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JAN KRAJÍČEK AND THOMAS SCANLON

Abstract. We recall the notions of weak and strong Euler characteristics on
a first order structure and make explicit the notion of a Grothendieck ring of a
structure. We define partially ordered Euler characteristic and Grothendieck
ring and give a characterization of structures that have non-trivial partially or-
dered Grothendieck ring. We give a generalization of counting functions to lo-

cally finite structures, and use the construction to show that the Grothendieck
ring of the complex numbers contains as a subring the ring of integer poly-
nomials in continuum many variables. We prove the existence of universal

strong Euler characteristic on a structure. We investigate the dependence of
the Grothendieck ring on the theory of the structure and give a few counter-

examples. Finally, we relate some open problems and independence results in

bounded arithmetic to properties of particular Grothendieck rings.

1. Introduction

What of elementary combinatorics holds true in a class of first order structures
if sets, relations, and maps must be definable? For example, no finite set is in
one-to-one correspondence with itself minus one point, and the same is true also for
even infinite sets of reals if they, as well as the correspondences, are semi-algebraic,
i.e. are definable in the real closed field R. Similarly for constructible sets and
maps in C. On the other hand, the infinite Ramsey statement ∞ → (∞)22 fails in
C; the infinite unordered graph {(x, y) | x2 = y ∨ y2 = x} on C has no definable
infinite clique or independent set. For a bit more involved examples consider: given
two sets A, B, finite or infinite, there is an embedding of one into the other one.
This is true also in the definable sense in R but not in C. No finite set can be
partitioned into m-element classes (m ≥ 2) with the set minus one point also
partitioned into m-element classes (this is the counting modulo m principle). This
is true also for definable sets in R and C but for an algebraically closed field of
non-zero characteristic the validity of the principle depends on m.

Particularly interesting situations arise when a principle of finite combinatorics
holds not just for finite sets but also for definable sets, whether finite or infinite, and
vice versa, when a principle of infinitary combinatorics fails for infinite definable
sets.

The question was originally motivated by [9] where some combinatorics behind
the representation theory of symmetric groups is lifted from finite sets to Euler
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structures, in order to obtain a criterion for lower bounds on the degree of Null-
stellensatz proof system. However, the connection to proof systems is not the topic
of this paper. We consider this type of questions interesting in their own right and
we study them from a purely model-theoretic point of view. Although this paper
contains new material, its main purpose is to isolate a few notions, examples and
problems that seem to us to be important.

The paper is organized as follows. In section 3 we recall the notions of weak and
strong Euler characteristics on a first order structure and make explicit the notion
of the Grothendieck ring of a structure, and recall a few facts from [9]. In section 4
we define and study partially ordered Euler characteristic and Grothendieck rings
and give a characterization of structures that have non-trivial partially ordered
Grothendieck ring. We give, in section 5, a generalization of counting functions to
locally finite structures, and use the construction to show that the Grothendieck
ring of complex numbers contains as a subring the ring of integer polynomials in
continuum many variables. In section 6 we prove the existence of universal strong
Euler characteristic on a structure. Section 7 is devoted to several open problems
and to examples and partial results related to them. In particular, we investigate
the dependence of the Grothendieck ring on the theory of the structure. In section
8 we relate some open problems and independence results in bounded arithmetic
to properties of particular Grothendieck rings. Finally, the paper is concluded by a
short section on abstract dimension function on a structure in the spirit of Schanuel
[19].

We thank B. Poonen for the proofs of Lemmas 5.3 and 5.4, and P. Pudlák
and J. Sgall for discussions about Problem 8.5.

2. Preliminaries

In this section we recall some definitions.
A structure is a first-order structure in a many-sorted language. If M is a one-

sorted first-order structure, then we regard M as a many-sorted structure by taking
the finite Cartesian powers of M as the basic sorts with the usual co-ordinate
functions connecting these sorts. By Meq we mean the many-sorted structure
constructed from M having as its basic sorts the factor sets S/E where S is a basic
sort of M and E is a definable equivalence relation. Definability always means with
parameters.

If M is a structure, S is a basic sort of M , and ϕ(x) is formula with free variable
x ranging over S, then ϕ(M) := {x ∈ SM : M |= ϕ(x)}. We may identify definable
sets with the formulas defining them. So, if X is an M -definable set, then we might
write X(M) for X.

If M is a structure and S is a basic sort, then DefS(M) is the set of all definable
subsets of S. The set Def(M) is the union over all basic sorts S of DefS(M).
Two definable sets A,B ∈ Def(M) are definably isomorphic if there is a definable
bijection f : A→ B. The set of definable sets in M up to definable isomorphism is
denoted by D̃ef(M). Denote the quotient map by [ ] : Def(M) → D̃ef(M).

The onto-pigeonhole principle ontoPHP is the statement that there are no set
A, a ∈ A, and an injective map f from A onto A \ {a}. The (ordinary) pigeonhole
principle PHP asserts that f cannot be onto any proper subset of A, i.e. any
injective f : A→ A is onto.
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The modular counting principle Countm for m ≥ 2, asserts that there is no set
A, a subset B ⊆ A of size 1 ≤ |B| < m, an m-partition R of A (i.e., a partition
into blocks of size m), and an m-partition S of A \B.

We say that a structure M satisfies one of the principles iff the principle holds
when all sets, relations, functions are definable. We shall denote this fact M |=
PHP and similarly.

Note that if M is finite this is just finite combinatorics as all finite sets are
definable. Similarly, if all subsets of (an infinite) M are definable, it is just infinitary
combinatorics.

3. Euler characteristics and Grothendieck rings

Schanuel introduced Euler characteristics in slightly more generality than we
consider in [19]. In this section we recall some constructions and some of their
basic properties.

Given a structure M we give D̃ef(M) an L(+, ·, 0, 1) structure by defining
• 0 := [∅];
• 1 := [{∗}] where ∗ ∈M is any element;
• [A] + [B] := [A′ ∪B′] where [A] = [A′], [B] = [B′] and A′ ∩B′ = ∅; and
• [A] · [B] := [A×B]

D̃ef(M) is not a ring as (D̃ef(M),+, 0) is not a group.
Definition 3.1 ([9, Def 2.1]). Let M be a structure. A (weak) Euler characteristic
on M with values in the commutative ring with unity R is a map χ : Def(M) → R
of the form

χ = χ′ ◦ [ ]

such that χ′ is an L(+, ·, 0, 1)-homomorphism χ′ : D̃ef(M) → R. The fact that the
values of χ are in R is sometimes denoted by symbol χ/R.

A strong Euler characteristic on M is a weak Euler characteristic χ : Def(M) →
R satisfying the fiber condition:

If f : A→ B is a definable function between definable sets, c ∈ R, and
χ(f−1{b}) = c for all b ∈ B, then χ(A) = c · χ(B).

The next theorem is from [9]; we recall it with its proof as the underlying con-
struction is used in Definition 3.3 and Theorem 7.3.
Theorem 3.2 ([9, Thm.3.1]). Let M be a structure. The following two properties
are equivalent:

(1) M |= ontoPHP .
(2) There is a non-trivial ring R such that M admits weak χ/R.

Proof: ([9])
The second property implies the first one as otherwise obviously 0 = 1 in R.

Assume now that the first property holds.
Define an equivalence relation ∼ on D̃ef(M) by: a ∼ b iff a+ c = b+ c for some

c ∈ D̃ef(M), and let R be the factor rig D̃ef(M)/ ∼. (R,+, 0) is still not a group
but it is a cancellative monoid. Let R̃ be the unique minimal ring that embeds R.
R̃ is non-trivial iff R is, i.e. iff 0 and 1 are not ∼-equivalent in D̃ef(M). The later
condition is equivalent to the hypothesis of the theorem.

q.e.d
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Definition 3.3. The Grothendieck ring of a structure M , denoted K0(M), is the
ring R̃ constructed in the proof of Theorem 3.2. The particular weak Euler charac-
teristic χ0/K0(M) constructed there is called the universal weak Euler character-
istic.

Theorem 3.2 can thus be reformulated as

Corollary 3.4. For M a structure, K0(M) is non-trivial iff M |= ontoPHP . If
χ : Def(M) → R is a weak Euler characteristic then χ factors through χ0.

Example 3.5. Let M be finite. Then: K0(M) = Z.
Example 3.6. Let R be the real closed field. Then: K0(R) = Z.

To see this let us denote χg the geometric Euler characteristic constructed
on Def(R) via triangulation, and dim the dimension (see [5]). The existence of
χg implies that K0(R) has Z as a quotient. On the other hand, for any two
A,B ∈ Def(R) having the same Euler characteristic χg(A) = χg(B) and dimension
dim(A) = dim(B) there is a definable bijection f : A → B (see [5]). Assume that
we have two definable sets U, V with χg(U) = χg(V ) but of possibly different di-
mensions. We may assume that U, V ∈ DefRk

(R), with dim(U),dim(V ) < k. Pick
X ∈ DefRk

(R) disjoint from both. Then U ∪ X and V ∪ X have the same χg as
well as the dimension, and so are equivalent via a definable bijection. This means,
that their classes in K0(R) are the same, by the definition of K0(R). Hence χg is
the weak Euler characteristic from Theorem 3.2 and so K0(R) = Z.
Example 3.7. Let C be the complex numbers. Then K0(C) ⊃ Z. In fact, K0(C)
admits Z[u, v] as a quotient.

The second statement is due to Denef and Loeser [4] and rests to a large ex-
tent upon the Hodge theory. We prove a stronger version of the first assertion in
section 5.
Example 3.8. Given a prime p there is a pseudo-finite field F for which there are
at least two distinct quotients of K0(M) isomorphic to Fp.

This example is taken from [9, Thm.7.3].

We conclude the section by recalling from [9] a sufficient condition on M ensuring
that K0(M) admits a particular finite field as a quotient.

Theorem 3.9 ([9]). Let p be a prime and suppose that M satisfies the modular
counting principle Countp. Then K0(M) admits Fp as a quotient.

If a linear ordering of M is definable in M and K0(M) admits Fp as a quotient
then, on the other hand, M satisfies Countp.

This is [9, L.3.6 and Thm.3.7].

4. Partially ordered Grothendieck rings

Definition 4.1. A partially ordered ring is a pair (R,P ), where R is a ring (com-
mutative with 1) and P ⊆ R such that

(1) 0 ∈ P & 1 ∈ P
(2) P + P ⊆ P
(3) P · P ⊆ P
(4) x 6= 0 & x ∈ P ⇒ −x /∈ P

We call P the set of non-negative elements.
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Equivalently, a partially ordered ring is a commutative ring R with unity given
together with a partial ordering < for which 0 < 1, x < y ⇒ x + z < y + z, and
(z > 0&x < y) → xz < yz. The equivalence is given by P := {x : x ≥ 0} and
x ≤ y ⇔ y − x ∈ P .
Definition 4.2. A weak Euler characteristic χ : Def(M) → R on the structure M
is partially ordered if (R,P ) is a partially ordered ring and χ(Def(M)) ⊆ P .

Equivalently, if A ⊆ B are definable sets, then χ(A) ≤ χ(B).
Theorem 4.3. Let M be a structure. The universal weak Euler characteristic
χ0 : Def(M) → K0(M) is partially ordered iff M satisfies the pigeonhole principle
PHP .

Proof:
Equip already D̃ef(M) with the partial ordering defined as: A ≤ B iff there

are disjoint sets A′, B′, X ∈ Def(M) such that A = [A′], B = [B′], and such that
there is a definable injective mapping of A′ ∪ X into B′ ∪ X. The fact, that the
equivalence relation A ≤ B ∧B ≤ A induced by the partial ordering is not coarser
than equality is exactly the principle PHP . q.e.d

Example 4.4. The universal weak Euler characteristic χ0 : Def(C) → K0(C) on C
is partially ordered. However, no strong χ/R on C is partially ordered.

The first part is, by Theorem 4.3, essentially a theorem of Ax [1] that C |= PHP
and we expand on this observation in section 5. For the second part consider the
two-to-one map x 7→ x2 on C×. This certifies, using the fiber property of χ, that
χ(C×) = 2 · χ(C×). Hence χ(C×) = 0 and χ(C) = 1. But {0, 1} ⊆ C is definable
and has the Euler characteristic 2, contradicting the definition of partially ordered
χ. A generalization of Ax’s theorem to proalgebraic spaces is studied in [6]. The
pigeonhole principle goes under the robotic name of “surjunctive” there.

Moreover, there is no nontrivial ordered Euler characteristic on R as the function
x 7→ x+ 1 on the definable set {x ∈ R : x > 0} witnesses the failure of PHP.
Theorem 4.5. If M is an infinite structure satisfying the pigeon hole principle,
then the polynomial ring in one variable over Z is a subring of K0(M).

Proof: By Theorem 4.3, the universal weak Euler characteristic χ0 : Def(M) →
K0(M) is a partially ordered weak Euler characteristic. Let X := χ0([M ]). If
(R,<) is a partially ordered ring and a, b ∈ R, then we define a� b if there exists
a positive integer k such that for any n ∈ ω we have na < kb.

Claim: Let n be a natural number. If P (x) ∈ Z[x] is a polynomial of degree less
than n, then P (X) � Xn in K0(M).

Proof of Claim: We prove this claim by induction on n. If n = 0, then P = 0,
X0 = 1, and 0 < 1 by the definition of a partially ordered ring.

For n = 1, P is a constant polynomial a. Let m ∈ ω. If a ≤ 0, then X > 0 ≥ ma.
Otherwise, observe that for any m there is some subset of M of size ma (as M is
infinite) so that a� X.

Consider now the case of n + 1. Write P (X) = a + X · Q(X) where a ∈ Z.
Let k ∈ ω so that for any m ∈ ω we have mQ(X) < kXn. Then mP (X) =
ma+mX ·Q(X) < X +XkXn ≤ Xn+1 + kXn+1 = (1 + k)Xn+1. a
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Let now P (x) ∈ Z[x] be a nonzero polynomial. Write P (x) = axd+Q(x) where Q
is a polynomial of degree less than d and a 6= 0. Note that P (X) = 0 ⇔ −P (X) = 0,
so we may and do assume that a > 0. By the claim we have Q(X) � Xd ≤ aXd.
In particular, Q(X) 6= −aXd so P (X) 6= 0. Therefore, the map Z[x] → K0(M)
given by P (x) 7→ P (χ0([M ])) is an injection. q.e.d

We say that a structure satisfies the first comparing of cardinalities property
CC1 if for any two definable sets A, B, there is either a definable injective mapping
of A into B or of B into A. The property CC1 implies, in the presence of PHP ,
that the Grothendieck ring K0(M) is non-trivial and linearly ordered.

The intuitive property of comparing cardinalities can be formulated also in an-
other way. We say that a structure satisfies the property CC2 if for any two
non-empty definable sets A, B, there is either a definable injective mapping of A
into B or a definable surjective mapping of A onto B.

Both properties hold true for R. To see CC1 let A, B be two definable sets,
w.l.o.g. from the same DefRk

(R). If dim(A) = dim(B), then we delete from
either A or B few points to arrange also χg(A) = χg(B). Then, similarly as in
Example 3.6, we have a definable bijection between the modified pair, and hence
an embedding of one of A or B into the other. If dim(A) < dim(B), first replace
B by its subset of dimension dim(A) and then proceed as before. The second
comparing cardinalities property is treated analogously.

5. Counting functions

As noted earlier, the universal Euler characteristic for a finite structure is noth-
ing other than the function which assigns to a definable set its cardinality. For
infinite structures, such a counting function respects addition and multiplication,
but it is not a ring homomorphism as cardinal addition and multiplication do not
satisfy cancellation. However, infinite structures which are well-approximated by
finite structures inherit counting functions from the finite approximations. In this
section we note that counting functions on locally finite structures amalgamate to
give a ring homomorphism from the Grothendieck ring to a ring of integer valued
functions. Our construction works for any directed limit.

If (I,<) is a directed set and {Ri}i∈I is a family of structures indexed by I, then
we define the eventual product of this family to be the reduced product

∏
i∈I Ri/C

where C is the filter generated by the cones on I. More concretely, (xi)i∈I ∼
(yi)i∈I ⇔ (∃j ∈ I)(∀k ≥ j)xk = yk.

We say that structure M is a strong direct limit of the directed system of struc-
tures {Mi}i∈I if f : Mn → M is a definable n-ary function, defined over Mi, then
for any j ≥ i f maps (the image in M of) Mn

j back into Mj .
Theorem 5.1. If M = lim−→i∈I

Mi is a strong direct limit of structures and M

eliminates quantifiers, then there is a natural homomorphism of rings from the
Grothendieck ring of M to the eventual product of the Grothendieck rings of the
directed system,

ψ : K0(M) →
∏
i∈I

K0(Mi)/C .

Proof: We define ψ on Def(M) as follows. Let X be a definable set. As M is the
directed limit of the Mi’s, there is some index i for which X is Mi definable by a



COMBINATORICS WITH DEFINABLE SETS 7

quantifier-free formula. Let (xj)j∈I ∈
∏

j∈I K0(Mj) be the I-sequence with xj = 0
for j 6≥ i and xj = χ0(Xj) ∈ K0(Mj) for j ≥ i. Let ψ(X) be the image of (xj)j∈I

in the eventual product. It is a routine matter to check that ψ is a well-defined
homomorphism, but we include the details below.

The value of ψ(X) does not depend on the choice of i: Suppose we were to choose
i′ ∈ I so that X is defined over Mi′ and let (x′j)j∈I be the element of

∏
j∈I K0(Mj)

constructed from this choice of i′. As I is directed, there is some i′′ ∈ I with
i′′ ≥ i, i′. Thus, {j : xj = x′j} ⊇ {j : j ≥ i′′} ∈ C which means by definition that
the images of these elements in the reduced product are equal.

We check now that ψ induces a well-defined map on D̃ef(M). Suppose X and
Y are definable with [X] = [Y ] ∈ D̃ef(M). Take i ∈ I so that X and Y are both
defined over Mi and the isomorphism between X and Y is also defined over Mi.
As M is a strong direct limit, χ0(X) = χ0(Y ) ∈ K0(Mj) for all j ≥ i. Thus,
ψ(X) = ψ(Y ).

The fact that ψ respects the ring structure should be clear. q.e.d

Remark 5.2. The construction of the eventual limit is functorial. That is, if {ρi :
Ri → Si}i∈I is a set of homomorphisms indexed by the directed set (I,<), then the
map given by co-ordinatewise application of the ρi’s induces a map ρ :

∏
i∈I Ri/C →∏

i∈I Si/C.
We apply the above construction to algebraically closed fields. For p a rational

prime, Falg
p , the algebraic closure of the field Fp of p elements may be realized as a

strong limit Falg
p = lim−→Fpn where the directed index set is Z+ ordered by divisibility.

The fact that this is a strong limit follows from quantifier elimination (which shows
that every definable function (Falg

p )n → Falg
p is piecewise a polynomial composed

with some integral power of the Frobenius) and the fact each finite field is perfect.
Each finite field Fq is finite, so its Grothendieck ring is Z with the function from

D̃ef(F) → Z given by counting. The above proposition yields a homomorphism
ψp : K0(Falg

p ) →
∏

n∈ω
Z/C. We use this homomorphism to exhibit a large alge-

braically independent subset of K0(Falg
p ). The following lemmata will show that if

{Ei}i∈I is a set of pairwise non-isogenous ordinary elliptic curves over Falg
p , then

{ψp(χ0(Ei))}i∈I is algebraically independent in
∏

n∈ω
Z/C. We then show that this

property persists to C so that K0(C) contains an algebraically independent set of
size continuum.

We recall Weil’s formula for the number of points on an elliptic curve over a finite
field (a reference for this and some facts used later is [13]). Let E be an elliptic
curve defined over the finite field Fq. The q-power Frobenius induces an algebraic
endomorphism F : E → E. The minimal polynomial of F over Z (considered as a
subring of the endomorphism ring of E) is of the form X2 − aX + q with a2 < 4q.
Let α and ᾱ ∈ C be the conjugate roots of X2 − aX + q. Then, for any n, the
number of points in E rational over Fqn is 1− αn − ᾱn + qn. We refer to α as the
eigenvalue of Frobenius of E. Of course, one cannot see the difference between α
and ᾱ, but this choice should cause no confusion.

Weil’s formula implies algebraic independence of non-isogenous ordinary elliptic
curves once one knows that the eigenvalues of a family of non-isogenous elliptic
curves are multiplicatively independent. This fact ought to be well-known, but we
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could not find this statement in the literature. The proof given below is due to B.
Poonen.

Lemma 5.3 (Poonen). Let α1, . . . , αn ∈ C× be n complex numbers. We assume
that |αi| = 1 and that [Q(αi) : Q] ≤ 2. If there is a non-trivial multiplicative
relation among α1, . . . , αn, then Q(αi) = Q(αj) for some i 6= j or αi is a root of
unity for some i.

Proof: We work by induction on n. The case of n = 1 is trivial. Consider the case

of n + 1. Suppose that
n+1∏
i=1

αmi
i = 1 is a multiplicative relation. By induction, we

may assume that all mi’s are nonzero, that no αi is a root of unity, and that no two
distinct αi’s generate the same quadratic extensions. As Q(αn) 6= Q(αn+1), there
is some σ ∈ Gal(Q(α1, . . . , αn+1)/Q) with σ(αn) = αn and σ(αn+1) 6= αn+1.

Note that

1 = σ(
n+1∏
i=1

αmi
i )

n+1∏
i=1

αmi
i =

∏
{i:σ(αi) 6=αi}

|αi|mi

∏
{i:σ(αi)=αi}

α2mi
i =

∏
{i:σ(αi)=αi}

α2mi
i

This gives a nontrivial multiplicative among α1, . . . , αn contradicting the induc-
tive hypothesis. q.e.d

Lemma 5.4 (Poonen). If E1, . . . , En are n pairwise (absolutely) non-isogenous
elliptic curves over the finite field Fq, then their eigenvalues of Frobenius α1, . . . , αn

are multiplicatively independent.

Proof: Replacing q by q2 and therefore each αi by α2
i we may assume that q is

a square. Set ei := αi

|αi| = αi√
q . If there is a non-trivial multiplicative dependence

amongst {α1, . . . , αn}, then there must be such a dependence amongst {e1, . . . , en}.
By Lemma 5.3, either some ei is a root of unity or for some i 6= j we have Q(ei) =
Q(ej).

An elliptic curve has eigenvalue of Frobenius a root of unity times the square-
root of q if and only if it is supersingular and any two supersingular elliptic curves
are absolutely isogenous. So, only one of the ei’s, say e1, can be a root of unity.
If the multiplicative relation involved any other ei, then by raising the expression
to the twelfth power, we would obtain a non-trivial multiplicative relation among
e2, . . . , em. In this case we must have Q(αi) = Q(ei) = Q(ej) = Q(αj) for some
i 6= j, but the theory of complex multiplication shows that the Frobenii of two
ordinary elliptic curves generate the same quadratic field if and only if the curves
are absolutely isogenous. Thus, the only possible multiplicative relation among the
ei’s is em

i = 1 (if Ei is supersingular), but |αm
i | = q

m
2 6= 1 unless m = 0. Therefore,

there can be no multiplicative dependence amongst {α1, . . . , αn}. q.e.d

Corollary 5.5. If E1, . . . , En are absolutely non-isogenous ordinary elliptic curves
over a finite field Fq with eigenvalues of Frobenius α1, . . . , αn, then q, α1, . . . , αn is
a multiplicatively independent set.
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Proof: Without loss of generality, we may replace q with q2. Let E0 be a super-
singular elliptic curve over Fq. By the above lemma, the eigenvalues of Frobenius
of E0, . . . , En are multiplicatively independent. The eigenvalue of Frobenius of E0

is a square root of q. Thus,
√
q, α1, . . . , αn are multiplicatively independent; and

therefore q, α1, . . . , αn are multiplicatively independent. q.e.d

The next lemma translates multiplicative independence of the base of exponen-
tials into algebraic independence.
Lemma 5.6. Let α1, . . . , αn be sequence of algebraic numbers. Let Ai : Z+ →
C be the function m 7→ αm

i . If α1, . . . , αn are multiplicatively independent, then
A1, . . . , An are algebraically independent.

Proof: Let p be a nonzero prime of Z[α1, α
−1
1 , . . . , αn, α

−1
n ]. Let K be the p-

adic completion of Q(α1, . . . , αn). We will actually show that A1, . . . , An are alge-
braically independent over K.

We work by induction on n. Suppose that P (x1, . . . , xn) ∈ OK [x1, . . . , xn] is
a nonzero integral polynomial for which f(z) := P (A1(z), . . . , An(z)) ≡ 0 as a
function on Z+. We may assume that the hypersurface V (P ) defined by P = 0 has
minimal degree among all possible witnesses of algebraic dependencies.

Replacing each αi with the same power corresponds to restricting f to a smaller
set. So, we may and do assume that each αi is p-adically close enough to 1 so that
the p-adic logarithm is defined at αi. Let Bi := logp(αi).

We note that f extends uniquely to a p-adic analytic function which has infinitely
many zeroes and is therefore identically zero. Thus, the Taylor expansion of f is
identically zero.

If we write
P (x1, . . . , xn) =

∑
I

pIx
I

then we find that

0 =
d

dz
f(z) =

∑
I

n∑
i=1

pIIiBiA(z)I =: Q(A1(z), . . . , An(z)) .

If V (Q) 6⊇ V (P ), then (A1(z), . . . , An(z)) ∈ V (P,Q) which is a variety of dimension
strictly less than n−1 (which would be ruled out by induction) or it is a hypersurface
of degree strictly less than that of V (P ) (violating the minimality condition on P ).
Thus, there is some λ ∈ K for which Q = λP . That is, λpI = (

∑n
i=1 IiBi)pI for

all multi-indices I. Taking I 6= J with pI 6= 0 and pJ 6= 0, we find that
∑n

i=1(Ji −
Ii)Bi = 0. As I 6= J , this equation gives a non-trivial Z-linear relation among
the Bi’s. Applying the exponential function, this gives a non-trivial multiplicative
relation among the αi’s. q.e.d

Theorem 5.7. If E1, . . . , En are non-isogenous ordinary elliptic curves over the
algebraically closed field Falg

p , then χ0(E1), . . . , χ0(En) are algebraically independent
in K0(Falg

p ).

Proof: Take q so that E1, . . . , En are all defined over Fq. Let α1, . . . , αn be the
eigenvalues of Frobenius on E1, . . . , En. If

ψp(χ0(E1)), . . . , ψp(χ0(En))
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were algebraically dependent, then there would be an algebraic dependence among
qz, αz

1, . . . , α
z
n considered as functions on Z+. We know this to be impossible. q.e.d

Corollary 5.8. There is an injective homomorphism Z[{xj : j ∈ c}] → K0(C),
where c is the cardinality of continuum.

Proof: Realize C as an ultraproduct
∏

p Falg
p /U . We have a natural homomorphism

ϕ : K0(
∏

p Falg
p /U) →

∏
pK0(Falg

p )/U . By  Loś’s Theorem, if {(jδ
p)}δ∈I is a set of

sequences of
j-invariants so that for any finite set δ1, . . . , δn the set of p with E

j
δ1
p
, . . . , Ejδn

p

ordinary and pair-wise non-isogenous is in U , then {ϕ(E[jδ]U )} is an algebraically
independent set. As there are infinitely many isogeny classes of ordinary elliptic
curves over Falg

p , we may choose I to have the cardinality of the continuum. q.e.d

One could prove Corollary 5.8 by a direct algebraic argument, but the argument
presented here shows that the algebraic independence holds even at the level of the
Euler characteristics constructed from counting in finite fields.

6. Universal strong Euler characteristic

We would like a theorem analogous to Theorem 3.2 but for strong Euler char-
acteristic, i.e. respecting also the fiber condition imposed on χ. Hence, one should
factor K0(M) also by “relations” (one for each definable f : A→ B and all c ∈ R):

IF ∀b ∈ B;χ(f (−1)(b)) = c THEN χ(A) = c · χ(B)

However, this is only a clause while we want equations. Imposing one of these
relations may very well force one to impose another such not previously apparent.
We note here that every structure admits a universal strong Euler characteristic.

Theorem 6.1. For any structure M there is a universal strong Euler characteristic
χ : Def(M) → Ks(M).

Proof: We begin with some notation. If f : A→ B is a definable family and b ∈ B,
then we denote by A(b) the fiber f−1{b}.

We build χ by transfinite recursion. Start with χ0 : Def(M) → K0(M) the
universal weak Euler characteristic. We build an inductive system of rings {ψα,β :
Kα(M) → Kβ(M)}α<β setting χα := ψ0,α ◦ χ0. At successor stages α+ 1, let

Kα+1(M) := Kα(M)/({χα(B)χα(A(b0))− χα(A) : f : A→ B a definable family

with b0 ∈ B and χα(A(b)) = χα(A(b0)) for all b ∈ B})
and take for ϕα,α+1 the quotient map. At limit ordinals λ, we set Kλ(M) :=
lim−→α→λ

Kα(M) and let ϕα,λ : Kα(M) → Kλ(M) be the universal map to the direct
limit. The universal strong Euler characteristic is χα : Def(M) → Kα(M) for
α� 0. We could take α = |LM |+.

The verification that this construction works is routine, but for completeness we
include it.

Claim 1: If ϕα,α+1 = idKα(M), then ϕα,β = idKα(M) for all β > α.
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Proof of Claim: We prove this by transfinite induction on β > α with the result
being assumed for β = α + 1. For β = γ + 1 assuming the result for γ, if we
have a definable family f : A → B and b0 ∈ B so that χγ(A(b)) = χγ(A(b0))
holds for all b ∈ B, then by hypothesis we have χα(A(b)) = χα(A(b)) for all b ∈ B
already. Hence, by the definition of Kα+1(M), the equation χα+1(A)−χα+1(A(b0))·
χα+1(B) = 0 already holds in Kα+1(M) so that composing with ϕα+1,γ we see that
χγ(A) = χγ(A(b0)) · χγ(B). As this is true for any such family, the quotient map
Kγ(M) → Kγ+1(M) is the identity. At limits, this follows from the general fact
that a limit of identity maps is the identity map. a

Claim 2: There is some α < |LM |+ such that ϕα,α+1 = idKα(M).

Proof of Claim: Define Eα := kerϕ0,α+1 \ kerϕ0,α. Assuming that no such α

exists, then |D̃ef(M)| ≥ |K0(M)| ≥
⋃

α<|LM |+
|Eα| ≥ |LM |+ > |D̃ef(M)| which is

impossible. a

First, we check that χ : Def(M) → Ks(M) is a strong Euler characteristic.
Since χ = ϕ0,α ◦ χ0 is the composition of a ring homomorphism with the universal
weak Euler characteristic, χ is at least a weak Euler characteristic. We check
the fibre condition. Let f : A → B be a definable family and b0 ∈ B so that
χ(A(b)) = χ(A(b0)) for all b ∈ B. Take β < α large enough so that the inductive
system has stabilized. Then χβ(A(b)) = χβ(A(b0)) holds for all b ∈ B. The
defining relations on Kβ+1(M) ensure that χβ+1(A) = χβ+1(A(b0)) · χβ+1(B), so
that applying ϕβ+1,α we see that χ(A) = χ(A(b0)) · χ(B).

Next, we check that χ is universal. Let ξ : Def(M) → R be any strong Euler
characteristic. We show by transfinite induction that for every β there is a unique
map ξ̃β : Kβ(M) → R so that ξ = ξ̃β ◦ χβ . For β = 0 this is simply the statement
that χ0 is the universal weak Euler characteristic. At a successor stage, we observe
that if f : A → B is a definable family and b0 ∈ B with χβ(A(b)) = χβ(A(b0)) for
all b ∈ B, then ξ(A(b)) = ξ̃β(χβ(A(b))) = ξ̃β(χβ(A(b0))) = ξ(A(b0)) for all b ∈ B.
Thus, ξ(A) = ξ(A(b0)) · ξ(B) so that ξ̃β(χβ(A) − χβ(A(b0)) · χβ(B)) = 0. That
is, ξ̃β vanishes on the kernel of ϕβ,β+1 so it induces a unique map on Kβ+1(M) as
claimed. Finally, at limit stages, the existence and uniqueness of ξ̃β manifests the
universality of the direct limit. q.e.d

7. Problems on Grothendieck rings and Euler structures

Problem 7.1. Is there a combinatorially transparent analogue of Theorem 3.2 for
the universal strong Euler characteristic?
Problem 7.2. What is the relation between Grothendieck rings of elementarily
equivalent structures?

Some properties of K0(M) are obviously properties of the theory of M . For
example, whether K0(M) is non-trivial, by Theorem 3.2, or whether any particular
finite ring is a quotient of K0(M), by [9, Thm.3.4]. Furthermore, if M is an
elementary substructure of N then K0(M) is naturally embedded into K0(N).
This is obvious from the construction (see also [9, L.3.2]). In fact, more is true.
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Theorem 7.3. Let M and N be two elementary equivalent structures. Then
D̃ef(M) ≡∃1 D̃ef(N) in the language of rings. Thus, as the Grothendieck ring
is existentially interpretable in D̃ef(M), we have K0(M) ≡∃1 K0(N).

Proof: We begin by observing that if U is an ultrafilter on some index set I, then
D̃ef(MU ) is a substructure of D̃ef(M)U . As a general rule, if A ⊆ B ⊆ C are L-
structures for some first-order language L and A � C is an elementary extension,
then the extension A ⊆ B preserves existential formulas (with parameters from A).
Applying this general fact to D̃ef(M) ⊆ D̃ef(MU ) ⊆ D̃ef(M)U , we see that the
inclusion D̃ef(M) ⊆ D̃ef(MU ) preserves existential formulas.

By a theorem of Shelah [20], if M ≡ N , then there is an ultrafilter U so that
MU ∼= NU . Combining this fact with the previous paragraph we have D̃ef(M) ≡∃1

D̃ef(MU ) ∼= D̃ef(NU ) ≡∃1 D̃ef(N), as claimed. q.e.d

Example 7.4. One cannot replace ∃1-equivalence by even ∀∃-equivalence in general
as the following example demonstrates.

Let L := L(E) be the language having a single binary relation. Let M be the
L-structure in which E is interpreted as an equivalence relation for which every E-
class is finite and for each positive integer n there is exactly one E-class of size n. By
quantifier elimination in LM , K0(M) is generated by the image of DefM1

(M). As
M is a locally finite structure, we see that K0(M) is a partially ordered ring. Thus,
K0(M) is isomorphic to Z[T ] with T = χ0([M ]). Let N � M be the countable
elementary extension in which there is exactly one infinite E-class, C. Realizing N
as a submodel of an ultrapower of M , one sees that Z � χ0([C]) � χ0([N ]) so that
K0(N) is isomorphic to Z[T, S] with T = χ0([N ]) and S = χ0([C]). The inclusion
Z[T ] ↪→ Z[T, S] is not even an ∀∃-extension as Z[T ] has Krull dimension two while
Z[T, S] has Krull dimension three. The condition that a Noetherian commutative
ring have Krull dimension less than three may be expressed by:

(∀x, y, z)(∃a, b, c)[ax+ by + cz = 1 ∨ ax+ by = z ∨ by + cz = x ∨ ax+ cz = y]

Remark 7.5. If M is ℵ0-saturated, then for any elementary extension N � M we
have K0(M) � K0(N).

Remark 7.6. The above proof actually takes place at the level of D̃ef(M) and passes
to K0(M) via the interpretability of K0(M) in D̃ef(M) in the language of rings.
The same proof fails for strong Euler characteristics as the fiber condition is not
definable in the ring language. In fact, there are structures which admit no non-
trivial strong Euler characteristic but which have elementary extensions possessing
non-trivial strong Euler characteristics. If A ⊆ M is a subset, then we denote by
Def(M)/A the class of A-definable sets in M and by D̃ef(M)/A the class of A-
definable sets in M up to M -isomorphism. If M � N is an elementary extension,
then the identification of D̃ef(M) with D̃ef(N)/M induces a map from the image
of D̃ef(N)/M in Ks(N), denoted Ks(N)/M , onto Ks(M). This map may have a
nontrivial kernel.
Problem 7.7. Which fields admit nontrivial strong Euler characteristic?

Algebraically closed fields of characteristic zero, real closed fields, finite and
pseudo-finite fields do admit strong Euler characteristic (see [9] for examples).
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Algebraically closed fields of positive characteristic do not admit strong Euler
characteristics (cf. also [9, Sec.5]). We give the calculation in characteristic greater
than two. Let K be an algebraically closed field of characteristic p > 2. The
function K× → K× given by x 7→ x2 has fibers of size two over every point so
that by the fiber condition, χ([K×]) = 0. The function K \ {0, 1} → K× given by
x 7→ xp+1−xp has fibers of size p+1 over every point so that −1 = χ([K \{0, 1}]) =
(p+ 1)χ([K×]) = 0. For characteristic two use the Artin-Schreier map x 7→ x2 + x
to calculate χ([K]) = 0 and then use x 7→ x3 + x2 as above.

D. Haskell [7] has shown that p-adic fields do not even admit non-trivial weak
Euler characteristics.

Do any other fields admit strong χ/R?
Problem 7.8. Which fields admit nontrivial strong partially ordered Euler charac-
teristic?

We note that such a field is necessarily perfect and quasi-finite. That is, its
absolute Galois group is isomorphic to Ẑ, the profinite completion of the integers.

Finite and pseudo-finite do, while real closed and algebraically closed do not.
Obviously, even weak ordered χ implies perfection.

However, weak ordered χ is not enough to guarantee pseudo-finiteness. To see
this we borrow an example from [1]. Consider the field that is a union of finite
fields with pqk

elements, k = 1, 2, . . . , and p, q fixed different primes. It is perfect,
PAC (pseudo-algebraically closed) but not pseudo-finite. In the field the algebraic
and the model-theoretic closure coincide and so a definable function is piece-wise
rational. Hence such a field satisfies PHP (otherwise some of the finite subfields
would contain a counter-example to PHP), and that yields, by Theorem 4.3, an
ordered weak χ.

A class of fields of interest with respect to this problem is the class of non-
standard finite fields in models of arithmetic, defined as residue fields modulo a
non-standard prime. If the models satisfy PA the fields are just - up to elementary
equivalence - pseudo-finite fields of characteristic zero, cf. [11]. In these models the
fields admit an ordered strong Euler characteristic based on counting.

Now assume the models satisfy only some bounded arithmetic theory (cf. Section
8). If counting were definable in the theory, the fields admit again an ordered
strong Euler characteristic. Hence a proof that only finite or pseudo-finite fields
admit strong partially ordered χ either gives an independence of counting from the
bounded arithmetic theory or improves upon [11] considerably (for a partial result
in this direction see [3]).
Problem 7.9. To what extent is the Grothendieck ring of a structure definable
(perhaps in terms of some imaginary parameters associated to the structure)?

Especially interesting cases: C and models of I∆top
0 (see next section).

We remark that the universal weak Euler characteristic in R is definable in R,
cf. [5] while the universal strong Euler characteristic on C is definable in C. In
particular, given a definable f : A → B between definable A, B, and given n ∈ Z,
the set {b ∈ B | χ0(f (−1)(b)) = n} is also definable.

A particularly interesting special case of the previous problem is
Problem 7.10. Describe all χ/Fq on pseudo-finite fields, or at least on ultraproducts
of finite fields.

This problem is related to [9, Thm.7.3] (see remarks there).
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8. Examples from bounded arithmetic

Bounded arithmetic I∆0, defined by Parikh [14], is a subtheory of Peano arith-
metic with induction for bounded formulas only (the language is {0, 1,+,×,=,≤})
(see also [8] for a general reference on bounded arithmetic). One of the oldest
and most interesting open problems about bounded arithmetic was posed by A.
Macintyre some twenty years ago: Does I∆0 prove that no function defined by a
∆0-formula maps injectively an interval [0, n] into [0, n)? This statement is called
the ∆0 pigeonhole principle ∆0 − PHP ; similarly for the onto-version. We shall
see that the problem simply asks whether a certain Grothendieck ring is trivial or
not.

First let us observe that ∆0−PHP is equivalent to the version of PHP formu-
lated for all ∆0 maps and ∆0 sets that are not cofinal. Assume f : X → X maps
injectively a non-cofinal set X ⊆ [0, n] into its proper subset. By possibly adding
n to X and changing one or two values of f we may assume that n ∈ X \Rng(f).
Then the map extending f by identity id[0,n]\X contradicts the original formulation
of ∆0 − PHP .

Let I∆top
0 be the theory like I∆0 but only on bounded intervals [0, e] (it was

considered already by Paris and Wilkie). Namely, the language LB of the theory
is as of I∆0 augmented by a new constant e, except that the operations + and ×
are replaced by ternary relations ⊕, ⊗ (standing for their graphs). The constant e
is interpreted as the largest element with respect to the linear ordering ≤, and the
axiomatization states basic properties of 0, 1, ⊕, ⊗, ≤ on the interval [0, e], and
asserts the induction for all formulas (all quantifiers are implicitly bounded by e).

Having a model M of I∆0 and n ∈ M , [0, n] is a model of I∆top
0 under the

natural interpretation of the language. On the other hand, a model [0, e] of I∆top
0

defines uniquely (via e-adic notation for numbers) a model M of I∆0, in which [0, e]
is an initial interval and in which the (standard) powers of e are cofinal. Definable
subsets of [0, e]k, k = 0, 1, . . . , are in one-to-one correspondence with subsets of M
that are definable by ∆0-formulas and that are not cofinal in M . Thus M satisfies
PHP for ∆0 sets and maps iff [0, e] satisfies PHP for all definable sets and maps.
Hence we have

Theorem 8.1. The ∆0-PHP (resp. the ∆0-ontoPHP ) is independent from I∆0

iff there is a model M |= I∆top
0 for which K0(M) = 0 or χ0 is not a partially

ordered Euler characteristic (resp. K0(M) = 0).

Various independence results are known for a modification of these theories.
Namely, one augments the language by a unary predicate symbol α. The symbol α
may appear in ∆0(α)-formulas in induction axioms but the theory, denoted I∆0(α),
has no special axioms about α. (One may think about α as about unknown oracles
in complexity theory.) The theory I∆0(α)top is defined analogously as before.
Assuming that the predicate α is not cofinal in M , the relation between models of
I∆0(α) and I∆0(α)top is as described above, taking n such that some power nk

bounds α.
Example 8.2. Let p, q be two different primes. There is a structure M whose
Grothendieck ring K0(M) admits Fq as a quotient but not Fp. In particular, K0(M)
does not admit Z as a quotient.

By [2] there is a model N of I∆0(α) that satisfies ∆0(α)-Countq but not the
∆0(α)-Countp (the counting principles are also restricted to non-cofinal sets). The
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structure M is a suitable model of I∆0(α)top, obtained from N as above. By
Theorem 3.9 the validity of Countq guarantees the existence of weak χ/Fq while
the failure of Countp shows that no weak χ/Fp exists on M .

The weak pigeonhole principle WPHP asserts that no two disjoint copies A∪̇A of
a set A can be injectively mapped into A. This principle is prominent in bounded
arithmetic and complexity theory.
Example 8.3. There is a structure M whose Grothendieck ring K0(M) is trivial
but which satisfies the weak pigeonhole principle WPHP .

By [16, 10, 18] there is a model N of I∆0(α) that satisfies ∆0(α)-WPHP but
not the ∆0(α)-ontoPHP . The structure M is again a suitable model of I∆0(α)top,
obtained from N as above. For another example, consider (N, S) where S is the
successor operation.
Example 8.4. There are structures M1 and its elementary extension M2 such that
the Grothendieck ring K0(M1) is properly included in K0(M2).

Let N be a non standard model of true arithmetic. Consider models Ne of I∆top
0

with universe [0, e] for e ∈ N . We claim that there are non-standard e1, e2 ∈ N such
that Ne1 is an elementary substructure of Ne2 and 2e1 < e2. The former condition
means that e1, e2 satisfy in N the same bounded formulas with any parameters
smaller than e1. The existence of suitable e1, e2 follows, in particular, from an
argument that the Paris-Harrington principle implies the consistency of PA, as
given in [15].

Take Mi := Nei
, i = 0, 1. It remains to show that for some B ∈ Def(M2), the

universal weak Euler characteristic χM2(B) ∈ K0(M2) \K0(M1). Put B := [0, e2).
Assume χM2(B) ∈ K0(M1), so there is a definable (inM2) bijection between disjoint
unions A ∪X and B ∪X, where A ∈ Def(M1) and X ∈ Def(M2). The bijection
is also definable in N and hence preserves cardinalities of finite sets. So |A| = |B|.
But that is impossible as |A| ≤ ek

1 < 2e1 < e2 = |B|, for some standard k.
We conclude the section by a problem motivated by considerations about Mac-

intyre’s problem mentioned earlier. We shall not explain the connection here, but
the problem seems to be sufficiently interesting in its own right.

In general form the problem asks whether the principles of comparing cardinali-
ties CC1 or CC2 formulated at the end of section 4 hold effectively. Specifically (for
CC1) this can be formulated as follows: Is there a constant k such that whenever
A and B are subsets of {0, 1}n that are computable by circuits of size S, then there
is an injective mapping f of either A into B or vice versa such that the graph of f
is computable by a circuit of size ≤ Sk?

This general problem is clearly related to counting of polynomial time sets and
using Toda’s theorems [21] one can answer the problem in the negative, assuming
that the polynomial time hierarchy does not collapse.

It would be very interesting however, to solve the problem unconditionally at
least in the case of AC0 circuits.

To make this self-contained let us give a model-theoretic definition of what it
means that a sequence of sets Xn of subsets of {1, . . . , n}k, n = 1, 2, . . . , is AC0

definable. Let R(x1, . . . , xk) be a k-ary relation symbol. Then {Xn}n<ω is AC0

definable iff there are a first order language L not containing R, L-structures An

with universe {1, . . . , n}, n = 1, 2, . . . , and a sentence Φ in language L ∪ {R} such
that for any n and any Y ⊆ {1, . . . , n}k, Y ∈ Xn iff the expanded structure (An, Y )
satisfies Φ.
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We propose the following combinatorial example. Sets A and B(k), for k > 0 a
fixed number, will be sets of graphs on n vertices without loops. The set A consists
of directed graphs that are vertex-disjoint unions of directed cycles. The set B(k)
consists of undirected graphs that are vertex-disjoint unions of cycles, each cycle
having one of k colors. In particular, in graphs from B(1) all cycles have the same
color.

Clearly all sets A, B(k) are AC0 definable.
Problem 8.5. (1) Is there an embedding of B(1) into A with AC0 definable

graph?
(2) Is there a bijection between B(2) and A with AC0 definable graph?
(3) Is there an embedding of A into B(k), any k > 2, with AC0 definable

graph?
(M. Ajtai told us that he proposed exactly problem 2. some ten years ago.) We

would expect the answer in the negative for all three questions.

9. Abstract dimension

In classical geometric examples a notion closely associated to Euler characteristic
is that of dimension. In this section we recall a few facts specialized to the category
of definable sets. We do not have any original material to add but we think that
the topic should be further investigated and we wish to bring it to an attention.

We recall first a construction of Schanuel [19]. Schanuel uses the notion of
a “rig”, a “ring without negatives”. (Other authors use the term “semiring.”)
Examples: natural numbers N, polynomials from N[x], the collection D̃ef(M) of
definable sets modulo definable bijections we defined earlier. Other examples come
from distributive categories: rigs of isomorphism classes of objects added by co-
product and multiplied by product.

Formally, a rig is a structure with two commutative monoid structures (R, 0,+)
and (R, 1, ·) related by: a · 0 = 0 and by distributivity.

An abstract dimension function on M is a rig homomorphism d : D̃ef(M) → R

on D̃ef(M) with values in a rig R satisfying 1 + 1 = 1. One may regard such a
structure as an upper semi-lattice (R, e,≤,∨, 0,⊕) in which + on D̃ef(M) becomes
∨, · becomes ⊕, 0 maps to e, and 1 maps to 0.

There is a universal (abstract) dimension dim on M , an arbitrary structure. It is
the map [ ] : Def(M) → D̃ef(M) composed with a universal map dim : D̃ef(M) →
D(M) from the rig D̃ef(M) to the quotient of D̃ef(M) by the congruence defined
by 1 + 1 = 1. The explicit construction is as follows. Define on D̃ef(M)

a ≤ b iff ∃n ∈ N∃x ∈ D̃ef(M); a+ x =

n times︷ ︸︸ ︷
b+ · · ·+ b

and then define a congruence by:

a ∼ b iff a ≤ b ∧ b ≤ a .

This always yields a nontrivial rig as obviously [{a}] 6≤ [∅]. However, the qualifica-
tion non-trivial may mean just having cardinality 2.

Let us mention a few examples. The real closed field R admits a dimension
function constructed via triangulation of definable sets, cf [5]. It is the geometric
dimension with values in N∪{−∞}. In stability theory the global ranks on definable
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sets, for example Morley rank, factor through dim. Definable sets in the ring of
integers Z have only three possible dimensions, corresponding to the empty set,
finite sets and infinite sets (all non-empty finite set have the same dimension and
all infinite sets have even the same [ ]-value in D̃ef(Z)).

It would be very interesting if under some general conditions the values of χ0

and dim classify definable sets up to definable bijections. This is, for example, the
case of R, cf. [5].
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