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ABSTRACT

Power and energy are first-order design constraints in hégfop
mance computing. Current research using dynamic voltagle sc
ing (DVS) relies on trading increased execution time forrgpe
savings, which is unacceptable for most high performanee-co
puting applications. We preseAdagiaq a novel runtime system
that makes DVS practical for complex, real-world scientfppli-
cations by incurring only negligible delay while achievisignifi-
cant energy savingAdagioimproves and extends previous state-
of-the-art algorithms by combining the lessons learnethfspatic
energy-reducing CPU scheduling with a novel runtime meisiman
for slack prediction. We present results usigpgiofor two real-
world programsMT2K andParaDiS along with the NAS Paral-
lel Benchmark suite. While requiring no modification to thoph:
cation source codé\dagioprovides total system energy savings of
8% and 20% fotJMT2K andParaDiS respectively, with less than
1% increase in execution time.

1. INTRODUCTION

Excessive power consumption continues to be an importabt pr
lem in high performance computing (HPC). Dynamic voltaga-sc
ing (DVY technology addresses this issue by allowing the CPU
clock frequency to be changed dynamically. Lower frequesci
require less power, and the resulting reduction in energgideli-
rectly to reduced heat and indirectly to longer componenamme
time between failure [28], less energy required for coqlantd the
possibility of greater component density.
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ting execution time over available discrete frequenciesweéler,
offline scheduling requires @ompleteprogram trace atachdis-
crete frequency. Further, the use of a linear programmihgsto
generate the schedule is far too costly to be done at runtime.

In this paper, we introduce th&dagioruntime system, which
achieves significant energy savings with negligible (I&ss1t1%)
increase in execution time. We accomplish this by adaptimdy a
extending the principles behind offline scheduling as feio

1. Schedules ildagioare generated from predicted computa-
tion time. Adagiouses a simple, robust algorithm that re-
quires no application-specific knowledge.

2. Slowdown decisions i\dagiooccur at runtime. We base
initial scheduling on worst-case slowdown with subsequent
more aggressive scheduling based on observed performance.

3. Adagiolimits critical path detection to information local to
the processor.Adagio scheduling assumes only negligible
delay of MPI call completion will be tolerated.

4. Adagioidentifies individual MPI calls through hashing the
stack trace. Not only mugtdagiocorrectly predict the com-
putation, communication and slowdown associated with the
upcoming call, it must also predict the upcoming call itself

The aboveddagiofeatures are distinct from the cited offline schedul-
ing approach, where all of these problems are solved usimgan
cution trace fronall available discrete frequencies.

Adagiois a unigue run-time approach to HPC energy savings in

Our goal is to develop a runtime system that uses DVS to save that execution delay is negligiblnd the application source code

energy in scientific applications wittnly negligible execution de-

need not be modified. Previous HPC energy-saving algorithms

lay. Other research in runtime systems has achieved impressiveyre fundamentally different. Approaches that use a fingdria-

energy savings, but at the risk of increasing execution.time
Unlike existing runtime systems, previous work in offlinbedul-
ing using linear programming [22] demonstrated CPU fregyen
schedules resulting in near-optimal energy saving witHigibde
delay. This approach relies on scheduling changes at MPiraem
nication calls, identifying the critical path of executitm ensure
it is never slowed, and approximating ideal frequencies fiit-s
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tory mechanism to predict future behavior [7, 8] will saveden-
ergy thanAdagiowhen load imbalance can be leveraged to reduce
the frequency during computation bursts. Another apprasses
per-iteration delay to determine per-processor frequesndio], but
does not detect the critical path correctly in the generaéand
therefore risks significant program slowdowAdagiodiffers from
these approaches in that it slows only that computation knimw
be off of the critical path in order to realize energy savings

We show the effectiveness Aflagiofor real-world programs as
well as standard benchmarks. This incluti®dT2K [12] andPar-
aDiS[1], two complex, real-world programs. While incurring ¢es
than 1% delayAdagioreduces total system energy consumption up
to 8% forUMT2K and 20% foParaDiS These are significant sav-
ings because the power difference between the fastest andstl



frequencies on our experimental platform is only 39%. WéLide
comparisons oAdagioto existing energy-saving algorithms.

The paper is organized as follows. We present definitions, as
sumptions and a taxonomy of existing runtime algorithmsen-S
tion 2. Next, Section 3 detailkdagiaq our new runtime algorithm.

In Section 4 we compare the effectivenes#\dfgioto similar al-
gorithms using real-world applications and standard bewacks.
Finally, we discuss related and future work in Sections 5&nd

2. OVERVIEW

We place our work among existing algorithms based on common
assumptions and definitions. We then provide a taxonomytadrot
approaches with their respective strengths and weaknesses

2.1 Definitions and Basic Assumptions

We assume an SPMD (Single Program Multiple Data) program-
ming model on a distributed-memory system using message pas
ing, in our case MPI, for any communication between processe
For simplicity—and without restricting generality—we as®e that
each process is associated with a single core, althouglgle sira-
chine may have multiple cores. We refer to these cores agproc
sors for the remainder of the paper.

Figure 1 illustrates our execution model.t@skis the basic unit
of scheduling, comprising total communication and comipoita
that takes place on a single processor between the complaftio
two successive MPl communication calls. The computatiotiqro
of a task is measured by an instruction count and an obseerred p
frequency instruction execution rate. We measure comnatinit
by recording the time spent within the MPI library.

We usecritical path analysisto determine which tasks can be
slowed without incurring overall execution delay. chitical path
(CP) is the longest path through a directed acyclic graph.oko
analysis, each task forms a vertex in the graph and each edge i
dicates a dependence between taskg,(an edge exists between
successive tasks on the same processor, and between anglocki
send and its matching receive). Each vertex is weighted thigh
normalized execution timef that task, defined as the time required
to complete the computation portion of the task when exagudt
the fastest frequency. Further, the graph has exactly amesahe
MPI _I ni t function call, and one sink, tiePl _Fi nal i ze call.
The critical path can change processors at any receive (odhid-
ing calls with no explicit data transfer, suchlRl _Barri er).

We define time spent blocked in an MPI communication call as
slack By definition, while a processor executes on the criticéthpa
it does not block on MPI communication calls: any processksd
waiting on remote communication can be slowed in order to-com
plete exactly when the remote communication completesowith
affecting overall execution time. Thus, any blocked prsannot
be on the critical path.

The ideal frequencyis the slowest CPU frequency at which a
given task can be run without incurring any slack, that is, fiie-
guency necessary to finish “just in time”. The ideal frequeax-
ists in the continuous domain: while the ideal frequencysubke
minimum amount of energy [9], it is usually not one of the déte
frequencies available on the processor. If the ideal frequeccurs
between the fastest and slowest frequency, we can apprtirea
ideal frequency by executing part of the task in the highaghi®or-
ing frequency and the remaining portion in the lower neighigp
frequency. We use the slowest available frequency wheraster
than the ideal frequency.

2.2 Taxonomy
Ideally, runtime HPMVSalgorithms satisfy three simultaneous

goals: save as much energy as possible, increase exeduatien t
as little as possible, and support both simple and compleX-ap
cations. No existing approach meets all of these goals. eTabl
summarizes the current state of the art in three classestfma
algorithms along with a near-optimal offline scheduler anthe
pares them tdAdagia We discuss existing approaches from each
class in more detail in Section 5.

2.2.1 Offline Scheduling

We first briefly review the offline scheduler [22] that uses meo
plete execution trace faveryavailable CPU frequency as input.
Given this input, linear programming determines a neairugdt
schedule based on MPI call granularity, i.e., the criticthpcould
move from one processor to another at any MPI communication
call. Thus this granularity allows critical path identifican and
prevents slowing of any computation along the critical p&thile
the MPI communication calls indicateherefrequencies are to be
changed, this algorithm is near-optimal because it loweesfite-
quency of the computation surrounded by these calls, trufafs
as is possible) eliminating slack. Often, there is no abéglaingle
frequency that is low enough to remove all slack but not sothat
the slowed computation impinges on the critical path. Jodily
splitting the computation across two neighboring freqiesn¢as
detailed in Section 3.2) allows close approximation of tteai fre-
guency, saving additional power with no additional delay.

Using these techniques, the offline scheduler essentikdep
an upper bound on the effectiveness of any DVS algorithrheeit
online or offline. While its high cost precludes using it in @p
duction environment or at runtime, the designAafagio reflects
lessons learned from this approach.

2.2.2 Scheduled Communication

The simplest class of runtime algorithms, which we t&ahned-
uled CommunicatioruseDVSto reduce energy consumption when
program execution blocks on MPI communication [14, 15, 22].
This matches the granularity used in offline scheduling. aBee
data transfer is not computationally intensive, slowingsthtrans-
fers generally incurs a negligible increase in overall exea time.
Because no computation is slowed, the critical path is rfettdd,
avoiding calculation of the ideal frequencyscheduled Commu-
nication algorithms save energy in highly complex, production-
quality MPI programs, with no source code modification. Hegre
they leave significant potential energy savings untapped.

2.2.3 Scheduled Iteration

Scheduled Iteratiomethods [10, 16] compute the total slack per
processor per timestep, then schedule a single discratedney
for each processor for the upcomitigestep We define a timestep
intuitively as an iteration of a scientific application’s tetmost
loop. This timestep-level granularity works well for sireppli-
cations where the critical path remains on a single processo
the duration of each timestep. However, applications wathglex
communication patterns may have a critical path that ceosee-
eral processors during a timestep. In this case, algorithftisis
type will choose not to slow any processor that contains amtign
of the critical path, thus forgoing any energy savings thigihtnbe
had on those processors elsewhere in that timestep. As wech,
classify these algorithms as not critical-path-aware amidusing
ideal frequency, although they can be significantly morectife
thanScheduled Communicati@igorithms, at least on simple ap-
plications, due to the slowing of computation during theetatep.
Also, this class of algorithms may require modification of tp-
plication source code to indicate the boundaries of thediepe
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Figure 1: Typical Program Execution in SPMD style (left) andthe resulting task graph (right).

Algorithm Online vs. Unmodified | Critical Path | Slows | Slows | Ideal
Class Offline Granularity App. Source Aware Comp. | Comm. | Freq. || References
| Offline Scheduling ]| Offline | Communication call | Yes | Yes | Yes [ Yes | Yes [ [22] |
Scheduled Communicatigh Online Communication call Yes Yes No Yes No [14, 15, 22]
Scheduled Iteration Online Timestep No No Yes No No [10, 16]
Scheduled Timeslice Online Timeslice Yes No Yes Yes No [3,7]
Adagio Online Communication call Yes Yes Yes Yes Yes || (this paper)

Table 1: Comparison of near-optimal offline scheduling to runtime classes (bold entries show desired characteristics)

2.2.4 Scheduled Timeslice

Scheduled Timesliamethods [3, 7] schedule at fixed time inter-
vals. These algorithms predict the execution characiesisf the
upcoming interval (i.e., timeslice) based on recent iralrvThey
generally select the lowest discrete available frequencyebch
processor such that predicted slowdown does not exceedra use
specified limit. This timeslice granularity cannot tracle ttritical
path, nor do these algorithms use the ideal frequency tohnht
specified delay. Thus, any delay specification smaller thhatw
would be achieved using the second-highest frequency eslilt
in no computation being slowed. This approach does not requi
modification to the application source and can save signifiea-
ergy, but only where significant delay can be tolerated.

2.2.5 Conclusions

None of the existing runtime methods achieves all of ourgoal
because none of them combines the design criteria of MPI-cal
granularity, slowing computation using ideal frequenceasd re-
specting the critical pathAdagio combines all of these without
requiring modification to the application source code.

3. ADAGIO

We begin this section with th&dagioimplementation. We then
provide a discussion of three optimizations: ideal freqyeralcu-
lation, slack reclamation, and handling large messages.

3.1 Adagio Implementation
As Adagiois task based, we must predict the properties of the

next task that will execute after a given task. This predictie-
quires that the algorithm first determines which task wilturc
next. To accomplish this, we create a signature for eachitaséd

on a hash of the pointers that make up the stack trace. Theisash
generated when the MPI call associated with the task isdepted

by our library. The record of each completed task contaiaditish

of the task that had been observed to follow it immediately.

Before the computation of a task begiAslagiofetches the fre-
quency schedule for the task and changes the operatingefiegu
to the first one in the schedule. It also initializes perfonocecoun-
ters to monitor the code. After a taskdagio collects data and
determines the frequency schedule for the next executidhatf
task. We stress th#@tdagioexecutes on each processor and tailors
schedules to computation performed on each processor.

The first time a task is observed, we record the task that geece
it and execute it at the highest available frequency. Thisifothe
basis for the prediction of computation, communicatiord block-
ing times. We assume that task behavior will essentiallydeati-
cal every time it is executed. This a very simple predictqtoees
the behavior of real-world scientific applications.

Figure 2 shows pseudocode fadagiofor the simple case of
using a single frequency per task. We detail the optimizéit- sp
frequency case in Section 3.2. As runtime algorithms have no
prior information about program execution characterssttaagio
schedules execution at the fastest frequency (represbptéxithe
first time a task is encountered. If the task reoccAidggiosched-
ules it under the assumption @aforst-case slowdowgexecution
slowdown proportional to that of the change in frequencyypme



Variable ‘ Explanation

>

Fastest frequency available on the
machine.

Slowest frequency available on the
machine.

Ideal frequency for a task.

1
2
3
4

10
11

13

14
15
16
17
18

19
20
21
22

23
24
25
26
27
28
29

PreTask()

taskid = hash(stack_pointer_chain)
if isnew(taskid) then
/= First instance of a task:

/= Choose fastest frequency.
f=r
else

/+* Look up correct frequency.
f = FreqSchedule[taskid]
Set Freq( f)
I ni t PerformanceCount ers()
RunTask( taskid)

Post Task()

[+ CGenerate the schedule for the
/* next execution of this task.
Record!, tcomp, tib.
Rates[taskid] [f] = I/tcomp
t = teomp + tuiv
ttarget =t— tcopy
if isnew(taskid) then
/+ First instance of a task:
/* Set slowdown rates to
/+ worst-case for each
/+ avail abl e frequency.
for f e Fdo
Rates[taskid][f] =
Rates[taskid)[f] « f/ f
end
[+ Find slowest frequency that
/* respects the critical path.
I+ Default is fastest freq.

FreqSchedule[taskid] = f
for f from slowest f) to fastest ) do
if I/Rates[taskid][f] < tiarger then
FreqSchedule[taskid] = f
return
end

*/
*/

*/

«/
«/

*/
*/
*/
*/

«/
«/
«/

Figure 2: Adagio algorithm with no optimizations.

=le| =

Total observed task time (include
communication, computation, an
slack).

Qwn

teomp Total observed computation time.

D

tiiv Total observed time spent in th
MPI library (includes copy and
blocking time).

teopy Total time required for messag
copying (does not include blockin
time).

© @

trarget Available time for computation
Adagioslows the processor to take
exactly this time.

I Number of instructions executed
during computation.

R Rate at which a processor executes
a task computation (instructions per
second).

taskid Unique identifier for each task, gen-
erated by hashing the stack point-
ers.

Rates[taskid][f] Table of instructions per second fo
each tasktaskid at each discrete
frequencyf.

FreqSchedule[taskid] || Table holding frequency schedule
for eachtaskid.

=

Table 2: Variables used within Adagio and their purpose.

putation will not be slowed by more than the ratio of the cleang
in frequenciesg.g, running a task at 1.6GHz instead of 1.8GHz
will cause no more than a 12.5% delay. The communication and
memory-boundedness of a task may lower this delay subalignti
Thus,Adagiorecords the observed slowdown when a task is sched-
uled and executed in a particular frequenayglagiothen uses this
refined estimate for subsequent scheduling.

Table 2 summarizes the variables that we use to desélze
gio's algorithm. Throughout this discussion, we will ugeand f
to denote the fastest and slowest operating frequenocgesNIHz)
and will use them to index into tabldsreqSchedule and Rates
(instead of standard array indices).

Adagiorecords the number of instructioiend the instructions
per secondr for the current frequency and task when it completes.
RecordingR allows Adagioto estimate how fast a task would run
if it ran at the fastest frequency—a significant contribatieyond
previous work [6, 24], which lacked an algorithm to deteren@xe-
cution time as a function of frequency. Further, recordirajlows
Adagioto determine when execution characteristics (i.e., comput
tion) have changed between task instances. We measurerttienu
of instructions using PAPI [21]. We also uget t i nreof day to
measure the total execution time of a task, which we needrn® co
pute the instructions per second metric. We emphasize libaet
counters are collected at runtime and only for those fregiesrihat
are actually used. No training runs are necessary.



We record the total task timewhich is the sum of the task com-  f) per task inF'reqSchedule. Thus, each processor can generally
putation timef..mp, and the time spent in its associated MPI call, execute each task at or very near the target time.
tiis. The target execution timg.,4e: is Set to the difference df At the beginning of each task, we usetiti mer to gener-
and the copy portion of the communication time,,,,. We predict ate an interrupt afteg x I/Rates[e][f] seconds that allowada-
tcopy Dased on results obtained with microbenchmarks that vary th gio to switch tof’. WhenAdagiocatches th&l GALRMsignal, it
message size, such as a simple ping pong test. These micheben recordsRates[e][f], andI (up to that point), switches the CPU fre-
marks are application-independent and need only be exkonte quency tof’, and continues. We disable the alarm when entering
in order to characterize a particular system. the MPI function that ends the task to avoid interrupting dpe

We schedule the task to meef,4.: during the upcoming timestep plication when computation completes ahead of scheduiiagio
by iterating through all frequencies, slowest to fastestl #nding additionally storeskates[e][f’].

the slowest frequency that does not exceed the target, éspsct- Using a split-frequency schedule can lead to using a péaticu
ing the critical path. By definition, a task that blocks canhe frequency for a small amount of time. This choice would inaur
on the critical path, and so this algorithm will not slow amagk time penalty for the additional switch and decrease systahiligy
that was on the critical path during the previous iteratitve do (at least on our hardware). To counter this, we have emfiriae
miss the opportunity to slow tasks that are both off of théaai rived at aswitching thresholaf 100ms for our cluster. We require
path and do not block, but the additional algorithmic comipje any frequency switch to remain in the new frequency for astlea
required to detect such tasks is not warranted due to théelimi ~ 100ms. Thus, a task will not be scheduled for a lower frequency if
additional amounts of energy that can be saved. the scheduled time would be less than the threshold, sptjuin-
As stated above, if we have not yet executed the task in acparti  cies will not be used unless the time spent in both frequenaik
ular frequencyf, we assumavorst-case slowdowrgiven quantity be greater than the threshold (the higher frequency willdssldor
Rates|taskid][f] (observed during the initial timestep), the entire task), and the threshold time must be exceedextebef

. . switching to a lower frequency while in the MPI library.
Rates[taskid][f] = Rates[taskid][f] x f/f. .
3.2.2 Slack Reclamation
Our assumption is conservative: the execution rate will det Tasks may still block during communication. If there wasfisuf
crease_morethan the decrease in CPU frequency but might decrease gjant computation that the task had been scheduled, ankibtpn
less since memory references (and 1/0) are independent Bf CP gy cess of the buffer will use the lowest frequency, as thitbeithe
frequency. Thus, slowing the CPU will not in general lead$o @  frequency chosen for the computation. However, theresaisec-
much slowdown as the slowdown in frequency. Scheduling con- on case where a task consists of a small amount of compuitatio
servatlvely does not increase _overall execution time, a_ndoa)n too small to be scheduled — followed by a relatively large anto
as a task is executed at a particular frequency, we replépes- of blocking communication. To prevent using a high frequefoc
simistic estimate with an observed value. blocking, we determine the amount of time spent blockingrayr
—_ . the previous instance of the task and, if this is greater thiagual
3.2 OptImI.ZatIOI’lS S o to twice the switching threshold, set an alarm to expireathinesh-
We now detail three novel optimizations: approximatingaide  old time. If the alarm fires before the task completes, we ghda

frequencies by using two neighboring frequencies, slaclanea- the lowest available frequency and remain there (if our iptiuh
tion, and large message handling. is correct) for at least another duration equal to the thotesh
3.2.1 Split Frequencies 3.3 Large Message Handling
We determine thédeal CPU frequencye, for a task such that TheFT benchmark is unusual in several respects (Section 4 con-

it executes in exactly;q.rqc¢ S€CONdS. However, processors used tains all results). Among these, required communicatiorafpar-
in HPC environments operate only at a few discrete freqesnci  ticular MPl _Al [ t oal | call is measured in seconds instead of
To our knowledge, all other existing runtime algorithms cb® a milliseconds. In this case, our threshold value is too stednandle

single frequency and either lose energy savings by runraatef the amount of communication that occurs. There are sevezti-m
than the ideal frequency or lose time (and possibly energyngs) ods to deal with this issue. We could constructrrispecific so-
by running slower than the ideal frequency. In the worst daSet+- lution or we could attempt to model expected communicaiioe t
1 iterations will be required to discover the ideal frequeiidpsk for these calls. We have instead created a simple, gendugicso
behavior is consistent across iterations. A side effect of an all-to-all call is synchronization. Weshito sep-
We can approximate the ideal frequency by using its neighgor ~ arate out the communication time spent blocking waitingofitver
frequencies [9]. Our optimized schedule still uses theeftsivail- processes to arrive at the call from the communication tipents
able frequency when the computation lies on the criticah @ettd transferring data. So, at the beginning of lahfd _Al | t oal |
the slowest available frequency when the ideal frequenevésn calls, our library inserts aWPl _Bar ri er . Any slack present at

slower (slack remains in this case). In any other case, wau€al this barrier can be reclaimed by scheduling the computatiome-
late how long to run the epoch in the two frequencies immetliat  diately before it as usual. The task terminated byMREe_Al | t oal |
above and below the ideal frequency. lgebe the percentage of  has almost no computation, and slack reclamation occursias o
time to execute at frequencf, and let frequencieg > ¢ > f'. lined in the previous section.

We must satisfy

tiarget = q X (I/Ratesle][f]) + (1 — q) x (I/Ratesle][f']). 4, RESULTS

This section reports our performance results. For all exper
We solve forg for the given task and use the two frequencies for ments, we used a cluster of sixteen nodes, each containiag tw
the corresponding duration&{,4.¢+ X g seconds for frequency AMD Opteron 265 dual-core processors. We used sixteen nodes
andtiqrget X (1 — q) seconds for frequency’). For this reason, and one core per processor in all tests (32 cores) exceptidset
Adagiostoresq as well asf (f’ is always one frequency below  NAS tests that required the number of nodes to be a perfearsqu



(in this case, we used a single core per node). We can indepen-

dently set the frequency of each processor, but this eaogein
multicore processor cannot scale core frequencies indigpdly.

Consequently, the second core on a processor consumesy energ

while doing no useful computation, reducing the energy regwvi
we can achieveAdagiohas been designed in anticipation of pro-
cessors with per-corBVScontrol. Future work will extend\da-
gioto handle assignments of processes to cores consistertuvith
energy-saving goals.

We chose OpenMPI [27] as our MPIl implementation. The nodes

are connected by gigabit ethernet and have 2GB RAM each. The
Opteron 265 supports CPU frequencies 1000 MHz through 1800

MHz in steps of 200 MHz. We use theysf s interface made
available by a modified Fedora Core 2 OS running the 2.6. Iiteker
for frequency shifting. We compiled all applications wighkc or
g77 using the- Q2 optimization flag. The system ran no other
processes during our experiments other than the usual deemo
Our application set includes two complete applicatidsig T2K
andParaDiS as well as the programs in the NAS suite [20]. For
each application, we measure execution time (elapsed Vealk c
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0.4

0.0

Jitter

Adagio  Adagio-Comp Fermata Timeslice
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Figure 3: Normalized time, energy, and power forUMT2K.

includes the communication call runs at the highest frequeand
the first timeslice after the communication call runs at thedst
frequency. Depending on the size of the timeslice, this base
approaches the performance of fegmataalgorithm.

time) and energy consumed. We measure the total system power 14 g|iow a fairer comparison, we instead have implemented an

with precision multimeters at the wall outlet and computergy
usingenergy = power X time SO energy igotal system energy
not just CPU energy. While time, and thus energy, can vargsscr
many runs of a benchmark, power does not vary much at all. All
results are from direct program executions and measuremeott
simulations or emulations. Each benchmark was executed usi
each indicated algorithm a minimum of five times, with the raed
time and energy values normalized against the median tithemn
ergy for benchmark execution with no DVS scheduling. We also
provide alower boundto the energy consumption. This was com-
puted using program traces and indicates the maximum anedunt
energy that can be saved Bgagiogiven perfect knowledge.

When computing in a tight loop, each compute node in the sys-
tem consumes 180 watts at the fastest available frequency®n
at the slowest. Blocking at the slowest frequency reduced itY
watts to 110. Thus, assuming no time increase due to freguenc
scaling, an overly optimistic upper bound on possible DVE&rgn
savings on these nodes is 39%. Real applications cannavachi
this bound without increasing execution time because &t leae
processor must be on the critical path and run at the fastest f
guency and, generally, not all non-critical-path processan be
run at the slowest frequency.

4.1 Algorithms

In Section 3 we described the design and implementatiéwaaf
gio. We now describe our comparison algorithrfermata-1800
Adagio-CompTimeslice andJitter.

From the clasScheduled Communicatipme usé~ermata-1800
[22], which uses the same technique as the slack reclamealgon
rithm in Adagia All computation is executed at 1800 MHz, while
communication runs at the slowest frequency if blockingetiex-
ceeds a 100ms thresholeermataslows only communication. We
useAdagio-ComptheAdagioalgorithm with no slack reclamation,
to show the effect when we slow only computation.

From theScheduled Timeslicagorithms we implemenifimes-
lice. These algorithms require the user to specify a delay théy wi
tolerate in order to save energy. A higher tolerance gelyeral
creases energy savings. With a delay tolerance of only 0%wr 1
similar to Adagids target, they save the most energy by only slow-
ing communication since they do not use split frequenciémads-
ing which communication to slow can only be based on the char-
acteristics of previous timeslices, so at best the firstdlioe that

algorithm that gives a bound to the performance of algorghm
this class. We execute all computation at the second-hidres
quency (1.6GHz) and uséermatato execute communication at
the lowest frequency. This results in a certain amount oéydel
(never worse than 12.5%) depending on the application.eTaer
two factors influencing the resulting energy savings. Rogfit a
lower frequency lowers power, but running longer increaises.

From theScheduled Iteratioalgorithms we usé@itter [10]. This
algorithm slows the processor for an entire iteration. €hesra-
tions are not identified automatically: the user must artectse
source code with a call tdPl _Pcont r ol and recompileJitter
can detect when an iteration on a particular processor nagelo
than expected (when, for example, a portion of the criticthp
crossed that processor and was inadvertently slowed) atares
the processor to the fastest frequency for subsequentidtesa In
the worst case, this can occur on every processor that has som
amount of slack, and in this caditer will eventually schedule all
the processors to run at the highest frequency. No enerdyoevil
saved, but the only delay will come from the slowdown of the fe
iterations that were tested.

4.2 UMT2K

The UMT2K benchmark [12] is part of the ASC Purple Bench-
mark Suite [11] assembled by Lawrence Livermore Nationdl-La
oratory (LLNL). Extensive studies of this benchmark [22vba
shown that it is a very challenging test of energy savingsofer
fline, let alone runtime, scheduling.

UMT2K implements a tree communication pattern that handles
large, asynchronous messages (100KB+). The critical pa¢is d
not stay on the same processor across an entire iterati@tafks
in UMT2K tend to have either a great deal of computation ended
by a small amount of communication or very short computation
followed by a large amount of communication. The implicatis
that task-level scaling of computation will be generallgffective,
but that slowing the right communication can save energy.

We see this reflected in our results as shown in Figure 3, which
indicates the lower bound for energy use as determined bpeffl
scheduling. After finding the median values of runs with nergg
scheduling, we recorded the median values of runs for ea al
rithm and normalized them to the nonscheduled median vakees
this applicationAdagiosaved 8% energy with only 0.2% delay.

Fermata Adagio-CommndAdagioran with less than 1% delay.



We can pinpoint the source of the energy savings from examini
FermataandAdagio-Comp Becausd-ermataonly slows commu-
nication, and observing that it achieved 7.6% energy sawitoing
S0, we can conclude that very little energy savings can besdiap
from slowing computation. In facAdagio-Comgwhich primarily
slows computation) actually usesoreenergy than the nonsched-
uled runs (0.4% more). We cannot simply add the savings eethie
by Adagio-Compand Fermatatogether to estimate total savings
since the combination intAdagioperformed slightly better.

Jitter performs poorly on this application. THéter algorithm is
sophisticated enough to determine when slowing a partiqusta
cessor leads to overall slowdown, and that processor isnedito
executing at the fastest frequency for the following itierat For

this application)Jitter is unable to find any processors where slack

can be reduced without additional delay, and so ultimatetisaip
running all processors at the highest available frequdnayaking
this determination, thoughlitter introduces an overall execution
delay of 2.5% with a negative energy savings of -2.3%.

Our Timeslicealgorithm saves the most energy for this bench-
However, this comes at a cost of a 5.6% delay.

mark: 10.5%.
Timeslicas the most effective algorithm if this kind of delay can be
tolerated. However, supercomputers are purchased to ogngmns
as fast as possible, and energy savings are likely to besstieg
only within that constraint.

UMT2K presents the intriguing possibility that communication
could be reordered to yield even greater energy savingseily,
the application uses a barrier for synchronization aftergd com-
putation task. Because the computation is balanced, teeze-i
sentially no slack. Then the application performs a seqeeric
load-imbalanced asynchronous communications that texteniim
another barrier oPl _\Wai t al | . Moving to a synchronous com-
munication model could eliminate the need for barriers al age
placing the inevitable slack into the same task as the |@darioed

computation. To our knowledge, no research has been done con

cerning MPI programming techniques that allow for increbse-
ergy savings. We plan to revisit this issue in future work.

In summary,UMT2K presents a challenge for energy savings

because of its complex communication pattern and the iiabol
slow computation without adding delay. Becadstagiocan save
energy by both slowing computaticemd communication,Ada-

gio outperforms every other algorithm used on this benchmavk, a

thoughFermatais almost as effective. UnlikEermata Adagio
also performs well when computation can be slowed, as ws-illu
trate with the next benchmarRarabDiS

4.3 ParaDiS

ParaDiS[1] is a dislocation dynamics simulation in production

use at LLNL. It is a “chaotic” program that converges using a

varying number of iterations for the same initial inputs odé-
ferent runs. Program performance reflects this behaviotaHton

times in our experiments that do not use energy savings vary u

to 4.9%. This nondeterminism makes the program unsuitaole f
offline scheduling. The power consumed, however, is caarsist
within an algorithm: the power requirement for each itenatis
the same (to the extent we can measure it), and the varyingeum
of iterations are reflected in the varying energy. Thus, availower
bound on execution time would require multiple traces, anad
ized bound on energy savings can be computed from a singke tra
ParaDiSexhibits load imbalance. It is possible to config&ea-

aDiSto perform dynamic load balancing, which reduces (but does

not eliminate) slack available for DVS scheduling and maksks
more difficult to predict. We have successfully integrafedh-
gio into the dynamic load balancer provided BgraDiSand have
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Figure 4: Normalized time, energy, and power forParaDiS.

saved significant energy with less than 1% execution timaydel
Space limitations prevent us from detailing these resthis;sec-
tion discusses onlParaDiSwithout dynamic load balancing.

The results are shown in Figure 4. Three of the algorithms had
less than 1% delay, and all five achieved significant energngs.
This application is structured so that the critical pattdteto stay
on the same processor throughout the entire program. Thevits
the largest computation also has a large amount of blockong: ¢
munication time (on processors off the critical path). Eare also
tasks that have short computation combined with long conicadn
tion. As such, bottdagio-CommandFermatado well in isolation,
and the combination intAdagioresults in a 20.2% energy savings.

Due to this structurelitter also performed well, achieving 18.7%
energy savings with a 1.8% delay. Otimeslicealgorithm did
poorly. If no communication time existed on the critical ipaif
the program and all of the computation was CPU-bodigeslice
will slow execution by 12.5% (1.8GHz vs 1.6GHz). WRaraDiS
the delay is much closer to this worst case (unlikRdT2K, which
is relatively communication bound). This additional dedfmes not
accrue energy savings — despite the 9.1% slowdolimeslice
only achieved 11.1% energy savings, the worst of any algorit

The challenge withiParaDiSdoes not lie so much in identifying
slack, but rather in making sure reclaiming the slack do¢sloa
overall program execution. We must predict the next tingesténg
only prior information, However, prior information is notcessar-
ily a reliable guide to performance, especially at the beigig of
the program.

The computation time predictor idagioproves to be robust in
this situation. If the critical path time for each succeegdimstance
increases more than the non-critical path timsgagioschedules
the non-critical path processors to complete earlier tremressary.
This misprediction leaves some amount of energy savings-une
ploited, but results in no additional delay. Additionalyhen the
critical path times decrease more slowly than processdrthef
critical path, Adagioalso incurs no additional delay. In the case
of ParaDiS§ the change was similar enough across all processors
that additional delay did not become an issiliter's prediction of
slack also takes advantage of tHtaraDiSis an example for which
predicting tasks and predicting iterations give similaulés, as op-
posed toTimeslicés prediction of timeslices.

4.4 Summary of UMT2K and ParaDiS results

Broadly speaking, there are two methods for saving eneriggus
DVSin MPI programs: slowing communication and slowing com-
putation to reduce slack. The former tends to work well in tmos
programs with significant communication time due to largesme
sage sizes, andMT2K is an excellent example of this. However,



there is relatively little slack presentwMT2K, and thus very little
opportunity to save energy by slowing computati®araDiS has
far greater load imbalance and thus greater slack. This migt o
allows for the slowing-communication approach to work, &lsb
for slowing of computation.

ParaDiSshows thafAdagiooutperforms other runtime algorithms
when load imbalance allows computation to be slowed, and our
UMT2K results show thaAdagio outperforms other runtime al-
gorithms when load imbalance allows only communicationéo b
slowed. For each application, one of the existing techrigieins
performance close to that édagio(Fermatafor UMT2K andJit-
ter for ParaDiS), but performs relatively poorly on the other ap-
plication. Adagiois the only algorithm that performs well in both
situations. We now turn to the NAS Parallel benchmarks, d-wel
known suite of load-balanced kernels.

4.5 NAS Parallel Benchmarks

The NAS Parallel Benchmark suite (NPB) [20] is a well-known
collection of benchmarks for parallel computing maintairand
distributed by the NASA Advanced Supercomputing divisitre3e
benchmarks generally have a well-balanced computatiarzal, |
implying no communication slack and thus no obvious opportu
nity for energy savings. HoweveET and CG proved to be the
exceptions. While both are load-balanced benchmarksatieaf
communication time to computation time KT was high enough
that energy could be saved by only slowing communicatiod, an
CGis sufficiently memory-bound that slowing computation oa th
critical path resulted in a less than 1% delay. We exploréntipdi-
cations of both of these benchmarks later in this section.

savings, it is an avenue for future study. Finally, the gtrcecof the
EP benchmark preventiitter from scheduling it.

At the other end of the scale are the benchmarks that are eithe
memory-bound €G) or communication-boundHT). While both
Fermataand Adagiodo well onFT (18% savings with 0.4% and
1.7% delay, respectivelylimeslicedoes even better: 22% savings
with only 1.5% delay.Timeslicesaves energy 068G (9% savings
with 0.9% delay) while no other algorithm does.

This illustrates one area of possible improvement Adiagia
The CG benchmark is entirely memory bound, but unless a task
is associated with slack greater than the threshidigiowill not
attempt to schedule that task, even when dropping the CRU fre
quency by 12.5% will result in less than 1% slowdown. We could
address this il\dagioby first scheduling every task that falls below
the slack threshold to use a combination of the fastest azwhge
fastest frequencies. This schedule will waste little tifnthé task
is CPU-bound. However, measuring the execution rate atdbe s
ond frequency will reveal if the task is memory-bound. Irstbése,
Adagiocan schedule the task appropriately even in the absence of
slack. We can extend this approach iteratively to alkagioto
save significant energy while incurring at most a small bashd
delay in the absence of slack.

We now consideFT, which is unusual in two respects. First,
communication time is an order of magnitude larger than asmp
tation time, due to repeated calls toldAl _Al | t oal | that took
up to ten seconds each in communication time alone. Secoad, t
initial iterations of several tasks varied widely enougleaose sig-
nificant misprediction and thus greater slowdown than hagzhbe
expected. While later iterations could be precisely predicthere

We executed each benchmark over 32 processors except in thevere not enough total iterations to amortize the early error

case ofBT andSP, which require a perfect square for the number
of processors (in this case, 16). We chose the class sizeaso th

The former characteristic alloweidagioto save 18% energy.
Communication is not CPU bound, so executing it in the lowest

the benchmark would run long enough to guarantee an accuratepossible frequency saved energy with negligible delay fee

reading on our power meters. This was class C in all casepexce
MG, where we moved to the larger class D.

We present the results in Table 3. As expected, with the excep
tion of FT, no significant energy was saved wihagiqg the largest
delay was 0.4% (ir8P). This result is important becauselagiois
able to recognize when saving energy would incur non-nigég
delay. Moreover, the tasks in some of the NAS programs ardd sma
enough that ifAdagiotried to schedule them, scheduling overhead
(e.g., frequency switching) would dominate, again leadmgpo
much delay—and possibly evémcreasedenergy due to this extra
delay. These results show thhdlagiocan be usedafelyon appli-
cations. When energy savings are possible, as WkT2K and
ParaDiS Adagiowill realize these savings with negligible delay.
Where no energy savings are availatidagiodoes no harm.

Of particular interest here is the range of performancegutes!
by Timeslice For a CPU-bound benchmark suchE slowdown
in execution time essentially matches the slowdown of tloees-
sor. Slowdown occurs iU as well, although to a lesser extent.
Despite executing in a lower frequency, there are no sigmifien-
ergy savings due to the increase in execution time.

Jitter performed poorly overall, with the best energy savings
(19% onCG) associated with the worst delay (6%Dne anomaly
is thatJitter resulted in 10% speedup @tJ. In the past, we have
observed repeatable small speedups in some benchmarkwanfig

mata algorithm accomplished the same savings with only 0.4%
delay). The latter characteristic caused an unusually Highy

of 1.7%. TheAdagio-Compalgorithm saved essentially no energy
while causing a 1.5% delay, and tii@neslicealgorithm accom-
plished additional savings by scheduling all of the itemasi, which
Adagiocannot do because of its goal of negligible delay.

Several simple additions #dagiocould bring the delay results
down to our tolerance. As the issue is misprediction, the-sol
tion can either make the current predictor less sensitivatiation
or use application-specific knowledge to create a bettetigha.
Since one of our goals is to avoid application source modifina
or other application programmer intervention, we only eksnthe
former. The simplest modification would hard code a minimdm o
n executions of a task before beginning to schedule it. THisso
tion succeeds, at least in this case, since the error is eshfinthe
“warm up” iterations o T. A more general solution would require
thatn iterations are withirp percent of the average computation
time before scheduling can begin resume. An even more com-
plex solution, implemented in an earlier versionAafagiq calcu-
lates the accumulated percentage delay at runtime and bolysa
scheduling to occur when that delay falls below the tolegahe all
three cases, only computation scheduling is affecfedhgiowill
continue to save some amount of energy by slowing communica-
tion.

tions when the CPU is slowed. This appears to be caused by the We have chosen not to implement any of these solutions becaus

side effect of staggering communication to reduce conterst in-
dividual processors. As this kind of speedup has an effeehengy

The previous reporteditter results for the NAS applications are
for 8 processors [10]; this explains some of the discrepavitdy
our results.

we are not persuaded that a real problem exists. The C clesisve
of FT ran for a handful of iterations; a more realistic benchmark
would have amortized the error over a greater number oftiters.

We have observed a similar pattern of behavidPamaDiS bench-
marking runs of a dozen iterations produced suboptimaltesas



Bench- Normalized Time Normalized Energy
mark || Adagio| Adagio-Comp| Fermata| Timeslice| Jitter || Adagio | Adagio-Comp| Fermata| Timeslice| Jitter
bt.C 0.999 1.000 0.991 1.046| 1.038| 1.000 1.006 0.994 0.979| 1.033
cg.C 0.999 0.997 1.000 1.009| 1.063| 0.995 0.992 0.995 0.911| 0.812
ep.C 1.009 1.008 1.016 1.122 n/a|| 1.008 1.005 1.014 1.017 n/a
ft.C 1.017 1.015 1.004 1.015| 1.027| 0.821 0.990 0.823 0.781| 0.950
lu.C 0.994 0.992 0.988 1.096| 0.901| 0.997 1.000 0.998 0.981| 0.913
mg.D 1.000 0.997 1.003 1.048| 1.043|| 0.983 0.997 0.985 0.940| 0.993
sp.C 1.004 1.001 1.000 1.034| 1.119| 0.998 1.000 0.995 0.977| 1.099

Table 3: Normalized Time and Energy for the NAS Parallel Benbimarks.

there is a large amount of variation at startup. But in pcaathore
realisticParaDiSruns show our simple predictor is more than ade-
guate to meet our defined limits.

5. RELATED WORK

Previous work on static scheduling [22] has most heavilyinfl
enced the design and implementationAafagia Specifically, the
concepts of MPI-level scheduling granularity came front thark,
as did the use of split frequencies (the latter ultimatelginating
in the real-time work of Ishihara and Yasuura [9]). Sevetalkeo
dynamic voltage scaling runtime algorithms exist. In thést®n
we detail algorithms from the class8gsheduled Communicatipn
Scheduled IteratiorandScheduled Timeslicand briefly describe
other related work.

5.1 Scheduled Communication

We choose three algorithms to illustrate the clasiseduled Com-
munication We described the firsGermata[22], in Section 4.
Li et al. [14], implemented the seconthyrifty barriers, a similar
idea in spirit but aimed at chip multiprocessors. Lim et &b][de-
veloped the third, a technique to infer communication regiand
lower the frequency during those regions. Unlif@mata this ap-
proach lowers the frequency on some computation. Howewvist, i
not aware of the critical path and so does not provide timeagua
tees; instead, it attempts to minimize the energy-delaglyorb

5.2 Scheduled lteration

Section 4 describeditter [10], which is the primaryscheduled
Iterationalgorithm of which we are aware for message passing pro-
grams. Liu et al. [16] slowed down computation before bastia
similar idea, for chip multiprocessors. As mentioned earlbe-
cause these approaches make scheduling decisions acecss-th
tire timestep, they cannot handle situations where theatipath
migrates across processors within a timestep—even if tlggami
tion occurs at global synchronization points. Unfortuhatsuch
migration is not unusual; in particular, it occurs in compbg-
plications such ablMT2K. As Adagiopredicts such migration, it
provides better results for these kinds of applications.

5.3 Scheduled Timeslice

We select two algorithms to illustrate the cl&sheduled Times-
lice. The first,CPU-Miser[7], divides a timestep into many small
timeslices, the size of which depends on the current fregguen
CPU-Miser gathers performance counters for each timeslice and
uses past history to select a single frequency for the nmest
lice. Another approach usepufreq [3], a simple command-
line interface that makes use of the “userspace” CPU freguen
governor in the Linux kernel. Frequency switches occur thase
user-specified CPU idle levels and/or CPU temperature.

As with Scheduled Iteratiorthese approaches do not respect the
critical path, whereag&\dagio does. WhileAdagio can schedule
computation effectively in environments where little or delay
can be toleratedCPU-Misercan require a significant delay (e.g.,
5%) to schedule computation effectively. This makelagioa bet-
ter fit for many classes of HPC applications, where the piymar
metric is execution time.

5.4 Other Related Work

Several researchers have developed techniques and sytstems
save energy with a modest increase in execution time. Camero
et al. [2] and Hsu et al. [8] developed some of the earliest run
time systems to save energy in a performance constrainedenan
for HPC applications. Additionally, Springer et al. [24]caGe et
al. [7] developed analytic models to predict or to underdmergy
consumption in the context of scalability. Similarly to Byyer et
al., Li and Martinez [13] considered both reducing parahaland
frequency scaling, although in the context of chip multg@ssors.
Their results showed power savings in almost every sitnatio

Recent work has explored reducing the amount of concurrency
in programs, with one of the benefits of such reduction besiget
energy. Ding et al. adapt behavior when cores on a chip maitip
cessor are unavailable (which can occur for multiple res)sf5].
Curtis-Maury et al. fork fewer threads for parallel regiomsen
beneficial [4]. Both papers use linear regression to preteief-
fect on performance and minimize energy-delay. In contreda-
gio aims at saving energy with negligible delay.

Many researchers have addressed finding optimal energygsavi
without a time increase in the real-time community. Sevhesle
used Mixed Integer Linear Programming to solve the DVS sghed
ing problem [9, 23, 25, 26] but are limited to a single prooess
Zhang et al. used an LP approximation of an ILP solution fer th
parallel real-time domain [29]. Mochocki et al. [17, 18] tioied
this work with an emphasis on accounting for frequency items
overhead costs. Zhu (slack reclamation) [30] and Moncueidh
real time end-to-end deadlines) [19] have investigatedayimal
distributed real-time energy scheduling. Other work [22}diLin-
ear Programming to derive an approximate upper bound ompote
tial energy savings. Unlik&dagiq these solutions are all offline.

6. SUMMARY AND FUTURE WORK

In this paper, we have presentAdagiq a runtime DVS algo-
rithm aimed at saving energy in HPC applications with negley
delay. Adagioimproves on existing runtime algorithms by using
the proper semantic level of granularity, split frequescand nor-
malized execution time. We appliédlagioto two real-world HPC
applications—JMT2K andParaDiS—and obtained significant en-
ergy savings with negligible execution delay.

We are exploring important open issues including the develo
ment of techniques that guarantee no added delay when gjowin



MPI communication. Porting this work to OpenMP as well as-pro
viding a hybrid MPI/OpenMP solution will allow many more ap-
plications to save energy. Incorporating processor slegpsmay
allow savings of even greater amounts of energy.

Many architectural issues also remain. Multicore chipsuitho
enable per-core DVS control. Multicore optimization is ayvac-
tive area of research, and the possibilities of leveradiig work
while simultaneously saving energy are intriguing. At adovevel,
an architectural description of how DVS affects HPC appiices
will allow a greater understanding of the design of runtingpa
rithms. Finally, we are actively working on using this apmeb in
real-time systems, where bounding delay is vitally impatta
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