

Accept resource information after user submits it.

624

SOFTWARE ENGINEERING HANDBOOK

Check if the user has finished all of the required

information about the equipment.

If some required information is missing then

Display a message: “Please complete the

information.”

Redirect New Equipment Screen

End if

Execute SQL that will open “Equipment”

Add new resource to the database.

Close database.

End if

End procedure

Process #13

• Name: (Update_Resource)
• Number: 13
• Name: Update_Resource
• Description: The Update_Resource procedure will allow the user to

update resources from the database. The user must tell the procedure
what kind of resource he is going to update. If he chooses to update a
material, then he must tell the procedure the material’s number. If the
user chooses to update the equipment, then he must tell the proce-
dure the equipment’s number or the equipment’s name. The proce-
dure will retrieve the resource from database and display the
information. The user can modify it and then resubmit it.

• Input data: Option to update resource; Material_Number, Title,
Equipment_Type, Equipment_Name

• Output data: All of the information about the resource that has been
modified

• Type of process:
• Process logic:

Begin

Display S10: (Update Resource Screen)

Display an Option List on the screen that allows the user

to make a decision if he wants to update the

equipment or material.

If option = Material then

Execute SQL that will open “Material” database where

Material_Number = MaterialNumber

Display all of the information about that material.

If user selects delete that material then

Remove that material from database.

Close database

Else

Accept resource form after user submits it.

625

Sample SDS

Check if the user has completed all the required

information about the material.

If some required information is missing then

Display a message: “Please complete the

information.”

Redirect material information form.

End if

Execute SQL that will open “Material” database where

Material_Number = Material_Number and Title =

Title.

Update resource to the database.

Close database.

End if

End if

If option = Equipment then

Execute SQL that will open “Equipment” database where

Equipment_Type = EquipmentType and Equipment_Name

= EquipmentName

Display all the information about that equipment.

If user selects to delete the equipment then

Remove that equipment from database.

Close database

Else

Accept resource form after user submits it.

Check if the user has completed all of the required

information about the material.

If some required information is missing then

Display a message: “Please complete the

information.”

Redirect material information form.

End if

Execute SQL that will open “Equipment” database

where Equipment_Type = Equipment_Type and

Equipment_Name = Equipment_Name.

Update resource to the database.

Close database.

End if

End if

End procedure

5.3 Data Dictionary Entries for ORSS

D1: Faculty
Where used and how used:
It will do the password checking when the user logs into the

scheduling system.

626

SOFTWARE ENGINEERING HANDBOOK

Content description:
Faculty_Name = 20 characters (primary key)

Password = 10 characters

D2: Resource_Staff
Where used and how used:
It will do the password checking when a resource center staff

member logs into the scheduling system.
Content description:
Staff_Name = 20 characters (primary key)

Password = 10 characters

D3: Material
Where used and how used:

It contains all of the information about the materials such
as which type of tape: 1/2 in. VHS, 16 mm files, etc. The
user can locate materials from this database with the
searching interface.

Content description:
Material_Number = 20 characters (primary key)
Title1 = 100 characters
Title2 = 100 characters
Format = 20 characters
Color = Boolean operator
Sound = 10 characters
Length = 5 digits
ReleaseDate = 4 characters
Components = 2 digits
Distributor = 20 characters
Series_Title = 50 characters
Language = 20 characters
OrderDate = 10 characters
Description memo

Supplementary description:
Format Possible Values: “audiocassette,” “CD-Rom,” “1/2 in.

video,” “media KIT,” “16-mm film”
Color Possible Values: “0,” “–1”
Sound Possible Values: “stereo,” “mono”

D4: Equipment
Where used and how used
It contains all of the information about the equipment. The staff

of the resource center may add, delete, or update equipment
from this database.

Content Description:

627

Sample SDS

EquipmentID = 10 characters (primary key)
RegisterNumber = 30 characters
Equipment_Name = 30 characters
Equipment_Model = 20 characters
Manufacturer = 50 characters

OrderDate = 10 characters
Equipment_Type = 10 characters
Supplementary description:

EquipmentType values: projection, audio, digital, video

D5: Resource_Schedule
Where used and how used:
It contains all of the information about the reserved orders.

When a new order has been made, the detailed information
about this order will be saved in this database. The staff of the
resource center can retrieve data from this database and print
their daily delivery list. The faculty in the university can up-
date orders that are saved in this database.

Content description:
Confirmation_Number = 10 characters (primary key)
Date_Required = 10 characters
Day_Required = 5 characters
Date_Pickup = 10 characters
From_Time = 5 characters
To_Time = 5 characters
Time_Type = 10 characters
FirstName = 20 characters
LastName = 20 characters
Department = 30 characters
Building = 20 characters
Room = 10 characters
HomePhone = 10 characters
University_Ext = 4 characters
E-Mail = 30 characters
UserType = 10 characters
Projection = 255 characters
Audio = 255 characters
Video = 255 characters
Digital = 255 characters
Other equipment = 255 characters

Materials = 255 characters
Supplementary description:

The values for all of the equipment could be numeric digits
from 1 to 10.

628

SOFTWARE ENGINEERING HANDBOOK

The domain of FromTime and ToTime is the time the class is
scheduled or the time the user wants the order delivered or
reserved.

The values of DayRequired are: “Mon,” “Tue,” “Wed,”
“Thu,” “Fri,” “Sat,” “Sun.”

TimeType values: “regular,” “summer,” “regularother,”
“summerother.”

The domain of Department is the list of departments in the
university.

The value of Building is a list of buildings that are part of
the university.

UserType values: “faculty,” “staff.”
The values of Digital could be: zipdrive, LCD.
The values of Video could be: laser, DVD, VHS.
The values of Audio could be: CD, cassette, public address

system.
The values of Projection could be: screen, slide, opaque,

overhead.

6 APPENDIX

6.1 Use Cases

Faculty initially log in through the system:

1. Faculty member enters his/her name and password; the name and
password are compared with the name and password stored in the
faculty database. If either the name or password is incorrect, the
system will send an error message and the user is prompted to re-
enter the name and password.

2. If the user name and the password match the name and password
stored in the database, the system shows the main menu that con-
sists of these choices: request form, update form, and search re-
source form.

3. For the request form, the system prompts the user to enter the data
to request information.

4. The update request form has the system prompt the user to enter in-
formation such as the confirmation number or the data to request
information.

5. For the search resource form, the system prompts the user to enter
the material number, title, equipment name, or equipment type.

629

Sample SDS

Resource center staff initially log in through the system:

1. Resource center staff member enters his or her staff name and pass-
word. The staff name and password are compared with the name
and password stored in the resource_staff database. If either is in-
correct, the system will send an error message and the staff member
is prompted to re-enter the name and the password.

2. If the user name and password match the name and password
stored in the database, the system shows the main processing menu
that offers these choices: add resource form, update resource form,
and request information form.

Make the request:

1. After the faculty or resource center staff member logs in to the sys-
tem, they may make a request for equipment or materials. The sys-
tem prompts the user to enter specific information to complete the
request form.

2. The request information details will be compared to one or more of
these databases: equipment, materials, and resource schedule.

3. If the information of this request is correct and available, the system
will process the request and create a confirmation number and send
the confirmation to the faculty member.

4. This information will be updated in the resource schedule table.

Update the request:

1. After the faculty or resource center staff member logs in to the sys-
tem, they may update existing requests. The system prompts the
user to enter the confirmation number.

2. If the confirmation number is a valid number, the system will display
the current reservation information.

3. The user can update any information. The update request informa-
tion will be updated in the resource schedule table.

4. The system will send an updated confirmation to the faculty mem-
ber and keep the original confirmation number on the updated
request.

Search resources:

1. The system prompts the user (a faculty or resource center staff
member) with a menu to search resources. These options include
allowing the user to search by material number, material title, equip-
ment name, or equipment type.

630

SOFTWARE ENGINEERING HANDBOOK

2. To search by material number, the system prompts the user to enter
the catalog number of the material. The number will be compared
with the material number in the material database and the informa-
tion on that material will be displayed.

3. To search by material title, the system prompts the user to enter the
material title. The title will be compared with the titles in the mate-
rial database and the information on that material will be displayed
on the screen.

4. For a search by equipment name, the system prompts the user to en-
ter the equipment name. The name will be compared with the names
in the equipment database and the information on that equipment
will be displayed on the screen.

5. For a search by equipment type, the system prompts the user to en-
ter the type of equipment. The type will be compared with the type
in the equipment database and the details about that equipment will
be displayed.

6. The faculty and staff will be able to display and print the report of
the results of the search.

Resource center staff member adds resource:

1. The system prompts the staff member to enter the material informa-
tion (details about the new material) in order to add the new mate-
rial information into the material database.

2. The system prompts the staff member to enter the equipment infor-
mation (details about the new equipment) in order to add the new
equipment information into the equipment database.

Resource center staff member updates resource:

1. The system prompts the staff member to enter or change the mate-
rial information in order to update the material database.

2. The system prompts the staff member to enter the equipment infor-
mation in order to update the equipment database.

Search to request information:

1. The screen offers four options of a search to request information.
The user can search the request information by date, by confirma-
tion number, by faculty name, and by room number.

2. For search request information by date, the user enters the date the
resources are requested for. This request date is compared to the
data in the resource schedule table. The system will display all of
the requests for that date. The user will need to select the correct re-
quest. The information for that request will be displayed on the
screen and the user will be able to print this information.

631

Sample SDS

3. For search request information by confirmation number, the user
enters the confirmation number. This number is compared to the
confirmation numbers in the resource schedule table. If the number
that the user entered is a valid number, the system will display the
information in the request on the screen. The user may then print
the information.

4. For search request information by faculty name, the user enters the
name of the faculty member that requested the resources. This re-
quest name is compared to the data in the resource schedule table.
If more than one request is displayed for that faculty member, the
user will need to select the appropriate request. The information for
that request will be displayed on the screen and the user will be able
to print the information.

5. To search request information by room number, the user enters the
room number where the resources are requested. This room number
is compared to the data in the resource schedule table. The system
will display all of the requests for that room number. The user will
need to select the correct request and the information for that request
will be displayed on the screen. The user may print the information.

6.2 User Interface Screens

• Screen S1: Campus Login Screen (see Exhibit J-15)
• Screen S2: Campus Menu Screen (see Exhibit J-16)
• Screen S3: Resource Center Log-in Screen (see Exhibit J-17)
• Screen S4: Resource Center Menu Screen (see Exhibit J-18)
• Screen S5: New Request Screen (see Exhibit J-19)
• Screen S6: Update Request Screen (see Exhibit J-20)
• Screen S7: Search Resources Screen (see Exhibit J-21)
• Screen S8: Display Request Screen (see Exhibit J-22)
• Screen S9: New Resource Screen (see Exhibit J-23)
• Screen S10: Update Resource Screen (see Exhibit J-24)
• Screen S11: Confirmation Screen (see Exhibit J-25)
• Screen S12: New Material Screen (see Exhibit J-26)
• Screen S13: New Equipment Screen (see Exhibit J-27)

Supporting Material

Keyes, J., Ed., Handbook of Software Engineering Productivity. (1993). McGraw-Hill, New York.

Pressman, R. (2001). Software Engineering, a Practitioner’s Approach, 5th ed., McGraw-Hill,
New York.

http://www.laynetworks.com/users/webs/cs10.htm.

http://www.mhhe.com/engcs/compsci/pressman/student_index.mhtml.

http://www.newarttech.com/se.

http://www.uburst.com/uReserve.

632

SOFTWARE ENGINEERING HANDBOOK

Exhibit J-15. Screen S1: Campus Login Screen

Exhibit J-16. Screen S2: Campus Menu Screen

Exhibit J-17. Screen S3: Resource Center Login Screen

Exhibit J-18. Screen S4: Resource Center Menu Screen

633

Sample SDS

Exhibit J-19. Screen S5: New Request Screen

634

SOFTWARE ENGINEERING HANDBOOK

Exhibit J-20. Screen S6: Update Request Screen

Exhibit J-21. Screen S7: Search Resources Screen

635

Sample SDS

Exhibit J-22. Screen S8: Display Request Screen

Exhibit J-23. Screen S9: New Resource Screen

636

SOFTWARE ENGINEERING HANDBOOK

Exhibit J-24. Screen S10: Update Resource Screen

Exhibit J-25. Screen S11: Confirmation Screen

637

Sample SDS

Exhibit J-26. Screen S12: New Material Screen

Exhibit J-27. Screen S13: New Equipment Screen

This page intentionally left blank

639

Appendix K

Sample Data
Dictionary

640

SOFTWARE ENGINEERING HANDBOOK

Data Dictionary Entries for the ACME Library Management System

Name: Asset Database

Aliases: None

Where Used/How
Used:

Used by the database management system to process requests
and return results to the inquiry and administration subsystems

Content
Description:

Attributes associated with each asset including:
• Asset number = 16 numeric Digits
• ISBN number = 16 alphanumeric characters
• Library of Congress classification number = 16 alphanumeric

digits
• Asset title = 64 alphanumeric characters
• Author = 32 alphanumeric characters
• Dewey decimal classification number = 16 numeric digits
• Media type = Enumeration {BOOK | MAGAZINE | CDROM |

REFERENCE}
• Status = Enumeration {IN | OUT | LOST | MISSING |

DUE_DATE}
• Category = Enumeration {FICTION | NONFICTION}
• Published = 32 alphanumeric characters
• Keywords = 64 alphanumeric characters
• Date acquired = Date
• Location = 16 alphanumeric characters

Name: Membership Database

Aliases: None

Where Used/How
Used

Used by the database management system to process requests
and return results to the inquiry and administration subsystems

Content
Description:

Attributes associated with each asset including:
• Membership number = 10 numeric digits
• Member since date = date
• Last name = 16 alphanumeric characters
• First name = 16 alphanumeric characters
• Address = 64 alphanumeric characters
• Phone number = 11 numeric digits (1, area code, phone

number)
• Assets on loan = array containing 10 strings each containing 64

alphanumeric characters
• Assets overdue = array containing 10 strings each containing

64 alphanumeric characters
• Late fees due = 10 numeric digits
• Maximum allowed loans = 2 numeric digits

Name: Member Data

Aliases: None

Where Used/How
Used

A file used to validate username and passwords for members,
librarians, and administrator when they attempt to access the
system. The username and password entered are compared with
the username and password in this file. Access is granted only if
a match is found.

641

Sample Data Dictionary

Data Dictionary Entries (continued)

Content
Description:

Attributes associated with each asset including:
• Member username = 16 alphanumeric digits
• Member password = 16 alphanumeric digits

Name: Library Data

Aliases: None

Where Used/How
Used

Files maintained by the administrator and used to provide general
information about the library

Content
Description:

HTML files for:
• General library information (policy, etc.)
• Coming events
• Library floor map
• Library directions screen

Name: Database Catalog

Aliases: None

Where Used/How
Used

Used by the DDL compiler process

Content
Description:

Contains detailed information about the various objects in the
databases including tables, indices, integrity constraints,
security constraints, etc.

This page intentionally left blank

643

Appendix L

Sample OO SDS

1. INTRODUCTION

1.1 Goals and Objectives

The main purpose of Dog E-DayCare System (DEDS) is to provide a data-
base-driven, Web-enabled application to manage and track services pro-
vided by a canine care facility. The goals of DEDS are:

• To maintain a database of customer and canine information
• To accept inquiries for and scheduling of canine services
• To track services and specific instructions on customer canines

individually
• To process financial transactions and provide billing services to

customers
• To utilize a simple, elegant Web interface for interaction with all users

1.2 Scope

Your dog is by nature a gregarious animal, needing socialization and
attention that can be provided by the high-quality care and comfort of the
Dog E-DayCare System (DEDS). The DEDS is a pet daycare service special-
izing in pampered pet lodging, dog training, and a variety of in-house care
services. Our pet spa services feature the finest in pet grooming for all
breeds of dogs. We take pride in accommodating most special requests. We
are committed to providing the best care in a relaxing environment suit-
able for all pets.

Our services also consist of providing daycare for dogs in an open, cage-
free environment. Special activities are included, such as playtime with
staff and other dogs, nature walks, and obedience training. We also have a
veterinarian on site for treatment of any medical problems. Certified dog
trainers are available for help with behavioral problems. In addition we
offer a full-service grooming salon and an on-site professional obedience
trainer

The DEDS system will interact with clients through a Web interface for
data entry and business transactions. The system will accept information
from existing and future clients and will provide an interface for specific
care instructions, present available dog services, accept inquiries for

644

SOFTWARE ENGINEERING HANDBOOK

available services, provide a means for scheduling services and appoint-
ments, collect relevant dog information (from the client and care-giver),
and track provided services and billing for services rendered.

A database will be maintained on a Web-connected personal computer
for dog and client information to be entered, updated, and removed. This
database will also be searchable and viewable based on various provided
criteria.

1.3 Context

The DEDS system will service a perceived market opportunity to pro-
vide a complete, user-friendly application to canine care facilities enabling
them to provide a wealth of increased and efficient services to their poten-
tial customers. Through the use of the Internet, the DEDS system will inter-
act with trained employees as well as individual lay customers.

2. DEDS OVERALL SYSTEM ARCHITECTURE

2.1 Overall Architecture Description

The Web architectural design chosen for the Dog-E-DayCare System is a
hierarchical design. Most functionality is funneled through a top-level com-
ponent, which delegates functionality to additional subcomponents. These
subcomponents in turn delegate functionality down to additional subcom-
ponents. Most of the subcomponents utilize their own top-level compo-
nent as a manager for the package. However, communication is not strictly
vertical; several subcomponents communicate among themselves creating
the hierarchical architecture.

Communication between components is accomplished using a
request/response messaging scheme. Components communicate by
requesting some functionality be performed by a component, which
returns the response back to the requesting component. In this manner,
components can encapsulate their functionality and provide a simple
straightforward interface to other components.

Functionality is broken down into packages, each of which handles a
particular aspect of functionality for the system (see Exhibit L-1). As with
each component, each package is encapsulated and provides a relatively
small interface for communication among other packages. As each pack-
age is encapsulated, the removal or corruption of most packages will have
limited effect on the system as a whole. However, several key packages
exist that are accessed by most other packages, and these must be strenu-
ously tested and validated.

645

Sample OO SDS

3. ARCHITECTURAL PACKAGES

3.1 Database Interface Package

3.1.1 Conceptual Description

The database interface package handles interaction and formatting
between the DEDS application and the database used to store all informa-
tion. Serving as the conceptual foundation of the DEDS application, the
database interface package provides many low-level core services, struc-
tures, and utilities. In addition, this package encapsulates all operations
with the database providing the technical service of database management.

The database interface package (see Exhibit L-2) consists of a Database
Manager component and a DatabaseMiddleware component. The Database
Manager component serves as the interface between the DEDS application
and services relevant to database storage. Other components within the
DEDS application interact solely with the Database Manager component for
communication with the database. This component honors requests by
interfacing with the database to obtain the requested information and

Exhibit L-1. Overall DEDS Application Package Architecture

Online User

Employee User

Internet LAN

<<subsystem>>
Bar Code Tracking

<<subsystem>>
Web Interface

<<subsystem>>
Web Interface

<<subsystem>>
Registration

<<subsystem>>
Scheduling

<<subsystem>>
Reminders

<<subsystem>>
Medication Ordering

<<subsystem>>
Payment Processing

<<subsystem>>
Database Interface

<<subsystem>>
Camera Manger

Web Camera

Bar Code

Scanner

Financial

Institution

646

SOFTWARE ENGINEERING HANDBOOK

returns the information in data structures usable by the application. The
DatabaseMiddleware layer handles the actual calls to and from the raw
database format.

3.1.2 UML Object Models.

See Exhibits L-3 and L-4.

3.1.3 Collaboration Graph

See Exhibit L-5.

3.1.4 PSPEC

3.1.4.1. DatabaseManager Package

PACKAGE DatabaseManager IS

PROC addAppObject(appObject:IN, statusBoolean:OUT);

PROC modifyAppObject(appObject:IN, statusBoolean:OUT);

PROC deleteAppObject(appObject:IN, statusBoolean:OUT);

PROC queryAppObject(appObject:IN, resultObject:OUT);

PROC loadDatabase(databaseFileName:IN, statusBoolean:OUT);

PROC saveDatabase(databaseFileNameIN, statusBoolean:OUT);

PROC convertAppToSQL(appObject:IN, sqlObject:OUT);

PROC convertSQLToApp(sqlObject:IN, appObject:OUT);

PROC issueDBCommand(sqlCommand:IN, statusBoolean:OUT);

PROC getDatabaseResult(resultObject:OUT);

///

// addAppObject — Adds an application object to the database

Exhibit L-2. DatabaseInterface Package UML Diagram

SQL Database

DatabaseManager

DatabaseInterface

Contains methods

for converting

app calls to SQL

string queriesDatabaseMiddleware

1 1

1
1

647

Sample OO SDS

Exhibit L-3. Database Interface UML Diagram

Exhibit L-4. Database Interface Package Public Application Structures

SQL Database

1
1

1

1

+addAppObject() : Boolean

+modifyAppObject() : Boolean

+deleteAppObject() : Boolean
+queryAppObject() : Object

+loadDatabase() : Boolean

+saveDatabase() : Boolean

-convertAppToSQL() : String

-convertSQLtoApp() : Object

-issueDBCommand() : Boolean
-getDatabaseResult() : Object

-databaseMiddleware : DatabaseMiddleware

-databaseFilename : String
-sqlQuery : String

-sqlResult : String

DatabaseManager

«subsystem»

Registration

«subsystem»

Scheduling

«subsystem»

Reminders

«subsystem»

MedicationOrdering

«subsystem»

PaymentProcessing

DatabaseInterface

1

1

1

1

1

1

1

1

+loadDatabase() : Boolean

+saveDatabase() : Boolean

+sendRequest() : Boolean

+getReply() : String

-database : Object
-databaseFilename : String

-request : String

-result : String

DatabaseMiddleware

1

1

+Name : String

+Address : String

+City : String
+State : String

+Zip : Integer

+Phone : Integer

+Dogs : Dog

+Payments : Payment

«struct»

Customer

+Name : String

+Color : String

-Breed : String
+Sex : Char

+Age : Integer

+DOB : String

+Services : Service

+DietPlan : DietPlan

+BarCode : BarCode
+Medication : Medication

«struct»

Dog

+Name : String

+Description : String
+Instructions : String

+Time : Date

+Date : Date

+Status : Char
+Cost : Decimal

«utility»

Service

+Number : Integer

+LastScanTime : Date

+LastScanDate : Date
+LastScanLocation : String

«struct»

BarCode
+Name : String

+Description : String

+Time : Date

+Date : Date

+Instructions : String
+Compositions : String

«struct»

DietPlan

+Name : String

+Cost : Decimal

+Size : Integer

+DueDate : Date

+IllnessCause : String
+IllnessSymptoms : String

«struct»

Medication

+Default Payment : String

+CC Type : String

+CC Number : Integer

+CCExpDate : Date

+CheckRouteNum : Integer
+CheckAccountNum : Integer

«struct»

Payment

648

SOFTWARE ENGINEERING HANDBOOK

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC addAppObject(appObject:IN, statusBoolean:OUT)

TYPE returnCode IS INTEGER;

TYPE sqlCommand IS STRING;

sqlCommand = converTAppToSQL(appObject)

If sqlCommand ! = ““

convert sqlCommand to ADD returned sqlCommand;

returnCode = issueDBCommand(sqlCOmmand);

else

returnCode = FALSE;

RETURN returnCode;

END PROC

///

// modifyAppObject — modifies an object in the database

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC modifyAppObject(appObject:IN, statusBoolean:OUT);

TYPE returnCode IS INTEGER;

TYPE sqlCommand IS STRING;

sqlCommand = converTAppToSQL(appObject)

Exhibit L-5. Database Interface Package UML Collaboration Diagram

SQL Database

«subsystem»
Registration

«subsystem»
Scheduling

«subsystem»
Reminders

«subsystem»
MedicationOrdering

«subsystem»
PaymentProcessing

«subsystem»
DatabaseInterface

Query Data

Result Data

Registration
Request

Database
Response

Scheduling
Request

Database
Response Reminders

Request
Database
Response

Med Order
Request

Database
Response

Payment
Processing
Request

Database
Response

649

Sample OO SDS

If sqlCommand ! = ““

convert sqlCommand to MODIFY returned sqlCommand;

returnCode = issueDBCommand(sqlCommand);

else

returnCode = FALSE;

RETURN returnCode;

END PROC

///

// modifyAppObject — deletes an object in the database

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC deleteAppObject(appObject:IN, statusBoolean:OUT);

TYPE returnCode IS INTEGER;

TYPE sqlCommand IS STRING;

sqlCommand = convertAppToSQL(appObject)

If sqlCommand ! = ““

convert sqlCommand to REMOVE returned sqlCommand;

returnCode = issueDBCommand(sqlCOmmand);

else

returnCode = FALSE;

RETURN returnCode;

END PROC

///

// queryAppObject — queries and returns the current state

// of an object in the database

// returns OBJECT

///

PROC queryAppObject(appObject:IN, resultObject:OUT)

TYPE returnObject IS OBJECT;

TYPE sqlCommand IS STRING;

sqlCommand = convertAppToSQL(appObject)

If sqlCommand ! = ““

convert sqlCommand to RETURN returned sqlCommand;

returnCode = issueDBCommand(sqlCOmmand);

if returnCode ! = FALSE

getDatabaseResult(returnObject);

650

SOFTWARE ENGINEERING HANDBOOK

else

returnObject = null;

RETURN returnObject;

END PROC

///

// loadDatabase — loads the database from the sent fileName

// and sets the database variable

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC loadDatabase(databaseFileName:IN, statusBoolean:OUT)

TYPE returnStatus IS BOOLEAN;

TYPE sqlCommand IS STRING;

returnStatus =

databaseMiddleware.loadDatabase(databaseFileName,

database);

RETURN returnStatus;

END PROC

///

// saveDatabase — saves the database to the sent fileName

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC saveDatabase(databaseFileName:IN, statusBoolean:OUT)

TYPE returnStatus IS BOOLEAN;

TYPE sqlCommand IS STRING;

returnStatus =

databaseMiddleware.saveDatabase(databaseFileName,

database);

RETURN returnStatus;

END PROC

///

//convertAppToSQL — converts an application object into a SQL

// command representing the object

//returns STRING

///

651

Sample OO SDS

PROC convertAppToSQL(appObject:IN, sqlObject:OUT)

TYPE sqlObject IS STRING;

TYPE objectType IS STRING

ObjectType = Reflect on appObject to determine class type;

IF (objectType = = “Service”)

SqlObject = create blank Service SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

ELSE IF (objectType = = “Payment”)

SqlObject = create blank Payment SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

ELSE IF (objectType = = “Customer”)

SqlObject = create blank Customer SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

ELSE IF (objectType = = “Dog”)

SqlObject = create blank Dog SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

ELSE IF (objectType = = “DietPlan”)

SqlObject = create blank DietPlan SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

ELSE IF (objectType = = “BarCode”)

SqlObject = create blank BarCode SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

ELSE IF (objectType = “Reminder”)

SqlObject = create blank Reminder SQL statement;

WHILE (variables)

Append sqlObject string with variable and values;

Variables = variable.next;

//Continue on with possible object in database

652

SOFTWARE ENGINEERING HANDBOOK

RETURN sqlObject;

END PROC

///

//convertSQLTOApp — converts sql string results from the

database

// into objects within the application

//returns OBJECT

///

PROC convertSQLToApp(sqlObject:IN, appObject:OUT)

TYPE returnObject IS OBJECT;

TYPE sqlType IS STRING;

sqlType = sqlObject.getType;

if (sqlType = = “Service”)

returnObject = new Service object;

while (variables)

returnObject.variable.setValue =

service.variable.g.,etValue;

variable = variable.next;

ELSE IF (sqlType = = “Payment”)

returnObject = new Payment object;

while (variables)

returnObject.variable.setValue =

payment.variable.g.,etValue;

variable = variable.next;

ELSE IF (sqlType = = “Customer”)

returnObject = new Customer object;

while (variables)

returnObject.variable.setValue =

customer.variable.g.,etValue;

variable = variable.next;

ELSE IF (sqlType = = “Dog”)

returnObject = new Dog object;

while (variables)

returnObject.variable.setValue =

og.variable.g.,etValue;

variable = variable.next;

ELSE IF (sqlType = = “DietPlan”)

returnObject = new DietPlan object;

while (variables)

returnObject.variable.setValue =

dietPlan.variable.g.,etValue;

653

Sample OO SDS

variable = variable.next;

ELSE IF (sqlType = = “BarCode”)

returnObject = new BarCode object;

while (variables)

returnObject.variable.setValue =

barCode.variable.g.,etValue;

variable = variable.next;

ELSE IF (sqlType = = “Reminder”)

returnObject = new Reminder object;

while (variables)

returnObject.variable.setValue =

reminder.variable.g.,etValue;

variable = variable.next;

RETURN returnObject;

END PROC

///

//issueDBCommand — issues the actual SQL command to the

database middleware

// RETURNS BOOLEAN

// TRUE — success

// FALSE — error

///

PROC issueDBCommand(sqlCommand:IN, statusBoolean:OUT)

TYPE returnStatus IS BOOLEAN;

returnStatus =

databaseMiddleware.sendRequest(sqlCommand);

RETURN returnStatus;

END PROC

///

// getDatabaseResult — retrieves the result from the previous

database command

// RETURNS OBJECT

///

PROC getDatabaseResult(resultObject:OUT)

returnObject = databaseMiddleware.g.,etReply();

RETURN returnObject;

END PROC

END PACKAGE

654

SOFTWARE ENGINEERING HANDBOOK

3.1.4.2 DatabaseMiddleware Package

PACKAGE DataBaseMiddleware IS

PROC loadDatabase(fileName:IN, returnStatus:OUT);

PROC saveDatabase(fileName:IN, returnStatus:OUT);

PROC sendRequest(sqlCommand:IN);

PROC getReply(sqlReply:OUT);

///

// loadDatabase — loads the actual physical database in the

// middleware layer using native database calls

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC loadDatabase(fileName:IN, returnStatus:OUT)

TYPE returnStatus IS INTEGER;

TYPE sqlCommand IS STRING;

sqlCommand = load database command with fileName;

database = database.load(sqlCommand);

IF (database = = null)

ReturnStatus = FALSE;

ELSE

ReturnStatus = TRUE;

RETURN returnStatus;

END PROC

///

// saveDatabase — saves the actual physical database in the

// middleware layer using native database calls

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC saveDatabase(fileName:IN, returnStatus:OUT)

TYPE returnStatus IS INTEGER;

TYPE sqlCommand IS STRING;

sqlCommand = save database command with fileName;

returnStatus = database.save(sqlCommand);

RETURN returnStatus;

655

Sample OO SDS

END PROC

///

//sendRequest — sends the sql command to the database driver

// for communication with the native SQL database

// returns BOOLEAN

// TRUE — success

// FALSE — error

///

PROC sendRequest(sqlCommand:IN);

TYPE returnStatus IS INTEGER;

returnStatus = database.request(sqlCommand);

RETURN returnStatus;

END PROC

///

//getReply — returns the reply from the previous issued

// request to the database

//returns STRING

///

PROC getReply(sqlReply:OUT)

sqlReply = database.reply;

RETURN sqlReply;

END PROC

END PACKAGE

3.2 Tutorial Package

3.2.1 Conceptual Description

The Tutorial package handles the browsing, searching, formatting, and
display of the tutorial functionality of the DEDS application. This package
provides many business infrastructure layer services such as templates
used to provide the user with a common view and functionality associated
with the tutorials. The package’s ability to apply GUI templates and present
this information to the user also represents a significant service in the pre-
sentation layer.

Four components comprise the Tutorial package (see Exhibit L-6):
TutorialManager, TutorialTemplates, Tutorials, and Tutorial GUI. The
TutorialManager component handles the browsing and display of tutorial
information to the user. Through its interactions with the TutorialTem-
plates and TutorialSearch components, the TutorialManager provides the
sole interface into the tutorial functionality. The TutorialTemplates com-

656

SOFTWARE ENGINEERING HANDBOOK

ponent is concerned with formatting tutorial information based on pre-
configured templates. Tutorial data is applied to these templates and
returned to the TutorialManager for display to the user in a common GUI
format. The Tutorials contain information relevant to each tutorial such
as images, text, description, title, and keywords. The TutorialGUI controls
the display of information within the Tutorial Package; it deals with for-
matting the Tutorial portion of the GUI and displaying the preformatted
Tutorial information. When a specific Tutorial is requested, the Tutorial-
Manager picks the correct one from its vector of Tutorials, applies the
applicable TutorialTemplate for formatting, and displays it on the Tutori-
alManagerGUI. TutorialVideo handle videoClips within the Tutorial to
present the user video images. TutorialImages handles high-quality image
display within the tutorials.

3.2.2 UML Object Model.

See Exhibit L-7.

3.2.3 Collaboration Graph.

See Exhibit L-8.

3.2.4 PSPEC

3.2.4.1 TutorialManager

PACKAGE TutorialManager IS

PROC addTutorial(tutorial:IN, returnStatus:OUT);

PROC deleteTutorial(tutorialName:IN, returnStatus:OUT);

PROC keywordSearchTutorial(string:IN, tutorialVector:OUT);

PROC returnTutorial(tutorialName:IN, tutorial:OUT);

PROC applyTemplate(tutorial:IN, template:IN, html:OUT);

Exhibit L-6. Tutorials Package UML Diagram

TutorialManager

TutorialTemplateTutorial

Tutorials

1
1..*

1
1..*

TutorialVideo
TutorialImage11..* 1

1..*

657

Sample OO SDS

PROC addTemplate(template:IN, returnStatus:OUT);

PROC deleteTemplate(templateName:IN, returnStatus:OUT);

///

// addTutorial — adds a tutorial to the internal vector of

// tutorials returns BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC addTutorial(tutorial:IN, returnStatus:OUT)

TYPE returnStatus IS BOOLEAN;

Exhibit L-7. Tutorial UML Diagram

1
1

+addTutorial() : Boolean

+deleteTutorial() : Boolean

+keywordSearchTutorial() : String
+returnTutorial() : String

-applyTemplate() : String

+addTemplate() : Boolean

+deleteTemplate() : Boolean

-tutorials : Tutorial

-templates : TutorialTemplate

-gui : TutorialGUI

TutorialManager

+applyTemplate()

-menuColor : String

-menuFont : String

-menuSize : Integer

-heading1Color : String
-heading1Font : String

-heading1Size : Integer

-heading2Color : String

-heading2Font : String

-heading2Size : Integer

-heading3Color : String
-heading3Font : String

-heading3Size : Integer

-text1Color : String

-text1Font : String
-text1Size : Integer

-text2Color : String
-text2Font : String

-text2Size : Integer
-text3Color : String

-text3Font : String

-test3Size : Integer

-pageBackgroundColor : String
-pageBackgroundImage : String

TutorialTemplate

+getHTMLBody() : String
+getDescription() : String

+getTitle() : String

+searchKeyword() : Boolean

-htmlText : String

-images : Object
-title : String
-description : String

Tutorial

Tutorials

1
1..*

1

1..*

«subsystem»
Search

1
1

«subsystem»
Search

+displayGUI() : String

-currentTutorial : String

-TutorialManager : TutorialManager

TutorialGUI

1 1

+getDescription() : String

+getVideoWindow() : Object
+getTitle() : String

+searchKeyword() : Boolean

+setFileName() : Boolean

+getFileName() : String

-video : Object

-title : String

-description : String

-filename : String

TutorialVideo

+getImageWindow() : Object

+getDescription() : String

+getTitle() : String

+searchKeyword() : Boolean

+setFileName() : Boolean
+getFileName() : String

-image : Object

-fileName : String
-title : String

-description : String

-protocol : String

TutorialImage

1

0..*

1

0..*

658

SOFTWARE ENGINEERING HANDBOOK

IF tutorials.add(tutorial)

ReturnStatus = TRUE;

ELSE

ReturnStatus = FALSE;

RETURN returnStatus

END PROC

///

//deleteTutorial — removes a tutorial from the internal

// vector of tutorials.

//returns BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC deleteTutorial(tutorial:IN, returnStatus:OUT)

TYPE returnStatus IS BOOLEAN;

IF tutorials.remove(tutorial)

ReturnStatus = TRUE;

ELSE

ReturnStatus = FALSE;

RETURN returnStatus

END PROC

///

//keywordSearchTutorials — parses through all the tutorials

Exhibit L-8. Tutorials Package UML Collaboration Diagram

«subsystem»
WebInterface

«subsystem»
Search

«subsystem»

Tutorials

Browse
Tutorials

Display
Formatted

Tutorial
Keyword
Search

Matching
Tutorial

Titles

659

Sample OO SDS

// in the vector and checks if the tutorial contains

// the keyword If it does then it is added to the return

// vector

//returns VECTOR

// contains name of tutorials

///

PROC keywordSearchTutorial(string:IN, tutorialVector:OUT)

TYPE returnVector IS VECTOR;

WHILE (tutorials)

IF tutorial.searchKeyword = = TRUE

TutorialVector.add(tutorial.getName);

Tutorial = tutorial.next;

RETURN tutorialVector;

END PROC

///

//returnTutorial — returns the tutorial with the given

tutorial name

//returns TUTORIAL

// tutorial object containing tutorial information or null

// if not existing in tutorialVector

///

PROC returnTutorial(tutorialName:IN, tutorial:OUT)

TYPE returnTutorial IS TUTORIAL;

If tutorials.contains(tutorialName)

ReturnTutorial = tutorials.getTutorial(tutorialName);

ELSE

ReturnTutorial = null;

RETURN returnTutorial;

END PROC

///

//applyTemplate — applies the given template to the given

// tutorial and returns the resulting HTML code

//returns STRING

// html of the tutorial with the template applied

///

PROC applyTemplate(tutorial:IN, template:IN, html:OUT)

TYPE html IS STRING;

Html = template.apply(tutorial);

RETURN html;

660

SOFTWARE ENGINEERING HANDBOOK

END PROC

///

//addTemplate — adds a template to the internal vector of

// templates

//returns BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC addTemplate(template:IN, returnStatus:OUT)

TYPE returnStatus IS BOOLEAN;

IF templates.add(template)

ReturnStatus = TRUE;

ELSE

ReturnStatus = FALSE;

RETURN returnStatus

END PROC

///

//deleteTemplate — removes a template from the internal

// vector of tutorials.

//returns BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC deleteTemplate(template:IN, returnStatus:OUT)

TYPE returnStatus IS BOOLEAN;

IF templates.remove(template)

ReturnStatus = TRUE;

ELSE

ReturnStatus = FALSE;

RETURN returnStatus

END PROC

END PACKAGE

3.2.4.2 Tutorial Package

PACKAGE Tutorial IS

PROC getHTMLBody(returnHTML:OUT);

PROC getDescription(returnDescription:OUT);

661

Sample OO SDS

PROC getTitle(returnTitle:OUT);

PROC searchKeyword(keyword:IN, found:OUT);

///

//getHTMLBody — gets the html body of the tutorial

//returns STRING

// html body

///

PROC getHTMLBody(returnHTML:OUT)

TYPE returnHTML IS STRING;

ReturnHTML = description;

RETURN returnHTML;

END PROC

///

//getDescription — gets the description of the tutorial

//returns STRING

// description

///

PROC getDescription(returnDescription:OUT)

TYPE returnDescription IS STRING;

ReturnDescription = description;

RETURN returnHTML;

END PROC

///

//getTitle — gets the title of the tutorial

//returns STRING

// title

///

PROC getTitle(returnTitle:OUT)

TYPE returnTitle IS STRING;

returnTitle = description;

RETURN returnTitle;

END PROC

///

//searchKeyword — searches the tutorial description and html

// for the sent keyword and returns whether

// it was found

//returns BOOLEAN

662

SOFTWARE ENGINEERING HANDBOOK

// TRUE — found keyword

// FALSE — did not find keyword

///

PROC searchKeyword(keyword:IN, found:OUT)

TYPE found IS BOOLEAN;

FOUND = FALSE;

IF title.indexOf(keyword) ! = —1

Found = TRUE;

ELSE if htmlText.indexOf(keyword ! = —1)

Found = TRUE;

ELSE

WHILE (images)

Found = Image.keywordSearch(keyword)

Image = images.next;

WHILE (videos)

Found = video.keywordSearch(keyword)

Video = video.next;

RETURN Found;

END PROC

END PACKAGE

3.2.4.3 TutorialVideo

PACKAGE TutorialVideo IS

PROC getVideoWindow(videoPanel:OUT);

PROC getDescription(returnDescription:OUT);

PROC getTitle(returnTitle:OUT);

PROC searchKeyword(keyword:IN, found:OUT);

PROC setFileName(fileName:IN, returnResult:OUT);

PROC getFileName(fileName:OUT);

///

//getVideoWindow — returns a panel containing the video

// player to be displayed to the user

//returns PANEL

// video window

///

PROC getVideoWindow(videoPanel:OUT)

TYPE videoPanel IS JPanel;

JavaX Multimedia Extensions get codec

Get codec player

VideoPanel = Codec player.getPanel();

663

Sample OO SDS

RETURN videoPanel;

END PROC

///

//getDescription — gets the description of the video

//returns STRING

// description

///

PROC getDescription(returnDescription:OUT)

TYPE returnDescription IS STRING;

ReturnDescription = description;

RETURN returnHTML;

END PROC

///

//getTitle — gets the title of the video

//returns STRING

// title

///

PROC getTitle(returnTitle:OUT)

TYPE returnTitle IS STRING;

returnTitle = description;

RETURN returnTitle;

END PROC

///

//searchKeyword — searches the tutorial descrpition and html

// for the sent keyword and returns whether

// was found

//returns BOOLEAN

// TRUE — found keyword

// FALSE — did not find keyword

///

PROC searchKeyword(keyword:IN, found:OUT)

TYPE found IS BOOLEAN;

IF title.indexOf(keyword) ! = —1

Found = TRUE;

ELSE if description.indexOf(keyword ! = —1)

Found = TRUE;

ELSE

Found = FALSE;

664

SOFTWARE ENGINEERING HANDBOOK

RETURN Found;

END PROC

///

//setFileName — sets the internal filename if the video was

// found

//returns BOOLEAN

// TRUE — success

// FALSE — failure, file does not exist

///

PROC setFileName(fileName:IN, returnResult:OUT)

TYPE returnResult IS BOOLEAN;

IF fileName.exists()

This.fileName = fileName

ReturnResult = TRUE;

ELSE

ReturnResult = FALSE;

RETURN returnResult

END PROC

///

//getFileName — returns the fileName of the video

//returns STRING

// Filename of the video or null if no fileName

///

PROC getFileName(fileName:OUT);

TYPE fileName IS STRING;

FileName = this.fileName;

RETURN fileName;

END PROC

END PACKAGE

3.2.4.4 TutorialImage Package

PACKAGE TutorialImage IS

PROC getImageWindow(imagePanel:OUT);

PROC getDescription(returnDescription:OUT);

PROC getTitle(returnTitle:OUT);

PROC searchKeyword(keyword:IN, found:OUT);

PROC setFileName(fileName:IN, returnResult:OUT);

PROC getFileName(fileName:OUT);

665

Sample OO SDS

///

//getImageWindow — returns a panel containing the image

// to be displayed to the user

//returns PANEL

// video window

///

PROC getVImageWindow(imagePanel:OUT)

TYPE videoPanel IS JPanel;

JavaX Multimedia Extensions get codec

Get codec player

imagePanel = Codec player.getPanel();

RETURN imagePanel;

END PROC

///

//getDescription — gets the description of the image

//returns STRING

// description

///

PROC getDescription(returnDescription:OUT)

TYPE returnDescription IS STRING;

ReturnDescription = description;

RETURN returnHTML;

END PROC

///

//getTitle — gets the title of the image

//returns STRING

// title

///

PROC getTitle(returnTitle:OUT)

TYPE returnTitle IS STRING;

returnTitle = description;

RETURN returnTitle;

END PROC

///

//searchKeyword — searches the description and title for the

//sent keyword and returns whether was found

//returns BOOLEAN

666

SOFTWARE ENGINEERING HANDBOOK

// TRUE — found keyword

// FALSE — did not find keyword

///

PROC searchKeyword(keyword:IN, found:OUT)

TYPE found IS BOOLEAN;

IF title.indexOf(keyword) ! = —1

Found = TRUE;

ELSE if description.indexOf(keyword ! = —1)

Found = TRUE;

ELSE

Found = FALSE;

RETURN Found;

END PROC

///

//setFileName — sets the internal filename if the image was

found

//returns BOOLEAN

// TRUE — success

// FALSE — failure, file does not exist

///

PROC setFileName(fileName:IN, returnResult:OUT)

TYPE returnResult IS BOOLEAN;

IF fileName.exists()

This.fileName = fileName

ReturnResult = TRUE;

ELSE

ReturnResult = FALSE;

RETURN returnResult

END PROC

///

//getFileName — returns the fileName of the image

//returns STRING

// Filename of the image or null if no fileName

///

PROC getFileName(fileName:OUT);

TYPE fileName IS STRING;

FileName = this.fileName;

RETURN fileName;

667

Sample OO SDS

END PROC

END PACKAGE

3.2.4.5. TutorialGUI Package

PACKAGE TutorialGUI IS

PROC displayGUI(guiHTML:OUT);

///

//displayGUI — returns the html for the entire tutorial GUI

// menu screen

//returns STRING

// html of the tutorial screen

///

PROC displayGUI(guiHTML:OUT)

TYPE guiHTML IS STRING;

GuiHTML = tutorialManager.applyTemplate(tutorial,

options.templates);

Append GuiHTML with Menu HTML

While (videos)

Video.getVideoWindow();

Append VideoWindow reference to guiHTML

Video = videos.next;

WHILE (images)

Image.g.,etImageWindow();

Append imageWindow reference to guiHTML

Image = images.next

RETURN guiHTML;

END PROC

END PACKAGE

3.2.4.6. TutorialTemplate Package

PACKAGE TutorialTemplate IS

PROC applyTemplate(tutorial:IN, html:OUT);

///

//applyTemplate — returns the html for the entire tutorial

// GUI menu screen

//returns STRING

// html of the tutorial screen with template applied

///

PROC applyTemplate(tutorial:IN, html:OUT)

TYPE html IS STRING;

668

SOFTWARE ENGINEERING HANDBOOK

html = tutorial.getHTMLBody();

html.replace(H1 color with template H1 color);

html.replace(H1 font with template H1 font);

html.replace(H1 size with template H1 size);

html.replace(H2 color with template H2 color);

html.replace(H2 font with template H2 font);

html.replace(H2 size with template H2 size);

html.replace(H3 color with template H3 color);

html.replace(H3 font with template H3 font);

html.replace(H3 size with template H3 size);

html.replace(text1 color with template text1 color);

html.replace(text1 font with template text1 font);

html.replace(text1 size with template text1 size);

html.replace(text2 color with template text2 color);

html.replace(text2 font with template text2 font);

html.replace(text2 size with template text2 size);

html.replace(text3 color with template text3 color);

html.replace(text3 font with template text3 font);

html.replace(text3 size with template text3 size);

html.replace(menuColor with template menuColor);

html.replace(menuFont with template menuFont);

html.replace(menuSize with template menuSize);

html.replace(backgroundColor with template

backGroundColor);

html.replace(backgroundImage with template

backgroundImage);

RETURN html;

END PROC

END PACKAGE

3.3 Payment Package

3.3.1 Conceptual Description

Payment subsystem is responsible for setting up different payment
methods, processing payment requests, and billing information for a cus-
tomer. It also conducts the verification operations with external financial
institutions for automatic debit operations.

The Payment package provides many business infrastructure layer ser-
vices such as security, currency conversion routines, automatic debit pro-
cess, and credit card validation used to provide the user with a common
view and functionality associated with the payment. This package provides
the ability to apply GUI templates and present this information to the user;

669

Sample OO SDS

it also represents a significant service in the presentation layer. The Pay-
ment subsystem provides the following features:

• Security: payment subsystem verifies the user authenticity to use the
payment processing and billing information.

• Credit card validation: payment subsystem validates the user credit
card for its correct information with the external systems.

• Currency conversion: payment subsystem provides utility to convert
the local currency into different currencies.

• Automatic debit process: user can set up automatic debit from his or
her checking account or charge to a credit card. The Payment sub-
system processes these charges on a periodic basis.

Four major components comprise the Payment package (Exhibit L-9):
Payment method setup, Billing Information, Payment Process information,
and GUI presentation. The Payment package interacts with Payment
method to set up processes, with payment method validation with external
financial systems. The Payment package also interacts with the Billing
Information package, with security and currency conversion routines. The
Payment package interacts with the payment process information pack-
age, with security and currency conversion and automatic debit process
from checking accounts or charge to credit accounts. The Payment pack-

Exhibit L-9. Payment Package UML Object Relationship Model

Payment

 Subsystem

Setup of

Payment

Methods

Billing

Information

Process

Payment

information

Payment

System GUI

Credit
Card

Validation

1:1

External

Financial
institutions

GUI

1:1

1:1 1:1

1:1

1:1

1:11:1

1:1

1:1

1:1

1:1

Web Interface

670

SOFTWARE ENGINEERING HANDBOOK

age also presents a presentation layer to display the payment information
on the screen for the user (see Exhibit L-10).

3.3.2 UML Object Model

See Exhibit L-11.

3.3.3 Collaboration Graph

See Exhibit L-12.

3.3.4 PSPEC

3.3.4.1 SetPaymentMethod

PACKAGE SetPaymentMethod IS

PROC addPaymentMethod(owner:IN, paymentType:IN,

creditCardNo:IN, expDate:IN, defPayment:IN

returnCode:OUT);

PROC setDefPaymentMethod(owner:IN, paymentType:IN,

creditCardNo:IN, returnCode:OUT);

PROC deletePaymentMethod(owner:IN, paymentType:IN,

creditCardNo:IN, expDate:IN, returnCode:OUT);

PROC validateCreditCard(ownerName:IN, creditCardNo:IN,

expDate:IN, returnCode:OUT);

///

//addPaymentMethod — store paymentMethod against user in

database

//returns INTEGER

// 0 — success

// 1 — error

///

Exhibit L-10. UML Object Relationship Model for Processing Payment
and Billing Sub-Subsystems

Process

Payment
information

Currency
Conversion

Services

Security
Automatic

Debit

Process

Billing

Information

Currency
Conversion

Services

Security

1:1

1:11:1

1:1

1:1

1:1

1:1

1:1 1:1

1:1

671

Sample OO SDS

(a)

(b)

Exhibit L-11. Payment Package UML Object Model

1:1

External

Financial

institutions

GUI

1:1

1:11:1 1:1

1:1

1:1

1:1 1:1

1:1

1:1

1:1

System Controller

Finance GUI

Attributes:

Customer Name
Credit Card
Expiration Date

Charge Amount

Operations

ShowFinanceData

ReturnData

SetupPaymentMethod

Attributes:

Customer Name

PaymentType
Credit CardNo

ExpirationDate
NameOnCreditCard

DefaultPaymentMethod

Operations

AddPaytmentMethod

SetDefPAymentMethod

DeletePaymentMethod

Billing

Attributes:

Customer Name

BillDate

BillAmount

ServiceDetails

Operations

CreateBill

ReturnAmount

ProcessPayment

Attributes:

Customer Name

PaymentType

RoutingNo

BankAccountNo

Operations

ProcessPayment

GetAuthorization

CreditCardAuthorization

Attributes:

Customer Name

CreditCardNo

ExpDate

Operations

ValidateCreditCard

GetAuthorization

PaymentController

Attributes:

Customer Name

CreditCardNumber

ExpiryDate

DefaultPaymentMethod

BillAmount

Operations

GetCustomerInfo

GetCharges

SetPaymentType

1:1

1:11:1

1:1

1:1

1:1

1:1

1:1 1:1

1:1

Billing Controller

Attributes:
Customer Name
BillDate
BillAmount
ServiceDetails
Operations
CreateBill
ReturnAmount

CurrencyConversionSvc

Attributes:
FromCurrency
ToCurrency
Amount
AsofDate
ConversionRates
Operations
ConvertCurrency
GetConversionRate
SetConversionRate

Security

Attributes:
LoggedInUser
UserType
UserRights
Operations
SetuserRights
GetUserRights
IsActionAllowed

ProcessPaymentContr

Controller

Attributes:
Customer Name
PaymentType
RoutingNo
BankAccountNo
Operations
ProcessPayment
GetAuthorization

CurrencyConversionSvc

Attributes:
FromCurrency
ToCurrency
Amount
AsofDate
ConversionRates
Operations
ConvertCurrency
GetConversionRate
SetConversionRate

Security

Attributes:
LoggedInUser
UserType
UserRights
Operations
SetuserRights
GetUserRights
IsActionAllowed

AutomaticDebtProcess

Attributes:
Customer Name
RoutingNo
BankAccountNo
Amount
ChargeDate
Operations
ProcessPayment
GetFinancialInstituteInfo

672

SOFTWARE ENGINEERING HANDBOOK

PROC addPaymentMethod(owner:IN, paymentType:IN,

creditCardNo:IN, expDate:IN, defPayment:IN

returnCode:OUT)

TYPE returnCode IS INTEGER;

Get OwnerId from owner object for a given Owner.

If owner does not exist in owner object

returncode = error;

Add a new payment record in database for the given Owner.

If defPayment = ‘Y’, set this payment method as default

payment method.

returnCode = success;

RETURN returnCode;

END PROC

///

//setDefPaymentMethod — setPaymentMethod as default

paymentMethod.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC setDefPaymentMethod(owner:IN, paymentType:IN,

creditCardNo:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

Get OwnerId from owner object for a given Owner.

If owner does not exist in owner object

returncode = error;

Get PaymentMethod of a given owner with specified

PaymentType and creditCardNo.

If paymentMethod does not exist for this owner

returncode = error;

Set defaultPayment = ‘Y’ for this paymentMethod.

Set defaultPayment = ‘N’ for all other paymentMethods

defined for this user, if any.

Exhibit L-12. Payment Package UML Collaboration Graph

PaymentControllerSystemController

DatabasePackage GUI

SearchSubsystem

Interfaces with

other Systems

Displays and returns

customer payment info

Requests customer

payment info

Sends messages to

process transaction

673

Sample OO SDS

returnCode = success;

RETURN returnCode;

END PROC

///

//deletePaymentMethod — delete paymentMethod from the

database for this owner.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC deletePaymentMethod(owner:IN, paymentType:IN,

creditCardNo:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

Get OwnerId from owner object for a given Owner.

If owner does not exist in owner object

returncode = error;

Get PaymentMethod of a given owner with specified

PaymentType and creditCardNo.

If paymentMethod does not exist for this owner

returncode = error;

Delete selected paymentMethod for this owner.

RETURN returnCode;

END PROC

///

//validateCreditCard — Validate creditCards using external

interface.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC validateCreditCard(ownerName:IN, creditCardNo:IN,

expDate:IN, returnCode:OUT);

TYPE returnCode IS INTEGER;

Validate specified credit card using external interface.

If creditCard is valid

ReturnCode = success

Else returnCode = error;

RETURN returnCode;

END PROC

END PACKAGE

674

SOFTWARE ENGINEERING HANDBOOK

3.3.4.2 CurrencyConversionSvcClass

PACKAGE CurrencyConversionSvc IS

PROC convertCurrency(fromCurrency:IN, toCurrency:IN,

asOfDate:IN, Amount:IN, outValue:OUT,

returnCode:OUT);

PROC getConversionRate(fromCurrency:IN, toCurrency:IN,

asOfDate:IN, convRate:OUT, returnCode:OUT);

PROC setConversionRate(fromCurrency:IN, toCurrency:IN,

asOfDate:IN, convRate:IN, returnCode:OUT);

///

//convertCurrency — Convert the currency value from

fromCurrency to toCurrency

//returns INTEGER

// 0 — success

// 1 — error

//returns outValue as a converted currency.

///

PROC convertCurrency(fromCurrency:IN, toCurrency:IN,

asOfDate:IN, Amount:IN, outValue:OUT, returnCode:OUT)

TYPE returnCode IS INTEGER;

GetConversionRate for fromCurrency, toCurrency,asOfDate.

If returnCode is not error then

OutValue = ConvRate *amount;

RETURN returnCode;

END PROC

///

//getConversionRate — get the conversion rate asOfDate from

fromCurrency to

//toCurrency

//returns INTEGER

// 0 — success

// 1 — error

//returns convRate as a conversion Rate.

///

PROC getConversionRate(fromCurrency:IN, toCurrency:IN,

asOfDate:IN, convRate:OUT, returnCode:OUT)

TYPE returnCode IS INTEGER;

Get conversion rate for fromCurrency, toCurrency,

asOfDate from database into convRate.

If conversion rate is not defined for fromCurrency,

toCurrency, asOfDate, ReturnCode = error;

RETURN returnCode;

675

Sample OO SDS

END PROC

///

//setConversionRate — set the conversion rate asOfDate from

fromCurrency to

//toCurrency in database.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC getConversionRate(fromCurrency:IN, toCurrency:IN,

asOfDate:IN, convRate:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

Check if Conversion rate is already defined for

fromCurrency, toCurrency, asOfDate from database.

If conversion rate is already defined, returnCode =

error.

Else {

Set conversion rate into database for fromCurrency,

toCurrency, asOfDate.

ReturnCode : = error;

}

RETURN returnCode;

END PROC

END PACKAGE

3.3.4.3 PaymentSecurity

PACKAGE PaymentSecurity IS

PROC setUserRights(user:IN, rights:IN, returnCode:OUT);

PROC getUserRights(user:IN, rights:OUT, returnCode:OUT);

PROC isActionAllowed(user:IN, action:IN, allowed:OUT);

///

//setUserRights — sets the user rights to database.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC setUserRights(user:IN, rights:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

If User right is already specified in database,

returnCode = error;

Insert specified rights into database for specified user;

ReturnCode = success;

676

SOFTWARE ENGINEERING HANDBOOK

RETURN returnCode;

END PROC

///

//getUserRights — gets the user rights from database.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC setUserRights(user:IN, rights:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

If User right is not defined in database, returnCode =

error;

Select rights feom database for specified user;

Concatenate them in a string format.

ReturnCode = success;

RETURN returnCode;

END PROC

///

//getUserRights — gets the user rights from database.

//returns Y if right exists, N if not.

///

PROC isActionAllowed(user:IN, action:IN, allowed:OUT)

TYPE returnCode IS INTEGER;

If User right is defined in database,allowed = ‘Y’;

Else allowed = ‘N’

RETURN allowed;

END PROC

END PACKAGE

3.3.4.4 AutomaticDebitProcess

PACKAGE EventLog IS

PROC ProcessPayments(owner:IN, routingNumber:IN,

AccountNumber:IN, amount:IN, authorization:OUT,

returnCode:OUT);

PROC getFinancialInstituteInfo(routingNumber:IN,

bankName:OUT);

///

//ProcessPayments — Process Payments to be automatically

debted from bank

//accounts.

//returns INTEGER

677

Sample OO SDS

// 0 — success

// 1 — error

//returns authorization as INTEGER

///

PROC ProcessPayments(owner:IN, routingNumber:IN,

AccountNumber:IN, amount:IN, authorization:OUT,

returnCode:OUT)

TYPE returnCode IS INTEGER;

Validate given routingNumber;

Validate given accountNumber;

Post ‘amount’ onto given routingNumber+accountNumber

account.

If Error during posting amount, returnCode = error.

getAuthorization.

RETURN returnCode;

END PROC

///

//getFinancialInstituteInfo — Get bank name for a given

routing Number

//returns INTEGER

// 0 — success

// 1 — error

///

PROC getFinancialInstituteInfo(routingNumber:IN,

bankName:OUT)

TYPE returnCode IS INTEGER;

From external system, get bank name for routingNumber.

RETURN returnCode;

END PROC

END PACKAGE

3.3.4.5 Billing

PACKAGE Billing IS

PROC createBill(customer:IN, ServiceDetails:IN,

BillDate:OUT, BillAmount:OUT, returnCode:OUT);

PROC returnAmount(customer:IN, billDate:IN, billAmount:OUT,

returnCode:OUT);

///

//createBill — create a bill for given service details for a

customer.

//returns INTEGER

// 0 — success

// 1 — error

678

SOFTWARE ENGINEERING HANDBOOK

//returns billDate as date

//returns billAmount as float

///

PROC createBill(customer:IN, ServiceDetails:IN,

BillDate:OUT, BillAmount:OUT, returnCode:OUT)

TYPE returnCode IS INTEGER;

Get OwnerId for given customer.

If Customer does not exist, returnCode = error;

From the service details provided,

Build a string of all services provided for all his

dogs.

Compute the total price of all services.

Set the billDate as today.

Set the paymentDateas Today + 20 days.

returnCode = success

RETURN returnCode;

END PROC

///

//returnAmount — retrieve the amount of bill for a customer

and billdate

//returns INTEGER

// 0 — success

// 1 — error

//returns billAmount as float

///

PROC returnAmount(customer:IN, billDate:IN, billAmount:OUT,

returnCode:OUT)

Get OwnerId for given customer.

If Customer does not exist, returnCode = error;

TYPE returnCode IS INTEGER;

Get billAmount from database for a specified customer and

billDate.

RETURN returnCode;

END PROC

END PACKAGE

3.4 Reminders Package

3.4.1 Conceptual Description

Reminders subsystem of DEDS is responsible for creating and sending
out birthday, medication, and registration reminders to dog owners as and
when required. The Reminders subsystem will accept system message,

679

Sample OO SDS

then connect to data objects, which interface with DB, to generate remind-
ers to send to the user.

The Reminders package provides many business infrastructure layer
services such as reminder templates used to provide the user with a com-
mon view and functionality associated with the reminders. This package’s
ability to apply GUI templates and present this information to the user also
represents a significant service in the presentation layer.

Three components comprise the Reminders package (see Exhibit L-13):
Birthday Reminders, Medication Reminders, and Registration Reminders.

Each of these reminders can have multiple sets of templates to be selected
for use. The Reminders component handles the browsing and display of
reminder information to the user. Through its interactions, the Reminder
subsystem provides the sole interface into the tutorial functionality.

3.4.2 UML Object Model.

See Exhibit L-14.

3.4.3 Collaboration Graph

See Exhibit L-15.

3.4.4 PSPEC

3.4.4.1 BirthDay Reminder

PACKAGE BirthDayReminders IS

Exhibit L-13. UML Object Relationship Model

Reminders

Subsystem

Birthday
reminders

Medication
reminders

Registration
Reminders

B'Day

reminder
format /

template

Medication

reminder

format /

template

Registration

reminder

format /

template

1

1

1

1

1

1

1

1

1

1

1

Notify - GUI

GUI

Webpage

680

SOFTWARE ENGINEERING HANDBOOK

PROC selectBDayReminderFormat(aFormat:IN, returnCode:OUT);

PROC createBDayReminder(aDog:IN, birthDayMessage:IN,

greeting:IN returnCode:OUT);

PROC sendOutReminders(aReminder:IN, returnCode:OUT);

///

//selectBDayReminderFormat — Select the format to be used for

birthday

Exhibit L-14. Reminders Package UML Object Model

1:1

GUI Webpage

Notify - GUI

Reminders
Subsystem

contains

inherited

1:1

1:11:1

contains
contains

contains

1:11:11:1

1:11:11:1

Medication Reminders

Attributes:

Medication Message
Dog Id

Owner Id

IncomingMessage

Operations

Interface DataObject

Interface DogObject
Interface Owner Object

Generate webpage with

Medication Message

Generate email /letter
with Medication message

BirthDay Reminders

Attributes:

BirthDay Message
Dog Id

Owner Id

IncomingMessage

Operations

Interface DataObject

Interface DogObject
Interface Owner Object

Generate webpage with

BirthDay Message

Generate email /letter
with BirthDay message

Registration Reminders

Attributes:

Registration Message

Dog Id

Owner Id

IncomingMessage

Operations

Interface DataObject

Interface DogObject

Interface Owner Object

Generate webpage with

Registration Message

Generate email /letter
with Registration

message

contains

BirthDay Reminder

Format

Attributes:

Birth Day Message

Greeting

Dog Id

Owner Id

IncomingMessage

Operations

Accept BirthDay
message

Interface DataObject

Interface DogObject

Interface Owner Object

Generate email /letter

with BirthDay message

Medication Reminder

Format

Attributes:

Medication Message

Greeting

Dog Id

Owner Id

IncomingMessage

Operations

Accept Medication
message

Interface DataObject

Interface DogObject

Interface Owner Object

Generate email /letter

with Medication message

Registration Reminders

Format

Attributes:

Registration Message

Greeting

Dog Id

Owner Id

IncomingMessage

Operations

Accept Registration

Message

Interface DataObject

Interface DogObject

Interface Owner Object

Generate webpage with

Registration Message
Generate email /letter

with Registration

message

1:1

1:1

inherited

1:1

1:1

inherited

1:1

1:1

inherited

System Controller
1:1

1:1

681

Sample OO SDS

//reminders

//returns INTEGER

// 0 — success

// 1 — error

///

PROC selectBDayReminderFormat(aFormat:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

If aFormat exist

set the format to be used to a format.

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//createBDayReminder — Create the Birthday reminders

//returns INTEGER

// 0 — success

// 1 — error

///

PROC createBDayReminder(aDog:IN, birthDayMessage:IN,

greeting:IN returnCode:OUT);

TYPE returnCode IS INTEGER;

Get DogName, BirthDate information from dog Object.

Get Owner name, address, communicationMethod and greeting

from owner object.

Get BdayFormat selected.

In selected BdayFormat, insert dogName, birthDate,

OwnerGreeting, ownerName, address to create

birthdayLetter.

Exhibit L-15. Camera Package UML Collaboration Graph

System
Controller

Notification
Message

Data Objects Database

message

pass data info

message

pass data info

retrieve data

store Data

682

SOFTWARE ENGINEERING HANDBOOK

If birthDayLetter created successfully

returnCode = Success

else

returnCode = error

RETURN (returnCode);

END PROC

///

//sendOutReminders — Sends the reminders out

//returns INTEGER

// 0 — success

// 1 — error

///

PROC sendOutReminders(aReminder:IN, returnCode:OUT);

TYPE returnCode IS INTEGER;

If communication type is email then

send email to address specified.

ReturnCode = Success;

elseif communication type is usps then

print the reminder letter.

ReturnCode = Success;

else return code = error;

RETURN returnCode;

END PROC

END PACKAGE

3.4.4.2 Medication Reminder

PACKAGE MedicationReminders IS

PROC selectMedicationReminderFormat(aFormat:IN,

returnCode:OUT);

PROC createMedicationReminder(aDog:IN,

MedicationMessage:IN, greeting:IN

returnCode:OUT);

PROC sendOutReminders(aReminder:IN, returnCode:OUT);

///

//selectMedicationReminderFormat — Select the format to be

used for medication

//reminders

//returns INTEGER

// 0 — success

// 1 — error

///

683

Sample OO SDS

PROC selectMedicationReminderFormat(aFormat:IN,

returnCode:OUT)

TYPE returnCode IS INTEGER;

If aFormat exist

set the format to be used to a format.

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//createMedicationReminder — Create the Medication reminders

//returns INTEGER

// 0 — success

// 1 — error

///

PROC createMedicationReminder(aDog:IN,

medicationMessage:IN, greeting:IN returnCode:OUT);

TYPE returnCode IS INTEGER;

Get DogName, BirthDate information from dog Object.

Get Owner name, address, communicationMethod and greeting

from owner object.

Get MedicationFormat selected.

In selected MedicationFormat, insert dogName, birthDate,

OwnerGreeting, ownerName, address to create

MedicationLetter.

If medicationLetter created successfully

returnCode = Success

else

returnCode = error

RETURN (returnCode);

END PROC

///

//sendOutReminders — Sends the reminders out

//returns INTEGER

// 0 — success

// 1 — error

///

PROC sendOutReminders(aReminder:IN, returnCode:OUT);

TYPE returnCode IS INTEGER;

684

SOFTWARE ENGINEERING HANDBOOK

If communication type is email then

send email to address specified.

ReturnCode = Success;

elseif communication type is usps then

print the reminder letter.

ReturnCode = Success;

else return code = error;

RETURN returnCode;

END PROC

END PACKAGE

3.4.4.3 Registration Reminders

PACKAGE RegistrationReminders IS

PROC selectRegistrationReminderFormat(aFormat:IN,

returnCode:OUT);

PROC createRegistrationReminder(aDog:IN,

registrationMessage:IN, greeting:IN returnCode:OUT);

PROC sendOutReminders(aReminder:IN, returnCode:OUT);

///

//selectRegistrationReminderFormat — Select the format to be

used for

//registration reminders

//returns INTEGER

// 0 — success

// 1 — error

///

PROC selectRegistrationReminderFormat(aFormat:IN,

returnCode:OUT)

TYPE returnCode IS INTEGER;

If aFormat exist

set the format to be used to a format.

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//createRegistrationReminder — Create the Registration

reminders

//returns INTEGER

// 0 — success

// 1 — error

685

Sample OO SDS

///

PROC createRegistrationReminder(aDog:IN,

registrationMessage:IN, greeting:IN returnCode:OUT);

TYPE returnCode IS INTEGER;

Get DogName, BirthDate information from dog Object.

Get Owner name, address, communicationMethod and greeting

from owner object.

Get RegistrationFormat selected.

In selected RegistrationFormat, insert dogName,

birthDate, OwnerGreeting, ownerName, address to create

registrationLetter.

If registrationLetter created successfully

returnCode = Success

else

returnCode = error

RETURN (returnCode);

END PROC

///

//sendOutReminders — Sends the reminders out

//returns INTEGER

// 0 — success

// 1 — error

///

PROC sendOutReminders(aReminder:IN, returnCode:OUT);

TYPE returnCode IS INTEGER;

If communication type is email then

send email to address specified.

ReturnCode = Success;

elseif communication type is USPS then

print the reminder letter.

ReturnCode = Success;

else return code = error;

RETURN returnCode;

END PROC

3.5 Search Package

3.5.1 Conceptual Description

The Search Package (Exhibit L-16) is used to provide facility for the
user to search the DEDS based on the dog’s information or dog owner’s

686

SOFTWARE ENGINEERING HANDBOOK

information and get complete dog and dog owner information for all pos-
sible search matches. Search package also provides interface with tuto-
rial, payment, reminders, scheduling, medication, ordering, registration,
camera, and barcode subsystems. Moreover, the system manager can ben-
efit from this module for searching statistical data about customers, reve-
nue, and number of potential matches provided to users. System environ-
ment settings, network speed, database performance, and other relevant
technical information required by the system administrator are also
obtained by using this module of the system.

3.5.2 UML Object Model.

See Exhibit L-17.

3.5.3 Collaboration Graph.

See Exhibit L-18.

3.5.4 PSPEC

3.5.4.1 SeachDogOwnerInfo

PACKAGE SearchDogOwnerInfo IS

PROC setDogOwnerSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

Exhibit L-16. Search Package UML Object Relationship Model

Search

Controller

Search Dog/

Owners info

Update

database

Query

financial,

Historical

data

Search GUI

Query

System
Data

1:1

GUI

1:1

1:1

1:1

1:1

1:1

1:1

1:1

1:1

1:1 1:1

1:1

System Controller

Search

1:1

1:1

1:1

687

Sample OO SDS

PROC getDogOwnerSearchResults(SearchResults:OUT);

///

//setDogOwnerSearchCriteria — set search criteria from user

input.

//returns INTEGER

Exhibit L-17. Search Package UML Object Model

Exhibit L-18. Search Package UML Collaboration Graph

GUI

1:1 1:1

1:1
1:1

1:1

1:11:1

1:1

1:1 1:1

1:1

System Controller

1:1

Search Controller

Attributes:

OwnerName

PhoneNo

DogName

UserData

SearchData
Operations

Search

UpdateData

GetFinancialData

GetSystemData

Search GUI

Attributes:

OwnerName

PhoneNo

DogName

UserData

SearchData
Operations

DisplayGUI

ReturnGUI

Query System

Data

Attributes:

UserRights

AdminUserName
AdminPassword

Operations

ValidateUser

ParseInputData

ReturnSysInfoResults

SearchDogOwnerI

Info

Attributes:

DogData
OwnerData

SearchResults

Operations

ParseIncomingData

ReturnResults

UpdateDatabase

Attributes:

CustomerInfo

DogInfo

UpdateData

UpdateResults

Operations

validatePassword
ParseupdateData

UpdataDB

ReturnDBResults

Query FinancialData

Attributes:

OwnerUserName

OwnerPassword

CreditcardData

PaymentInfo

BiilingInfo

Operations

ValidateUser

ReturnFinancialInfo

Search PackageUser Interface

Data Objects Database

Requests and
return data

WebPage

Retrieve Data

Store Data

Message

688

SOFTWARE ENGINEERING HANDBOOK

// 0 — success

// 1 —— error

///

PROC setDogOwnerSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

TYPE returnCode IS INTEGER;

Parse the search criteria for required columns.

If required columns are identified, returnCode = success

Else returnCode = error

RETURN returnCode;

END PROC

///

//getDogOwnerSearchResults —— retrieve dog/owner information

from the database

//based on search criteria

///

PROC getDogOwnerSearchResults(SearchResults:OUT);

Get Dog and Owner information for the set search criteria.

Retrieve columns using database package.

Cast the results into a searchResults object

Return SearchResults;

END PROC

END PACKAGE

3.5.4.2 SearchFinancialInfo

PACKAGE SearchFinancialInfo IS

PROC setFinancialSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

PROC getFinancialSearchResults(SearchResults:OUT);

///

//setFinancialSearchCriteria —— set search criteria from

user input.

//returns INTEGER

// 0 —— success

// 1 —— error

///

PROC setFinancialSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

TYPE returnCode IS INTEGER;

Parse the search criteria for required columns.

689

Sample OO SDS

If required columns are identified, returnCode = success

Else returnCode = error

RETURN returnCode;

END PROC

///

//getFinancialSearchResults —— retrieve Financial

information from the database

//based on search criteria

///

PROC getFinancialSearchResults(SearchResults:OUT);

Get Financial information of dog owners for the set search

criteria.

Retrieve columns using database package.

Cast the results into a searchResults object

Return SearchResults;

END PROC

END PACKAGE

3.5.4.3 SearchSystemInfo

PACKAGE SearchSystemInfo IS

PROC setSystemSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

PROC getSystemSearchResults(SearchResults:OUT);

///

//setSystemSearchCriteria —— set search criteria from user

input.

//returns INTEGER

// 0 —— success

// 1 —— error

///

PROC setSystemSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

TYPE returnCode IS INTEGER;

Parse the search criteria for required columns.

If required columns are identified, returnCode = success

Else returnCode = error

RETURN returnCode;

END PROC

///

690

SOFTWARE ENGINEERING HANDBOOK

//getSystemSearchResults —— retrieve System information from

the database

//based on search criteria

///

PROC getSystemSearchResults(SearchResults:OUT);

Get System information for the set search criteria.

Retrieve columns using database package.

Cast the results into a searchResults object

Return SearchResults;

END PROC

END PACKAGE

3.6 Registration Package

3.6.1 Conceptual Description

The Registration package is responsible for allowing new customers to
register with the DEDS. This package will take the customer’s name,
address, and emergency phone number, establish a user ID and password,
as well as take information on the pet. Verification of customer and dog reg-
istration information for the DEDS application is performed and then this
vital information is stored to the database.

Four components make up the Registration package (see Exhibit L-19):
Registration Manager, Customer Registration, Dog Registration, and
Registration GUI. As mentioned earlier, the Registration Manager could be
considered one of the key components in the business work flow process
and therefore serve as a component in the application layer. It will handle
the collection and display of the relevant information and send it to the
respective components.

The format of information is then checked in the Customer Registration
and Dog Registration components and sent to the Registration GUI compo-
nent. The Customer Registration and Dog Registration components inter-
face with the database subsystem to check for duplication of information.
If appropriate, the information is written to the database. This subsystem
should be included in the technical services layer as an information
exchange service.

3.6.2 Registration Object Model.

See Exhibit L-20.

3.6.3 Registration Collaboration Graph.

See Exhibit L-21.

691

Sample OO SDS

3.6.4 PSPEC

3.6.4.1 Customer Registration Package

PACKAGE customerRegistrationRecord IS

TYPE customerRegistrationRecord data

PROC setFirstName, setLastName, setStreetaddress,

PROC setState, setZipCode, setCustphone, setCustEmail,

PROC setID, setPassword

PRIVATE

PACKAGE BODY customerRegistrationRecord IS

PRIVATE

OwnerFirstName, OwnerLastName, streetAddress,

state, phoneNumber, eMailAddress, OwnerId,

password IS STRING LENGTH (20);

//

//setFirstName —— set the customer’s first name.

Exhibit L-19. Registration Package UML Object Relationship Model

RegistrationGUI

Customer Registration Object

RegstrationManager

Dog Registration Object

Registration

«subsystem»

Database Interface

CollaboratesCollaborates

ContainsContains

Contains

«subsystem»
Web Interface

Collaborates

692

SOFTWARE ENGINEERING HANDBOOK

//

//

Exhibit L-20. Registration Package UML Object Model

Exhibit L-21. Registration Package UML Collaboration Graph

(1,m)

+AddPayment()
+ChangePayment()
+Payment()

-CreditCardNum
-ExpDate
-Name
-DefPayment
-RoutingNum
-AcctNum

Payment

+AccessRegistrationDatabase()
+operation1()
+operation2()

-CustomerName : String
-CustomerID
-CustomerPassword
-DogName
-attribute1

Registration Controller

+DisplayGUI()
+SetRegistrationData()

-CustName
-CustID
-CustPassword
-CustAddress
-CustPhone
-DogName

Registration GUI

+AddDog()
+GetDogInfo()
+ModifyDogInfo()

-DogName
-DogColor
-DogSex
-DogBreed
-DogAge

DogRegistration

+AddCustomer() : void
+ModifyCustomer() : void

-CustName : String
-CustID : String
-CustPassword : String
-CustAddress : String
-CustPhone : long double

CustomerRegistration

(1,1)

(1,n) (1,1) (1,1)

(0,m) (0,1) (1,1) (1,o)

(1,1)

(1,1)

(1,1)

(1,1)

(1,n) (1,o)
(1,p)

«subsystem»
Web Interface

+CreateBill()
+PostPayment()

-AmountDue
-AmountPaid
-PaymentDate
-DueDate
-BillingDate

Billing

+AddDog()
+DeleteDog()
+ModDog()
+GetDogInfo()

-Name
-Color
-Breed
-Sex
-Age
-DOB

Dog

+PlaceMedOrder()

-OrderDate
-Medication
-Cost

MedicationOrder

+AddService()
+ModifyService()
+DeleteService()

-Name
-Description
-Instruction
-Date
-Time
-Cost
-Status

Services

+CreateDietPlan()
+ModifyInstruction()

-Name
-Description
-Date
-Time
-Instructions

Diet Plan

+ScanBarCode()

-Number
-LastScanTime
-LastScanLocation

BarCode

+AddCustomer()
+ModifyCustomer()

-Name
-Address
-PhoneNumber

Client

1

1

1

1..*

1
1

«subsystem»
Web Interface

«subsystem»

Registration

«subsystem»

Database Interface

Register Customer/
Dog

Display Customer/
Dog Info

Customer/Dog Info

Customer/Dog Info

693

Sample OO SDS

PROC setFirstName(String first)

OwnerFirstName = first;

END PROC

//

//getFirstName —— return the customer’s first name.

//

//returns —— STRING

//

PROC getFirstName

return OwnerFirstName;

END PROC

//

//setLastName —— set the customer’s last name.

//

//

PROC setLastName (String last)

OwnerLastName = last;

END PROC

//

//getLastName —— return the customer’s last name.

//

//returns —— STRING

//

PROC getlastName

return OwnerLastName;

END PROC

//

//setStreetaddress — set the customer’s street

//address.

//

//

PROC setStreetaddress(stAddress)

streetAddress = stAddress;

END PROC

//

//getStreetAddress — return the customer’s street

694

SOFTWARE ENGINEERING HANDBOOK

//address.

//

//returns — STRING

//

PROC getStreetAddress

return streetAddress;

END PROC

//

//setState — set the customer’s state.

//

//

PROC setState(st)

state = st;

END PROC

//

//getState — return the customer’s state.

//

//returns — STRING

//

PROC getState

return state;

END PROC

//

//setZipCode — set the customer’s postal code.

//

//

PROC setZipCode(zip)

zipCode = zip;

END PROC

//

//getzipCode — return the customer’s postal code.

//

//returns — STRING

//

PROC getZipCode

return zipCode;

695

Sample OO SDS

END PROC

//

//setCustPhone — set the customer’s phone number.

//

//

PROC setCustPhone(phNum)

phoneNumber = phNum;

END PROC

//

//getzipCode — return the customer’s phone number.//

//returns — STRING

//

PROC getCustPhone

return phoneNumber;

END PROC

//

//setCustEmail — set the customer’s email address.

//

//

PROC setCustEmail (eMail)

eMailAddress = eMail;

END PROC

//

//getCustEmail — return the customer’s email address.//

//returns — STRING

//

PROC getCustEmail

return eMailAddress;

END PROC

//

//setID — set the customer’s identification.

//

//

PROC setID (id)

OwnerId = id;

696

SOFTWARE ENGINEERING HANDBOOK

END PROC

//

//getID — return the customer’s identification.

//

//returns — STRING

//

PROC getID

return OwnerId;

END PROC

//

//setPassword — set the customer’s password.

//

//

PROC setPassword (pwd)

password = pwd;

END PROC

//

//getPassword — return the customer’s password.

//

//returns — STRING

//

PROC getPassword

return password;

END PROC

END PACKAGE customerRegistrationRecord

3.6.4.2 DogRegistrationRecord

PACKAGE dogRegistrationRecord IS

TYPE dogRegistrationRecord data

PROC setDogName, setColor, setBreed, setSex, setAge,

setBirthDate

PRIVATE

PACKAGE BODY dogRegistrationRecord IS

PRIVATE

dogName, dogColor, dogBreed

IS STRING LENGTH (20);

697

Sample OO SDS

sex IS STRING LENGTH (7);,

dogAge, birtDate IS INTEGER;

//

//setDogName — set the dog’s name.

//

//

PROC setDogName(String name)

dogName = name;

END PROC

//

//getDogName — return the dog’s name.

//

//returns — STRING

//

PROC getDogName

return dogName;

END PROC

//

//setColor — set the dog’s color.

//

//

PROC setColor (String color)

dogColor = color;

END PROC

//

//getColor — return the dog’s color.

//

//returns — STRING

//

PROC getColor

return dogColor;

END PROC

//

//setBreed — set the dog’s breed.

//

//

698

SOFTWARE ENGINEERING HANDBOOK

PROC setBreed (String breed)

dogBreed = breed;

END PROC

//

//getBreed — return the dog’s breed.

//

//returns — STRING

//

PROC getBreed

return dogBreed;

END PROC

//

//setSex — set the dog’s sex.

//

//

PROC setSex (String sex)

dogSex = sex;

END PROC

//

//getSex — return the dog’s sex.

//

//returns — STRING

//

PROC getSex

return dogSex;

END PROC

//

//setAge — set the dog’s age.

//

//

PROC setAge (int age)

dogAge = age;

END PROC

//

//setAge — return the dog’s age.

699

Sample OO SDS

//

//returns — INTEGER

//

PROC getAge

return dogAge;

END PROC

//

//setBirthDate — set the dog’s date of birth.

//

//

PROC setBirthDate (int DOB)

birthDate = DOB;

END PROC

//

//getBirthDate — return the dog’s date of birth.

//

//returns — INTEGER

//

PROC getBirthDate

return birthDate;

END PROC

END PACKAGE dogRegistrationRecord

3.6.4.3 RegistrationController

PACKAGE RegistrationController IS

TYPE RegistrationController data

PROC addCustomer, modifyCustomer, deleteCustomer

PROC addDog, modifyDog, deleteDog

PRIVATE

PACKAGE BODY RegistrationController IS

PRIVATE

dogName, dogColor, dogBreed

IS STRING LENGTH (20);

sex IS STRING LENGTH (7);,

dogAge, birtDate IS INTEGER;

//

700

SOFTWARE ENGINEERING HANDBOOK

//addCustomer — uses previously defined processes to

//add a new customer. Parameters are obtained using

//getText operation for text boxes.

//

//

PROC setFirstName(first)

PROC setLastName(last)

PROC setStreetaddress(stAddress)

PROC setState(st)

PROC setZipCode(zip)

PROC setCustphone(phNum)

PROC setCustEmail(eMail)

PROC setID(id)

PROC setPassword(pwd)

END PROC

//

//modify Customer — uses previously defined processes

//to modify existing customer.

//

//

PROC getFirstName()

PROC getLastName()

PROC getStreetaddress()

PROC getState()

PROC getZipCode()

PROC getCustphone()

PROC getCustEmail()

PROC getID()

PROC getPassword()

PROC setFirstName(first)

PROC setLastName(last)

PROC setStreetaddress(stAddress)

PROC setState(st)

PROC setZipCode(zip)

PROC setCustphone(phNum)

PROC setCustEmail(eMail)

PROC setID(id)

PROC setPassword(pwd)

END PROC

701

Sample OO SDS

//

//delete Customer — uses previously defined processes

//to remove an existing customer.

//

//

PROC getFirstName()

PROC getLastName()

PROC getStreetaddress()

PROC getState()

PROC getZipCode()

PROC getCustphone()

PROC getCustEmail()

PROC getID(OwnerId)

PROC getPassword()

database.remove(OwnerFirstName);

database.remove(OwnerLastName);

database.remove(streetAddress);

database.remove(state);

database.remove(zipCode);

database.remove(phoneNumber);

database.remove(eMailAddress);

database.remove(OwnerId);

database.remove(password);

END PROC

//

//addDog — uses previously defined processes to

//add a new dog(s). Parameters are obtained using

//getText operation for text boxes.

//

//

PROC setDogName(name)

PROC setColor(color)

PROC setBreed(breed)

PROC setSex(sex)

PROC setAge(age)

PROC setBirthDate(dob)

END PROC

//

702

SOFTWARE ENGINEERING HANDBOOK

//modifyDog — uses previously defined processes to

//modify a dog(s) record. Parameters are obtained

//using getText operation for text boxes.

//

//

PROC setDogName(name)

PROC setColor(color)

PROC setBreed(breed)

PROC setSex(sex)

PROC setAge(age)

PROC setBirthDate(dob)

END PROC

//

//removeDog — uses previously defined processes to

//delete a dog(s) record from the database.

//Parameters are obtained using getText operation

//for text boxes.

//

//

database.remove(name)

database.remove(color)

database.remove(breed)

database.remove(sex)

database.remove(age)

database.remove(dob)

END PROC

END PACKAGE RegistrationController

3.7 Camera Subsystem Architecture

3.7.1 Conceptual Description

The Camera package of DEDS will allow the customer to select a camera
and view images using streaming video technology via the Internet. Two
components comprise the Camera Package (see Exhibit L-22): Camera
Manager and Camera GUI. The Camera Manager is responsible for sending
the formatted information to the user. This component could be consid-
ered part of the technical services layer due to the information exchange
characteristics. The Camera GUI component will provide information
regarding the size of the screen and positioning. Video information is
applied to the Camera GUI component and then sent on to the Camera

703

Sample OO SDS

Manager. The Camera GUI component could be considered in the presen-
tation layer of the architecture.

3.7.2 Registration Object Model.

See Exhibit L-23.

3.7.3 Registration Collaboration Graph.

See Exhibit L-24.

3.7.4 PSPEC

3.7.4.1 Camera Object

PACKAGE Camera IS

TYPE camera data

PROC zoomIn, zoomOut

PRIVATE

PACKAGE BODY camera IS

PRIVATE

cameraID IS STRING LENGTH (8);

//

//setCamera — set the camera to be used for

//displaying the video

Exhibit L-22. Camera Package UML Object Relationship Model

«subsystem»
Web Interface

Camera Manager CameraGUI

Camera

Camera

Collaborates

Collaborates

Contains

704

SOFTWARE ENGINEERING HANDBOOK

//

//

PROC setCamera(String cameraID)

camera = cameraID;

END PROC

//

//getCamera — return the camera to be used for

//displaying the video

//

//returns — STRING

//

PROC getCamera

return camera;

Exhibit L-23. Camera Package UML Object Model

+GetStreamingVideo()

+SendStreamingVideo()

+SelectCamera()

+framesPerSecond()

-Camera
-zoomIn

-zoomOut

Camera Manager

+displayGUI()

-WindowSize

-BakgroundColor

-Heading

Camera GUI

«subsystem»

Web Interface

1

1

1

1

705

Sample OO SDS

END PROC

//

//sendVideo — send video from selected camera

//

PROC sendVideo ();

END PROC

//

//zoomIn — zoom in to focus on action

//

PROC zoomIn();

END PROC

//

//zoomOut — zoom out to pull back from action

//

PROC zoomOut();

END PROC

END PACKAGE Camera

Exhibit L-24. Camera Package UML Collaboration Graph

«subsystem»

Camera

«subsystem»
WebInterface

Request
Video

Display
Video

706

SOFTWARE ENGINEERING HANDBOOK

3.8 WebInterface Package

3.8.1 Conceptual Description

The WebInterface package is the interface between the DEDS system
and the external human users of the system. All information coming into
and out of the DEDS system for external users flows through the WebInter-
face. The WebInterface formats all data into an HTML protocol allowing for
display on common Web browser applications on a variety of platforms.
Utilizing HTML allows the DEDS system to be accessed by nearly anyone
with a Web browser application. Overall presentation of the information is
controlled by the WebInterface, which applies templates to the overall site
presentation creating a customized Web interface. The WebInterface pro-
vides a GUI that allows for navigation throughout the DEDS application pro-
viding the interface to most DEDS system functionality.

Several components comprise the WebInterface package (see
Exhibit L-25). The first is the WebServer component that controls distribu-

tion of HTML information and navigation through the site application. The
WebServer component allows external Web browser clients to connect
into the DEDS application. External users can then utilize their Web brows-
ers and the WebServer component to navigate throughout the DEDS site.
The second component of the WebInterface package is the WebTemplates,
which provide overall site presentation in a customizable fashion. New
templates can be added or existing ones modified to give the site a new or
changed look and feel. Finally, the WebManager is the overall controlling

Exhibit L-25. WebInterface Package UML Diagram

WebManager

WebTemplate

WebServer

WebInterface

WebThread

1

1..*

707

Sample OO SDS

component of the WebInterface package. Requests from the WebServer are
funneled through the WebManager, which then interacts with other pack-
ages within the DEDS system. The returned information is then formatted
by applying a WebTemplate and finally returned to the WebServer for
transmission to the external user’s Web browser. WebThreads handle the
individual connection for each client because the transport protocol uti-
lized is a connection-based protocol.

3.8.2 Object Model.

See Exhibit L-26.

3.8.3 Collaboration Graph.

See Exhibit L-27.

3.8.4 PSPEC

PACKAGE WebManager IS

PROC startServer();

PROC stopServer(stopStatus:OUT);

PROC applyTemplate(template:IN, html:IN, returnHTML:OUT);

///

//startServer — Starts the WebServer on the port and creates

one

//WebThread that is waiting for a connection

//RETURNS void

///

PROC startServer()

Server.start();

END PROC

///

//stopServer — Stops the WebServer

//RETURNS BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC stopServer(stopStatus:OUT)

TYPE stopStatus IS STRING;

StopStatus = server.StopServer();

Return stopStatus;

END PROC

///

708

SOFTWARE ENGINEERING HANDBOOK

//applyTemplate — Applies the given template to the given

html and

//returns the resulting html

//RETURNS STRING

// html with site wide template applied

///

PROC applyTemplate(template:IN, html:IN, returnHTML:OUT);

Exhibit L-26. WebInterface UML Diagram

1

1

+startServer() : Boolean

+stopServer() : Boolean

-applyTemplate() : String

-server : WebServer

-templates : WebTemplate

WebManager

+applyTemplate()

-menuColor : String

-menuFont : String

-menuSize : Integer
-heading1Color : String

-heading1Font : String

-heading1Size : Integer
-heading2Color : String

-heading2Font : String

-heading2Size : Integer
-heading3Color : String

-heading3Font : String

-heading3Size : Integer

-text1Color : String

-text1Font : String
-text1Size : Integer

-text2Color : String
-text2Font : String

-text2Size : Integer

-text3Color : String

-text3Font : String

-test3Size : Integer

-pageBackgroundColor : String
-pageBackgroundImage : String

WebTemplate

+startServer() : Boolean
+stopServer() : Boolean

+resetServer() : Boolean

-port : String

-htmlHome : String

-status : String
-webManager : WebManager

WebServer

WebInterface

1

1..*
1

1

1 1

«subsystem»

Scheduling

1

1

1

1

«subsystem»

Tutorials

«subsystem»

Registration

«subsystem»

Reminders

«subsystem»

MedicationOrdering

«subsystem»

PaymentProcessing«subsystem»

BarCodeTracking

«subsystem»
Cameras

1

1

1

1

1

1

1

1

External User
0..*

1

+setSocket()

+getPort() : String

+getDestIP() : String
+getDestHostname() : String

+readRequest() : String

-port : String

-thread : String

-socket : Object

WebThread

1

1

709

Sample OO SDS

Exhibit L-27. Web Interface Package UML Collaboration Diagram

«subsystem»

Scheduling

«subsystem»
Tutorials

«subsystem»
Registration

«subsystem»
Reminders

«subsystem»
MedicationOrdering

«subsystem»
PaymentProcessing

«subsystem»
BarCodeTracking

«subsystem»
Cameras

External User

«subsystem»

WebInterface linkRequest

Reply

HTML Request

HTML Reply

«subsystem»

Search

710

SOFTWARE ENGINEERING HANDBOOK

TYPE returnHTML IS STRING;

ReturnHTML = Template.applyTemplate(html);

Return returnHTML;

END PROC

END PACKAGE

PACKAGE WebServer IS

PROC startServer();

PROC stopServer(stopStatus:OUT);

PROC resetServer(startStatus:OUT);

///

//startServer — Starts the WebServer on the port and creates

one

//WebThread that is waiting for a connection

//RETURNS void

///

PROC startServer(startStatus:OUT)

TYPE serverSocket IS SOCKET;

New serverSocket(port)

While (serverSocket.accept)

New Webthread(serverSocket);

END PROC

///

//stopServer — Stops the WebServer

//RETURNS BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC stopServer(stopStatus:OUT)

TYPE stopStatus IS STRING;

IF (serverSocket.kill)

StopStatus = TRUE;

Else

StopStatus = FALSE;

Return stopStatus;

END PROC

///

711

Sample OO SDS

//resetServer — Stops the WebServer and then restarts it

//RETURNS BOOLEAN

// TRUE — success

// FALSE — failure

///

PROC resetServer(resetStatus:OUT)

TYPE resetStatus IS STRING;

ResetStatus = stopServer();

StartServer();

Return resetStatus;

END PROC

END PACKAGE

PACKAGE WebThread IS

PROC setSocket(socket:IN);

PROC getPort(portString:OUT);

PROC getDestIP(destIPString:OUT);

PROC getDestHostname(destHostname:OUT);

PROC readRequest(request:OUT);

PROC returnReply(reply:OUT);

///

//setSocket — sets the socket to the given socket

//RETURNS void

///

PROC setSocket(socket:IN)

This.socket = socket;

END PROC

///

//getPort — gets the port the socket is connected to

//RETURNS STRING

//port number

///

PROC getPort(portString:OUT)

TYPE portString IS STRING;

PortString = socket.getPort();

RETURN portString;

END PROC

///

//getDestIP — gets the IP the socket is connected to

//RETURNS STRING

712

SOFTWARE ENGINEERING HANDBOOK

//IP

///

PROC getDestIP(destIPString:OUT)

TYPE ipString IS STRING;

ipString = socket.getDestIP();

RETURN ipString;

END PROC

///

//getDestHostname — gets the hostname the socket is connected

to

//RETURNS STRING

//hostname

///

PROC getDestHostname(destHostname:OUT)

TYPE hostname IS STRING;

Hostname = resolve getDestIP();

RETURN hostname;

END PROC

///

//readRequest — reads the HTML request from the socket

//RETURNS void

///

PROC readRequest(request:OUT)

TYPE InputBuffer IS BUFFEREDINPUTSTREAM;

TYPE request IS STRING;

InputBuffer = Socket.getInputStream();

Request = InputBuffer.getString();

RETURN request;

END PROC

END PACKAGE

PACKAGE WebTemplate IS

PROC applyTemplate(tutorial:IN, html:OUT);

///

//applyTemplate — returns the html for the entire Web GUI

// menu screen

//returns STRING

713

Sample OO SDS

// html of the Web screen with template applied

///

PROC applyTemplate(html:IN, html:OUT)

TYPE html IS STRING;

html.replace(H1 color with template H1 color);

html.replace(H1 font with template H1 font);

html.replace(H1 size with template H1 size);

html.replace(H2 color with template H2 color);

html.replace(H2 font with template H2 font);

html.replace(H2 size with template H2 size);

html.replace(H3 color with template H3 color);

html.replace(H3 font with template H3 font);

html.replace(H3 size with template H3 size);

html.replace(text1 color with template text1 color);

html.replace(text1 font with template text1 font);

html.replace(text1 size with template text1 size);

html.replace(text2 color with template text2 color);

html.replace(text2 font with template text2 font);

html.replace(text2 size with template text2 size);

html.replace(text3 color with template text3 color);

html.replace(text3 font with template text3 font);

html.replace(text3 size with template text3 size);

html.replace(menuColor with template menuColor);

html.replace(menuFont with template menuFont);

html.replace(menuSize with template menuSize);

html.replace(backgroundColor with template

backGroundColor);

html.replace(backgroundImage with template

backgroundImage);

RETURN html;

END PROC

END PACKAGE

3.9 Scheduling Package

3.9.1 Conceptual Description

The Scheduling subsystem (see Exhibit L-28) is responsible for linking
available services to customers. In doing so, it also manages the operating
calendar schedule by adding and removing appointments with customers.
The scheduler is available to the customer and to in-house staff, thereby
allowing both parties to create and remove appointments. The scheduling

714

SOFTWARE ENGINEERING HANDBOOK

subsystem is linked to the database because all the services and customer
information are inherently stored in the database subsystem.

The interface of the package is extremely significant to its structure. All
of the information is shown through various GUI displays; the ability to
select services and select them on certain dates for the customer is run
through a GUI view of a calendar. The major portions of the scheduling sub-
system are the Scheduling Manager, Service Manager, and Verify Appoint-
ment Addition/Deletion. Their purposes are as follow:

• Scheduling Manager: allows the user to view the current schedule for
any day on any upcoming or past week. This view can be for appoint-
ments, for vacant time slots, or for both. The staff user has full func-
tional use, which means he or she can view information relating to the
various appointments; the customer can only see that time slots are
vacant or filled. Time slots also have a various amount of resources
available to them because more than one service can be provided at a
given time for different customers, depending on the scheduled
services.

• Scheduling Service Manager: allows customer user to search for his up-
coming appointments. Staff user has an additional option of searching
for a certain service’s upcoming date and times.

• Service View Manager: shows the available services for the customer
and indicates the scheduling constraints uniquely innate to each.

• Appointment Manager: allows customer or staff user to select a service
from the Service View Manager and a large enough time slot from the

Exhibit L-28. Scheduling Package UML Diagram

Scheduling
Subsystem

Scheduling
Manager

Appointment
Manager

Service View
Manager

Verify
Appointment

Scheduling
Search
Manager

Database Web Interface Reminders

External Subsystem
Requests

Returns
discovered info

Sends message to
process

transaction
Sends
Times

Asks for
Times

Request for time
lock and then

commit

Sends
Verify
Info

Sends Services

Requests
Services

715

Sample OO SDS

scheduling, thereby creating an appointment. Appointments for a cus-
tomer can also be cancelled by the same customer or employee with
this portion of the subsystem. The added or removed appointment is
recorded and the Scheduling Manager information is now included.

• Verify Appointment Addition/Deletion: once the appointment has been
selected for addition or removal, a verification process is undertaken
and ultimately the appointment time is updated. When the verification
appointment process goes into effect, the Scheduling Manager, if in-
voked by another user, will display the given time slot as temporally
taken so that other clients cannot attempt to fill the time slot’s
resources.

3.9.2 Schedule Service Object Model.

See Exhibit L-29.

3.9.3 Schedule Service Collaboration Graph.

See Exhibit L-30.

3.9.4 PSPEC

3.9.4.1 SearchSchedulingManager

PACKAGE SearchSchedulingManager IS

PROC setSchedulingSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

PROC getSchedulingSearchResults(SearchResults:OUT);

///

//setSchedulingSearchCriteria — set search criteria from

user input.

//returns INTEGER

// 0 — success

// 1 — error

///

PROC setSchedulingSearchCriteria(anSearchCriteria:IN,

returnCode:OUT);

TYPE returnCode IS INTEGER;

Parse the search criteria for required columns.

If required columns are identified, returnCode = success

Else returnCode = error

RETURN returnCode;

END PROC

716

SOFTWARE ENGINEERING HANDBOOK

///

//getSchedulingSearchResults — retrieve Schedule information

from the database

//based on search criteria

///

PROC getSchedulingSearchResults(SearchResults:OUT);

Get Scheduling information of dog owners for the set

search criteria.

Retrieve columns using database package.

Cast the results into a searchResults object

Return SearchResults;

END PROC

Exhibit L-29. Schedule Service UML Diagram

DatabaseReminders Web Interface

E
xt

e
rn

a
l

Scheduling Search
Manager

Attributes

ServiceDate

ServiceTime
FilterOption

Operations

ShowDates

ShowService

Attributes

Timeslot

Date

Week

OptionColor

Operations

PerformSearch

MakeAppointment

ViewServices

Scheduling Manager

Appointment Manager

Attributes

AppointTime

AppointDate
CustName

ServiceOpt

Operations

ConfigureTime

CheckCustomer

Attributes

CutomerView
ServiceShown

TimesOfService

LengthOfService

Operations

DetailView
DetermineConstraints

Service View Manager

Verify Appointment

Attributes

ConfirmFlag

Operations

SendConfirm

SendNo

1:1 1 :1

1
:1

1 :1
1

:1
1:1

717

Sample OO SDS

END PACKAGE

3.9.4.2 Verify Appointment

PACKAGE VerfiyAppointment IS

PROC verifySelectedTime(timeslot:IN, returnCode:OUT);

///

//verifySelectedTime — takes the proposed Time Slot for

Service

//and verifies appointment creation

//returns INTEGER

// 0 — Validated

// 1 — Cancelled

// 2 — Eror

///

PROC verifySelectedTime(aFormat:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

Get CurrentSelectedService information from Service View

Manager

Get Owner name, address, communicationMethod and greeting

from owner object.

Prompt User with action box with service, time slot

information

If Prompt is Yes

Exhibit L-30. Schedule Service Package UML Collaboration Diagram

<<subsystem>>

Reminder

<<subsystem>>

WebInterface

Pass data

message

message

pass data
info

pass data
info

retrieve

store data

Database
Data objects

Schedule Service

Subsystem

718

SOFTWARE ENGINEERING HANDBOOK

returnCode = 0

If Prompt is No

ReturnCode = 1

else

returnCode = 2

RETURN (returnCode);

END PROC

END PACKAGE

3.9.4.3 Scheduling Manager

PACKAGE SchedulingManager IS

PROC CreateAppointment(timeslot:IN, returnCode:OUT);

///

//CreateAppointment — takes the proposed Time Slot for Service

//and calls the verify process then adds it if validated

//returns INTEGER

// 0 — Validated

// 1 — Canceled

///

PROC CreateAppointment(timeslot:IN, returnCode:OUT)

TYPE returnCode IS INTEGER;

Get CurrentSelectedService information from Service View

Manager

Get Owner name, address, communicationMethod and greeting

from owner object.

Call verifySelectedTime

If verifySelectedTime is validated

Send Appointment to Database

Return(0)

Else

RETURN (1)

End proc

END PROC

END PACKAGE

3.9.4.4 Service View Manager

PACKAGE ServiceViewManager IS

PROC DetailView(custID:IN,services:OUT);

PROC DetermineConstraints(custID:IN,constraintcode:OUT);

719

Sample OO SDS

///

//DetailView — Shows the services available to Given

//Customer

//returns ComboBox consisting of services

///

PROC DetailView(custID:IN,services:OUT)

TYPE services IS ComboBox;

Get Owner name, address, communicationMethod and greeting

from owner object.

Get Service, Service Description, ServiceLevel from

Service object

Call DetermineConstraints

Show all Services allowed by DetermineConstraints return

as combobox

Return services

END PROC

///

//DetermineConstraints — limits shown services available to

Given

//Customer

//returns list of allowed service codes

///

PROC DetermineConstraints(custID:IN,constraintcode:OUT)

TYPE constraintcode IS list;

Use sql to create list of allowed for customer

Get Service, Service Description, ServiceLevel from

Service object

Return constraintcode

END PROC

END PACKAGE

3.10 Medication Ordering Package

3.10.1 Conceptual Description

The Medication ordering subsystem (see Exhibit L-31) is responsible for
allowing the customer to order medication as well as ensuring the com-
pany has a reasonable supply of all prescribed medications in stock. It
manages the company side and the customer side of the medicine spec-
trum. In doing so, it accesses the database for the various medicines’ infor-
mation. In regard to the customer, it accesses the customer information,
knows when the medicine was given to the customer and when it should
run out, and then communicates with the notification system for the cus-
tomer’s benefit. For the company, the medication ordering keeps a track of

720

SOFTWARE ENGINEERING HANDBOOK

inventory and orders new medicine when needed. The subsystem also has
a GUI system built in so that orders can be entered when initially assigned
to a customer — also so that a stock can be increased if needed for some
reason. (i.e., an outbreak of kennel cough) Customers are also able to order
certain medications such as tick repellant via the GUI without visiting the
physical site.

The major portion of the medication ordering subsystem is the ability to
track customer medication, track inventory, and order medication. Their
purposes is as follows:

• Track Customer Medication: this works in congruence with the remind-
er subsystem. By retrieving when a reminder would be generated, a
medication order can also be created.

Exhibit L-31. Medication Ordering Package UML Diagram

Medication

Ordering

Subsystem

Database Web Interface Reminders

Track

Inventory

Track

Customer

Medication
GUI

Order

Background

Order

External Subsystem
Requests

Returns required
information

Sends message
asking for
customer

medication
Create
Order

Requests
Customer

Info

Create
Order

721

Sample OO SDS

• Track Inventory: whenever medication is given or sold to a customer,
a record of its depletion is updated, thereby allowing for constant
knowledge of a given medicine’s stock.

• GUI Order Medication: through GUI screens orders can be generated
for the customer and the staff users. The GUI screens are esthetically
laid out and allowed medications can be browsed and added to a buy
list. The GUI for the staff side allows a greater spectrum of options (in
regard to what is available).

• Background Order Medication: background processing of medication
orders creates order lists for the staff employees to fulfill. This func-
tion works in congruence with the track inventory function and orders
medicine when asked.

3.10.2 Ordering Medication Object Model.

See Exhibit L-32.

3.10.3 Collaboration Graph.

See Exhibit L-33.

3.10.4 PSPEC

3.10.4.1 Track Inventory

PACKAGE TrackInventory IS

PROC IncreaseQuant, DecreaseQuant,NewItem,RemoveItem,

MedicationReport;

///

//IncreaseQuant — Increases certain Medication Quantity

///

PROC IncreaseQuant(MedicationID:IN, Quantity:IN,

Amount:IN,returncode:OUT)

If exist

Increase Quantity by amount

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//IncreaseQuant — increases certain Medication Quantity

///

PROC IncreaseQuant(MedicationID:IN, Quantity:IN,

Amount:IN,returncode:OUT)

If exist

722

SOFTWARE ENGINEERING HANDBOOK

Exhibit L-32. Medication Ordering UML Diagram

DatabaseReminders Web Interface

E
xt

e
rn

a
l

Track Customer Medication

Attributes

CustomerNum

MedIdent

UpdateToggle

Operations

GeneratNote
CheckLevel

Attributes

InvItem

InvQuant

Operations

IncreaseQuant

DecreaseQuant
NewItem

RemoveItem

Track Inventory

Order

Attributes

Item

Quantity

Description

Operations

ModifyQuantity
UpdateInfo

Background Order

Attributes

InvoiceNum

Operations

CreateInvoive

MailScript

1:1 1
:1

1:1

GUI Order

Attributes

ConfirmFlag
GUINumber

Operations

MailScript

CreateEmail

ShowConfirm

1:
1

723

Sample OO SDS

Decrease Quantity by amount

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//AddItem — add new Item if carried

///

PROC AddItem(MedicationID:IN, Quantity:IN,returncode:OUT)

If Unique MedicationID

Set MedicationID in Database

Prompt for Medication Information and add to Database

Set Quantity by amount

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//RemoveItem — remove Item if no longer carried, call report

for

Exhibit L-33. Medication Ordering Package UML Collaboration Diagram

<<subsystem>>
Reminder

Web Interface
<<subsystem>>

message

message

pass data
infopass data

info

Pass data

retrieve

store data

Data objects

Medication Ordering
subsystem

Database

724

SOFTWARE ENGINEERING HANDBOOK

//excess leftover

///

PROC IncreaseQuant(MedicationID:IN, Quantity:IN,

Amount:IN,returncode:OUT)

If exist

If Currently medication in stock Call

medicationreport(MedicationID)

Delete Medication from Database

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//MedicationReport — print report of leftover medication for

records

///

PROC MedicationReport(MedicationID:IN, Quantity:IN)

Print document with medication id and info called from

database

END PROC

END PACKAGE

3.10.4.2 Track Customer Medication

PACKAGE TrackCustomerMedication IS

PROC GeneratNote, CheckLevel

///

//GenerateNote — creates note of Customer Medications

///

PROC GenerateNote(MedicationID:IN,

CustomerID:IN,returncode:OUT)

If exist

Increase Quantity by amount

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//CheckLevel — checks level of Customer Medication quantity

///

725

Sample OO SDS

PROC CheckLevel(MedicationID:IN, Quantity:IN,

Amount:IN,returncode:OUT)

If exist

Decrease Quantity by amount

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

END PACKAGE

3.10.4.3 Order Medication

PACKAGE OrderMedication IS

PROC MakeOrder,UpdateInfo,PrintOrder

///

//MakeOrder — creates Order for Medication

///

PROC MakeOrder(MedicationID:IN, Quantity:IN)

If exist

Increase Quantity by amount

Set returnCode = Success;

Else

Set returnCode = Error;

RETURN returnCode;

END PROC

///

//UpdateInfo — used to indicate pending order and arrival

///

PROC UpdateInfo(MedicationID:IN, Quantity:IN, Date:IN)

If arrived

Increase Quantity

Remove Pending

Else

Increase Quantity

Set Pending for Quantity with Date

END PROC

///

//PrintOrder — createReadout

///

PROC PrintOrder(MedicationID:IN, Quantity:IN,DatE:IN)

726

SOFTWARE ENGINEERING HANDBOOK

Call Database for Medication Details

Create Printout for Medication Order

END PROC

END PACKAGE

4. GUI DESCRIPTION

The GUI for DEDS allows the user to perform all the necessary and
imperative functions required to provide optimum dog care. The screens
available to the user are all esthetically pleasing, while conforming to a
standard powerful screen layout that allows fast and efficient use of DEDS.
The system is available to users via the Internet as well as to employees
located in house. Both will be shown identical screens, although the
employees have access to a wider range of options. Regardless of the user
type, the initial entrance into the system involves a welcome screen to the
Dog-E-DayCare Website (see Exhibit L-34). From there the log-on process is
invoked (see Exhibit L-35); ultimately the user will log-off and be bid adieu
by the goodbye view. In between these two screens is a range of similarly
designed screens allowing access to the various system features. The key
screens involved in the GUI are as follows:

1. Welcome and Access Screen
2. New User Signup Page
3. Modify User Screen
4. Adding Service
5. Modifying/Deleting Service
6. Adding Reminder
7. Modifying/Deleting Reminder
8. Web Camera View
9. Submitting Payment

10. Tutorial Pages
11. Exit Screen

Users of the system are greeted with the greeting screen and have the
ability to log in as an existing user or create a new account. Employees
have specially assigned log-in names, while customers can log in using
their user number or first and last name (middle initial requested upon
multiple users with the same first and last name cases). New users can also
view the daycare introduction before committing themselves to the new
user process. Once logged in, a registered user can select any of the other
available options.

If a user labels himself as a new user, then he goes through the signup
page, where he provides pertinent information concerning living location,
contact information, payment details, etc. New users also enter informa-
tion concerning their dogs. For the dogs, they input all the information

727

Sample OO SDS

they know including breed, weight, age, vaccinations, etc. The new account
procedure double checks to ensure the customer is already registered and
informs the user that he might be and suggests calling the clinic to find out.

Users can modify their information at any time after log-in. Any field per-
taining to a user is updateable, although the information regarding canines
is primarily brought up to date by employees in order to ensure accuracy.
However, a user’s address, payment, password, etc. are all modifiable
fields.

Services can be added by picking a service and date. The calendar is dis-
played and available days will be shown in green. Those days can be
selected and a display of the work hours appears and the user can pick
open time slots. Also, a search can be done for a specific date or time slot
so that the first available slot (such as 10:30 a.m.) will be displayed. Ser-
vices can be selected prior to or after picking a time slot, providing the two
fit together in terms of time required.

Exhibit L-34. DEDS Personal Home Page GUI Screen Shot

728

SOFTWARE ENGINEERING HANDBOOK

Scheduled services can be modified or deleted upon logging on. If none
are available, then a message box informs the user. Also, if the selected
appointment is too close to the current day, the user is informed that he will
be subject to a late notification fee. Otherwise, the user can delete the
appointment or select a new date and time via the method described earlier.

Reminders can be created for users. They can involve almost anything,
even for subjects unrelated to the daycare, although such nondaycare
reminders can only take e-mail form. Otherwise, the user can select
whether he wants a phone, e-mail, or mail reminder and for what. The back-
ground automatically creates some reminders as well. Reminders can be
modified or deleted later by accessing them.

An existing user can select any of the various Web cameras located
across the daycare. Each Web camera page can be selected to update auto-
matically or simply upon a user refreshing the page. The views can be
shown as real video or as an embedded java view video view.

Existing customers who owe the daycare money can submit payments.
They are shown their current balance and can view an itemized account of

Exhibit L-35. DEDS Login GUI Snapshot

729

Sample OO SDS

their past performed services. An option to submit payments automati-
cally is available if the customer has provided a credit card. Otherwise, the
user can enter payment information and submit it electronically. All the
pages are encrypted and further verification of customer and payment
information is performed. A receipt page is displayed and sent to the user
via mail and e-mail and also displayed to the screen for printing. Once pay-
ment has been accepted, the balance and itemization are updated and
shown to the user.

The tutorial pages are available for user viewing. They go over all the
various services, medications, doctors, breeds, and more. The information
is available in downloadable form for future browsing, as well as online. A
search engine is available to churn through the expansive tutorial quickly.
A walkthrough is also available for users not particularly computer savvy
to aid them in navigating the system and utilizing all of its options. Finally,
the user can log out; a thank you and goodbye page is displayed.

5. DATA DICTIONARY

5.1. Database Interface Package

Name: ∆αταβασε

Aliases: None
Where used/how used: As a reference to the actual database driver

in middleware
Description: Reference to the database driver that com-

municates with the SQL database server

Name: ∆αταβασεΦιλεναµε

Aliases: None
Where used/how used: Used to store filename for database
Description: String filename of the database

Name: Ρεθυεστ

Aliases: None
Where used/how used: Used to store the current request in mid-

dleware temporarily
Description: String SQL request last issued by the data-

baseManager

Name: Ρεπλψ

Aliases: None
Where used/how used: Used to store the last reply in middleware

temporarily
Description: String SQL reply last returned from previ-

ous request

730

SOFTWARE ENGINEERING HANDBOOK

Name: ∆αταβασεΜιδδλεωαρε

Aliases: None
Where used/how used: As a reference to the middleware layer in

manager
Description: Middleware layer object controlling access

to the database

Name: σθλΘυερψ

Aliases: None
Where used/how used: Used to store the current query to be sent

to middleware
Description: String SQL query to be sent to middleware

layer

Name: σθλΡεσυλτ

Aliases: None
Where used/how used: Used to store the last result obtained from

middleware
Description: String SQL reply last obtained from middle-

ware layer

5.2 TutorialPackage

Name: Τυτοριαλσ

Aliases: None
Where used/how used: Contains list of tutorials in tutorial manag-

er
Description: Vector of tutorials so they can be accessed

by the tutorial manager for searching, dis-
playing, etc.

Name: Τεµπλατεσ

Aliases: None
Where used/how used: Contains list of templates in tutorial man-

ager
Description: Vector of templates so they can be access-

ed by the tutorial manager for applying
template formatting

Name: Γυι

Aliases: None
Where used/how used: Used as reference in the tutorial manager

to display the GUI
Description: Reference to TutorialGUI which controls

actual displaying of the tutorial informa-
tion to the client

731

Sample OO SDS

Name: ΗτµλΤεξτ

Aliases: ητµλΒοδψ

Where used/how used: HTML text for the tutorial
Description: HTML protocol text of the tutorial

Name: Ιµαγεσ

Aliases: None
Where used/how used: Contains list of images in tutorial
Description: Vector of images so they can be accessed

by the tutorial

Name: Τιτλε

Aliases: None
Where used/how used: Title of the image, tutorial, or video for dis-

play and searching
Description: String title of different objects

Name: ∆εσχριπτιον

Aliases: None
Where used/how used: Description of the image, tutorial, or video

for display and searching
Description: String description of different objects

Name: ΦιλεΝαµε

Aliases: None
Where used/how used: FileName of the image or video for display

and searching
Description: String filename of actual file of image or vid-

eo

Name: Προτοχολ

Aliases: None
Where used/how used: Protocol of the tutorialImage to determine

how to display
Description: String protocol type of the image

Name: ΤυτοριαλΜαναγερ

Aliases: None
Where used/how used: Reference to the TutorialManager in the

TutorialGUI for displaying back to the We-
bInterface

Description: Reference to the TutorialManager

Name: ΧυρρεντΤυτοριαλ

Aliases: None
Where used/how used: Used in GUI to know which tutorial is cur-

rently displayed

732

SOFTWARE ENGINEERING HANDBOOK

Description: String name of the current tutorial

Name: µενυΧολορ

Aliases: None
Where used/how used: Used in template to know which color to

make the menu
Description: String name of the color

Name: µενυΦοντ

Aliases: None
Where used/how used: Used in template to know which font to

make the menu
Description: String name of the font

Name: µενυΣιζε

Aliases: None
Where used/how used: Used in template to know which size to

make the menu
Description: Integer size number

Name: ηεαδινγ1Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make heading1
Description: String name of the color

Name: ηεαδινγ1Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make heading1
Description: String name of the font

Name: ηεαδινγ1Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make heading 1
Description: Integer size number

Name: ηεαδινγ2Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make heading2
Description: String name of the color

Name: ηεαδινγ2Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make heading2

733

Sample OO SDS

Description: String name of the font

Name: ηεαδινγ2Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make heading2
Description: Integer size number

Name: ηεαδινγ3Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make heading3
Description: String name of the color

Name: ηεαδινγ3Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make heading3
Description: String name of the font

Name: ηεαδινγ3Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make heading3
Description: Integer size number

Name: τεξτ1Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make text1
Description: String name of the color

Name: τεξτ1Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make text1
Description: String name of the font

Name: τεξτ1Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make text1
Description: Integer size number

Name: τεξτ2Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make text2

734

SOFTWARE ENGINEERING HANDBOOK

Description: String name of the color

Name: τεξτ2Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make text2
Description: String name of the font

Name: τεξτ2Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make text2
Description: Integer size number

Name: τεξτ3Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make text3
Description: String name of the color

Name: τεξτ3Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make text3
Description: String name of the font

Name: τεξτ3Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make text3
Description: Integer size number

Name: παγεΒαχκγρουνδΧολορ

Aliases: None
Where used/how used: Used in template to know which color to

make the background
Description: String name of the background color

Name: παγεΒαχκγρουνδΙµαγε

Aliases: None
Where used/how used: Used in template to know which image to

set the background
Description: String name of the background image file

5.3 WebInterfacePackage

Name: Σερϖερ

Aliases: None

735

Sample OO SDS

Where used/how used: Contains a reference to the WebServer ob-
ject in manager

Description: WebServer object

Name: Τεµπλατεσ

Aliases: None
Where used/how used: Contains list of templates in Web manager
Description: Vector of templates so they can be access-

ed by the Web manager for applying tem-
plate formatting

Name: Πορτ

Aliases: None
Where used/how used: Used as port number for server in the serv-

er and thread to know which port to bind
to

Description: Integer port number for the server

Name: ΗΤΜΛΗοµε

Aliases: None
Where used/how used: Used in server to locate the home directo-

ry for Web pages
Description: Directory containing the HTML

Name: ωεβΜαναγερ

Aliases: None
Where used/how used: Reference to WebManager in the server to

allow access to it
Description: WebManager object

Name: Τηρεαδ

Aliases: None
Where used/how used: Used in Web thread to allow the class to be

run by this thread of the operating system
Description: Native thread in the operating system

Name: Σοχκετ

Aliases: None
Where used/how used: Used in thread to allow access to the

streams and connection status of that par-
ticular client

Description: Connection to the client

Name: µενυΧολορ

Aliases: None
Where used/how used: Used in template to know which color to

make the menu

736

SOFTWARE ENGINEERING HANDBOOK

Description: String name of the color

Name: µενυΦοντ

Aliases: None
Where used/how used: Used in template to know which font to

make the menu
Description: String name of the font

Name: µενυΣιζε

Aliases: None
Where used/how used: Used in template to know which size to

make the menu
Description: Integer size number

Name: ηεαδινγ1Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make heading1
Description: String name of the color

Name: ηεαδινγ1Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make heading1
Description: String name of the font

Name: ηεαδινγ1Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make heading 1
Description: Integer size number

Name: ηεαδινγ2Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make heading2
Description: String name of the color

Name: ηεαδινγ2Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make heading2
Description: String name of the font

Name: ηεαδινγ2Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make heading2

737

Sample OO SDS

Description: Integer size number

Name: ηεαδινγ3Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make heading3
Description: String name of the color

Name: ηεαδινγ3Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make heading3
Description: String name of the font

Name: ηεαδινγ3Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make heading3
Description: Integer size number

Name: τεξτ1Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make text1
Description: String name of the color

Name: τεξτ1Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make ext1
Description: String name of the font

Name: τεξτ1Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make text1
Description: Integer size number

Name: τεξτ2Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make text2
Description: String name of the color

Name: τεξτ2Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make text2

738

SOFTWARE ENGINEERING HANDBOOK

Description: String name of the font

Name: τεξτ2Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make text2
Description: Integer size number

Name: τεξτ3Χολορ

Aliases: None
Where used/how used: Used in template to know which color to

make text3
Description: String name of the color

Name: τεξτ3Φοντ

Aliases: None
Where used/how used: Used in template to know which font to

make text3
Description: String name of the font

Name: τεξτ3Σιζε

Aliases: None
Where used/how used: Used in template to know which size to

make text3
Description: Integer size number

Name: παγεΒαχκγρουνδΧολορ

Aliases: None
Where used/how used: Used in template to know which color to

make the background
Description: String name of the background color

Name: παγεΒαχκγρουνδΙµαγε

Aliases: None
Where used/how used: Used in template to know which image to

set the background
Description: String name of the background image file

5.4 Scheduling Package

Name: ∆ογΙδ

Aliases: None
Where used/how used: To generate reminder and to look up dog in-

formation
Description: Unique Identifier of a Dog — used from

database

739

Sample OO SDS

Name: ΟωνερΙδ

Aliases: None
Where used/how used: To generate reminder and to look up dog

owner information
Description: Unique Identifier of a Dog — used from da-

tabase

Name: ΤιµεΣλοτ

Aliases: None
Where used/how used: To indicate a given time period
Description: Used to reserve a time on a certain day,

used to create appointments

Name: Σχηεδυλε∆ατε

Aliases: Απποιντ∆ατε

Where used/how used: Date of a scheduled service, used to create
appointment

Description: Appointment date

Name: ΣχηεδυλεΤιµε

Aliases: ΑπποιντΤιµε

Where used/how used: Time of a scheduled service, used to create
appointment

Description: Appointment Time

Name: ΦιλτερΟπτιον

Aliases: None
Where used/how used: Option used to show only certain appoint-

ments
Description: Can view services based on criteria such as

date, service, or customer

Name: ΣενδΧον⇒ρµ

Aliases: None
Where used/how used: Confirm selected service for making ap-

pointment
Description: Used when selecting service to add

Name: ΛενγτηΟφΣερϖιχε

Aliases: None
Where used/how used: Used in creating time slot size
Description: Varies by service

Name: Χον⇒ρµΦλαγ

Aliases: None
Where used/how used: Used to confirm a scheduled service
Description: Last step before creating appointment

740

SOFTWARE ENGINEERING HANDBOOK

5.5 Medication Ordering Package

Name: ΟωνερΙδ

Aliases: None
Where used/how used: To generate reminder and to look up dog

owner information
Description: Unique identifier of a dog — used from da-

tabase

Name: ΜεδιχινεΙδ

Aliases: None
Where used/how used: The ID linked to a given medicine
Description: Unique identifier of a medicine — used

from database

Name: ΜεδιχινεΝαµε

Aliases: None
Where used/how used: To generate forms and printouts in package
Description: Name of a medicine — used from database

Name: Μεδιχατιον∆εσχριπτιον

Aliases: None
Where used/how used: Used for print outs and forms
Description: A detail description of related medicine

Name: Ορδερ∆ατε

Aliases: None
Where used/how used: Date of a medication order, used for print-

outs and inventory
Description: The order’s date

Name: ΙνϖοιχεΝυµ

Aliases: None
Where used/how used: Unique identifier for an invoice order
Description: Invoice number

Name: Χον⇒ρµΦλαγ

Aliases: None
Where used/how used: Used to confirm an order
Description: Last step before creating order

5.6 customerRegistrationRecord PACKAGE

Name: ΟωνερΦιρστΝαµε

Aliases: None
Where used/how used: Used to register new customer and search

on DEDS for existing account information
Description: First name of the user

741

Sample OO SDS

Name: ΟωνερΛαστΝαµε

Aliases: None
Where used/how used: Used to register new customer and search

on DEDS for existing account information
Description: Last name of the user

Name: στρεετΑδδρεσσ

Aliases: None
Where used/how used: Used to register new customer and search

on DEDS for existing account information
Description: Street address of user

Name: στατε

Aliases: None
Where used/how used: Used to register new customer
Description: Geographic state of user

Name: πηονεΝυµβερ

Aliases: None
Where used/how used: Used to register new customer and to

search on DEDS for existing account infor-
mation

Description: Phone number of the user

Name: εΜαιλΑδδρεσσ

Aliases: None
Where used/how used: Used to register new customer
Description: Internet e-mail address of user

Name: ΟωνερΙδ

Aliases: None
Where used/how used: To register new customer, generate remind-

er, and look up dog owner information
Description: Unique identifier of a dog — used from da-

tabase

Name: πασσωορδ

Aliases: None
Where used/how used: Used to register new customer and permit

access to account
Description: Password of user

5.7 dogRegistrationRecord PACKAGE

Name: ∆ογΝαµε

Aliases: None
Where used/how used: Used to register new dog and to search on

DEDS for existing account information

742

SOFTWARE ENGINEERING HANDBOOK

Description: Name of the dog

Name: δογΧολορ

Aliases: None
Where used/how used: Used to register new dog and to search on

DEDS for existing account information
Description: Color of the dog

Name: δογΒρεεδ

Aliases: None
Where used/how used: Used to register new dog
Description: Type of the dog (breed)

Name: δογΣεξ

Aliases: None
Where used/how used: Used to register new dog and to search on

DEDS for existing account information
Description: Sex of dog (male/female)

Name: δογΑγε

Aliases: None
Where used/how used: Used to register new dog
Description: Age of dog

Name: βιρτη∆ατε

Aliases: None
Where used/how used: Used to register new dog
Description: Date of birth of dog

5.8 Camera PACKAGE

Name: χαµεραΙ∆

Aliases: None
Where used/how used: Used to select proper camera for video

transmission
Description: Camera number

5.9 Reminder Package

Name: ∆ογΙδ

Aliases: None
Where used/how used: To generate reminder and to look up dog in-

formation
Description: Unique identifier of a dog — used from da-

tabase

Name: ΟωνερΙδ

Aliases: None

743

Sample OO SDS

Where used/how used: To generate reminder and to look up dog
owner information

Description: Unique identifier of a dog — used from da-
tabase

Name: ΙνχοµινγΜεσσαγε

Aliases: None
Where used/how used: To access any special instructions for re-

minders
Description: Input value to reminders package

Name: Βιρτη∆αψΜεσσαγε

Aliases: None
Where used/how used: System generates birth day message for

dog
Description: Birth day message for dog will be sent out

to owner’s address via e-mail and postal
service

Name: ΜεδιχατιονΜεσσαγε

Aliases: None
Where used/how used: System generates medication message for

dog
Description: Medication message for dog will be sent

out to owner’s address via e-mail and post-
al service

Name: ΡεγιστρατιονΜεσσαγε

Aliases: None
Where used/how used: System generates medication message for

dog
Description: Medication message for dog will be sent

out to owner’s address via email/postal ser-
vice

Name: Γρεετινγ

Aliases: None
Where used/how used: Used while addressing the dog owner in let-

ters and e-mails
Description: Provides information about how dog own-

er needs to be addressed in letters and e-
mails

5.10 Payment Package

Name: ΧυστοµερΝαµε

Aliases: None

744

SOFTWARE ENGINEERING HANDBOOK

Where used/how used: Linking payment information to customer
Description: Name of the customer

Name: ΠαψµεντΤψπε

Aliases: None
Where used/how used: Used to define payment method
Description: Type of credit card

Name: ΧρεδιτΧαρδΝυµβερ

Aliases: None
Where used/how used: Used to define payment method
Description: Credit card number

Name: Εξπδατε

Aliases: None
Where used/how used: Used to define payment method
Description: Expiry date of credit card

Name: ∆εφαυλτΠαψµεντΜετηοδ

Aliases: None
Where used/how used: Used to identify default among multiple

payment methods
Description: Indicator to show that this is the default

payment method

Name: ΒιλλΑµουντ

Aliases: None
Where used/how used: Used while generating bill
Description: Bill amount

Name: ∆εφΧυρενχψΒιλλεδ

Aliases: None
Where used/how used: Used while generating bill
Description: Currency for the bill

Name: ΝαµεΟνΧρεδιτΧαρδ

Aliases: None
Where used/how used: Used while accepting credit cards
Description: User name on the credit card

Name: Βιλλ∆ατε

Aliases: None
Where used/how used: Used while generating bill
Description: Date on which bill is generated

Name: Σερϖιχε∆εταιλσ

Aliases: None
Where used/how used: Displayed on bill

745

Sample OO SDS

Description: Details of various services charged

Name: ΡουτινγΝο

Aliases: None
Where used/how used: Used for automatic debt process
Description: Routing number of financial institution

Name: ΒανκΑχχουντΝο

Aliases: None
Where used/how used: Used for automatic debt process
Description: User bank account number

Name: ΧηαργεΑµουντ

Aliases: None
Where used/how used: Used for automatic debt process
Description: Amount to be charged to user account

Name: Χηαργε∆ατε

Aliases: None
Where used/how used: Used for automatic debt process
Description: Date on which amount to be charged to

user account

Name: ΦροµΧυρρενχψ

Aliases: None
Where used/how used: Used in currency conversion
Description: From currency — conversion needs to be

done

Name: ΤοΧυρρενχψ

Aliases: None
Where used/how used: Used in currency conversion
Description: To currency — conversion needs to be

done

Name: Αµουντ

Aliases: None
Where used/how used: Used in currency conversion
Description: Amount needed to be converted

Name: ΑσΟφ∆ατε

Aliases: None
Where used/how used: Used in currency conversion
Description: Conversion to be done as of what date

Name: ΧονϖερσιονΡατε

Aliases: None
Where used/how used: Used in currency conversion

746

SOFTWARE ENGINEERING HANDBOOK

Description: Rate of the conversion

Name: ΛογγεδΥσερ

Aliases: None
Where used/how used: Used in security for payment package
Description: Logged-in user

Name: ΥσερΤψπε

Aliases: None
Where used/how used: Used in security for payment package
Description: Type of the user — clerk, admin, manager

Name: ΥσερΡιγητσ

Aliases: None
Where used/how used: Used in security for payment package
Description: Read/write permissions

5.11 Search Package

Name: ΟωνερΦιρστΝαµε

Aliases: None
Where used/how used: Used to search on DEDS for existing ac-

count information
Description: First name of the user

Name: ΟωνερΛαστΝαµε

Aliases: None
Where used/how used: Used to search on DEDS for existing ac-

count information
Description: Last name of the user

Name: ∆ογΝαµε

Aliases: None
Where used/how used: Used to search on DEDS for existing ac-

count information
Description: Name of the dog

Name: ∆ογΤψπε

Aliases: None
Where used/how used: Used to search on DEDS for existing ac-

count information
Description: Type of the dog (breed)

Name: ∆ογΣεξ

Aliases: None
Where used/how used: Used to search on DEDS for existing ac-

count information
Description: Sex of dog (male/female)

747

Sample OO SDS

Name: ΠηονεΝυµβερ

Aliases: None
Where used/how used: Used to search on DEDS for existing ac-

count information
Description: Phone number of the user

Name: ΠαψµεντΜετηοδ

Aliases: None
Where used/how used: Used to display as part of search results
Description: Payment method of user

Name: Σερϖιχε∆τλσ

Aliases: None
Where used/how used: Used to display as part of search results
Description: Details of the pet services scheduled for

dog

Name: ΣερϖιχεΤιµε

Aliases: None
Where used/how used: Used to display as part of search results
Description: Timings of the pet services scheduled for

dog

This page intentionally left blank

749

Appendix M

Sample Class
Dictionary

Name: Class_Header

Aliases: None

Where used / How used: Stores header information for document
class types. The system allows for an
unlimited number of document classes.

Content Description:

FIELD DATATYPE PK FK NULLS? NOTES

chID Int Y N Identity

chName Varchar

ChDesc Varchar

ModifyBy Varchar

ModifyDate Varchar

Name: Attrib_Header

Aliases: None

Where used/How used: Stores attribute information for each class
type. For example, the tool kit part class
has multiple dimensions and each dimen-
sion is defined as an attribute with a cor-
responding label. This allows the user to
define new part/document class types
dynamically.

Content Description:

FIELD DATATYPE PK FK NULLS? NOTES

ahID Int Y N Identity

ahcID Int Y N Stores class ID

ahLabel Varchar Label that displays on the screen

ModifyBy Varchar

ModifyDate Varchar

750

SOFTWARE ENGINEERING HANDBOOK

Name: Atrib_Detail

Aliases: None

Where used/How used: Stores the values for attributes defined in
the attrib_header table. If a row in this
table contains values for the part number,
version, and revision fields, then that row
stores attribute values for a specific part
number or document. If a row in this table
contains a value for AttribHeaderID table,
then that row is used to define the struc-
ture of a class.

Content Description:

FIELD DATATYPE PK FK NULLS? NOTES

AdID Int Y N Identity

adhID Varchar Y Only present for class definition;
stores attribute header ID

AdPN Varchar

AdRev Varchar

AdVer Varchar

adValue Varchar

adUnits Varchar

ModifyBy Varchar

ModifyDate Varchar

Name: Attrib_Constraint

Aliases: None

Where used / How used: Stores validation rules for the
attribute_details table. When attribute
values are entered through the user inter-
face, the application performs validation
using this table.

Content Description:

FIELD DATATYPE PK FK NULLS? NOTES

AcID Int Y N Identity

AchID Int Y N Stores attribute header ID

AcJoinType Varchar And—Or

acCondition Varchar Must be “=,<,>,Like, Not Like”

acValue Varchar Specified value

ModifyBy Varchar

ModifyDate Varchar

751

Sample Class Dictionary

Name: Workflow_State

Aliases: None

Where used/How used: Defines available workflow states

Content Description:

FIELD DATATYPE PK FK NULLS? NOTES

WsID Int Y N Identity

WsName Varchar

WsDesc Varchar

ModifyBy Varchar

ModifyDate Varchar

Name: Workflow_Template

Aliases: None

Where used/How used: Stores workflow template header information

Content Description:

FIELD DATATYPE PK FK NULLS? NOTES

WtID Int Y N Identity

WtName Varchar

WtDesc Varchar

ModifyBy Varchar

ModifyDate Varchar

This page intentionally left blank

753

Appendix N

Control Sheet

DATE ORIGINAL PROGRAM:

1/18/02

DATE OF MODIFIED PROGRAM (THIS WILL BE THE SAME AS DATE
ORIGINAL PROGRAM IF THIS IS A NEW PROGRAM):

1/25/02

PROGRAM NAME:

Currency Converter Utility

PROGRAMMER NAME:

Jerry V.

VERSION NUMBER (START AT V1.0):

V1.0
V1.1

DESCRIPTION OF PROGRAM:

Program converts one currency to another currency and displays in
a table format.

CONFIGURATION:

Microsoft Visual C++

DESCRIPTION OF CHANGES:

Changes have been made to pull currencies from a text file. Also add-
ed option to print data.

No changes have been made for this release. Print option was added
to version 1.1

This page intentionally left blank

755

Appendix O

Test Plan

TABLE OF CONTENTS

1 Revision History ... 757
2 Introduction .. 757

2.1 Goals and Objectives .. 757
2.2 Statement of Scope.. 758
2.3 Major Constraints.. 758

3 Test Plan .. 758
3.1 System Description ... 759

3.1.1 System Collaboration Diagram... 760
3.2 Testing Strategy ... 760
3.3 Testing Resources ... 760

3.3.1 Staffing... 760
3.3.2 Tools .. 760

3.4 Testing Metrics .. 762
3.5 Testing Artifacts... 762
3.6 Testing Schedule.. 762

4 Test Procedures .. 763
4.1 Class Testing .. 763
4.2 Integration Testing .. 763

5 Appendix 1: Class Testing Test Cases .. 764
5.1 Application Controller Subsystem .. 764

5.1.1 Test Case: ApplicationController:ApplicationController 764
5.1.2 Test Case: ApplicationController:ApplicationController765
5.1.3 Test Case: ApplicationController:ApplicationController766
5.1.4 Test Case: ApplicationController:ApplicationController766

5.2 User Management Subsystem.. 767
5.2.1 Test Case: Security Manager :: addUser(in user : User) 767
5.2.2 Test Case: Security Manager :: removeUser

(in user : User).. 768
5.2.3 Test Case: Security Manager :: authenticateUser

(in user : User) : Boolean .. 769
5.2.4 Test Case: Customer :: getDogs() : Collection 770
5.2.5 Test Case: Customer :: getInvoices() : Collection 770
5.2.6 Test Case: Service Provider :: addServiceOffering() 771

756

SOFTWARE ENGINEERING HANDBOOK

5.2.7 Test Case: Service Provider:: getAddress()772
5.3 Resource Management Subsystem..773

5.3.1 Test Case: ResourceUI :: showCreate()..............................773
5.3.2 Test Case: ResourceUI :: showEdit()774
5.3.3 Test Case: ResourceUI :: showSearch()775

5.4 Order Subsystem ...776
5.4.1 Test Case: OrderUI :: showCreate()....................................776
5.4.2 Test Case: OrderUI :: showEdit() ..777
5.4.3 Test Case: OrderUI :: showSearch()777
5.4.4 Test Case: OrderUI :: showList()...778
5.4.5 Test Case: OrderLineItem..779
5.4.6 Test Case: ServiceResourceRequirement..........................780
5.4.7 Test Case: Service ..781
5.4.8 Test Case: Order ...782

5.5 Accounting Subsystem..783
5.5.1 Test Case: Accounting:InvoicePrint783
5.5.2 Test Case: Accounting:Payment ...783
5.5.3 Test Case: Accounting:InvoiceList784

5.6 Customer Relationship Management Subsystem785
5.6.1 Test Case: This Feature Set Will Be Available in Phase II....785

5.7 Persistence Subsystem ...785
5.7.1 Test Case: PersistenceManager :: loadXMLConfig()785
5.7.2 Test Case: PersistenceManager :: saveObject()786
5.7.3 Test Case: PersistenceManager :: retrieveObject()..........787

6 Appendix 2: Integration Testing Tests..788
6.1 Test Case: Customer Registration..788

6.1.1 Description..788
6.1.2 Required Stubs/Drivers ...788
6.1.3 Test Steps ..788
6.1.4 Expected Results ..788

6.2 Test Case: Reallocate Resources..789
6.2.1 Description..789
6.2.2 Required Stubs/Drivers ...789
6.2.3 Test Steps ..789
6.2.4 Expected Results ..789

6.3 Test Case: Search for Service Provider and Initiate Order790
6.3.1 Description..790
6.3.2 Required Stubs/Drivers ...790
6.3.3 Test Steps ..790
6.3.4 Expected Results ..790

6.4 Test Case: Place Order ..790
6.4.1 Description..790
6.4.2 Required Stubs/Drivers ...791
6.4.3 Test Steps ..791
6.4.4 Expected Results ..791

757

Test Plan

6.5 Test Case: Pay for Service .. 791
6.5.1 Description ... 791
6.5.2 Required Stubs and Drivers.. 791
6.5.3 Test Steps.. 792
6.5.4 Expected Results.. 792

7 Appendix 3: Project Schedule ... 793

1 REVISION HISTORY

The following is a revision history table for the Dog E-DayCare system’s
software test cases document:

2 INTRODUCTION

Software testing is a critical quality assurance step in the software devel-
opment process. Testing of the Dog E-DayCare system is undertaken to
identify errors in the product before delivery to the client. Thorough test-
ing ensures the product will meet user requirements, thus minimizing
costs in the long run, bolstering client satisfaction, and promoting repeat
business.

The purpose of this document is to provide the test plan for the Dog
E-DayCare system, detailing the testing strategy, metrics, artifacts, sched-
ule, procedures, and test cases. Two sets of sample test cases have been
developed: class test cases and integration test cases. Class test cases
focus on classes and their operations within a specific subsystem. Integra-
tion test cases take a larger view of the product, uncovering errors that
could occur as subsystems interact.

2.1 Goals and Objectives

Dog E-DayCare connects dog owners to dog care service providers, pro-
viding a Web-based national forum to locate, purchase, and monitor pet
care services. The mission of the Dog E-DayCare project team is to fill a gap
in the current market for online pet care resources. For dog owners, finding
a service that meets their immediate needs can be challenging; for dog care
service providers, a vibrant market can be reached. Dog E-DayCare

Date Version Description Author(s)

758

SOFTWARE ENGINEERING HANDBOOK

envisions bringing together dog owners and service providers nationally
to support this challenge.

2.2 Statement of Scope

Although several online directories of pet care services are available,
few e-businesses offer a service locator as well as the ability to purchase
and monitor pet care services online.

The Dog E-DayCare system will be released in two phases. In the first
phase, it will allow dog owners to search for services within a radius of
their choice and based on their specific needs, whether they are looking
for on-going in-home daycare, daycare outside the home, or an afternoon
walk and grooming. Once a dog owner selects a service, the Dog E-DayCare
system will allow him to submit all required information, and schedule, and
pay for service.

Dog care service providers who have registered with Dog E-DayCare will
have access to the system through two different forums: client software on
their workstations and the Web. The system will notify service providers of
potential clients, allowing them to communicate with dog owners and
access submitted information. Service providers will be able to coordinate
scheduling of multiple clients, and to e-mail and bill clients.

Phase II of the Dog E-DayCare system will introduce a range of additional
tools to facilitate communication between the customer and service pro-
vider. Discussion forums, chat rooms, and instant messaging will greatly
enhance customer-service provider relations. In addition, with selected
service providers, customers will be able to view their dogs online and
receive an update of the dog’s status. Dog E-DayCare users will also be able
to access dog care “tips of the day.”

Dog E-DayCare also envisions partnering with community service orga-
nizations — for example, matching puppy raisers to puppies for Guiding
Eyes for the Blind, or potential dog owners to rescued dogs on behalf of
Lab Rescue. Community service is the foundation on which Dog E-DayCare
is built.

2.3 Major Constraints

As identified in the Software Requirements Specification, the most obvi-
ous limitation in this project is the experience of the project team. This is
our first attempt to go through the entire software development life cycle
and present a product that satisfies requirements in a timely and efficient
manner. Thorough testing is particularly imperative in this context.

3 TEST PLAN

The test plan provides an incremental and iterative process of testing
from small to large. The Dog E-DayCare system has been designed using an

759

Test Plan

object-oriented approach. Its smallest components are the classes that
encapsulate the responsibilities and attributes associated with the sys-
tem’s various functions. Sets of related classes have been organized into
subsystems. The testing process first examines the classes within sub-
systems through class testing, and then examines the interactions among
subsystems through integration testing. Integration testing is followed by
validation testing and system testing, which are not addressed in this plan.

The overall system description, test strategy, testing resources and out-
put, and test schedule are detailed below.

3.1 System Description

The Dog E-DayCare system is composed of seven subsystems; each has
an associated interface and represents a set of related responsibilities. The
subsystems comprise the following:

• Application controller
• User management
• Resource management
• Order
• Accounting
• Customer relationship management (available in Phase II)
• Persistence

The application controller subsystem provides a “core” for the entire
application, acting as “Grand Central Station” for every process that takes
place within the scope of the application. The user management sub-
system provides a central location for handling each piece of user data.
The resource management subsystem provides the application with its
overall scheduling capabilities and the order subsystem has responsibility
for supporting the ordering of products and services from service provid-
ers by Dog E-DayCare clients. The accounting subsystem is responsible for
processing financial transactions. The customer relationship management
subsystem enables the application to provide an opportunity for interac-
tion between customers and service care providers. (This feature set will
be available in Phase II.) Finally, the persistence subsystem is responsible
for storage, retrieval, and update of data.

The system collaboration diagram demonstrates the collaboration or
“hand-shaking” that takes place throughout the major subsystems within
the application. The application controller is the core of the system — each
subsystem generates a request and a corresponding response. The appli-
cation controller must handle the request and the response; it receives the
request, processes a response, and returns the response to the calling
function. This can also cross over into other layers of the system. For
example, if the accounting subsystem request requires information from

760

SOFTWARE ENGINEERING HANDBOOK

the ordering subsystem in order to accomplish its tasks, the application
controller mediates between these subsystems to formulate a response
and provide it to the requestor.

3.1.1 System Collaboration Diagram

Exhibit O-1 depicts the collaborations that exist between the major Dog
E-DayCare subsystems.

3.2 Testing Strategy

In the object-oriented context, no operation can be tested in isolation;
this poses a challenge to testers. The overall objective of testing is to
uncover errors. The strategy for testing the Dog E-DayCare system entails
first thoroughly testing the classes within subsystems through class test-
ing, and then testing interactions among subsystems through scenario-
based integration testing.

A set of test cases is developed for each testing method. Test cases for
both methods must exercise the requirements of the system. For the pur-
pose of this test plan, a sample of tests have been developed and are pro-
vided in Appendices 1 and 2. Further details on class and integration test-
ing in general are provided in the section on testing procedures below.

3.3 Testing Resources

3.3.1 Staffing

The project team developing the Dog E-DayCare system consists of four
members as detailed in the table below. Testing is a joint activity in which
all team members participate. This activity is led by the documentation
specialist.

Team Members:

• Senior Web software developer
• Senior Web designer
• Senior documentation specialist
• Project lead — software engineer

3.3.2 Tools

The hardware used for testing the Dog E-DayCare system will include:

• SQL server 2000 to host the system
• Desktop (Pentium III processor) with a standard 56 K modem to ac-

cess the system
• Laptop to record test results

Software required for testing will include the stubs and drivers developed
to support class testing.

761

Test Plan

E
x
h

ib
it

 O
-1

.
C

o
ll

a
b

o
ra

ti
o

n
s

a
m

o
n

g
 M

a
jo

r
D

o
g
 E

-D
a
y

C
a
re

 S
u

b
sy

st
e
m

s

762

SOFTWARE ENGINEERING HANDBOOK

3.4 Testing Metrics

It is envisioned that class and integration testing will be carried out
through several iterations until all errors are corrected. For each iteration,
class testing will involve recording the following metrics:

• For each class, indicators of test failure (as identified in the test cases)
• Number of failure indicators per class
• Number of failure indicators per subsystem
• A categorization of failure indicators by severity
• Number of repeat failures (not resolved in the previous iteration)
• Hours spent by test team in test process
• Hours spent by development team in correcting failures

Integration testing will involve recording a similar set of metrics for each
iteration; however, the level of analysis will be the scenario. In other words:

• For each scenario, indicators of test failure (as identified in the test
cases)

• Number of failure indicators per scenario
• A categorization of failure indicators by severity
• Number of repeat failures (not resolved in the previous iteration)
• Hours spent by test team in test process
• Hours spent by development team in correcting failures

3.5 Testing Artifacts

The artifacts of testing provided to the client include:

• Test plan
• Test cases
• Test results
• Test report

3.6 Testing Schedule

Class testing will be undertaken as each set of subsystems is com-
pleted. The following provides general information on how testing will be
scheduled:

• PS + 35 days: class testing of application controller and persistence
subsystems

• PS + 49 days: class testing of user management and order subsystems
• PS + 64 days: class testing of resource management and accounting

subsystems
• PS + 86 days: scenario-based integration testing

A detailed project schedule is provided in Appendix 3.

763

Test Plan

4 TEST PROCEDURES

4.1 Class Testing

Based on the project schedule, class testing will take place as pairs of
subsystems have been completed. Test cases for class testing must be
explicitly associated with the class to be tested; effective class testing
depends on well-articulated test cases. The test cases detail the:

• Description. The description includes the test purpose, i.e., which
class will be tested and the particular responsibilities to be tested.

• Required stubs and drivers. As stated previously, components of an ob-
ject-oriented system cannot be tested in isolation. Because of the col-
laborations that must take place within and across subsystems, class
testing will likely require the use of stubs and drivers. In object-orient-
ed testing, a stub is a stand-in for a subclass and a driver is a type of
tester class that accepts test case data, passes data back to the class,
and prints relevant results.

• Test steps. The test steps detail the events and states the system will
move through from the beginning through the end of the test.

• Expected results. The expected results provide indicators of test suc-
cess and test failure.

4.2 Integration Testing

Based on the project schedule, integration testing will take place once
all subsystems have been developed and tested. Test cases are scenario
based, reflecting what users need to do with the Dog E-DayCare system.
Similar to the preceding test cases, the integration test cases detail the:

• Description. The description includes the test purpose, i.e., which sce-
nario or use case will be tested, and the particular subsystems that
must interact in order for the scenario to be completed.

• Required stubs andr drivers. In object-oriented testing, stubs and driv-
ers are critical for class testing. However, if class testing is thorough,
stubs and drivers would not be necessary for completion of integra-
tion testing.

• Test steps. The test steps detail the events and states the system will
move through from the beginning through the end of the test.

• Expected results. The expected results provide indicators of test suc-
cess and test failure.

Sample class and integration test cases are provided in Appendices 1 and
2, respectively.

764

SOFTWARE ENGINEERING HANDBOOK

5 APPENDIX 1: CLASS TESTING TEST CASES

Class tests are developed for each subsystem of the Dog E-DayCare sys-
tem. A sample of class test cases follows.

5.1 Application Controller Subsystem

The application controller subsystem provides a “core” for the entire
application. The controller acts as “Grand Central Station” for every pro-
cess that takes place within the scope of the application.

5.1.1 Test Case: ApplicationController:ApplicationController

5.1.1.1 Description

This test case tests to see if the user functions invoked by the applica-
tion user interface are handled correctly. This interface is invoked by the
other subsystems when actions are performed and requests are made from
their respective user interfaces. This particular test focuses on the user
who is attempting to search for a service care provider within his area.

5.1.1.2 Required Stubs/Drivers

• The SearchUI that is part of the presentation layer will be invoked.

5.1.1.3 Test Steps

1. The user will press the search button within the order subsystem,
which is part of the presentation layer.

2. The user will be presented with a form to fill in the search criteria.
3. The search criteria will be concatenated to form a full select query

against the database. (“Select * from ServiceSchedule where loca-
tion = inputlocation and date/time = inputdatetime and servicetype
= inputservicetype order by location”)

4. The user’s search criteria will be evaluated and the results dis-
played.

5. The user may then select the desired result and schedule the
service.

5.1.1.4 Expected Results

Test success

1. The application controller subsystem successfully handles the rout-
ing of the information so that the query data goes from the presen-
tation layer to the application controller layer, to the persistence
layer and, ultimately, is used to query the database. Success will be
measured by the accuracy of the information (results) returned as a
result of the query string.

765

Test Plan

Test failure

1. The concatenation that must take place to form the query could be
invalid, which would result in an error message when the query is
executed against the database.

2. The route that the application controller must take may not be fol-
lowed because of a flaw in the logic.

3. The query string concatenation may not be sufficient and the wrong
data could be returned.

5.1.2 Test Case: ApplicationController:ApplicationController

5.1.2.1 Description

This test case tests to see if the user functions invoked by the applica-
tion user interface are handled correctly. This interface is invoked by the
other subsystems when actions are performed and requests are made from
their respective user interfaces. This particular test will verify that the user
is able to view the tip of the day when the tip-of-the-day button is pressed.

5.1.2.2 Required Stubs and Drivers

The CommunicationUI from the customer relationship management
module will be used heavily in conjunction with the communication class
within that same subsystem.

5.1.2.3 Test Steps

• The user will successfully log into the system.
• The user will press the tip-of-the-day button.
• The tip of the day will be displayed within the user interface.

5.1.2.4 Expected Results

Test successs

1. The success of the test must be measured based on the application
controller subsystem’s ability to use the system data to determine
the date and then use that date as the query string to invoke the per-
sistence subsystem, which will use the query string against the da-
tabase. The test passes if the tip of the day is returned with the
correct tip of the day for today’s date.

Test failure

1. An exception may occur if the incorrect date is retrieved from the
system time; therefore, the wrong tip of the day is returned.

2. An exception may also occur if the correct tip is displayed, but in an
incorrect format.

766

SOFTWARE ENGINEERING HANDBOOK

5.1.3 Test Case: ApplicationController:ApplicationController

5.1.3.1 Description

This test case tests to see if the user functions invoked by the applica-
tion user interface are handled correctly. This interface is invoked by the
other subsystems when actions are performed and requests are made from
their respective user interfaces. This specific test will determine if the
user’s account balance is updated after a payment is made.

5.1.3.2 Required Stubs/Drivers

1. The PaymentUI, which is part of the presentation layer, must have
been invoked and a payment must be attempted.

2. The accounting subsystem and its interfaces will be invoked.

5.1.3.3 Test Steps

1. The user will successfully log into the system.
2. The user will navigate to his account information.
3. The user will select the option to make a payment on their balance.
4. The user will be presented a form with which to indicate the amount

of the payment and to provide or change credit card information.
5. The user will enter an amount and use the preregistered credit card

information.
6. The user will press the pay button.

5.1.3.4 Expected Results

Test success

1. The success of this test can be measured by the user’s new balance
reflecting the recent payment on the account balance. Performing a
query against the database to determine if the account balance is
correct will test this. The ApplicationController is tested because it
is responsible for ensuring that the correct route is followed to ulti-
mately commit the transaction and return a successful message.

Test failure

1. An exception may occur if the query string is malformed. This could
be caused by invalid data entry or faulty logic.

2. An exception may also occur if the update is unsuccessful and the
query returns an invalid balance.

5.1.4 Test Case: ApplicationController:ApplicationController

5.1.4.1 Description

This test case tests to see if the user functions invoked by the applica-
tion user interface are handled correctly. This interface is invoked by the
other subsystems when actions are performed and requests are made from

767

Test Plan

their respective user interfaces. This particular test will ensure that the
service care provider can successfully update scheduling information.

5.1.4.2 Required Stubs/Drivers

The resource management subsystem will be invoked with particular
attention to the resource class, which is used for scheduling.

5.1.4.3 Test Steps

1. The service care provider will successfully log into the system.
2. The service care provider will press the resource button.
3. A form will be presented that will allow the service care provider to

specify that he wants to edit the resource schedule.
4. The service care provider will modify the employee schedule to ex-

clude the dog shearer on a particular day.

5.1.4.4 Expected Results

Test success

1. The success of this test can be determined by a query performed
against the database, which is invoked when the user attempts to
search for that particular service. The application controller will be
tested because its responsibility is to accept the query string and
commit the transaction to the database via the persistence sub-
system.

Test failure

1. An exception may occur if the concatenation of the query string is
faulty, which will result in a database SQL error.

2. An exception may also occur if the user cannot see the changes up-
dated via the user interface, which indicates that the test was
unsuccessful.

5.2 User Management Subsystem

The user management subsystem provides a central location for han-
dling every piece of user data. This is very important in the parsing of the
system.

5.2.1 Test Case: Security Manager :: addUser(in user : User)

5.2.1.1 Description

The purpose of the test is to determine whether the security manager
class is carrying out its responsibilities as expected. Security manager is a
critical class of the user management subsystem, adding and removing
users and their roles, and authenticating users. This test will focus specif-
ically on adding a user to the system.

768

SOFTWARE ENGINEERING HANDBOOK

5.2.1.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
RegisterUIDriver (smaller version of RegisterUI class)

Stubs: UserStub (smaller version of user class)
NextStub (captures next button clicks)

5.2.1.3 Test Steps

1. Open register user interface.
2. Input information “about you.”
3. Click next.
4. Input information “about your dog.”
5. Click next.
6. Input user name and password.
7. Click finish.
8. View results.

5.2.1.4 Expected Results

Test success

1. Driver displays information entered for user.

Test failure

1. Driver does not display information entered for user.

5.2.2 Test Case: Security Manager :: removeUser(in user : User)

5.2.2.1 Description

The purpose of the test is to determine whether the security manager
class is carrying out its responsibilities as expected. Security manager is a
critical class of the user management subsystem, adding and removing
users and their roles, and authenticating users. This test will focus specif-
ically on removing a user.

5.2.2.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
RegisterUIDriver (smaller version of RegisterUI class)

Stubs: UserStub (smaller version of user class)
NextStub (captures next button clicks)

5.2.2.3 Test Steps

1. Open register user interface.
2. Select option to “cancel registration.”
3. Input user ID in appropriate field.
4. Click “remove.”
5. View results.

769

Test Plan

5.2.2.4 Expected Results

Test success

1. User ID removed no longer appears in user ID table.

Test failure

1. User ID removed persists in user ID table.

5.2.3 Test Case: Security Manager :: authenticateUser(in user : User) :
Boolean

5.2.3.1 Description

The purpose of the test is to determine whether the security manager
class is carrying out its responsibilities as expected. Security manager is a
critical class of the user management subsystem, adding and removing
users and their roles, and authenticating users. This test will focus specif-
ically on user authentication.

5.2.3.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
LoginUIDriver (smaller version of LoginUI class)

Stubs: UserStub (smaller version of User class)
NextStub (captures next button clicks)
RoleStub (captures role assigned to user)

5.2.3.3 Test Steps

1. Open login user interface.
2. Input user name and password.
3. Click login.
4. View results.

5.2.3.4 Expected Results

Test success

1. User enters a correct user name and password, the welcome page
appears and the name of the user is displayed in the upper right
corner.

2. User enters an incorrect name and password. A login failure mes-
sage is displayed asking the user to try again.

Test failure

1. User enters a correct user name and password. A login failure mes-
sage is displayed.

770

SOFTWARE ENGINEERING HANDBOOK

2. User enters an incorrect user name and password, the welcome
page appears and the name of the user is displayed in the upper
right corner.

5.2.4 Test Case: Customer :: getDogs() : Collection

5.2.4.1 Description

The purpose of the test is to determine whether the customer class is
carrying out its responsibilities as expected. The customer’s role in the
user management subsystem is to receive, store, and return a range of
information associated with a particular customer. This test will focus spe-
cifically on retrieving a list of all dogs belonging to a specific customer.

5.2.4.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
SearchUIDriver (smaller version of SearchUI class)

Stubs: UserStub (smaller version of user class)
NextStub (captures next button clicks)
DogStub (small version of animal owner, animal, and dog
classes)

5.2.4.3 Test Steps

1. Open search user interface (for service providers).
2. Input customer ID.
3. Click search.
4. View results.

5.2.4.4 Expected Results

Test success

1. The names of all dogs owned by the customer are listed in the
results page.

Test failure

1. The names of dogs owned by other customers are listed in the
results.

2. No dog names are listed in the results.

5.2.5 Test Case: Customer :: getInvoices() : Collection

5.2.5.1 Description

The purpose of the test is to determine whether the customer class is
carrying out its responsibilities as expected. The customer’s role in the
user management subsystem is to receive, store, and return a range of
information associated with a particular customer. This test will focus
specifically on retrieving a correct list of all invoices associated with a
customer.

771

Test Plan

5.2.5.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
SearchUIDriver (smaller version of SearchUI class)

Stubs: UserStub (smaller version of user class)
NextStub (captures next button clicks)
InvoiceStub (smaller version of invoice class)

5.2.5.3 Test Steps

1. Open Dog E-DayCare search interface (for service providers).
2. Enter customer ID.
3. Click on search.
4. View results.

5.2.5.4 Expected Results

Test success

1. All invoices associated with the customer are listed.

Test failure

1. Invoices associated with another customer are listed.
2. None of the invoices associated with the customer is listed.

5.2.6 Test Case: Service Provider :: addServiceOffering()

5.2.6.1 Description

The purpose of the test is to determine whether the service provider
class is carrying out its responsibilities as expected. The service provider’s
role in the user management subsystem is to receive, store, and return a
range of information associated with a particular service provider. This
test will focus specifically on adding a service offering for a specific service
provider.

5.2.6.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
RegisterUIDriver (smaller version of RegisterUI class)

Stubs: ServiceProviderStub (smaller version of service provider
class)
ServiceStub(smaller version of service class)
NextStub (captures next button clicks)

5.2.6.3 Test Steps

1. Open service details page of company registration.
2. Input service information requested.
3. Click “add another service.”
4. Input service information requested.

772

SOFTWARE ENGINEERING HANDBOOK

5. Click “next.”
6. View results.

5.2.6.4 Expected Results

Test success

1. Services information for particular company is present in service
table.

Test failure

1. Service information for particular company is not present in service
table.

5.2.7 Test Case: Service Provider:: getAddress()

5.2.7.1 Description

The purpose of the test is to determine whether the service provider
class is carrying out its responsibilities as expected. The service provider’s
role in the user management subsystem is to receive, store, and return a
range of information associated with a particular service provider. This
test will focus specifically on retrieving address information for a service
provider.

5.2.7.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
SearchUIDriver (smaller version of SearchUI class)

Stubs: ServiceProviderStub (smaller version of ServiceProvider
class)
NextStub (captures next button clicks)

5.2.7.3 Test Steps

1. Open Dog E-DayCare search interface (for customers).
2. Enter name of service provider.
3. Click on “search.”
4. View results.

5.2.7.4 Expected Results

Test success

1. If address information is available, correct address information is
displayed in search results.

2. If address information is not available, no address information is dis-
played in search results.

773

Test Plan

Test failure

1. If address information is available, incorrect address information is
displayed in search results.

2. If address information is not available, someone else’s address infor-
mation is displayed in search results.

5.3 Resource Management Subsystem

This resource management subsystem provides the application with its
overall scheduling capabilities. It uses various respective classes and sub-
systems to ensure that the user has up-to-date information regarding the
services he is interested in.

5.3.1 Test Case: ResourceUI :: showCreate()

5.3.1.1 Description

The purpose of this test case is to test the resource management user
interface class’s (ResourceUI) showCreate() method to determine if it can
display the “register company — resource details” screen as an add screen.

5.3.1.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: ResourceStub (smaller version of resource class)

NextStub (captures next button clicks)
OtherButtonsStub (captures other buttons clicked)

5.3.1.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Select “staff” from the resource type drop down list.
3. Enter a staff member’s first name (if resource type = staff).
4. Enter a staff member’s last name (if resource type = staff).
5. Select an item in the position drop down list.
6. Determine that the height, width, and length fields are protected.
7. Press the next button.

5.3.1.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “Register company —
resource details” screen in the Web browser.

2. The resource type drop down list should contain an entry for staff
and permit its selection.

3. The staff member first name can be entered.
4. The staff member last name can be entered.

774

SOFTWARE ENGINEERING HANDBOOK

5. The position drop down list can be entered and should permit the
selection of one of its items.

6. The height, width, and length fields should be protected.
7. The next stub should return a basic Web page.

Test failure

1. Report all failures.

5.3.2 Test Case: ResourceUI :: showEdit()

5.3.2.1 Description

The purpose of this test case is to test the resource management user
interface class’s (ResourceUI) showEdit() method to determine if it can dis-
play the “register company — resource details” screen as an edit screen.

5.3.2.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: ResourceStub (smaller version of resource class)

NextStub (captures next button clicks)
OtherButtonsStub (captures other buttons clicked)

5.3.2.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine that “staff” is displayed from the resource type drop

down list.
3. Update the staff member’s first name (if resource type = staff).
4. Update the staff member’s last name (if resource type = staff).
5. Select another item in the position drop down list.
6. Determine that the height, width, and length fields are protected.
7. Press the next button.

5.3.2.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “register company —
resource details” screen in the Web browser.

2. The resource type drop down list should display an entry for staff.
3. The staff member first name should be updated.
4. The staff member last name should be updated.
5. The position drop down list should be enterable and permit the se-

lection of one of its items.
6. The height, width, and length fields should be protected.
7. The next stub should return a basic Web page.

775

Test Plan

Test failure

1. Report all failures.

5.3.3 Test Case: ResourceUI :: showSearch()

5.3.3.1 Description

The purpose of this test case is to test the resource management user
interface class’s (ResourceUI) showSearch() method to determine if it can
display resource search screen (example not present in SDS).

5.3.3.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: ServiceProviderStub (smaller version of ServiceProvider

class)
ResourceStub (smaller version of resource class)
SearchStub (captures search button clicks)
OtherButtonsStub (captures other buttons clicked)

5.3.3.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine that the service provider drop down list displayed.
3. Determine that the resource type drop down list displayed.
4. Select a service provider from the service provider drop down list.
5. Select a resource type from the resource type drop down list.
6. Press the search button.

5.3.3.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “register company —
resource details” screen in the Web browser.

2. The service provider drop down list should display service
providers.

3. The resource type drop down list should display the resource types
that the selected service provider supports.

4. The service provider selected should be visible in the drop down
list.

5. The resource type selected should be visible in the drop down list.
6. The search stub should return a basic Web page.

Test failure

1. Report all failures.

776

SOFTWARE ENGINEERING HANDBOOK

5.4 Order Subsystem

The Order Subsystem has responsibility for supporting the ordering of
products and services from Service Providers by Dog E-DayCareTM clients.

5.4.1 Test Case: OrderUI :: showCreate()

5.4.1.1 Description

The purpose of this test case is to test the order user interface class’s
(OrderUI) showCreate() method to determine if it can display the “order —
initiate order” screen (see SDS section 11.10) and if the drop down lists are
populated.

5.4.1.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: OrderStub (smaller version of order class)

ServiceProviderStub (smaller version of ServiceProvider
class)
ServiceStub (smaller version of service class)
AppointmentStub (smaller version of appointment class)
OtherButtonsStub (captures other buttons clicked)

5.4.1.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Select an item in the service provider drop down list.
3. Select an item in the service drop down list.
4. Select an item in the service duration drop down list.
5. Select an item in the time frame drop down list.

5.4.1.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “order — initiate order”
screen in the Web browser.

2. The service provider drop down list should contain a list of service
providers.

3. The service drop down list should contain a list of services offered
by the selected service provider.

4. The service duration drop down list should contain a list of service
durations available for the selected service.

5. The time frame drop down list should contain a list of all opening for
the selected service.

Test failure

1. Report all failures.

777

Test Plan

5.4.2 Test Case: OrderUI :: showEdit()

5.4.2.1 Description

The purpose of this test case is to test the order user interface class’s
(OrderUI) showEdit() method to determine if it can display the “order —
order details” screen.

5.4.2.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: OrderStub (smaller version of Order class)

OtherButtonsStub (captures other buttons clicked)

5.4.2.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine if the correct service provider is displayed.
3. Determine if the correct service is displayed.
4. Determine if the correct location is displayed.
5. Determine if the correct phone number is displayed.
6. Determine if the correct e-mail address is displayed.
7. Determine if the correct appointment is displayed.

5.4.2.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “order — order details”
screen in the Web browser.

2. The service provider name should display.
3. The service name should display.
4. The location should display.
5. The phone number should display.
6. The e-mail address should display.
7. The appointment should display.

Test failure

1. Report all failures.

5.4.3 Test Case: OrderUI :: showSearch()

5.4.3.1 Description

The purpose of this test case is to test the order user interface class’s
(OrderUI) showSearch() method to determine if it can display the “search”
screen and conduct a search using a stub to display the “results.”

778

SOFTWARE ENGINEERING HANDBOOK

5.4.3.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: SearchStub (captures search button clicks)

OtherButtonsStub (captures other buttons clicked)

5.4.3.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Enter a value in the customer ID field.
3. Press the search button.
4. Enter a value in the customer name field.
5. Press the search button.
6. Enter a value in the order ID field.
7. Press the search button.
8. Enter a value in the invoice ID field.
9. Press the search button.

5.4.3.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “search” screen in the
Web browser.

2. The screen should permit entry of a customer ID.
3. The search stub should return a basic Web page.
4. The screen should permit entry of a customer name.
5. The search stub should return a basic Web page.
6. The screen should permit entry of an order ID.
7. The search stub should return a basic Web page.
8. The screen should permit entry of an invoice ID.
9. The search stub should return a basic Web page.

Test failure

1. Report all failures.

5.4.4 Test Case: OrderUI :: showList()

5.4.4.1 Description

The purpose of this test case is to test the order user interface class’s
(OrderUI) showList() method to determine if it can display the “search
results — customer search results” screen.

5.4.4.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
Stubs: OrderStub (smaller version of order class)

InvoiceStub (smaller version of the invoice class)

779

Test Plan

AddressStub(smaller version of the address class)
OtherButtonsStub (captures other buttons clicked)

5.4.4.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine if the correct customer name is displayed.
3. Determine if the correct address is displayed.
4. Determine if the correct e-mail address is displayed.
5. Determine if the correct phone number is displayed.
6. Determine if the correct order numbers are displayed.
7. Determine if the correct invoice numbers are displayed.

5.4.4.4 Expected Results

Test success

1. The IUserInterfaceDriver should display the “search results — cus-
tomer search results” screen in the Web browser.

2. The customer name should display.
3. The address should display.
4. The e-mail address should display
5. The phone number should display.
6. The order numbers should display.
7. The invoice numbers should display.

Test failure

1. Report all failures.

5.4.5 Test Case: OrderLineItem

5.4.5.1 Description

The purpose of this test case is to test the OrderLineItem class to deter-
mine if it correctly handles order line item-related data.

5.4.5.2 Required Stubs/Drivers

Driver: OrderLineItem test driver: a small console application that
assigns a value to the OrderLineItem and prints out the result
in a console window

Stub: N/A

5.4.5.3 Test Steps

1. Execute the OrderLineItem test driver in a console window. The test
driver application should execute the following methods of OrderLi-
neItem class:
a. SetServiceName()
b. SetUnitPrice()

780

SOFTWARE ENGINEERING HANDBOOK

c. SetQuantity()
d. GetServiceName()
e. GetUnitPrice()
f. GetQuantity()
g. GetTotalPrice()
h. GetTax()
i. GetTotalPriceWithTax()

2. Review the console printout to see if all property values are correct-
ly assigned and returned.

3. Review the console printout to see if the getTotalPrice method re-
turn value is the result of quantity multiplied by UnitPrice and then
add tax.

5.4.5.4 Expected Results

Test success

1. All property values assigned match property values returned.
2. The total price matches the calculation from quantity, unit price,

and tax values.

Test failure

1. Property values assigned do not match property values returned.
2. Total price does not match the calculation from quantity, unit price,

and tax values.

5.4.6 Test Case: ServiceResourceRequirement

5.4.6.1 Description

The purpose of this test case is to test the ServiceResourceRequirement
class to determine if it correctly handles the service resource requirement-
related data.

5.4.6.2 Required Stubs/Drivers

Driver: ServiceResourceRequirement test driver: a small console ap-
plication that assigns a value to ServiceResourceRequire-
ment and prints out the result in a console window.

Stubs: N/A

5.4.6.3 Test Steps

1. Execute the ServiceResourceRequirement test driver in a console
window. The test driver application should execute the following
methods of order class:
a. SetQuantity()
b. SetPercentage()

781

Test Plan

c. SetResourceType()
d. GetQuantity()
e. GetPercentage()
f. GetResourceType()

2. Review the console printout to see if all property values are correct-
ly assigned and returned.

5.4.6.4 Expected Results

Test success

1. All property values assigned match property values returned.
2. If quantity value is less than 1, an exception is raised.
3. If percentage value is greater than 1, an exception is raised.

Test failure

1. Property values assigned do not match property values returned.
2. If quantity value is less than 1, no exception is raised.
3. If percentage value is greater than 1, no exception is raised.

5.4.7 Test Case: Service

5.4.7.1 Description

The purpose of this test case is to test the service class to determine if
it correctly handles the service related data.

5.4.7.2 Required Stubs/Drivers

Driver: service test driver: a small console application that assigns a
value to the order and prints out the result in a console
window

Stubs: ServiceResourceRequirement class or stub

5.4.7.3 Test Steps

1. Execute the service test driver in a console window. The test driver
application should execute the following methods of order class:
a. SetName()
b. SetDescription()
c. SetUnitCost()
d. GetResourceRequirement()
e. GetName()
f. GetDescription()
g. GetUnitCost()

2. Review the console printout to see if all property values are correct-
ly assigned and returned.

782

SOFTWARE ENGINEERING HANDBOOK

5.4.7.4 Expected Result

Test success

1. All property values assigned match property values returned.

Test failure

1. Property values assigned do not match property values returned.

5.4.8 Test Case: Order

5.4.8.1 Description

The purpose of this test case is to test the order class to determine if it
correctly handles the order-related data.

5.4.8.2 Required Stubs/Drivers

Driver: order test driver: a small console application that assigns a
value to the order and prints out the result in a console
window

Stubs: OrderLineItem class or stub
Invoice class or stub
Payment class or stub
Customer class or stub

5.4.8.3 Test Steps

1. Execute the order test driver in a console window. The test driver
application should execute the following methods of order class:
a. SetOrderDateTime
b. SetCompletionDateTime
c. SetOrderStatus
d. GetOrderLineItems
e. GetTotalPrice
f. GetCustomer
g. GetPayment
h. GetInvoice

2. Review the console printout to see if all property values are correct-
ly assigned and returned.

3. Review the console printout to see if the getTotalPrice method re-
turn value is the total of all OrderLineItem price.

5.4.8.4 Expected Results

Test success

1. All property values assigned match property values returned.
2. The total price matches the calculation from order line items.

783

Test Plan

Test failure

1. Property values assigned do not match property values returned.
2. Total price does not match the calculation from order line items.

5.5 Accounting Subsystem

The accounting subsystem is responsible for processing the financial
transactions.

5.5.1 Test Case: Accounting:InvoicePrint

5.5.1.1 Description

The purpose of this test is to determine if the service care provider is
able to print invoices for billing.

5.5.1.2 Required Stubs/Drivers

1. Orders must be placed against the service care provider in question
via the order subsystem and the OrderService class.

2. The accounting subsystem will be invoked with the invoice class in
particular.

5.5.1.3 Test Steps

1. A test customer order must be placed against a predetermined ser-
vice care provider.

2. The service care provider must log into the system successfully.
3. The service care provider must select the invoices to be printed.

5.5.1.4 Expected Results

Test success

1. Invoices printing out successfully with the correct data will deter-
mine the success of the test.

Test failure

1. The test can be deemed unsuccessful if the invoice does not print.
2. The test will also be unsuccessful if the format is incorrect
3. The test will be unsuccessful if the wrong line items are printed.

5.5.2 Test Case: Accounting:Payment

5.5.2.1 Description

The purpose of this test is to determine if a representative of the service
care provider can enter a payment receipt within the accounting sub-
system.

784

SOFTWARE ENGINEERING HANDBOOK

5.5.2.2 Required Stubs/Drivers

The accounting subsystem will be invoked with particular attention to
the payment class.

5.5.2.3 Test Steps

1. The service care provider must successfully log into the system.
2. The service care provider must invoke the accounting user interface

to enter the payment receipt.
3. The service care provider must enter a payment receipt and press

the button to commit the transaction.

5.5.2.4 Expected Results

Test success

1. A subsequent query indicates the customer’s balance reflects the re-
cent payment.

2. A successful message is displayed.

Test failure

1. The customer’s balance does not reflect the payment receipt.
2. The customer’s balance reflects an incorrect amount that is a result

of faulty logic within the program.

5.5.3 Test Case: Accounting:InvoiceList

5.5.3.1 Description

The purpose of this test is to ensure that every time a service care pro-
vider requests to view invoices, the correct invoices will be displayed.

5.5.3.2 Required Stubs/Drivers

The application subsystem is required, with particular attention to the
invoice class.

5.5.3.3 Test Steps

1. The service care provider will successfully log into the system
2. The service care provider will select the button to view invoices.
3. The system will determine who is logged on and display the appro-

priate invoices for that user.

5.5.3.4 Expected Results

Test success

1. All invoices for the particular service care provider are displayed
with the correct information.

785

Test Plan

Test failure

1. The invoices displayed are for another service care provider.
2. The invoices indicate an incorrect balance or other incorrect

information

5.6 Customer Relationship Management Subsystem

The customer relationship management subsystem provides the appli-
cation with the ability to provide for interaction between the customers
and service care providers. It also provides the system administrator with
the ability to gain feedback from the customer in an effort to revamp the
application continually.

5.6.1 Test Case: This Feature Set Will Be Available in Phase II.

5.7 Persistence Subsystem

The persistence subsystem has responsibility for supporting persistent
data.

The purpose of this group of test cases is to determine whether the Per-
sistenceManager class is carrying out its responsibilities as expected. Per-
sistenceManager is a critical part of the system that handles the persis-
tence activities of all objects. Based on the system architecture design, the
persistence layer java code library from http://artyomr.narod.ru has been
selected to execute the majority of the persistence functionality. The per-
sistence layer code library uses an XML file to store the database map and
class map information. So the correctness of the XML file in terms of cor-
rectly mapping the class structure design with the database design will
essentially determine whether the objects can be correctly persisted to the
database. This will be a major area of potential fault of the implementation
and hence one of the major focuses of the testing of the persistence sub-
system.

Due to limit of space, the document specifies in detail the example of
customer object persistence. Note that tests in similar patterns will need
to be executed for EVERY object that needs to be persisted.

5.7.1 Test Case: PersistenceManager :: loadXMLConfig()

5.7.1.1 Description/Purpose

This test case tests the persistence manager’s functionality to load class
map and database map from XML file. Potential errors are usually related
to bad XML file entries that are not valid XML files or do not load correctly
into the class map and database map.

786

SOFTWARE ENGINEERING HANDBOOK

5.7.1.2 Required Stubs/Drivers

1. DatabaseMap and ClassMap configuration XML file in format speci-
fied by http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

5.7.1.3 Test Steps

1. Edit Config.xml with all database map and class map information ac-
cording to http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html.

2. Start PersistenceManager application by running java Persistence-
Manager.class from command prompt, loading Config.xml as the
configuration.

3. Exit PersistenceManager application.

5.7.1.4 Expected Results

Test success

1. The PersistenceManager application successfully starts without er-
ror messages.

Test failure

1. XML parser error when loading Config.xml
2. Error parsing class map and database map information

5.7.2 Test Case: PersistenceManager :: saveObject()

5.7.2.1 Description/Purpose

This test case tests the persistence manager’s functionality to save the
object to the database.

5.7.2.2 Required Stubs/Drivers

1. DatabaseMap and ClassMap configuration XML file in format speci-
fied by http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

2. Customer registration screens

5.7.2.3 Test Steps

1. Edit Config.xml with all database map and class map information ac-
cording to http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html.

2. Start PersistenceManager application by running java Persistence-
Manager.class from command prompt, loading Config.xml as the
configuration.

3. Browse to Dog E-Day-Care home page from the Web site.
4. Click register button.
5. Input customer information.
6. Click register to create a new customer.
7. Use SQL tool to open the database.

787

Test Plan

8. Execute “SELECT * FROM CUSTOMER” SQL statement and review
the result.

9. Execute “SELECT * FROM DOG” SQL statement and review the
result.

5.7.2.4 Expected Results

Test success

1. The customer and dog information should exist in the database.

Test failure

1. RMI error when clicking register button
2. Error executing SQL statement
3. Customer and dog not get added to the database

5.7.3 Test Case: PersistenceManager :: retrieveObject()

5.7.3.1 Description/Purpose

This test case tests the persistence manager’s functionality to retrieve
an object from the database.

5.7.3.2 Required Stubs/Drivers

1. DatabaseMap and ClassMap configuration XML file in format speci-
fied by http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

2. Customer information screens

5.7.3.3 Test Steps

1. Edit Config.xml with all database map and class map information ac-
cording to http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html.

2. Start persistencemanager application by running java Persistence-
Manager.class from command prompt, loading Config.xml as the
configuration.

3. Browse to Dog E-Day-Care home page from the Web site.
4. Log in to Dog E-Day-Care system.
5. Click edit customer profile button
6. Review the information retrieved from persistence manager

5.7.3.4 Expected Results

Test success

1. The customer and dog information should be retrieved and match
what was input.

Test failure

1. RMI error when clicking edit customer profile button
2. Cannot retrieve customer and dog information

788

SOFTWARE ENGINEERING HANDBOOK

3. Error executing SQL statement
4. Customer and dog information retrieved but does not match the

data that was input

6 APPENDIX 2: INTEGRATION TESTING TESTS

Integration tests are scenario based, capturing key activities that the
Dog E-DayCare SystemΤΜ allows the user to perform.

6.1 Test Case: Customer Registration

6.1.1 Description

Registering with the Dog E-DayCare system is the key task that allows
users to take advantage of the services Dog E-DayCare offers. Registration
requires collaboration among three subsystems: user management, appli-
cation controller, and persistence. The purpose of this test is to find errors
in the interactions that must take place across these subsystems.

6.1.2 Required Stubs/Drivers

No stubs or drivers are required.

6.1.3 Test Steps

1. User opens Dog E-DayCare welcome page.
2. User selects “register.”
3. Register customer/about you page displays.
4. User fills in fields and clicks next.
5. Register customer/about your dog page displays.
6. User fills in fields and clicks next.
7. Register customer/user ID, password page displays.
8. User fills in fields and clicks next.
9. Register customer/verify Information page displays with appropri-

ate information.
10. User reviews information and clicks finish.
11. Register customer/thank you page displays.
12. User receives confirmation e-mail.

6.1.4 Expected Results

Test success

1. User is able to move through each step of the registration process
successfully. User information displayed in the verify information
page is correct. Thank you page appears and user receives e-mail
confirmation.

789

Test Plan

Test failure

1. User cannot click from one step in the registration process to the next.
2. User information displayed in the verify information page is incorrect.
3. User does not receive a confirmation e-mail.

6.2 Test Case: Reallocate Resources

6.2.1 Description

One of the key services Dog E-DayCare provides to dog care companies
is the ability to manage their resources (e.g., staff, kennels, and play areas),
allocating and reallocating resources, for example, in response to staff ill-
ness, rainy weather, etc. Reallocating resources requires collaboration
among several subsystems: user management, order, resource manage-
ment, application controller, and persistence. The purpose of this test is to
find errors in the interactions that must take place across these sub-
systems.

6.2.2 Required Stubs/Drivers

No stubs or drivers are required.

6.2.3 Test Steps

1. User opens schedule/this week page.
2. User selects appointment whose resources need to be reallocated.
3. Schedule/appointment details page displays.
4. User selects option to “reallocate” resources.
5. Schedule/resource details page displays.
6. User revises resource details as necessary and clicks next.
7. Schedule/confirm changes page displays.
8. User clicks finish.
9. Revised schedule/appointment details page displays.

6.2.4 Expected Results

Test success

1. User is able to move through each step of the reallocation process
successfully. Reallocation information displayed in the confirm
changes page is correct. Appointment details have been updated.

Test failure

1. User cannot click from one step in the reallocation process to the
next.

2. User information displayed in the confirm changes page is incorrect.
3. Appointment details have not been updated.

790

SOFTWARE ENGINEERING HANDBOOK

6.3 Test Case: Search for Service Provider and Initiate Order

6.3.1 Description

The Dog E-DayCare system allows customers to search for service pro-
viders based on geographic location and service desired. From the search
results, a user can initiate an order.

Searching for a service provider and initiating an order require collabo-
ration among several subsystems: user management, order, application
controller, and persistence. The purpose of this test is to find errors in the
interactions that must take place across these subsystems.

6.3.2 Required Stubs/Drivers

No stubs or drivers are required.

6.3.3 Test Steps

1. User opens search for service provider page.
2. User enters required information and clicks “search.”
3. Search results page displays all service providers that match crite-

ria.
4. User selects “initiate order” button associated with the service pro-

vider of choice.
5. Order/initiate order page displays.

6.3.4 Expected Results

Test success

1. The search results page displays service providers matching the us-
er’s criteria. The order/initiate order page displays the name of the
service provider selected and the services available from this pro-
vider in the appropriate fields.

Test failure

1. Search results page does not display.
2. Search results do not match criteria.
3. Order/initiate order page does not display correct service provider

information.

6.4 Test Case: Place Order

6.4.1 Description

The Dog E-DayCare system allows customers to place an order for the
service they need, from a service provider of their choice, within a desired
timeframe. Placing an order requires collaboration among several

791

Test Plan

subsystems: order, user management, resource management, application
controller, and persistence. The purpose of this test is to find errors in the
interactions that must take place across these subsystems.

6.4.2 Required Stubs/Drivers

No stubs or drivers required.

6.4.3 Test Steps

1. Order/initiate order page is displayed.
2. User fills in all fields.
3. User selects “view openings.”
4. Order/openings page displays.
5. User selects an available appointment time.
6. Order/order details page displays.
7. User selects “place order.”
8. Order/order confirmation page displays.
9. An e-mail is sent to user.

6.4.4 Expected Results

Test success

1. The user is able to move successfully through each step in the pro-
cess of placing an order. The Order/openings page displays the cor-
rect information on available appointment times. The Order/order
details page displays the correct information. An email is sent to the
user.

Test failure

1. The order/openings page displays incorrect information
2. The order/order details page displays incorrect information.
3. An e-mail is not sent to the user.

6.5 Test Case: Pay for Service

6.5.1 Description

The Dog E-DayCare system allows customers to pay online for the dog
care services they have received. Paying for service requires collaboration
among several subsystems: accounting, order, user management, applica-
tion controller, and persistence. The purpose of this test is to find errors in
the interactions that must take place across these subsystems.

6.5.2 Required Stubs and Drivers

No stubs or drivers are required.

6.5.3 Test Steps

1. User opens the payment/initiate payment page.
2. User enters the order ID number and clicks “next.”
3. The payment/payment details page displays.
4. User reviews payment details and selects “next.”
5. The payment/billing address page displays.
6. User reviews information and clicks “next.”
7. The payment/credit card details page displays.
8. User enters information and clicks “next.”
9. The payment/make payment page displays.

10. User reviews information and clicks “pay now.”
11. The payment/payment confirmation page displays.
12. An e-mail is sent to user.

6.5.4 Expected Results

Test success

1. The user is able to move successfully through each step in the pro-
cess of making a payment for service. The payment/payment details
page displays the correct information. The payment/billing address
page displays the correct information. The payment/make payment
page displays the correct information. An e-mail is sent to the user.

Test failure

1. The payment/payment details page displays incorrect information
2. The payment/billing address page displays incorrect information.
3. The payment/make payment page displays incorrect information.
4. An e-mail is not sent to the user.

793

Test Plan

7 APPENDIX 3: PROJECT SCHEDULE

Exhibit O-2. Project Schedule

«subsystem»
Order

«subsystem»
Resource Management

«subsystem»
Persistence

«subsystem»
Accounting

«subsystem»
User Management

«subsystem»
Application Controller

User Request

User Response

Information StoredInformation Retrieved

Order Input

Order Response Resource Request

Resource Response

Accounting Request

Accounting Response

Retrieval Response Retrieval Request

«subsystem»
Customer Relationship Management

Customer Response

Customer Request

Phase II

RDB

This page intentionally left blank

795

Appendix P

QA Handover
Document

QA Handover Document

__________________________ ________ _______________ ___________________

Submitted: Dept. Phone number Submission date

______________________________ _____________________________ ______________________

Application/module Product/form to test (required) Implementation date

______________________________ _____________________________ ______________________

Handover item name/description Version/built New/modified

Brief but thorough description of the modification, along with any special testing requirements

Testing done at the development stage (attach documentation [required])

Known issues (documentation attached [required])

Team member/developer ___________________________________

Project manager ___________________________________

QA analyst ___________________________________

QA manager ___________________________________

Systems manager ___________________________________

This page intentionally left blank

797

Appendix Q

Software Metrics
Capability Evaluation
Questionnaires
METRICS CUSTOMER PROFILE FORM

1. Point of contact information:

a. Name: _________________________

b. Position: ______________________

c. Office symbol: _________________

d. Location: ______________________

e. Phone #: ______________________ DSN: __________________

f. Fax number: ___________________

g. E-mail address: ________________

h. Organization name: _____________

i. Products: ______________________

2. Environment information:

a. Hardware platform: _______________________________________

b. Languages used: ___

c. Tools used for metrics: ___________________________________

3. Organization information:

a. Copy of organization chart: ________________________________

b. Type(s) of software (real time, communication, command and

control, MIS, other):_______________________________________

798

SOFTWARE ENGINEERING HANDBOOK

c. Type(s) of activity (development, acquisition, maintenance,

combination, other): ______________________________________

d. Do project teams comprise members from more than one orga-

nization? (If yes, please give examples) _____________________

e. Typical size of development organization for a particular

program (or project) (less than 10, 10 to 40, more than 40

personnel): __

f. Typical length of project (< 6 mo, 6 to 18 mo, 18 mo to 3 yr, > 3 yr):

4. General background:

a. What are the organization’s strengths? ______________________

b. Can you demonstrate these strengths through measurements

or other objective means? (If yes, please give examples): _____

c. What are the organization’s biggest challenges? _____________

d. Have measurements or other objective means been used to

understand or to help manage these challenges? (If yes, please

give examples): __

5. Metrics background:

a. Does your organization require software development plans to

be developed and used? ___________________________________

b. Are project management tools used? (If yes, please give

examples): ___

799

Software Metrics Capability Evaluation Questionnaires

c. How is project status reported? (Please give examples): ______

d. How is product quality reported? (Please give examples): ____

e. What forces are driving the interest in metrics in your

organization? __

ACQUISITION ORGANIZATION QUESTIONNAIRE

Questions for Metrics Capability Level 2

Theme 1: Formalization of Source Selection and Contract Monitoring Process

Question Yes No NA ?

1a Is a software capability evaluation (SCE) or
software development capability evaluation
(SDCE) for developers part of your source se-
lection process? □ □ □ □

Comments:

1b Is proof of a specific CMM level required from
developers as part of your source selection
process? □ □ □ □

Comments:

2 Does your organization require and evaluate
developers’ draft software development plans
as part of the source selection process? □ □ □ □

Comments:

3 Are software metrics required as part of devel-
opers’ software development plans (or other
contractually binding metrics plans)? □ □ □ □

Comments:

4 Are software cost and schedule estimates re-
quired from the developer as part of the
source selection process? □ □ □ □

Comments:

800

SOFTWARE ENGINEERING HANDBOOK

Question Yes No NA ?

5 Is the developer’s project performance moni-
tored based on the cost and schedule esti-
mates? □ □ □ □

Comments:

6 Are the acquirers’ management plans devel-
oped, used, and maintained as part of manag-
ing a program? □ □ □ □

Comments:

Theme 2: Formalization of Metrics Process

1 Is there a written organizational policy for col-
lecting and maintaining software metrics for
this program? □ □ □ □

Comments:

2 Is each program required to identify and use
metrics to show program performance? □ □ □ □

Comments:

3 Is the use of software metrics documented? □ □ □ □

Comments:

4 Are developers required to report a set of
standard metrics? □ □ □ □

Comments:

Theme 3: Scope of Metrics

1 Are internal measurements used to determine
the status of the activities performed for plan-
ning a new acquisition program? □ □ □ □

Comments:

2 Are measurements used to determine the sta-
tus of software contract management activi-
ties? □ □ □ □

Comments:

3 Do your contracts require metrics on the de-
veloper’s actual results (e.g., schedule, size,
and effort) compared to the estimates? □ □ □ □

Comments:

801

Software Metrics Capability Evaluation Questionnaires

Question Yes No NA ?

4 Can you determine whether the program is
performing according to plan based on mea-
surement data provided by the developer? □ □ □ □

Comments:

5 Are measurements used to determine your or-
ganization’s planned and actual effort applied
to performing acquisition planning and pro-
gram management? □ □ □ □

Comments:

6 Are measurements used to determine the sta-
tus of your organization’s software configura-
tion management activities? □ □ □ □

Comments:

Theme 4: Implementation Support

1 Does the program (or project) have a data-
base of metrics information? □ □ □ □

Comments:

2 Do you require access to the contractor’s met-
rics data as well as completed metrics re-
ports? □ □ □ □

Comments:

3 Does your database (or collected program da-
ta) include both developer’s and acquirer’s
metrics data? □ □ □ □

Comments:

Theme 5: Metrics Evolution

1 Is someone from the acquisition organization
assigned specific responsibilities for tracking
the developer’s activity status (e.g., schedule,
size, and effort)? □ □ □ □

Comments:

2 Does the developer regularly report the met-
rics defined in the developer’s software devel-
opment plan (or other contractually binding
metrics plan)? □ □ □ □

Comments:

802

SOFTWARE ENGINEERING HANDBOOK

Question Yes No NA ?

3 Do your contracts have clauses that allow the
acquirer to request changes to the developer’s
metrics based on program needs? □ □ □ □

Comments:

Theme 6: Metrics Support for Management Control

1 Do you track your developer’s performance
against the developer’s commitments? □ □ □ □

Comments:

2 Are the developer’s metrics results used as an
indicator of when contract performance
should be analyzed in detail? □ □ □ □

Comments:

3 Are metrics results used to support risk man-
agement, particularly with respect to cost and
schedule risks? □ □ □ □

Comments:

4 Are program acquisition and program man-
agement metrics used to help determine when
changes should be made to your plans (e.g.,
changes to schedules for completion of plan-
ning activities and milestones, etc.)? □ □ □ □

Comments:

5 Are measurements used to determine the sta-
tus of verification and validation activities for
software contracts? □ □ □ □

Comments:

Questions for Metrics Capability Level 3

Theme 1: Formalization of Source Selection and
Contract Monitoring Process

1 Do you require developers to show proof of
software development maturity at a minimum
of CMM Level 3? □ □ □ □

Comments:

803

Software Metrics Capability Evaluation Questionnaires

Question Yes No NA ?

2 Is your software acquisition process reviewed
for improvement periodically? □ □ □ □

Comments:

3 Does your organization have a standard soft-
ware acquisition process? □ □ □ □

Comments:

4 Do one or more individuals have responsibili-
ty for maintaining the organization’s standard
software acquisition processes? □ □ □ □

Comments:

5 Does the organization follow a written policy
for developing and maintaining the acquisi-
tion process and related information (e.g., de-
scriptions of approved tailoring for standards
based on program attributes)? □ □ □ □

Comments:

Theme 2: Formalization of Metrics Process

1 Do you have documented standards for met-
rics definitions and for reporting formats you
require from developers? □ □ □ □

Comments:

2 Can these standards be tailored to the size,
scope, and type of the software to be ac-
quired? □ □ □ □

Comments:

3 Are specific metrics requested for each new
acquisition based on your organization’s met-
rics standards? □ □ □ □

Comments:

4 Is someone from your organization assigned
specific responsibilities for maintaining and
analyzing the contractor’s metrics regarding
the status of software work products and ac-
tivities (e.g., effort, schedule, quality)? □ □ □ □

Comments:

804

SOFTWARE ENGINEERING HANDBOOK

Theme 3: Scope of Metrics

Question Yes No NA ?

1 Do you collect, maintain, and report metrics
data for all new (in the last three years) con-
tracts? □ □ □ □

Comments:

2 Do you use automated tools that support met-
rics collection, maintenance, and reporting? □ □ □ □

Comments:

3 Do you and your developers use automated
metrics tools that allow you to share contract
metrics data? □ □ □ □

Comments:

4 During contract negotiations, do the program
goals drive the metrics required for the
contract? □ □ □ □

Comments:

5 Do the metrics collected include specific prod-
uct metrics (e.g., quality, reliability, maintain-
ability)? □ □ □ □

Comments:

6 Do you require metrics summary reports that
show general program trends as well as de-
tailed metrics information? □ □ □ □

Comments:

Theme 4: Implementation Support

1 Does your program metrics database include
information on specific product metrics (e.g.,
quality, reliability, maintainability)? □ □ □ □

Comments:

2 Do you share metrics data across programs? □ □ □ □

Comments:

3 Is the metrics data shared through a common
organizational database? □ □ □ □

Comments:

805

Software Metrics Capability Evaluation Questionnaires

Question Yes No NA ?

4 Does your organization have a standard length
of time that you retain metrics data? □ □ □ □

Comments:

5 Does the organization verify the metrics data
maintained in the metrics database? □ □ □ □

Comments:

6 Does your organization manage and maintain
the metrics database? □ □ □ □

Comments:

Theme 5: Metrics Evolution

1 Do you use product metrics in making man-
agement decisions? (For example, a decision
is made to delay the schedule because of
known defects.) □ □ □ □

Comments:

2 Are product metrics reported during program
management reviews (e.g., defects by severity
or defects by cause)? □ □ □ □

Comments:

3 Are both project and product metrics used in
making management decisions regarding con-
tract performance? □ □ □ □

Comments:

4 Does your organization periodically review
the current metrics set for ongoing useful-
ness? □ □ □ □

Comments:

5 Does your organization periodically review
the current metrics set to determine if new
metrics are needed? □ □ □ □

Comments:

Theme 6: Metrics Support for Management Control

1 Are measurements used to determine the sta-
tus of the program office activities performed
for managing the software requirements? □ □ □ □

806

SOFTWARE ENGINEERING HANDBOOK

Comments:

2 Are product metrics used as an indicator for
renegotiating the terms of contracts when
necessary? □ □ □ □

Comments:

3 Are product metrics used in reports forward-
ed to higher level management concerning
contract performance? □ □ □ □

Comments:

4 Are measurements used to forecast the status
of products during their development? □ □ □ □

Comments:

5 Are product metrics used as inputs to award
fee calculations for cost-plus-award-fee con-
tracts? □ □ □ □

Comments:

6 Do metrics serve as inputs for determining
when activities need to be initiated (or modi-
fied) to mitigate technical program risks? □ □ □ □

Comments:

SOFTWARE DEVELOPMENT/MAINTENANCE ORGANIZATION
QUESTIONNAIRE

Questions for Metrics Capability Level 2

Theme 1: Formalization of the Development Process

Question Yes No NA ?

1a Has your organization been assessed via the
SEI CMM?a (This could be an independent as-
sessment or an internal assessment support-
ed by an SEI-authorized source.) □ □ □ □

Comments:

1b Has your organization been assessed via some
vehicle other than the SEI CMM? □ □ □ □

Comments:

807

Software Metrics Capability Evaluation Questionnaires

Question Yes No NA ?

2 Are software development plans developed,
used, and maintained as part of managing soft-
ware projects? □ □ □ □

Comments:

3 Are software metrics included in your soft-
ware development plans or other contractual
binding documents? □ □ □ □

Comments:

4 Does your organization have an ongoing soft-
ware process improvement program? □ □ □ □

Comments:

Theme 2: Formalization of Metrics Process

1 Is there a written policy for collecting and
maintaining project management metrics (e.g.
cost, effort, and schedule)? □ □ □ □

Comments:

2 Do standards exist for defining, collecting, and
reporting metrics? □ □ □ □

Comments:

3 Is each project required to identify and use
metrics to show project performance? □ □ □ □

Comments:

Theme 3: Scope of Metrics

1 Are measurements used to determine the sta-
tus of activities performed during software
planning? □ □ □ □

Comments:

2 Are measurements used to determine and
track the status of activities performed during
project performance? □ □ □ □

Comments:

3 Does the project manager establish cost and
schedule estimates based on prior experi-
ence? □ □ □ □

Comments:

808

SOFTWARE ENGINEERING HANDBOOK

Theme 4: Implementation Support

Question Yes No NA ?

1 Is there a project database of metrics informa-
tion? □ □ □ □

Comments:

2 Is the project manager responsible for imple-
menting metrics for the project? □ □ □ □

Comments:

3 Do you keep metrics from project to project
(historical data)? □ □ □ □

Comments:

Theme 5: Metrics Evolution

1 Do you report the project’s actual results (e.g.,
schedule and cost) compared to estimates? □ □ □ □

Comments:

2 Is someone on the staff assigned specific re-
sponsibilities for tracking software project ac-
tivity status (e.g., schedule, size, cost)? □ □ □ □

Comments:

3 Do you regularly report the metrics defined in
the software development plan or other con-
tractually required documents? □ □ □ □

Comments:

Theme 6: Metrics Support for Management Control

1 Do metrics results help the project manager
manage deviations in cost and schedule? □ □ □ □

Comments:

2 Are measurements used to determine the sta-
tus of software configuration management ac-
tivities on the project? □ □ □ □

Comments:

3 Are measurements used to determine the sta-
tus of software quality assurance activities on
the project? □ □ □ □

Comments:

809

Software Metrics Capability Evaluation Questionnaires

Question Yes No NA ?

4 Are measurements used to determine the sta-
tus of activities performed for managing the al-
located requirements (e.g., total number of
requirements changes that are proposed,
open, approved, and incorporated into the
baseline)? □ □ □ □

Comments:

5 Are cost and schedule estimates documented
and used to refine the estimation process? □ □ □ □

Comments:

6 Do you report metrics data to the customer
based on customer requirements? □ □ □ □

Comments:

Questions for Metrics Capability Level 3

Theme 1: Formalization of the Development Process

1 Is your software development process period-
ically reviewed for improvement? □ □ □ □

Comments:

2 Does your organization’s standard software
process include processes that support soft-
ware management and software engineering? □ □ □ □

Comments:

3 Can your processes be tailored to the size and
scope of the project? □ □ □ □

Comments:

Theme 2: Formalization of Metrics Process

1 Do you have documented organizational stan-
dards for metrics (e.g., metrics definitions,
analyses, reports, and procedures)? □ □ □ □

Comments:

2 Can these standards be tailored to the size and
scope of the software project? □ □ □ □

Comments:

810

SOFTWARE ENGINEERING HANDBOOK

Question Yes No NA ?

3 Are standards established for the retention of
metrics? □ □ □ □

Comments:

4 Are specific project and product metrics pro-
posed for each software project based on the
organization’s metrics standards? □ □ □ □

Comments:

5 Is someone assigned specific responsibilities
for maintaining and analyzing metrics regard-
ing the status of software work products and
activities (e.g., size, effort, schedule, quality)? □ □ □ □

Comments:

6 Does the organization collect, review, and
make available information related to the use
of the organization’s standard software pro-
cess (e.g., estimates and actual data on soft-
ware size, effort, and cost; productivity data;
and quality measurements)? □ □ □ □

Comments:

Theme 3: Scope of Metrics

1 Do project and organization management and
technical goals drive the metrics required? □ □ □ □

Comments:

2 Do you collect, maintain, and report project
and product metrics data for all projects? □ □ □ □

Comments:

3 Do you use automated tools that support met-
rics collection, maintenance, and reporting? □ □ □ □

Comments:

4 Do the metrics collected include specific prod-
uct metrics (e.g., quality, reliability, maintain-
ability)? □ □ □ □

Comments:

811

Software Metrics Capability Evaluation Questionnaires

Question Yes No NA ?

5 Do you report product metrics (e.g., prob-
lem/defect density by product, amount of re-
work, or status of allocated requirements)
throughout the development life cycle? □ □ □ □

Comments:

Theme 4: Implementation Support

1 Does your metrics database include informa-
tion on specific product metrics (e.g., quality,
reliability, maintainability)? □ □ □ □

Comments:

2 Do you share metrics data across software
projects? □ □ □ □

Comments:

3 Is the metrics data shared through a common
organizational database? □ □ □ □

Comments:

4 Does your organization have a standard length
of time that you retain metrics data? □ □ □ □

Comments:

5 Does your organization verify the metrics data
maintained in the metrics database? □ □ □ □

Comments:

6 Does your organization manage and maintain
the metrics database? □ □ □ □

Comments:

7 Have normal ranges been established for
project metrics reported (e.g., the difference
between planned and actual schedule commit-
ments)? □ □ □ □

Comments:

Theme 5: Metrics Evolution

1 Do you use product metrics as well as project
metrics in making management decisions? □ □ □ □

Comments:

812

SOFTWARE ENGINEERING HANDBOOK

Question Yes No NA ?

2 Are product metrics as well as project metrics
reported during program management re-
views (e.g., the number of defects per SLOC)? □ □ □ □

Comments:

3 Do you report metrics to your internal
manager? □ □ □ □

Comments:

4 Do you report metrics to your customer? □ □ □ □

Comments:

Theme 6: Metrics Support for Management Control

1 Are product metrics as well as project metrics
used as indicators for renegotiating the terms
of contracts when necessary (e.g., you decide
to extend a schedule based on the known
number of defects in the product)? □ □ □ □

Comments:

2 Do metric results help isolate technical
problems? □ □ □ □

Comments:

3 Are improvements to the metrics process (in-
cluding metrics standards, procedures, defini-
tions, etc.) based on analysis and lessons
learned? □ □ □ □

Comments:

4 Are measurements used to determine the
quality of software products (i.e., numbers,
types, and severity of defects identified)? □ □ □ □

Comments:

5 Do you maintain metrics specifically to help
manage your project? □ □ □ □

Comments:

813

Software Metrics Capability Evaluation Questionnaires

SOFTWARE METRICS CAPABILITY EVALUATION REPORT:
ANNOTATED OUTLINE

The goals of the software metrics capability evaluation report are as
follows:

1. Report the results of the evaluation. The results have two
components:
a. General results (i.e., metrics capability level and an overview of

the organization’s metrics-related strengths and weaknesses)
b. Discussion of the organization’s strengths and weaknesses

based on each of the six measurement themes identified
2. Discuss recommendations for improvement. These recommenda-

tions will be based on the results of the evaluation and may include
one or more of several elements, such as:
a. A recommended set of high-payback activities that the organiza-

tion could use to implement metrics capability improvements
b. Recommendations to implement a metrics improvement pro-

gram that would be tailored to meet the specific organization’s
goals based on follow-up consulting and plan preparation.
These recommendations would include a brief description of
the areas to be covered in the metrics improvement program to
help open communication with the organization.

3. Recommendations to implement other management or engineering
improvement activities that would be tailored to meet the specific
organization’s objective based on follow-up consulting and plan
preparation. These recommendations would include a brief descrip-
tion of the areas to be covered in the program to help open commu-
nication with the organization.

Question Yes No NA ?

6 Are management decisions made as a result of
metrics reported? (For example, is corrective
action taken when actual results deviate sig-
nificantly from the project’s software plans?) □ □ □ □

Comments:

7 Are metrics reported to the customer consis-
tent with internally reported metrics? □ □ □ □

Comments:

a Score only one correct for a yes response to either 1a or 1b. If neither is a yes answer,
score only one no.

814

SOFTWARE ENGINEERING HANDBOOK

ORGANIZATION INFORMATION FORM

Credibility:

1. How would you characterize the organization’s customer satisfaction?

□ Excellent □ Good □ Fair □ Poor

Please explain: ___

2. How would you characterize the organization’s ability to meet
schedule commitments?

□ Excellent □ Good □ Fair □ Poor

Please explain: ___

3. How would you characterize the organization’s ability to meet bud-
get commitments?

□ Excellent □ Good □ Fair □ Poor

Please explain: ___

4. How would you characterize the organization’s product quality?

□ Excellent □ Good □ Fair □ Poor

Please explain: ___

5. How would you characterize the organization’s staff productivity?

□ Excellent □ Good □ Fair □ Poor

Please explain: ___

6. How would you characterize the organization’s staff morale and job
satisfaction?

□ Excellent □ Good □ Fair □ Poor

Please explain: ___

7. How frequently do the development projects have to deal with
changes in customer requirements?

□ Weekly or daily □ Monthly □ Less often □ Rarely if ever

Please explain: ___

Motivation:

1. To what extent are there tangible incentives or rewards for success-
ful metrics use?

□ Substantial□ Moderate□ Some □ Little if any □ Don’t know

Please explain: ___

815

Software Metrics Capability Evaluation Questionnaires

2. To what extent do technical staff members feel that metrics get in
the way of their “real” work?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

3. To what extent have managers demonstrated their support for rath-
er than compliance to organizational initiatives or programs?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

4. To what extent do personnel feel genuinely involved in decision
making?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

5. What does management expect from implementing metrics?

Please explain: ___

Culture/Change History:

1. To what extent has the organization used task forces, committees,
and special teams to implement projects?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

2. To what extent does “turf guarding” inhibit the operation of the or-
ganization?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

3. To what extent has the organization been effective in implementing
organization initiatives (or improvement programs)?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

4. To what extent has previous experience led to much discourage-
ment or cynicism about metrics?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

816

SOFTWARE ENGINEERING HANDBOOK

5. To what extent are lines of authority and responsibility clearly
defined?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

Organization Stability

1. To what extent has there been turnover in key senior management?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

2. To what extent has there been a major reorganization or staff down-
sizing?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

3. To what extent has there been growth in staff size?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

4. How much turnover has there been among middle management?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

5. How much turnover has there been among the technical staff?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

Organizational Buy-In

1. To what extent are organizational goals clearly stated and well
understood?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

2. What level of management participated in the goal setting?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

817

Software Metrics Capability Evaluation Questionnaires

3. What is the level of buy-in to the goals within the organization?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

4. To what extent does management understand the issues faced by
the practitioners?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

5. To what extent have metrics been used for improving processes?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

6. To what extent has there been involvement of the technical staff in
metrics?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

7. To what extent do individuals whose work is being measured under-
stand how the metrics are or will be used in the management
process?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

Measurement Knowledge/Skills

1. How widespread is metrics knowledge and training?

□ Substantial □ Moderate □ Some □ Little if any □ Don’t know

Please explain: ___

2. What type of metrics training have members of the organization par-
ticipated in?

□ Statistical Process Control □ Data Analysis

□ Metrics Application □ Basics □ Don’t know

Other: __

This page intentionally left blank

819

Appendix R

IT Staff Competency
Survey
Directions: Please rate your perception of your abilities on a scale of 1 to 5,
with 1 the lowest score and 5 the highest. In addition, please use the same
scale to rate the importance of this trait in your current work environment.

COMMUNICATIONS

1. IT professionals must communicate in a variety of settings using
oral, written, and multimedia techniques.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

PROBLEM SOLVING

2. IT professionals must be able to choose from a variety of different
problem-solving methodologies to formulate a solution analytically.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

3. IT professionals must think creatively in solving problems.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

820

SOFTWARE ENGINEERING HANDBOOK

4. IT professionals must be able to work on project teams and use
group methods to define and solve problems.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

ORGANIZATION AND SYSTEMS THEORY

5. IT professionals must be grounded in the principles of systems
theory.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

6. IT professionals must have sufficient background to understand the
functioning of organizations because the information system must
be congruent with and supportive of the strategy, principles, goals,
and objectives of the organization.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

7. IT professionals must understand and be able to function in the mul-
tinational and global context of today’s information-dependent
organizations.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

821

IT Staff Competency Survey

QUALITY

8. IT professionals must understand quality, planning, steps in the con-
tinuous improvement process as it relates to the enterprise, and
tools to facilitate quality development.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

9. As the IT field matures, increasing attention is directed to problem
avoidance and process simplification through re-engineering. Error
control, risk management, process measurement, and auditing are
areas that IT professionals must understand and apply.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

10. IT professionals must possess a tolerance for change and skills for
managing the process of change.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

11. Given the advancing technology of the IT field, education must be
continuous.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

822

SOFTWARE ENGINEERING HANDBOOK

12. IT professionals must understand mission-directed, principle-cen-
tered mechanisms to facilitate aligning group as well as individual
missions with organizational missions.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

GROUPS

13. IT professionals must interact with diverse user groups in team and
project activities.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

14. IT professionals must possess communication and facilitation skills
with team meetings and other related activities.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

15. IT professionals must understand the concept of empathetic listen-
ing and utilize it proactively to solicit synergistic solutions in which
all parties to an agreement can benefit.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

823

IT Staff Competency Survey

16. IT professionals must be able to communicate effectively with a
changing work force.

Ψουρ σελφ ρατινγ:

Λοω Ηιγη

1 2 3 4 5

Ιµπορτανχε οφ τηισ τραιτ το ψουρ οργανιζατιον:

Λοω Ηιγη

1 2 3 4 5

Reference

McGuire, E.G. and Randall, K.A. (1998). Process improvement competencies for IS profession-
als: a survey of perceived needs, ACM Special Interest Group on Computer Personnel Re-
search, ACM Press.

This page intentionally left blank

825

Appendix S

Function Point
Counting Guide
In the late 1970s IBM asked one of its employees, Allan Albrecht, to develop
a language-independent approach to estimating software development
effort. The result was the function point technique. Several years later a
function point counting manual was produced by IBM’s GUIDE organiza-
tion. By the late 1980s, the International Function Point Users Group
(IFPUG) had been founded and duly published its own counting practices
manual. In 1994, IFPUG produced Release 4.0 of its counting practices man-
ual. IFPUG is now up to Release 4.1.1 of the manual.

Function points are a measure of the size of computer applications and
the projects that build them. The size is measured from a functional point
of view. The counting methodology is independent of computer language,
development methodology, technology, or capability of the project team
used to develop the application. Function points are not a perfect measure
of effort to develop an application or of its business value, although the
size in function points is typically an important factor in measuring each.

Function points measure software by quantifying the functionality pro-
vided external to itself, based primarily on logical design. With this in
mind, the objectives of function point counting are to:

• Measure what the user requested and received
• Measure independently of technology used for implementation
• Provide a sizing metric to support quality and productivity analysis
• Provide a vehicle for software estimation
• Provide a normalization factor for software comparison

In addition to meeting these objectives, the process of counting function
points should be:

• Simple enough to minimize the overhead of the measurement process
• Simple yet concise, to allow for consistency over time, projects, and

practitioners

The function point metric measures an application based on two areas
of evaluation. The first results in the unadjusted function point count and
reflects the specific countable functionality provided to the user by the
application. The second area of evaluation, which produces the value

826

SOFTWARE ENGINEERING HANDBOOK

adjustment factor (VAF), evaluates the general functionality provided to
the user of the application.

UNADJUSTED FUNCTION POINT COUNT

An application’s specific user functionality is evaluated in terms of what
is delivered by the application, not how it is delivered; only user-requested
and visible components are counted. These components are categorized
into function types, which in turn are categorized as data or transactional.

Data:

• Internal logical files (ILFs) — internally maintained logical group of
data

• External interface files (EIFs) — externally maintained logical group of
data

Transactional:

• External inputs (EIs) — maintain internally stored data
• External outputs (EOs) — data output
• External inquiries (EQs) — combination of input (request) and output

(retrieval)

Each function type is further categorized based on its relative functional
complexity as:

• Low
• Average
• High

Function point values ranging from 3 to 15, depending on the function
type and functional complexity rating, are assigned and totaled, producing
the unadjusted function point count. The unadjusted function point count
is then weighted by the VAF to produce the final function point count.

VALUE ADJUSTMENT FACTOR

The VAF comprises 14 general system characteristic (GSC) questions
that assess the general functionality of the application:

1. Data communication
2. Distributed function
3. Performance
4. Heavily used configuration
5. Transaction rates
6. Online data entry
7. Design for end-user efficiency
8. Online update
9. Complex processing

827

Function Point Counting Guide

10. Usable in other applications
11. Installation ease
12. Operational ease
13. Multiple sites
14. Facilitate change

The questions are answered using degrees of influence (DI) on a scale of
zero to five:

• 0 Not present, or no influence
• 1 Incidental influence
• 2 Moderate influence
• 3 Average influence
• 4 Significant influence
• 5 Strong influence throughout

TYPES OF FUNCTION POINT COUNTS

Function point counts can be associated to projects or to applications.
The three types of function point counts are:

• Development (project) function point count —function point count as-
sociated with the initial installation of new software. This count mea-
sures the function provided to the end users by the project. It includes
the functionality provided by data conversion and associated conver-
sion reporting requirements. The development function point count,
minus those function points associated with conversion activities, be-
comes the application function point count once the project is in-
stalled.

• Enhancement (project) function point count — function point count as-
sociated with the enhancement of existing software. This count mea-
sures the modifications to the existing application that add, change, or
delete user function within the scope of a project. It includes the func-
tionality provided by data conversion and associated conversion re-
porting requirements. When an enhancement project is installed, the
application function point count must be updated to reflect changes in
the application’s functionality.

• Application function point count — function point count associated
with an installed application. It is also referred to as the baseline or in-
stalled function point count. This count provides a measure of the cur-
rent function that the application provides to the end user. This
number is initialized at the time the development function point count
is completed. This count does not include the functionality provided
by data conversion and associated conversion reporting require-
ments. It can therefore differ from the development function point
count. It is altered every time an enhancement alters the application’s
function.

828

SOFTWARE ENGINEERING HANDBOOK

BOUNDARIES

Boundaries identify the border between the application or project mea-
sured and either external applications or the user domain. Boundaries are
used to establish the scope of the work product measured. Additionally,
they are used to establish data ownership and processing relationships
that are required when conducting a function point count. Associated mea-
surement data (e.g., effort, cost, defects) should be collected at the same
level as the application or project boundaries.

Application Boundary

Look at the application from the user’s point of view — what the user can
understand and describe. The boundary between related applications
should be based on separate business functions as seen by the user, not on
technological concerns. Use the system external specifications or get a
system flow chart and draw a boundary around it to highlight what is inter-
nal and what is external to the application. The boundary should be stable
and correspond to how the application is maintained.

Development (Project) Boundary

Again, look at the application from the user’s point of view — what the
user can understand and describe. Use the system external specifications
or get a system flow chart and draw a boundary around it to highlight what
is internal and what is external to the application.

Enhancement (Project) Boundary

An enhancement project’s boundary must conform to the boundaries
already established for the application being modified. For ease of devel-
opment, separate or small phases should not be considered separate
project boundaries.

COUNTING RULES

The function point metric measures the application based on two areas
of evaluation. The first produces the unadjusted function point count that
is a measure of the specific, countable functionality provided to the user by
the application. The second area of evaluation, which produces the VAF,
evaluates the general functionality of the application. This is done based
on the 14 general system characteristics discussed in detail in a later sec-
tion. The five function types discussed briefly next are discussed in detail
in following sections.

Unadjusted Function Point Count

Unadjusted function points are calculated based on those components of
an application that are requested and visible to the user; these components

829

Function Point Counting Guide

are categorized into function types, which in turn can be categorized as data
or transactional.

Data function types represent the functionality provided to the user to
meet internal and external data requirements.

• Internal logical files (ILFs) reside internal to an application’s boundary
and reflect data storage functionality provided to the user. ILFs must
be maintained and utilized by the application.

• External interface files (EIFs) reside external to an application’s
boundary and reflect the functionality provided by the application
through the use of data maintained by other applications.

Although ILFs and EIFs contain the word “file” in their titles, they are not
files in the traditional data processing sense. In this case, file refers to a log-
ically related group of data and not the physical implementation.

Transactional function types represent the functionality provided to the
user for processing data by an application.

• External inputs (EIs) reflect the functionality provided to the user for
the receipt and maintenance (add, change, and delete) of data on in-
ternal logical files.

• External outputs (EOs) reflect the functionality provided to the user
for output generated by the application from internal logical files or
external interface files.

• External inquiries (EQs) reflect the functionality provided to the user
for queries of internal logical files or external interface files.

INTERNAL LOGICAL FILES

Internal logical files represent an application’s maintainable data stor-
age requirements. These files are evaluated and contribute to the function
point count based on their number and relative functional complexity.

Definitions

• An ILF is a user-identifiable group of logically related data or control
information maintained and utilized within the boundary of the
application.

• User identifiable group of logically related data refers to data related at
such a level that an experienced user would identify the data as fulfill-
ing a specific user requirement of the application. The data analysis
equivalent to such high-level logical groupings is singularly named
data stores on a data-flow diagram.

• Control information is data used by the application to ensure compli-
ance with business function requirements specified by the user.

• Maintained is the ability to add, change, or delete data through a stan-
dardized process of application.

830

SOFTWARE ENGINEERING HANDBOOK

Methodology

Identification

• Identify all data that is:
— Stored internal to the application’s boundary
— Maintained through a standardized process of the application
— Identified as a requirement of the application by the users

• Group the data logically based on the user’s view:
— Group data at the level of detail at which the user can first catego-

rize the data as satisfying unique requirements of the application.
— View the data logically. Some storage technologies, such as tables

in a relational DBMS or a sequential flat file, relate closely to internal
logical files; however, do not assume that one physical file equals
one logical file.

Examples

To identify potential ILFs, look at the type of data stored and how a user
would view or group the data, rather than storage technology such as
tables, flat files, indices, and paths. Each type of data on the following list
can relate to one or more ELFs, depending on the user’s view.

• Application data (master files such as those for tax information and
personnel information)

• Application security data
• Audit data
• Help messages
• Error messages
• Edit data

The following are ILFs:

• Back-up data is counted ONLY if specifically requested by the user due
to legal or similar requirements.

• ILFs maintained by more than one application are credited to both ap-
plications at the time each is counted.

The following are not ILFs:

• Temporary files
• Work files
• Sort files
• Suspense files (These are files containing incomplete transactions from

an external Input. Do not count unless data on the suspense file can be
accessed or maintained by the user through unique EIs, EOs, or EQs.)

• Back-up data required for corporate back-up and recovery procedures

831

Function Point Counting Guide

• Files introduced only because of technology used; for example, a file
containing JCL required for job submission

• Alternate indices (These are an alternative physical access method.)

Issues and Resolutions

The following are not discussed in Albrecht’s 1984 document but are
decisions of the IFPUG Counting Practices Committee (CPC):

1. Back-up files are counted only if specifically requested by the user to
meet legal or similar requirements. Back-up files required for normal
back-up and recovery procedures are not counted.

2. ILFs maintainable by more than one application are credited to both
applications at the time each is counted.

3. Suspense/carry around files are counted as an ILF only if the sus-
pense file can be accessed or maintained by the user through unique
EIs, EOs, or EQs.

EXTERNAL INTERFACE FILES

External interface files represent an application’s externally maintained
data storage requirements. EIFs are evaluated and contribute to the func-
tion point count based on their number and relative functional complexity.

Definitions

• An EIF is a user identifiable group of logically related data or control in-
formation utilized by the application, but maintained by another appli-
cation.

• User identifiable group of logically related data is defined as data relat-
ed at such a level that an experienced user would identify the data as
fulfilling a specific user requirement of the application.

• Control information is data used by the application to assure compli-
ance with business function requirements specified by the user.

Methodology

Identification

• Identify all data that is:
— Stored external to the application’s boundary
— Not maintained by this application
— Identified as a requirement of the application by the users

• Group the data logically based on the user’s view:
— View data at the level of detail at which the user can first categorize

the data as satisfying unique requirements of the application

832

SOFTWARE ENGINEERING HANDBOOK

— View the data logically. Some storage technologies, such as tables
in a relational DBMS or a sequential flat file, relate closely to EIFs;
however, do not assume that one physical file equals one logical file.

Examples

When identifying potential EIFs, look at the type of data and how a user
would view it rather than storage technologies such as tables, flat files,
indexes, and paths. Each type of data on the following list can relate to one
or more EIFs, depending on the user’s view:

• Reference data (external data utilized by the application, but not
maintained on internal logical files)

• Help messages
• Error messages
• Edit data (criteria)

The following are not EIFs:

• Data received from another application that adds, changes, or deletes
data on an ILF (This is considered transaction data and therefore the
process of maintaining the data is counted as external input.)

• Data maintained by the application being counted, but accessed and
utilized by another application

• Data formatted and processed for use by another application (count-
ed as an external output)

Issues and Resolutions

The following decision of the IFPUG CPC differs from Albrecht’s 1984
document:

EIF is not credited to the “sending application”: Albrecht’s methodology
credits EIFs to the application maintaining the data and to the applica-
tion using the data by differentiating EIFs from EIs and EOs based on the
directional flow and use of the data by the application.

Function type determination is based on how the application that
receives the data utilizes it. If the data is used to update an ILF, it is
either an EI or EO, depending on data flow. If the data is not maintained
on an ILF, it is an EIF, regardless of the data flow.

Two issues have been raised with Albrecht’s 1984 method of identifying
EIFs:

• Function point counts must be updated if, subsequent to the count,
access to an ILF is given to another application.

• Because it cannot always be determined how the other application is
using the data, various methods have evolved to handle this situation,
resulting in inconsistent counting rules.

833

Function Point Counting Guide

To resolve these problems, only the application receiving the data can
have EIFs. As a result, an application’s function point count is dependent
only on the application as it currently exists and not on future events or
another application’s use of data.

EXTERNAL INPUTS

EIs represent an application’s data maintenance and control processing
requirements. They are evaluated and contribute to the function point
count based on their number and relative functional complexity.

Definitions

• An EI processes data or processes control information that enters the
application’s external boundary. Through a unique logical process,
the processed data maintains an ILF. Control information is data used
by a process within an application boundary to assure compliance
with business function requirements specified by the user. Control in-
formation may or may not directly maintain an ILF. An EI should be
considered unique if it has a different format or if the logical design re-
quires processing logic different from that of other EIs of the same for-
mat. An external input is considered unique if
— Data is maintained on an ILF and
— The input format is unique or
— The processing logic is unique

• Control information is data used by the application to assure compli-
ance with business function requirements specified by the user. Do
not include the input side of an EI.

• Maintain is the ability to add, change, or delete data through a stan-
dardized process of the application.

• Format is defined as unique data elements or a unique arrangement or
order of data elements.

• Processing logic is defined as unique edits, calculations or algorithms,
and sorts specifically requested by the user.

Methodology

Identification

• Identify all processes that update an ILF.
• For each process identified:

— Consider each format a separate process if the data used by the
process can be received in more than one format.

— Credit an EI for each data maintenance activity (add, change, and
delete) performed.

834

SOFTWARE ENGINEERING HANDBOOK

Examples

Assuming the preceding conditions are met, the following are EIs:

• Transactional data: external data that is used to maintain ILFs.
• Screen input: count one EI for each function that maintains ILFs. If add,

change, and delete capabilities are present, the screen would count as
three EIs.

• Batch input: for each unique process that maintains an ELF, count one
EI for each add, change, and delete.

Batch inputs should be identified based on the processing required to
apply the data. One physical input file can, when viewed logically, corre-
spond to a number of EIs. Conversely, two or more physical input files can
correspond to one EI, if the processing logic and format are identical for
each physical file.

One way to identify multiple EIs when processing one physical file is to
look at the record types on the file. Exclude header and trailer records as
well as those record types required due to physical space limitations. Look
at the remaining record types for unique processing requirements and
associate an EI for each unique process. Do not assume a one-to-one corre-
spondence between the remaining record types and EIs.

• Duplicate EIs: see the section
• Suspense file updates: see the section on issues and resolution

The following are not EIs:

• Reference data: external data utilized by the application, but not main-
tained on ILFs

• Input side of an EI: data input used to drive selection for data retrieval
• Menu screens: see section on issues and resolution
• Logon screens: see the section on issues and resolution
• Multiple methods of invoking the same input logic, for example, entering

“A” or “add” on a command line or using a PF key should be counted
only once

Issues and Resolutions

The following are not discussed in Albrecht’s 1984 document but are
decisions of the IFPUG CPC:

• Duplicate EIs: input processes that, if specifically requested by the us-
er, duplicate a previously counted EI, are each counted. An example is
a banking system that accepts identical deposit transactions, one
through an automated teller machine (ATM) transaction and a second
through a manual teller deposit transaction.

835

Function Point Counting Guide

• Suspense file updates: Input processes that maintain an ILF or a sus-
pense/carry around file (depending on edit evaluation) should be
counted based on the following:
— If the suspense/carry around file is accessed or maintained by the

user, it is counted as an ILF. Thus, count EIs for each data mainte-
nance activity performed on both ILFs.

— If the suspense/carry around file cannot be maintained or accessed
by the user, count EIs for each data maintenance activity performed
on the original ILF.

In either instance, the process of reapplying data from the sus-
pense/carry around file to the ILF is not counted.

• Logon screen: screens that facilitate entry into an application and do
not maintain an ILF are not EIs.

The following decision of the IFPUG CPC is in agreement with Albrecht’s
1984 document:

• Menu screens that provide only selection or navigational functionality
and do NOT maintain an ILF are not counted.

EXTERNAL OUTPUT

EOs represent an application’s output processing requirements; they
are evaluated and contribute to the function point count based on their
number and relative functional complexity.

Definitions

• An EO processes data or control information that exits the application’s
external boundary. An EO should be considered unique if it has a dif-
ferent format, or if the logical design requires processing logic different
from other EOs of the same format. An external output is considered
unique if:
— The output format is unique or
— The processing logic is unique

• Control information is data used by the application to assure compli-
ance with business function requirements specified by the user.

• Format is defined as unique data elements or a unique arrangement or
order of data elements.

• Processing logic is defined as unique edits, calculations or algorithms,
and sorts specifically requested by the user.

836

SOFTWARE ENGINEERING HANDBOOK

Methodology

Identification

• Identify all processes that:
— Send data external to the applications’s boundary or
— Control data external to the application’s boundary

• For each process identified:
— Consider each format a separate process if the data used by the

process is sent in more than one format.
• Credit an EO for each process

Examples

Assuming the preceding conditions are met, the following are EOs:

• Data transfer to other applications: data residing on an ILF that is for-
matted and processed for use by an external application. Outputs are
identified based on the processing required to manipulate the data.
One physical output file can, when viewed logically, correspond to a
number of EOs. Conversely, two or more physical output files can cor-
respond to one EO, if the processing logic and format are identical for
each physical file.

• A method for identifying multiple EOs from the processing of one
physical file is to look at the record types on the file. Exclude header
and trailer records as well as those record types required due to phys-
ical space limitations. Review the remaining record types for unique
processing requirements and associate an EO for each unique pro-
cess. Do not assume a one-to-one correspondence between the re-
maining record types and EOs.

• Reports: each report produced by the application is counted as an EO.
Two identically formatted reports at the detail and summary levels are
counted as two EOs because each report requires unique processing
logic and unique calculations.

• Duplicate reports: see the section on issues and resolutions
• Online reports: online output of data that is not the output side of an

EQ
• Error/confirmation messages: see the section on issues and resolutions
• Derived data: derived data that does not necessarily update a file
• Graphics: see the section on issues and resolutions
• Report Generators: see the section on issues and resolutions

The following are not EOs:

• Help: see external inquiry
• Multiple methods of invoking the same output logic: for example, enter-

ing “R” or “report” on a command line or using a PF key should be
counted only once

837

Function Point Counting Guide

• Error/confirmation messages associated with function types other than
EIs: for example, an EO would not be counted for the error/confirma-
tion messages associated to an EQ.

• Multiple reports/unique data values: identical reports that have the
same format and processing logic, but exist due to unique data values,
are not counted as separate EOs. For example, two reports identical in
format and processing logic where the first contains customer names
beginning with “A” through “L” and the second has customer names
beginning with “M” through “Z” are counted as only one EO.

• Summary fields (column totals): summary fields on a detail report do
not constitute a unique EO.

• Ad-hoc reporting: when the user directs and is responsible for the cre-
ation (through the use of a language such as FOCUS or SQL) of an un-
defined number of reports, no EOs are counted.

• Query language: a tool used in the ad-hoc environment.

Issues and Resolutions

The following decisions of the IFPUG CPC are not discussed in Albrecht’s
1984 document:

• Duplicate reports: identical reports, produced on different media due
to specific user requirements, are counted as separate EOs. The pro-
cessing required to produce different output media is considered to
be unique processing logic. Identical reports, one on paper and one on
microfiche, if specifically requested by the user, are counted as two
EOs.

• Graphical format: graphical outputs should be counted as if they had
been presented in textual format. Each different graphical display re-
quested by the user should be counted as an EO. Statistical data pre-
sented in a table, bar chart, pie chart, and exploded pie chart should
be counted as four EOs.

• Report generator: output developed for the user with a report genera-
tor should be counted as an EO for each specified unique report. If a
report generator facility is requested by the user as part of an applica-
tion for do-it-yourself report generation, one EI should be counted for
each report definition parameter or unique command (e.g., select,
compare, sort, merge, extract, calculate, summarize, format, etc.) re-
quested by the user to control the report generation, and one EO
should be counted for the total report program; and one ILF should be
counted if a new file is created and saved.

The following decision of the IFPUG CPC is in agreement with Albrecht’s
1984 document:

• Error/confirmation messages: an EO should be credited for each exter-
nal input having error or confirmation messages.

838

SOFTWARE ENGINEERING HANDBOOK

External Inquiries

External inquiries represent an application’s inquiry processing require-
ments; they are evaluated and contribute to the function point count based
on their number and relative functional complexity.

Definitions

• An EQ is a unique input/output combination that results in the retrieval
of data required for immediate output, does not contain derived data,
and does not update an ILF. An EQ is considered unique if it has a for-
mat different from other those EQs in its input or output parts or if the
logical design requires edits and sorts different from those of other
EQs. An input/output combination is considered unique if:
— The input format is unique or
— The edits and sorts are different or
— The output format is unique

• Format is defined as unique data elements or a unique arrangement or
order of data elements.

• Derived data is defined as data that requires processing other than di-
rect retrieval, editing, and sorting of information from ILFs or EIFs.

Methodology

Identification

• Identify all processes where an input triggers an immediate retrieval of
data.

• For each process identified:
— Verify that each input/output combination is unique and consider

each unique input/output combination a separate process
— Credit an EQ for each process

Examples

Assuming the preceding conditions are met, the following are EQs:

• Immediate retrieval of data: selection of data retrieval is based on data
input.

• Implied inquiries: Change/delete screens that provide data retrieval
capabilities prior to change/delete functionality are credited with an
EQ, provided the inquiry capability can be and is used as a stand-alone
function.

• If the input and output sides of the EQ are identical for change and de-
lete functions, count only one EQ. If identical inquiry functions are
available from the change/delete screens and a separate inquiry
screen, count only one EQ.

• Menus having implied inquiries: see the section on issues and
resolutions.

839

Function Point Counting Guide

• Log-on screens: see the section on issues and resolutions.
• Help: see the section on issues and resolutions.

Two categories of help are considered EQs:

• Full-screen help: a help facility that is dependent on the application
screen displays help text relating to the calling screen. Credit one low
complexity EQ per calling screen regardless of the number of help
panels or screens returned.

• Field-sensitive help: a help facility, dependent on the location of the
cursor or some other method of identification, displays help docu-
mentation specific to that field. Credit one EQ per screen. Each field
that is sensitive to help should be considered one DET on the input
side.

The following are not EQs:

• Error/confirmation messages: see EOs.
• Multiple methods of invoking the same inquiry logic: multiple methods,

such as entering “I” or “inq” on a command line, or using a PF key are
counted only once.

• Help text: help that can be accessed from multiple areas or screens of
an application, or accessed and browsed independently of the associ-
ated application, is counted only once.

• Menu screens: see the section on issues and resolutions.
• Derived data: derived data would be treated as an input/output versus

retrieval of data.
• Online documentation: system documentation available online, in lieu

of or in addition to that available in hard copy, is not counted. Online
documentation by itself should not be considered software function
delivered.

• Test systems: test systems are included in system development and
should not be counted.

Issues and Resolutions

The following decisions of the IFPUG CPC differ from Albrecht’s 1984
document:

• Menu screens: screens that provide only selection functionality are not
counted.

• Menus having implied inquiries: menu screens that provide screen se-
lection and data retrieval selection input for the called screen are
counted as EQs because the menu is the input side of the EQ and the
called screen is the output side.

The following are not discussed in Albrecht’s 1984 document but are
decisions of the IFPUG CPC:

840

SOFTWARE ENGINEERING HANDBOOK

• Log-on screens: log-on screens that provide security functionality are
counted as EQs.

• Help: help is an inquiry pair where the input and the output (explana-
tory text) are each unique. Credit help text that can be accessed or
displayed through different request techniques or from different areas
of an application only once.

• Duplicate output side: identical queries, produced on different media
due to specific user requirements, are counted as separate EQs.

• Graphical formats: each different graphical display requested by the
user should be counted as an additional EQ.

• User-maintained help facility: a user-maintained help facility should be
counted separately.

• Independent teaching (tutorial) systems: computer-assisted instruction
(CAI), computer-based training (CBT) systems, or other independent
software teaching systems that are different from the production sys-
tem and maintained separately should be counted as separate appli-
cations. Training systems identical to the production system should
be considered additional sites; do not count them as separate func-
tions, but consider the sites when calculating general system charac-
teristic 13 (multiple sites).

GENERAL SYSTEMS CHARACTERISTICS

Each general system characteristic (GSC) must be evaluated in terms of
its degree of influence (DI) on a scale of zero to five. The descriptions listed
under “score as” are meant to be guides in determining the DI. If none of the
guideline descriptions fits the application exactly, a judgment must be
made about which DI most closely applies to the application. The general
system characteristics are:

1. Data communication
2. Distributed function
3. Performance
4. Heavily used configuration
5. Transaction rates
6. Online data entry
7. Design for end-user efficiency
8. Online update
9. Complex processing

10. Usable in other applications
11. Installation ease
12. Operational ease
13. Multiple sites
14. Facilitate change

841

Function Point Counting Guide

The questions are answered using DI on a scale of zero to five.

• 0 Not present or no influence
• 1 Incidental influence
• 2 Moderate influence
• 3 Average influence
• 4 Significant influence
• 5 Strong influence throughout

Data Communications

The data and control information used in the application are sent or
received over communication facilities. Terminals connected locally to the
control unit are considered to be using communication facilities. Protocol
is a set of conventions that permit the transfer or exchange of information
between two systems or devices. All data communication links require
some type of protocol.

Score as:

• 0 — Application is pure batch processing or a stand alone PC.
• 1 — Application is batch but has remote data entry or remote printing.
• 2 — Application is batch but has remote data entry and remote

printing.
• 3 — Online data collection or TP (teleprocessing) is front end to a

batch process or query system.
• 4 — More than a front end, but the application supports only one type

of TP communications protocol.
• 5 — More than a front-end, but the application supports more than

one type of TP communications protocol.

Distributed Data Processing

Distributed data or processing functions are a characteristic of the
application within the application boundary.

Score as:

• 0 — Application does not aid the transfer of data or processing func-
tion between components of the system.

• 1 — Application prepares data for end-user processing on another
component of the system such as PC spreadsheets and PC DBMS.

• 2 — Data is prepared for transfer, transferred, and processed on an-
other component of the system (not for end-user processing).

• 3 — Distributed processing and data transfer are online and in one di-
rection only.

842

SOFTWARE ENGINEERING HANDBOOK

• 4 — Distributed processing and data transfer are online and in both
directions.

• 5 — Processing functions are dynamically performed on the most ap-
propriate component of the system.

Performance

Application performance objectives, stated or approved by the user in
response or throughput, influenced (or will influence) the design, develop-
ment, installation, and support of the application.

Score as:

• 0 — No special performance requirements were stated by the user.
• 1 — Performance and design requirements were stated and reviewed

but no special actions required.
• 2 — Response time or throughput is critical during peak hours. No

special design for CPU utilization was required. Processing deadline is
for the next business day.

• 3 — Response time or throughput is critical during all business hours.
No special design for CPU utilization was required. Processing dead-
line requirements with interfacing systems are constraining.

• 4 — Stated user performance requirements are stringent enough to re-
quire performance analysis tasks in the design phase.

• 5 — In addition, performance analysis tools were used in the design,
development, or implementation phases to meet the stated user per-
formance requirements.

Heavily Used Configuration

A heavily used operational configuration, requiring special design con-
siderations, is a characteristic of the application. (For example, the user
wants to run the application on existing or committed equipment that will
be heavily used.)

Score as:

• 0 — There are no explicit or implicit operational restrictions.
• 1 — Operational restrictions do exist, but are less restrictive than a

typical application. No special effort is needed to meet the
restrictions.

• 2 — Some security or timing considerations exist.
• 3 — There are specific processor requirements for a specific piece of

the application.
• 4 — Stated operation restrictions require special constraints on the

application in the central processor or a dedicated processor.
• 5 — In addition, there are special constraints on the application in the

distributed components of the system.

843

Function Point Counting Guide

Transaction Rate

The transaction rate is high and it influenced the design, development,
installation, and support of the application.

Score as:

• 0 — No peak transaction period is anticipated.
• 1 — Peak transaction period (e.g., monthly, quarterly, seasonally, an-

nually) is anticipated.
• 2 — Weekly peak transaction period is anticipated.
• 3 — Daily peak transaction period is anticipated.
• 4 — High transaction rates stated by the user in the application re-

quirements or service level agreements are high enough to require
performance analysis tasks in the design phase.

• 5 — High transaction rates stated by the user in the application re-
quirements or service level agreements are high enough to require per-
formance analysis tasks and, in addition, require the use of
performance analysis tools in the design, development, or installation
phases.

Online Data Entry

Online data entry and control functions are provided in the application.

Score as:

• 0 — All transactions are processed in batch mode.
• 1 — 1 to 7 percent of transactions are interactive data entry.
• 2 — 8 to 15 percent of transactions are interactive data entry.
• 3 — 16 to 23 percent of transactions are interactive data entry.
• 4 — 24 to 30 percent of transactions are interactive data entry.
• 5 — Over 30 percent of transactions are interactive data entry.

End-User Efficiency

The online functions provided emphasize a design for end-user effi-
ciency. They include:

• Navigational aids (e.g., function keys, jumps, dynamically generated
menus)

• Menus
• Online help/documents
• Automated cursor movement
• Scrolling
• Remote printing (via online transactions)
• Preassigned function keys
• Submission of batch jobs from online transactions
• Cursor selection of screen data

844

SOFTWARE ENGINEERING HANDBOOK

• Heavy use of reverse video, highlighting, colors, underlining, and oth-
er indicators

• Hard-copy user documentation of online transactions
• Mouse interface
• Pop-up windows
• As few screens as possible to accomplish a business function
• Bilingual support (supports two languages; count as four items)
• Multilingual support (supports more than two languages; count as six

items)

Score as:

• 0 — None of the above
• 1 — One to three of the above
• 2 — Four to five of the above
• 3 — Six or more of the above but no specific user requirements related

to efficiency
• 4 — Six or more of the above and stated requirements for end-user ef-

ficiency strong enough to require design tasks for human factors to be
included (for example, minimize key strokes, maximize defaults, use of
templates, etc.).

• 5 — Six or more of the above and stated requirements for end-user ef-
ficiency strong enough to require use of special tools and processes in
order to demonstrate that objectives have been achieved

OnLine Update

The application provides online update for the ILFs.

Score as:

• 0 — None
• 1 — Online update of one to three control files; low volume of updating

and easy recovery
• 2 — Online update of four or more control files; low volume of updat-

ing and easy recovery
• 3 — Online update of major ILFs
• 4 — In addition, protection against data loss essential and specially

designed and programmed in the system
• 5 — In addition, high volumes bring cost considerations into the re-

covery process; highly automated recovery procedures with mini-
mum of operator intervention

Complex Processing

Complex processing is a characteristic of the application. Categories
are:

845

Function Point Counting Guide

• Sensitive control (for example, special audit processing) or applica-
tion-specific security processing

• Extensive logical processing
• Extensive mathematical processing
• Much exception processing resulting in incomplete transactions that

must be processed again; for example, incomplete ATM transactions
caused by TP interruption, missing data values, or failed edits

• Complex processing to handle multiple input/output possibilities; for
example, multimedia, device independence

Score as:

• 0 — None of the above
• 1 — Any one of the above
• 2 — Any two of the above
• 3 — Any three of the above
• 4 — Any four of the above
• 5 — Any five of the above

Reusability

The application and the code in the application have been specifically
designed, developed, and supported to be usable in other applications.

Score as:

• 0 — No reusable code
• 1 — Reusable code is used within the application
• 2 — Less than 10 percent of the application considered more than one

user’s needs
• 3 — 10 percent or more of the application considered more than one

user’s needs
• 4 — Application specifically packaged or documented to ease reuse

and customized by user at source code level
• 5 — Application specifically packaged or documented to ease reuse

and customized for use by means of user parameter maintenance

Installation Ease

Conversion and installation ease are characteristics of the application.
A conversion and installation plan or conversion tools were provided and
tested during the system test phase.

Score as:

• 0 — No special considerations were stated by user and no special set-
up required for installation

• 1 — No special considerations were stated by user but special set-up
required for installation

846

SOFTWARE ENGINEERING HANDBOOK

• 2 — Conversion and installation requirements stated by user and con-
version and installation guides provided and tested impact of conver-
sion on the project not considered to be important

• 3 — Conversion and installation requirements stated by the user and
conversion and installation guides provided and tested; impact of con-
version on the project considered to be important

• 4 — In addition to (2), automated conversion and installation tools
provided and tested

• 5 — In addition to (3), automated conversion and installation tools
provided and tested

Operational Ease

Operational ease is characteristic of the application. Effective start-up,
back-up, and recovery procedures were provided and tested during the
system test phase. The application minimizes the need for manual activi-
ties such as tape mounts, paper handling, and direct on-location manual
intervention.

Score as:

• 0 — No special operational considerations, other than normal back-up
procedures, were stated by the user.

• 1–4 — Select the following items that apply to the application. Each
item has a point value of one, except as noted otherwise.
— Effective start-up, back-up, and recovery processes were provided

but operator intervention is required.
— Effective start-up, back-up, and recovery processes were provided

but no operator intervention is required (count as two items).
— The application minimizes the need for tape mounts.
— The application minimizes the need for paper handling.

• 5 — Application is designed for unattended operation. Unattended op-
eration means no operator intervention is required to operate the sys-
tem other than to start up or shut down the application. Automatic
error recovery is a feature of the application.

Multiple Sites

The application has been specifically designed, developed, and sup-
ported to be installed at multiple sites for multiple organizations.

Score as:

• 0 — There is no user requirement to consider the needs of more than
one user installation site.

• 1 — Needs of multiple sites were considered in the design and the ap-
plication is designed to operate only under identical hardware and
software environments.

847

Function Point Counting Guide

• 2 — Needs of multiple sites were considered in the design and the ap-
plication is designed to operate only under similar hardware and soft-
ware environments.

• 3 — Needs of multiple sites were considered in the design and the ap-
plication is designed to operate under different hardware and software
environments.

• 4 — Documentation and support plans are provided and tested to sup-
port the application at multiple sites and application is as described
by (1) or (2).

• 5 — Documentation and support plans are provided and tested to sup-
port the application at multiple sites and application is as described
by (3).

Facilitate Change

The application has been specifically designed, developed, and sup-
ported to facilitate change. Examples are:

• Flexible query/report capability is provided.
• Business control data is grouped in tables maintainable by the user.

Score as:

• 0 — No special user requirement to design the application to minimize
or facilitate change.

• 1–5 — Select which of the following items apply to the application:
— Flexible query/report facility is provided that can handle simple re-

quests; for example, and/or logic can be applied to only one ILF
(count as one item).

— Flexible query/report facility is provided that can handle requests
of average complexity; for example, and/or logic can be applied to
more than one ILF (count as two items).

— Flexible query/report facility is provided that can handle complex
requests; for example, and/or logic combinations on one or more
ILFs (count as three items).

— Control data is kept in tables maintained by the user with online in-
teractive processes but changes take effect only on the next busi-
ness day.

— Control data is kept in tables maintained by the user with online in-
teractive processes and the changes take effect immediately (count
as two items.)

FUNCTION POINT CALCULATION

The function point calculation is a three-step process. Step 1 produces
the unadjusted function point count. Step 2 produces the value adjustment
factor (VAF). Step 3 adjusts the unadjusted function point count by the VAF
to produce the final function point count.

848

SOFTWARE ENGINEERING HANDBOOK

The formula used by Step 3 varies depending on the type of count —
application (system baseline), development (project), or enhancement
(project). The three last sections in this appendix discuss the final function
point calculation for each type of count.

Unadjusted Function Point Calculation

The way you determine functional complexity depends on the function
type. There are two types of function types:

• Data function types are ILFs and EIFs. The functional complexity of
each identified data function type is based on the number of record
types (RET) and data element types (DET).

• Transactional function types are EIs, EOs, and EQs. The functional
complexity of each identified transaction function type is based on the
number of file type referenced (FTR) and data element types (DET).

Once an application’s components (specific data and processing
requirement) have been categorized into the various function types, each
component is assigned an unadjusted function point value based on its
functional complexity. The unadjusted function point count value for
each component is then summarized at the function type level and again
at the application level. The resulting total at the application level is the

Exhibit S-1. Calculation of Unadjusted Function Point Count

Function
Type

Functional
Complexity Complexity Totals

Function Type
Totals

ILF Low * 7 = ________________

Average * 10 = ________________

High * 15 = ________________ _______________

EIF Low * 5 = ________________

Average * 7 = ________________

High * 10 = ________________ _______________

EI Low * 3 = ________________ _______________

Average * 4 = ________________ _______________

High * 6 = ________________ _______________

EO Low * 4 = ________________

Average * 5 = ________________

High * 7 = ________________ _______________

EQ Low * 3 = ________________

Average * 4 = ________________

High * 6 = ________________ _______________

Unadjusted function point count _______________

849

Function Point Counting Guide

application’s unadjusted function point count and is used in the final cal-
culation. The form in Exhibit S-1 can be used to facilitate the calculation
of the unadjusted function point count.

Internal Logical Files

Each identified ILF is assigned a functional complexity based on the
number of associated RETs and DETs.

• Record element type identification: RETs are subgroupings of ILFs
based on the logical/user view of the data. The data analysis equiva-
lent to such logical groupings is data entities. ILFs, which cannot be
subcategorized, are considered to have one RET.

• Data element type identification: an ILF’s DETs are user-recognizable,
nonrecursive fields residing on the ILF.

Each field on the ILF is a DET with the following exceptions:

• Fields should be viewed at the user recognizable level; for example, an
account number or date physically stored in multiple fields is counted
as one DET.

• Fields that appear more than once in an ILF because of technology or
implementation techniques should be counted only once. For exam-
ple, if an ILF comprises more than one table in a relational DBMS, the
keys used to relate the tables are counted only once.

• Repeating fields that are identical in format and exist to allow for mul-
tiple occurrences of a data value are counted only once. For example,
an ILF containing 12 monthly budget amount fields and an annual bud-
get amount field would be credited with two DETs, a DET for the
monthly budget amount fields and a DET for the annual budget
amount field.

• Each unique command or parameter is counted as a DET if an ILF is
created and saved in a report generator facility requested by the user
for do-it-yourself report generation. Use the matrix in Exhibit S-3 to
translate an ILF’s functional complexity to Unadjusted function points.

Functional complexity assignment for ILFs is based on the matrix shown
in Exhibit S-2. Use the matrix in Exhibit S-3 to translate an ILF’s functional
complexity to unadjusted function points.

Exhibit S-2. Internal Logical File (ILF) Complexity Matrix

1 to 19 DET 20 to 50 DET 51 or more DET

1 RET L L A

2–5 RET L A H

6 or more RET A H H

Note: Legend: RET = Record Element Type; DET = Data Element Type.
Functional Complexity: L = Low; A = Average; H = High.

850

SOFTWARE ENGINEERING HANDBOOK

External Interface File

Each identified EIF is assigned a functional complexity based on the
number of associated RETs and DETs.

• Record element type identification: RETs are subgroupings of EIFs based
on the logical/user view of the data. The data analysis equivalent to
such logical groupings is data entities. EIFs that cannot be subcatego-
rized are considered to have one RET.
— One physical interface file can, when viewed logically, correspond

to a number of EIFs. Additionally, multiple RETs can be associated
to each EIF identified.

— One way to identify different EIF RETs from one physical file is to
look at the record types on the file. Exclude header and trailer
records, unless specifically requested for audit purposes, as well as
those record types required by physical space limitations. Each
unique record type corresponds to a RET.

• Data element type identification: an EIF’s DETs are user-recognizable,
nonrecursive fields residing on the EIF. Each field on the EIF is a DET
with the following exceptions:

• Fields should be viewed at the user recognizable level; for example, an
account number or date physically stored in multiple fields should be
counted as one DET.
— Fields that appear more than once in an EIF because of the technol-

ogy or implementation techniques should be counted only once.
For example, if an EIF comprises more than one record type in a file,
the record ID field used to identify the records would be counted
only once.

Exhibit S-3. Internal Logical File (ILF) Unadjusted Function
Point Table

Functional Complexity Rating Unadjusted Function Points

L(ow)...7

A(verage)..10

H(igh) ..15

Exhibit S-4. External Interface File (EIF) Complexity Matrix

1 to 19 DET 20 to 50 DET 51 or more DET

1 RET L L A

2–5 RET L A H

6 or more RET A H H

Note: Legend: RET = Record Element Type; DET = Data Element Type.
Functional Complexity: L = Low; A = Average; H = High.

851

Function Point Counting Guide

— Repeating fields that are identical in format and exist so that multi-
ple occurrences of a data value can occur are counted only once.
For example, an EIF containing 12 monthly budget amount fields
and an annual budget amount field would be credited with two
DETs, a DET for the monthly budget amount fields and a DET for the
annual budget amount field.

Functional complexity assignment for EIFs is based on the matrix shown
in Exhibit S-4. Use the matrix in Exhibit S-5 to translate an EIF’s functional
complexity to unadjusted function points.

External Inputs

Each identified EI is assigned a functional complexity based on the num-
ber of file type referenced (FTR) andDETs.

Exhibit S-5. External Interface File (EIF) Unadjusted Function
Point Table

Functional Complexity Rating Unadjusted Function Points

L(ow) .. 5

A(verage) ... 7

H(igh) ... 10

Exhibit S-6. External Input (EI) Complexity Matrix

1 to 4 DET 5 to 15 DET 16 or more DET

0 - 1 FTR L L A

2 FTR L A H

3 or more FTR A H H

Note: Legend: FTR = File Type Referenced; DET = Data Element Type.
Functional Complexity: L = Low; A = Average; H = High.

Exhibit S-7. External Input (EI) Unadjusted Function
Point Table

Functional Complexity Rating Unadjusted Function Points

L(ow) .. 3

A(verage) ... 4

H(igh) ... 6

852

SOFTWARE ENGINEERING HANDBOOK

File Type Referenced Identification

An FTR is counted for each ILF maintained or referenced and each EIF
referenced during the processing of the external input.

Data Element Type Identification:

The DET count is the maximum number of user-recognizable, nonrecur-
sive fields that are maintained on an ILF by the EI.

Each field maintainable on an ILF by the EI is a DET with the following
exceptions:

• Fields should be viewed at the user-recognizable level; for example, an
account number or date physically stored in multiple fields should be
counted as one DET.

• Fields that appear more than once in an ILF because of technology or
implementation techniques should be counted only once. For exam-
ple, if an ILF comprises more than one table in a relational DBMS, the
keys used to relate the tables would be counted only once.

Additional DETs are credited to the EI for the following capabilities:

• Command lines or PF/Action keys that provide the capability to spec-
ify the action to be taken by the EI — one additional DET per external
input, not per command PF/action key.

• Fields that are not entered by the user, but through an EI, are main-
tained on an ILF, should be counted. For example, a system generated
sequenced key, maintained on an ILF, but not entered by the user,
would be counted as a DET.

Functional complexity assignment for EIs is based on the matrix shown
in Exhibit S-6. Use the matrix in Exhibit S-7 to translate an EI’s functional
complexity to unadjusted function points.

External Outputs

Each identified EO is assigned a functional complexity based on the
number of FTR and DETs.

• File type referenced identification: an FTR should be counted for each
ILF and EIF referenced during the processing of the EO.

• Data element type identification: a DET should be counted for each
user-recognizable, nonrecursive field that appears on the EO.

Each field on the EO is a DET with the following exceptions:

• Fields are viewed at the user-recognizable level; for example, an ac-
count number or date physically stored in multiple fields is counted as
one DET.

853

Function Point Counting Guide

• Count a DET in the EO for each unique command or parameter in a re-
port generator facility requested by the user for do-it-yourself report
generation.

• Count a DET for each type of label and each type of numerical equiva-
lent in a graphical output. For example, a pie chart might have two
DETs: one for designating the category and one for the applicable
percentage.

• Do not count literals as DETs.
• Do not count paging variables or system generated time/date stamps.

Additional DETs are credited to the EO for the following:

• Count additional DETs for each summary or total field appearing on
the EO.

• Error/confirmation messages: Count a DET for each distinct error or
confirmation message available for display by the External Input. Im-
plementation techniques, whether Batch Error Reports or an Error
Message Area, Box, or Window appearing on the EI or a separate phys-
ical screen, such as a Message Frame, do not affect the functional com-
plexity or number of EOs associated to a particular External Input.

Functional complexity assignment for EOs is based on the matrix shown
in Exhibit S-8. Use the matrix in Exhibit S-9 to translate an EO’s functional
complexity to unadjusted function points.

Exhibit S-8. External Output (EO) Complexity Matrix

1 to 5 DET 6 to 19 DET 20 or more DET

0 - 1 FTR L L A

2–3 FTR L A H

4 or more FTR A H H

Note: Legend: FTR = File Type Referenced; DET = Data Element Type.
Functional Complexity: L = Low; A = Average; H = High.

Exhibit 9. External Output (EO) Unadjusted Function Point Table

Functional Complexity Rating Unadjusted Function Points

L(ow) .. 4

A(verage) ... 5

H(igh) ... 7

854

SOFTWARE ENGINEERING HANDBOOK

External Inquiries

Use the following steps to assign an unadjusted function point value to
each EQ:

1. Calculate the functional complexity for the input side of the EQ.
2. Calculate the functional complexity for the output side of the EQ.
3. Select the higher of the two functional complexities. Using the EQ

unadjusted function point table, transcribe the complexity rating to
unadjusted function points.

• File type referenced identification — input and output sides: an FTR is
counted for each ILF and EIF referenced during the processing of the
EQ.

• Data element type identification — input side: a DET is counted for
those fields entered that specify the external inquiry to be executed or
specify data selection criteria.

• Data element type identification — output side: a DET is counted for
each user-recognizable, nonrecursive field that appears on the output
side of the EQ.

Each field appearing on the EO is a DET with the following exceptions:

• Fields are viewed at the user recognizable level; for example, an ac-
count number or date physically stored in multiple fields is counted as
one DET.

• Fields that, because of technology or implementation techniques, ap-
pear more than once in an ILF should be counted only once. Do not
count literals as DETs.

• Do not count paging variables or system generated time/date stamps.

Additional DETs are credited to the EQ for the following:

• Count additional DETs for each summary or total field appearing on
the EQ.

Help Messages

The three categories of help are full screen help, field sensitive help, and
help subsystems. DET determination varies between each and is discussed
below:

• Full-screen help: credit a low-complexity EQ per calling screen regard-
less of the number of FTRs or DETs involved.

• Field-sensitive help: credit an EQ having a complexity, using the input
side, based on the number of fields that are field sensitive and the
number of FTRs. Each field-sensitive field corresponds to a DET.

• Help subsystems: specific counting rules are not available at this time.

855

Function Point Counting Guide

Functional complexity assignments for EQs are based on the matrices
shown in Exhibits S-10 and S-11. Use the matrix in Exhibit S-12 to translate
an EQ’s functional complexity to unadjusted function points.

VALUE ADJUSTMENT FACTOR CALCULATION

The VAF is based on 14 general system characteristics (GSCs) that rate
the general functionality of the application. These 14 are summarized into
the VAF. When applied, the VAF adjusts the unadjusted function point
count ±35 percent, producing the final function point count.

1. Evaluate the 14 GSCs on a scale from zero to five producing a DI for
each of the GSC questions.

2. Sum the 14 DIs to produce the total degree of influence (TDI).
3. Insert the TDI into the following equation to produce the VAF:

(TDI * 0.01) + 0.65 = VAF

Exhibit S-10. External Inquiry (EQ) Input Complexity Matrix

1 to 4 DET 5 to 15 DET 16 or more DET

0–1 FTR L L A

2 FTR L A H

3 or more FTR A H H

Note: Legend: FTR = File Type Referenced; DET = Data Element Type.
Functional Complexity: L = Low; A = Average; H = High.

Exhibit S-11. External Inquiry (EQ) Output Complexity Matrix

1 to 5 DET 6 to 19 DET 20 or more DET

0–1 FTR L L A

2–3 FTR L A H

4 or more FTR A H H

Note: Legend: FTR = File Type Referenced; DET = Data Element Type.
Functional Complexity: L = Low; A = Average; H = High.

Exhibit 12. External Inquiry (EQ) Output Complexity Matrix

Functional Complexity Rating Unadjusted Function Points

L(ow) .. 3

A(verage) ... 4

H(igh) ... 6

856

SOFTWARE ENGINEERING HANDBOOK

where:

TDI is the sum of the 14 DIs

VAF is the value adjustment factor

The table in Exhibit S-13 facilitates the calculation of the VAF.

APPLICATION FUNCTION POINT CALCULATION

To produce the application function point count, complete the following
formula:

[(UFPB + ADD + CHGA) — (CHGB + DEL)] * VAFA = AFP

where:

UFPB is the application’s unadjusted function point count before the en-
hancement project.

ADD is the unadjusted function point count of those functions added by
the enhancement project.

CHGA is the unadjusted function point count of those functions modified
by the enhancement project. This number reflects the functions after the
modifications.

Exhibit S-13. Calculation of the VAF

General System Characteristics (GSC) Degree of Influence (DI) 0 - 5

1. Data communication ___________

2. Distributed processing ___________

3. Performance ___________

4. Heavily used configuration ___________

5. Transaction rates ___________

6. Online data entry ___________

7. Design for end-user efficiency ___________

8. Online update ___________

9. Complex processing ___________

10. Usable in other applications ___________

11. Installation ease ___________

12. Operational ease ___________

13. Multiple sites ___________

14. Facilitate change ___________

Total Degree of Influence (TDI)

Value Adjustment Factor (VAF) ______ = (______ * 0.01) + 0.65

 VAF = (TDI * 0.01) + 0.65

857

Function Point Counting Guide

CHGB is the unadjusted function point count of those functions modified
by the enhancement before the modification.

DEL is the unadjusted function point count of those functions deleted by
the enhancement project.

VAFA is the VAF of the application after the enhancement project.

AFP is the application’s adjusted function point count.

This formula can be used to establish an application’s initial application
function point count or re-establish an application function point count
after an enhancement project has modified the application’s functionality.
(Do not include conversion requirements in an application function point
count. If unavailable, the application’s prior unadjusted function point
count can be calculated using the following formula:

AFPB/VAFB = UFPB

where:

AFPB is the adjusted application function point count before the enhance-
ment project. VAFB is the VAF of the application before the enhancement
project.

UFPB is the application’s unadjusted function point before the enhance-
ment project.)

When establishing an application function point count in which func-
tionality is only being added, not changed or deleted, the formula in effect
becomes:

ADD * VAFA = AFP

where:

ADD is the unadjusted function point count of those functions that were in-
stalled by the development project.

VAFA is the VAF of the application.

AFP is the initial application function point count.

DEVELOPMENT (PROJECT) FUNCTION POINT CALCULATION

To produce the development (project) function point count, complete
the following formula:

UFP * VAF = DFP

where:

UFP is the unadjusted function point count.

VAF is the value adjustment factor.

DFP is the development (project) function point count.

858

SOFTWARE ENGINEERING HANDBOOK

ENHANCEMENT (PROJECT) FUNCTION POINT CALCULATION

To produce the enhancement (project) function point count, complete
the following formula:

((ADD + CHGA) * VAFA) + (DEL* VAFB) = EFP

where:

ADD is the unadjusted function point count of those functions that were
added by the enhancement project.

CHGA is the unadjusted function point count of those functions that were
modified by the enhancement project. This number reflects the functions
after the modifications.

DEL is the unadjusted function point count of those functions that were
deleted by the enhancement project.

VAFA is the VAF of the application after the enhancement project.

VAFB is the VAF of the application before the enhancement project.

EFP is the enhancement (project) function point count.

Reference

Deveaux, P. (1993). Counting function points, in Software Engineering Productivity Handbook,
Keyes, J., ed., McGraw-Hill, New York.

859

Index

A

Abstraction, 21

Acceptance test, 143

Ada language, 369

Adaptive maintenance, 248

AGS PAC III, 451

Alpha server, 275

American Express, 79

American Management Systems, 280

American National Standards Institute, 27

Analogical problem solving, 448

Application(s)

building of using Visual Basic, 25

composition model, 291

decision-making, 79

development, 131, 208

generation, 17

products

CASE, 452

measuring size of with CASE tools,

451–453

Artificial intelligence, 11

Async system, 157

AT&T’s estimeeting process for developing

estimates, 355–360

Audit

database, 236

network, 236

systemic, 234

Automatic documentation, 258

Automation

degree of, 125

make work, 149

test, 225

tools, 249

Avison’s multiview meta-methodology,

365–368

B

Bankers Trust, 79

Batch

change, 251

output messaging, 119

Bellcore’s software quality metrics, 391–392

Benchmarking, 62

Benefits, comparison of to expenses, 43–44

BI, see Business intelligence

Bias, reducing, 64

Black box(es)

applications, 188

classes thought of as, 183

well-coded object thought of as, 23

Black hole, IT as, 271, 272

Blue slip, 330

Boehm COCOMO model, 425–426

Borland Visual C++ environment, 185

Brainstorming session, 71

Bug-free code, 147

Bulletin boards, 239

Burns’ framework for building dependable

systems, 361–363

Business

goals, changing, 20

intelligence (BI), 62

modeling, 98

problem, 17

rules, software applications customized

according to, 211

Byrne’s reverse engineering technique,

369–371

C

C++, 30, 71, 183, 226

CAI, see Computer assisted instruction

Calling sequence, 346

Cantata++, 226

Capability maturity model (CMM), 100

CAPs, see CASE application products

CASE, see Computer assisted software

engineering

Catalog

detail, 120

import, 117

Caterpillar, 333

CBO, see Coupling between objects

CC team, see Controlled centralized team

CD team, see Controlled decentralized team

CERT Website, 239

Change

management, 58

-prone module, 249

860

SOFTWARE ENGINEERING HANDBOOK

request, 32, 252

CI, see Competitive intelligence

Class

automobile, 24

DayOfYear, creation of, 186–187

definition of, 23

diagrams, 14, 195

hierarchy, 193

Closed-ended questions, 66

CM, see Configuration management

CMM, see Capability maturity model

CNBC, 88

COBOL, 6, 213, 316

COCOMO model (constructive cost model),

258, 425

Boehm, 425–426

use of for estimation, 52

COCOMO II model, 51, 291–295

application composition model, 291292

early design model, 292–293

post-architecture model, 293–294

Code

generation tools, 135

reuse, strategy for, 409

Code or die syndrome, 272

Code Red worm, 31

Coding standard, 144

CoInclude, 156, 157

Collaboration graph, 192

Collective code ownership, 143

Comment source lines of code (CSLOC), 276

Commercial off-the-shelf (COTS) software,

39

Communications

algorithms, 149

media, rich, 390

Compaq, 275

Competitive analysis, 37, 38

Competitive intelligence (CI), 62

Complex condition, 215

Complexity metric, McCabe’s, 399

Component analysis, 30

Composite metrics, 453

Computer assisted instruction (CAI), 32

Computer assisted software engineering

(CASE), 129

application products (CAPs), 452

benefits of, 135

bridge, 118

tool(s), 17, 101, 106, 116, 249, 259

availability of, 395

definition of, 134

evolution of, 451

introduction of, 319

measuring size of application

products with, 451–453

revolution, advance of, 447

selection based on process maturity,

395–397

users, 439

view of, 441

Computer systems

policies and procedures of developing,

47

things in common, 5

Configuration management (CM), 320

Connectivity hardware, 91

Constructive cost model, see COCOMO

model

Contel

software metrics in process maturity

framework, 385–388

Technology Center, 385

Control

flow

diagrams, 32

recording of, 371

logic, 215

system, second-order, 161

Controlled centralized (CC) team, 57

Controlled decentralized (CD) team, 57

Corbin’s methodology for establishing

software development

environment, 325–328

Corrective maintenance, 247

Cost

/benefit analysis, see Feasibility study

and cost/benefit analysis

drivers

early design, 293

post-architecture, 295

estimating, management guidelines for

better, 413–416

COTS software, see Commercial off-the-shelf

software

Couger’s bottom-up approach to creativity

improvement in IS development,

329–331

Couplers, cost of, 91

Coupling between objects (CBO), 281

Cowboy coding, 138

CPM, see Critical path method

Crackers, 87

CRC cards, 142, 143, 190, 192

Credit card number, visible, 238

Critical path method (CPM), 54

Cross-site scripting, 239

CSLOC, see Comment source lines of code

861

Index

Current code, as liability, 181

Custom-built system, development of, 220

Customer

acceptance testing, 223

name, 393

satisfaction, 411

Cutover, 131

CV++ environment, 185

D

Dana Corporation, 333

Data

abstractions, 216

analysis, 30, 306

collection, 29, 123

degradation, 217

description, 303, 304

dictionary (DD), 12, 17, 191, 196, 217,

264, 265

encryption devices, 39

entry, sloppy, 87

flow, recording of, 371

flow diagram (DFD), 12, 14, 32, 169, 170,

183, 233, 260, 261

context, 173

detailed, 173

first, 21

flexibility of, 174

table of contents for, 170

use of for logical phase of systems

development, 177

-gathering process, speed of, 64

inconsistent, 124

modeling, 98

naming problems, 217

redundant, 124

re-engineering, 216, 218

representation discipline, user needs

dictating, 78

transfer fees, 90

type of, 23

XML descriptions of, 218

Database(s), 106

administrator, 104

audit, 236

bad choice of, 31

hierarchically defined, 80

object-oriented, 101

software, 178

DBA objective metrics, 125

DBTF technology, see Development Before

the Fact technology

DD, see Data dictionary

DD team, see Democratic decentralized

team

Debugger, 25

DEC, see Digital Equipment Corporation

Decision-making applications, programmed,

79

Default rules, 117

Defect

density, 278, 387, 427

identification, 318

Defined structures, 156

Definition mechanisms, 161

Delta, 333

Democratic decentralized (DD) team, 57

Dependable systems, Burns’ framework for

building, 361–363

Depth of inheritance tree (DIT), 280

Design, discrete steps of, 175

Design specification, 169–180

cookie-cutter explanation of writing

good, 178

details of design, 169–174

logical and physical design, 175–178

logical design, 177

logical and physical analysis, 175–177

physical design, 177–178

process, 169

systems specification, 178–179

walkthrough, 179

Deutsche Bank, 79

Development

phase, stand-up meetings during, 141

projects, software-based, 381–383

Development Before the Fact (DBTF)

technology, 147–167

defined structures, 156–159

FMaps, TMaps, and integration, 159–160

inherent integration with system-

oriented objects, 164–166

integrated modeling environment,

152–154

performance considerations, 163–164

primitive structures, 154–156

technology, 150–152

universal primitive operations, 160–163

what is wrong with systems, 147–149

DFD, see Data flow diagram

Diagnostic programs, 39

Dictionary token counts, 452

Digital Equipment Corporation (DEC), 275,

342, 403

overview of software metrics, 403–406

/VAX Software Project Manager, 415

Directed observation, 68, 69

862

SOFTWARE ENGINEERING HANDBOOK

Direct entry devices, 207

Disaster recovery services, 95

DIT, see Depth of inheritance tree

DM, see Dynamic model

DML syntax, 122

Document(s)

backup, 112

communications network, 113

creation of basic, 257

organization techniques, 269

Documentation

automatic, 258

generation of, 371

maintaining, 268

mathematical foundation to, 259

maturity model, 256

prototype, 315

quality of, 249, 257

science of, 255–270

definition of documentation, 255–258

generating documentation correctly,

259–268

maintaining documentation, 268–269

methods and standards, 258–259

user, 267

Dow Chemical, 333

DuPont, development of critical path

method by, 54

Dynamic binding, 181

Dynamic model (DM), 189

Dynamic performance monitoring, 137

E

EAF, see Effort adjustment factor

Early design cost drivers, 293

E-business

initiative, staffing to implement, 88

system, decision–making process, 86

E-commerce server, 22, 90

EDP auditing, see Electronic data processing

auditing

Effective reuse, 150

Effort

adjustment factor (EAF), 293

measure, Halstead’s, 401

Egoless programming techniques, 310

Electronic data processing (EDP) auditing,

231–224

customer service, 243–244

accessibility, 243

e-commerce, 243

privacy, 244

ergonomics, 241–243

content, 242–243

navigability, 242

search engine, 243

usability, 242

legality, 244

copyright, 244

employee Web usage, 244

organization of audit, 231–234

security and quality, 236–241

backup, 241

connectivity, 237

in-house development, 238–240

passwords, 237

product base, 238

reporting, 241

review of security plan, 237

staff background, 237

testing, 240–241

systemic audit, 234–236

broken links, 235

database audit, 236

network audit, 236

response time, 235

Electronic forms, designing, 206

E-mail, 68, 69, 119

EMap, see Execution map

Empirical model, 52

Employee

interview process, guidelines for

handling, 63–64

Web usage, 244

Encapsulation, 23, 181

End user(s), 5

acceptance testing by, 33

data distribution to, 80

help files, 266

support, 32

Enterprise resource planning (ERP), 89

Entity relationship diagram (ERD), 12, 15,

32, 171, 184, 259

Microsoft Access, 260

use of for systems development, 177

Equation

manpower-buildup, 287

software, 287

ERD, see Entity relationship diagram

Ergonomics, 241

ERP, see Enterprise resource planning

Error(s), 436

detection, 225

discovery of, 245

handling, 114

message, nonexistent page, 235

863

Index

prevention of, 161

Estimacs, 415

Estimation techniques, problem-based, 51

Estimeeting process for developing

estimates, AT&T’s, 355–360

Event trace, 193

Execution map (EMap), 153

Extreme programming (XP), 137, 139–145

acceptance test, 143

coding standard, 144

collective code ownership, 143

components of, 140

continuous integration, 144–145

CRC cards, 142–143

development, 141–142

40-hour week, 145

iterative nature of, 141, 142

methodology, functional tests within,

143

on-site customer, 145

pair programming,144

popularity of, 139

project velocity, 144

refactoring, 144

simple design, 144

small releases, 144

system metaphor, 143

unit test, 143

F

Facilitated application specification

techniques (FAST), 50

Failures following implementation, 251

FAP, see Feature architecture proposal

Farbey’s considerations on software quality

metrics during requirements

phase, 377–379

FAST, see Facilitated application

specification techniques

Feasibility study and cost/benefit analysis,

35–46

cost/benefit analysis, 38–40

feasibility study components, 35–38

feasibility study process, 41–45

financial feasibility, 35–36

organizational or operational

feasibility, 37–38

scheduling of feasibility study, 40–41

technical feasibility, 36–37

Feature

architecture proposal (FAP), 358

selection proposal (FSP), 359

Feedback, 201, 383

Field length problems, 217

Financial feasibility, 35

Finkelstein, information engineering, 136,

137

Firewalls, 39, 53

First Amendment issues, 87

Flight software, errors found in, 152

Flowchart(s), 262

task analysis, 176

UML versus, 21

FM, see Functional model

FMaps, see Function maps

FOCUS

reporting interface, 120

system, 7, 9,10

Focus groups, 71

Form(s)

cyclical design of, 205

electronic, designing, 206

paper, guidelines for designing, 204

prescription drug claim, 205

prototype, 205

FORTRAN, 369

Forward engineering, 218, 219

4GLs, see Fourth generation languages

Fourth generation languages (4GLs), 31, 79

FPs, see Function points

FSP, see Feature selection proposal

Functional model (FM), 189

Function maps (FMaps) 152, 154, 155

integration of, 159

performance considerations, 163

Function points (FPs), 50, 51, 278

Fuzzy-logic sizing, 51

G

Gantt chart, 21, 40, 42, 49, 55

Gateway.com, 87

General Electric, 333

Gillies’ method for humanization of

software factory, 439–441

Goal(s)

business, 20

defining of measurable, 305

intermediate, 306

productivity-enhancing, 341

project, 29

–question–metric (GQM), 273

Gould’s points on usability, 341–344

GQM, see Goal–question–metric

Group productivity, statistics concerning

communications’ effect on,

337–339

864

SOFTWARE ENGINEERING HANDBOOK

GUI, 149

H

Hackers, 53, 87, 236

Halstead’s effort measure, 401

Hardware, deterioration of, 245

Hawthorne effect, 271

Help

Desk, staffing, 32

file, 266, 267

system, 201

Hewlett Packard (HP), 277, 333

success of, 278

TQC guidelines for software engineering

productivity, 407–409

TQC metrics, 277

HP, see Hewlett Packard

Human errors prevention of, 225

I

IBM, 333, 342

Audio Distribution Systems, 342

Web site, 89

IEEE, see Institute of Electrical and

Electronics Engineers

IIS, see Microsoft Internet Information

Server

Image maps, 90

Impact analysis, level of, 126

Inconsistent data, questions to ask

concerning, 124

Incremental model, 17, 98

Industry trade shows, 65

Information

analysis, 367

engineering, Finkelstein, 136, 137

gathering, 10, 71

hiding, 193

integrity, 237

repository, 135

resource management, 109

store browsers, 214

systems (IS), 8

common use among different, 125

development, creativity

improvement in, 329–331

technology (IT), 236, see also IT

productivity and quality, survey

on

as black hole, 271, 272

departments, peopleware solutions

used in, 281

investment in, 417–419

staff, user-friendly, 77

Inheritance, 23, 181, 182

Institute of Electrical and Electronics

Engineers (IEEE), 28

framework for measures, 435–438

standard dictionary of measures to

produce reliable software,

427–433

Integration, 221, 273

Intel, 333

Interface

aesthetically pleasing, 201

consistent, 200

International Organization for

Standardization (ISO), 28

Internet, 68, 86

service provider (ISP), 89, 236

Wild West days of, 231

Interpersonal relations, 351

Interview(s), 62

obstacles, 63

outline, information in, 63

Intranet, 68

IS, see Information systems

ISO, see International Organization for

Standardization

ISO 9000, 28

ISO 9001, 28

ISO 9003, 28

ISP, see Internet service provider

IT, see Information technology

Iteration planning meeting, 141

Iterative prototyping, 98

IT productivity and quality, survey on,

271–282

function point advantage, 278–281

HP way, 277–278

original metric, 275–277

planning for quality, 272–273

process of measurement, 273–275

quality education, 281–282

J

JAD, see Joint application development

Java, 7, 75, 161, 178, 183, 203, 213

Job

matching, 311

requirements planning (JRP), 131

security, 351

Johnson & Johnson, 333

865

Index

Joint application development (JAD), 20,

101

definition of, 98

problem with meetings in, 134

process, stage of, 133

requirement of management to accept,

131

JRP, see Job requirements planning

K

Kanter’s methodology for justifying

investment in information

technology, 417–419

Kellner’s nontechnological issues in

software engineering, 309–311

Kemayel’s controllable factors in

programmer productivity,

349–353

Keyes’ value of information, 393–394

Knowledge base, 105

Kydd’s technique to induce productivity

through shared information

technology, 389–390

L

Lack of cohesion in methods (LCOM), 281

Language(s)

Ada, 369

ASP, 30

C, 161

C++, 7, 22, 30, 75

COBOL, 213

DBTF technology, 150

fourth generation, 31, 79

implementation-dependent, 150

Java, 21, 75, 161, 183, 213

levels, 293

Perl, 21

Program Definition, 12–14

universal modeling, 21, 24, 147

user, 150

XML, 161

LCOM, see Lack of cohesion in methods

Lederer’s management guidelines for better

cost estimating, 413–416

Legacy systems, program architecture of,

213

Life cycle phase management, 115

Lines of code (LOC), 50, 317, 451

Linkman’s methods for controlling

programs through

measurement, 305–307

LOC, see Lines of code

Locked in designs, 148

Logical analysis, 175

Logins, logging of, 241

Love bug viruses, 236

M

Macintosh word processing product, 200

Macro-estimation model, 52

Maiden’s method for reuse of analogous

specifications through human

involvement in reuse process,

447–449

Maintenance

adaptive, 248

corrective, 247

costs, 248

high cost of, 246

perfective, 248

preventive, 248

types of, 247

Make–buy decision, 421–422

Make work automation, definitions

supported by, 149

Malcolm Baldrige Quality Award, 299–301

Management information systems (MIS), 8,

317

Manpower

acceleration, 288

-buildup equation, 287

Marriott, 333

Martin and Carey’s survey of success in

converting prototypes to

operational systems, 313–316

Maytag, 333

McCabe’s complexity metric, 399

McDonald’s, 333

Mean time to failure, 431, 435

Measurement

detractors, 274

estimation, and control, Putnam’s trends

in, 317–318

Linkman’s methods for controlling

programs through, 305–307

Measures, IEEE framework for, 435–438

Menu order consistency, 200

Merrill Lynch, 7

Message passing, 181

Metadata repository, 110

Meta-language properties, 163

Meta–meta model, 116

Meta-methodology, 365–368

Metaphor, 200, 330

866

SOFTWARE ENGINEERING HANDBOOK

Methodology selection, 97–107

common generic methodologies, 97–99

determining methodology’s rating, 107

rating of methodology, 99–107

Metrics, selection of, 305

Microsoft

Access, 81, 259, 260

Internet Information Server (IIS), 239

Office, 259

Project, 55, 415

SQL Server, 81, 259

Visio, 12, 21

Visual Basic

applications built using, 25

Debugger, 25

Windows/NT/2000, 90

Minor questions, 66

MIS, see Management information systems

Model

application composition, 291

COCOMO, 52, 258, 425–426

COCOMO II, 51, 291–295

defect density, 387

documentation maturity, 256

dynamic, 189

early design, 292, 293

empirical, 52

functional, 189

incremental, 17, 98

macro-estimation, 52

maintenance, 249

meta–meta, 116

object, 20, 189

outsourcing, 95

post-architecture, 293

process, creation of high-level, 169

prototype, 313

Putnam, 52

reusability, 373–376

SLIM, 287

software life cycle, 221

thrown away, 313, 314

TMap, 158

vendor supplied meta, 116

waterfall, 132, 138

Modeling

dynamic performance, 137

operational, 137

process, 137

strategic, 136

tactical, 137

Modem

pricing, 90

slow, 91

Modules, committed to, 362

Motivation factors, 350

Motorola’s six sigma defect reduction effort,

411–412

Multiview meta-methodology, Avison’s,

365–368

Mystery shopper, 243

Mythical man-month idea, 297

N

Naming conventions, 104

NASA, 273

Navigation, 242

Net firms, problem area for, 243

Netslave media assassin, 88

Network

administrator, 104

audit, 236

description, 303, 304

diagram, 232, 234

New object points (NOP), 291

New product development, 37, 38

New York Stock Exchange (NYSE), 7, 10, 31,

76, 78, 80 83

NOC, see Number of children

Nolan/Prompt, 415

Nonchange-prone module, 250

Noncomment source lines of code (NSLOC),

276, 386

NOP, see New object points

Norden-Rayleigh curve, 287

NSLOC, see Noncomment source lines of

code

Number of children (NOC), 280

NYSE, see New York Stock Exchange

O

Object

-based environment, repository

workbench in, 114

definition of, 23

map (OMap), 153, 155, 164

model (OM), 189

orientation (OO), 14, 20, 99, 181

definitions, 23

dog grooming system, 225

model, 20

software tool, 189

systems, 24, 188

Object-oriented analysis (OOA), 20, 22, 99,

183

867

Index

Object-oriented analysis and design

(OOAD), 185, 187, 189

Object-oriented databases, 101

Object-oriented design (OOD), 99, 181–198

object orientation, 181–182

OOAD methodologies, 185–189

Booch, 187

Coad and Yourdon, 187–188

Jacobson, 188

LBMS SEOO, 188–189

Rumbaugh OMT, 189

Shaler and Mellor, 189

OOAD simplified, 189–197

OO from bottom up, 182–1185

Object-oriented metrics, 281

Object-oriented programming (OOP), 20, 22,

99

Object-oriented software engineering, 188

Object-oriented system, properties of, 165

Object-oriented technology, 194

Observation

directed, 68, 69

forms of, 68

silent, 68, 69

Obsolescence, 94

OM, see Object model

OMap, see Object map

Online warranties, 87

OO, see Object orientation

OOA, see Object-oriented analysis

OOAD, see Object-oriented analysis and

design

OOD, see Object-oriented design

OOP, see Object-oriented programming

Open-ended questions, 65

Operational modeling, 137

Operational systems, conversion of

prototypes to, 313–316

Oracle, 259

Organization

culture, 389

expectations of, 37

relationship between environment and,

365

OS/server software, 90

Outsourcing

contract, size of, 86

models, 95

Outsourcing decision, 85–95

analysis and evaluation, 85

implementation, 86

needs assessment and vendor selection,

85–86

outsourcing example, 86–91

costs, 89, 91

labor costs, 91

outsourcing issues, 87–89

rolling your own, 90–91

using Internet service provider, 89–90

outsourcing models, 95

questions to ask potential outsourcing

companies, 94–95

reasons to outsource, 91–94

P

Pair programming, 144

Paper form, guidelines for designing, 204

Parallel testing, 223

Passwords, 237

Past-performance questions, 66

PDL, see Program Definition Language

Penetration testing, 241

People

issues, 309

quality metrics, 408

Peopleware solutions, 281

Perfective maintenance, 248

Performance

requirements, users as source of data

on, 75

tracking analysis, 38

Personnel attributes, 309

PERT, see Program evaluation and review

techniques (PERT)

Pfleeger’s approach to software metrics tool

evaluation, 443–445

Pfleeger’s method for CASE tool selection

based on process maturity,

393–397

Physical analysis, 175

Planning

game, 137, 141

robot, 158

Polymorphism, 23, 182

Pornography issues, 87

Post-architecture model, 293

Prescott’s guidelines for using structured

methodology, 345–347

Prescription drug claim form, logical flow of,

205

Preventive maintenance, 248

Prieto-Diaz’ reusability model, 373–376

Primitive structures, 154

Priority board, 251

Problem

-based estimation techniques, 51

868

SOFTWARE ENGINEERING HANDBOOK

reversal, 331

solving, analogical, 448

Process

description, 303, 304

improvement, 273

maturity

CASE tool selection based on,

395–397

framework, Contel’s software metrics

in, 385–388

model, creation of high-level, 169

modeling, 98, 137

specification (PSPEC), 12, 32, 174, 197

support modules, 216

Procter and Gamble, 333

Product

development, 37, 38

faults, 435

metrics, 404, 408

promotion, 89

valuation, 127

Productivity

classes of, 405

-enhancing goals, 341

fostering, 390

improvements, top–down approach to

generating, 329

layers to, 282

metrics, baseline, 50

paradox, 278

rate, 292

Program

comments, sample, 266

Definition Language (PDL), 12–14

evaluation and review techniques

(PERT), 40, 41, 54

modularization, 215, 216

understanding, tools for, 214

Programmatic security, 239

Programmer(s)

capability, 426

exhausted, 145

hidden fields used by, 238

productivity

Kemayel’s controllable factors in,

349–353

paradoxes, 349

Programming, see also Extreme

programming

language, see also Language

levels, 293

overuse of testing tool’s, 229

systems written in, 6

pair, 144

standards, 346, 352

tasks, development of, 141

techniques, egoless, 310

Progressive abstraction, 330

Project(s)

analysis, 30, 306

complexity, 37

costs associated with, 39

data collection, 305

design requirements, clarity of, 36

development

process of, 139, 140

time, length of, 36

estimation techniques, 50

execution, poor, 310

goals establishment process, 29

gone awry, 47

management software, 106

parameterization, 115

payback, length of, 36

team, people constituting, 104

timeframes, 42

velocity, 144

Workbench, 415

work products associated with, 320

Project plan, writing of, 47–59

person writing project plan, 48

project plan unwrapped, 49–58

decomposition techniques, 51–52

empirical model, 52–53

project estimates, 50–51

project resources, 57

risk management strategy, 53

schedules, 54–56

software scope, 49–50

tracking and control mechanisms,

57–58

reason for, 47–48

value of, 58

what goes into project plan, 48–49

Prototype(s), 16, 71

conversion of to operational systems,

313–316

documentation of, 315

iterative, 98

model, 313

Pseudocode example, 18

PSPEC, see Process specification

Putnam formula, 297

Putnam model, 52

Putnam’s cost estimation model, 297

Putnam’s software equation, 287–289

Putnam’s trends in measurement,

estimation, and control, 317–318

869

Index

Q

QA, see Quality assurance

QAES, see Quality assurance engineering

software

Quality

assurance (QA), 9, 236

department, testing involving, 26

engineer, 223

engineering software (QAES), 391

procedures, lack of, 382

software, 57, 58, 224

layers to, 282

leaders, principles of, 333–335

Questionnaires, 11, 62, 66

Questions

closed-ended, 66

minor, 66

open-ended, 65

past-performance, 66

reflexive, 66

types of, 65

Quicktime animation, 90

R

RAD, see Rapid application development

Rapid application development (RAD), 17,

82, 101

application generators used by, 17

definition of, 98

description of, 131

phases of, 131, 132

technique, variation of, 132

uses, 133

Rational Rose, 176

Rayleigh curve, 287, 288

RealAudio, 90

RealMedia server, 22

Redmill’s quality considerations in

management of software-based

development projects, 381–383

Redundancy, 39, 126

Redundant data, questions to ask

concerning, 124

Re-engineering, see Software re-engineering

Refactoring, 144

Referential integrity support, 122

Reflexive questions, 66

Release planning, values, 141

Remote procedure calls (RPC), 240

Reports, canned, 120

Repository workbench, evaluation of,

111–122

architecture, 116

CASE bridge, 118

dialog, 114

extensibility, 114

forms, 121

gateways, 117

generation, 121–122

groupware, 119

impact analysis, 120

initial data capture, 112

life cycle phase management, 115–116

managing relational tables, 122

project control, 115

reporting, 119–120

scripting, 120–121

services, 118

source and use, 113

standards, 116–117

tool integration, 119

tracking, 112

user access, 113

versioning, 115

workbench integration, 118–119

Request for proposal (RFP), 85

Requirements

management, checklist for, 71, 72–73

planning, 131

traceability matrix, 347

Requirements elicitation, 61–73

checklist for requirements management,

71, 72–73

elicitation techniques, 62–71

brainstorming, 71

competitive intelligence, 70

focus groups, 71

interviewing, 62–66

observation, 68–69

participation, 69–70

prototyping, 71

questionnaires and surveys, 66–68

stakeholder analysis, 61–62

Resource management, selection and

integration of repository for

effective, 109–127

effective information resource

management, 109–111

evaluating repository workbench,

111–122

architecture, 116

CASE bridge, 118

dialog, 114

extensibility, 114

870

SOFTWARE ENGINEERING HANDBOOK

forms, 121

gateways, 117

generation, 121–122

groupware, 119

impact analysis, 120

initial data capture, 112

life cycle phase management,

115–116

managing relational tables, 122

project control, 115

reporting, 119–120

scripting, 120–121

services, 118

source and use, 113

standards, 116–117

tool integration, 119

tracking, 112

user access, 113

versioning, 115

workbench integration, 118–119

preparing for repository workbench,

122–124

repository metrics, 124–126

scoring repository workbench, 126–127

Response for class (RFC), 281

Reusability model, Prieto-Diaz’, 373–376

Reusable code, 447

Reuse process, human involvement in,

447–449

Reverse engineering, 20, 62, 70, 213, 214

definition of, 98

technique, Byrne’s, 369–371

RFC, see Response for class

RFP, see Request for proposal

Rich text format (RTF) files, 266

Risk

issues, 36

management strategy, 53

mitigation, monitoring, and management

(RMMM), 53

table, 53

RMap, see Road map

RMMM, see Risk, mitigation, monitoring,

and management

Road map (RMap), 153

Robot

controller, 161

planning, 158

ROI

applications, high-, 419

-enhancing decision, 87

Routers, cost of, 91

RPC, see Remote procedure calls

RTF files, see Rich text format files

S

Safety-critical systems, computers

introduced into, 48

SCM, see Software configuration

management, Sprague’s

technique for

Script status feedback, 121

SDE, see Software development

environment, Corbin’s

methodology for establishing

SDLC, see Systems development life cycle

SDS, see System design specification

Second-order control system, 161

Secure transaction server, 90

Securities & Exchange Commission, 82

Securities Industry Automatic Corp. (SIAC),

80

Security

degree of, 126

holes, publicized, 238

programmatic, 239

requirements, project-oriented, 115

SEI, see Software Engineering Institute

SEOO, see Systems engineering OO

Server

Alpha, 275

e-commerce, 22, 90

Java application, 178

Microsoft SQL, 81

RealMedia, 22

secure transaction, 90

software, 39

Web, 240

Shared information technology (SIT),

Kydd’s technique to induce

productivity through, 389–390

Shetty’s seven principles of quality leaders,

333–335

Shockwave animation, 90

Shopping experience, 243

SIAC, see Securities Industry Automatic

Corp.

Silent observation, 68, 69

Simmons’ statistics concerning

communications’ effect on

group productivity, 337–339

Simplified condition, 215

SIT, see Shared information technology,

Kydd’s technique to induce

productivity through

Six sigma defect reduction effort,

Motorola’s, 411–412

SLIM, 287–289

871

Index

SmartDraw, Visio versus, 21

Software

AGS PAC III, 451

applications, creation of error-free, 221

companies, competitive, 98

database, 178

DEC/VAX Software Project Manager, 415

development

critical component of, 221

early days of, 47

environment (SDE), Corbin’s

methodology for establishing,

325–328

life cycle, cost associated with, 28, 29

main phases of, 98

projects, quality considerations in

management of, 381–383

disasters, 48

documentation

creation of, 257

mathematical foundation to, 259

quality, definition of, 257

equation, Putnam’s, 287–289

error, causes of, 147

Estimacs, 415

factory, humanization of, 439–441

flight, errors found in, 152

Java application server, 178

life cycle, 305

model, 221

most expensive component of, 245

maintenance, 212

maturity index, 429

measures to produce reliable, 427–433

metrics, 443

DEC’s overview of, 403–406

tool evaluation, Pfleeger’s approach

to, 443–445

Microsoft Project, 415

modified, 211

Nolan/Prompt, 415

OS/server, 90

process maturity framework, 19

product, Y2K, 67

Project Workbench, 415

quality assurance (SQA), 57, 58, 224, 391

quality metrics

Bellcore’s, 391–392

considerations on during

requirements phase, 377–379

reliability, 277, 425

requirements, expression of, 346

selection from multiple packages,

423–424

server, 39

source code, 213

Spectrum/Estimator, 415

testing, 221–230

definition, 221–224

life cycle, 228

practical approach to automated

software testing, 227–228

strategy, 224–225

test automation, 225–227

using automated testing tools,

228–229

third-party, 6

tool(s)

OO, 189

two-flavored, 110

Software configuration management (SCM),

Sprague’s technique for, 319–323

procedures for developing SCM process,

321–322

procedures/issues/policies, 321

Software engineering, 5–33

developmental methodologies, 14–20

diagramming or modeling of system,

12–14

documentation, 30–31

feasibility study, 9–10

information-gathering channels, 10–12

installation, 30

Kellner’s nontechnological issues in,

309–311

maintenance, 31–32

object-oriented, 22–24, 188

procedure, 29–30

productivity, Hewlett Packard’s TQC

guidelines for, 407–409

software developer, 6–8

standards and metrics, 27–28

system(s)

design, 20–22

development life cycle, 8–9

testing, 25–27

training, 32

variations, 345

Software Engineering Institute (SEI), 14, 100,

255

Software maintenance, management of,

245–253

controlling maintenance requests,

251–252

maintenance costs, 248–249

maintenance process, 245–247

managing maintenance personnel, 250

measuring effectiveness, 250–251

872

SOFTWARE ENGINEERING HANDBOOK

model for maintenance, 249–250

types of maintenance, 247–248

adaptive maintenance, 248

corrective maintenance, 247

perfective maintenance, 248

preventive maintenance, 248

Software re-engineering, 211–220

definition, 211

forward engineering, 218–219

need for, 211–212

process, 213–218

data re-engineering, 216–218

program modularization, 216

program structure improvement,

215–216

reverse engineering, 213–215

source code translation, 213

strategies, 212–213

SOO, see System-oriented object

SOSAS, 187

Source code, 213

Spamming, 87

Specialists with advanced technology

(SWAT teams), 131

Spectrum/Estimator, 415

Sprague’s technique for software

configuration management,

319–323

procedures for developing SCM process,

321–322

procedures/issues/policies, 321

Spreadsheets, 106, 114

SQA, see Software quality assurance

SRS, see System requirements specifications

SSL, 90

Staff hierarchy diagram, 232, 235

Stakeholders, 5, 61

Start-up scripts, vendor-supplied, 121

State transition diagram (STD), 12, 16, 32,

169–170, 172, 189

STD, see State transition diagram

Stepwise refinement, 21

Strategic modeling, 136

Strategic systems, 63

Structured English, 12

Structured methodology, 129–138

CASE tools, 134–135

extreme programming, 137–138

group support systems, 134

joint application design, 133–134

Prescott’s guidelines for using, 345–347

rapid applications development,

131–133

variety of structured methodologies,

135–137

Subsystem estimation form, 359

Survey(s)

creation, guidelines for, 67

development, 66

different approaches to, 68

Web-based, 68

SWAT teams, see Specialists with advanced

technology

Swiss Bank, 76

Sybase, 259

Synergy, occurrence of when linking internal

and external systems, 89

System(s)

analysis

methods, user left out under, 76

process, observation in, 11

Async, 157

boundary diagram, 190

change, way to control, 31

characteristics, impact of, 279

class design, 194

construction, 131

design, 20

fun part of, 81

specification (SDS), 264

development life cycle (SDLC), 8, 16, 32,

103, 269

definition of, 97

design specification, 169

methodology covering all phases of,

102

seven-step, 17

traditional, 130

development methodologies,

proliferation of, 365

of custom-built, 220

most critical phase of, 245

pitch-hit-and-run theory applied to,

77–78

use of DFD for, 177

use of ERD for, 177

of in vacuum, 5

engineering OO (SEOO), 188

evaluation of for correctness, 9

hacked, 53

investigation, 129

maintenance, overview of system, 247

metaphor, 143

object-oriented,165

-oriented object (SOO), 150

pattern, example of, 156

requirements specifications (SRS), 169

873

Index

run-time performance, insufficient

information about, 148

specification, 178

spec walkthrough, 179

testing, 223

ultimate effectiveness of, 377

T

Tactical modeling, 137

Tactical systems, examples of, 63

Tangential service, auditing of, 243

Task analysis flowchart, 176

Tate’s approaches to measuring size of

application products with CASE

tools, 451

Tax problem, 69

Team

development, poor, 311

organizations, generic, 57

Teamwork, lack of, 310

Technical feasibility, 36

Tektronix, 342

Telephone line, high-speed, 91

Test

automation, 225, 226, 227

case(s)

sample, 27

test scripts formed by, 26

script creation, automatic, 229

Testing

acceptance, 33

customer acceptance, 223

department, downsizing of, 227

infrastructure, 228

integration, 221

parallel, 223

penetration, 241

pre-PC, 240

system, 223

unit, 221

Texas Instruments, 333

Therac-25, 48

Timeline chart, 55

Time to market, 16

T-1 line, 91

T-3 line, 91

TMaps, see Type maps

Tool usage guidelines, 104

Total quality control (TQC), 277

Total quality management (TQM), 271, 382

TQC, see Total quality control

TQM, see Total quality management

Transaction-based systems, 63

Tutorials, table format for developing, 268

Type maps (TMaps), 152, 154, 156

initiations of, 164

integration of, 159

performance considerations, 163

reusability used with, 158

universal primitive operations provided

by, 160

U

UI, see User interface

UML, see Uniform modeling language

Uniform modeling language (UML), 21, 24,

147, 260, 261, 262

United Technologies Microelectronic

Center, 329

Unit testing, 221

Universal primitive operations, 160

UNIX, 90

Usability

engineering, 343

Gould’s points on, 341–344

testing

interactive, 203

investment, 207

Use case, sample, 191, 264

User(s)

acceptance, 37

control, 199

documentation, 267

-friendly IT staff, 77

interface (UI), 199

language, 150

tracking, 90

types of, 78

User interface design, 199–209

aspect of good, 203

bad, 202

designing effective input and output,

203–207

designing input, 204–207

designing output, 207

good, 202, 208

phases of, 202

principles, 199–202

process, 202–203

usability testing, 207

User-oriented systems, design of, 75–83

distributing data to end user, 80–81

drumming up enthusiasm, 77–78

methodologies, 78–80

systems choice, 81–83

tailoring system to end users’ needs, 76

874

SOFTWARE ENGINEERING HANDBOOK

trade secrets, 75–76

U.S. Post Office, automation of clerical staff,

62

Utility programs, 39

UTMC creativity program, 329

V

VAF, see Value adjustment factor

Value adjustment factor (VAF), 279

Value of information (VOI), Keyes’, 393–394

Van Dyke Software, 268

VAX Cobol compiler, 275

VaxScan, 275

Vcommerce.com, 87

Vendor

financial stability, 86

-supplied meta model, 116

Verisign, 90

Virtual private network (VPN), 22

Viruses, 31, 236

Visio, 21, 187

Visual Basic, 101, 203, 221, 222

Visual Basic.Net, 183

Visual C++, 101, 203

Visual development tools, 101

Visual J++, 203

VOI, see Value of information, Keyes’

VPN, see Virtual private network

W

Walkthrough

formal, 347

system spec, 179

Waterfall

design methods, 129, 132

model, 132, 138

WBS, see Work breakdown structure

Web

-based surveys, 68

cost, 92–93

-hosting companies, sending out of RFPs

to, 91

nonexistent page error message, 235

server review, 240

site(s)

functionality, 88

IBM, 89

marketing information contained in,

70

usability, 242

surfers, irritants reported by, 235

usage, employee, 244

Weighted methods per class (WMC), 280

Western Electric, 271

Western Union, hackers breaking into, 236

WinRunner, 226

Wishful thinking, 331

Wish lists, 69

Wizard-generated code, 239

WMC, see Weighted methods per class

Word processing product, Macintosh, 200

Work

breakdown structure (WBS), 49, 54

textual, 56

use of Microsoft Project to create, 55

habits, users as source of data on, 75

Working conditions, 351

Worm, Code Red, 31

X

Xerox, 333

XML, 161

XP, see Extreme programming

Y

Y2K software product, 67

Z

Zachman’s framework, 303–304

