Formal Verification of SSA-Based Optimizations for LLVM

Jianzhou Zhao Santosh Nagarakatte®

Computer and Information Science Department, University of Pennsylvania
santosh.nagarakatte@cs.rutgers.edu

jianzhou@cis.upenn.edu

Abstract

Modern compilers, such as LLVM and GCC, use a static single
assignment (SSA) intermediate representation (IR) to simplify and
enable many advanced optimizations. However, formally verifying
the correctness of SSA-based optimizations is challenging because
SSA properties depend on a function’s entire control-flow graph.

This paper addresses this challenge by developing a proof tech-
nique for proving SSA-based program invariants and compiler op-
timizations. We use this technique in the Coq proof assistant to cre-
ate mechanized correctness proofs of several “micro” transforma-
tions that form the building blocks for larger SSA optimizations. To
demonstrate the utility of this approach, we formally verify a vari-
ant of LLVM’s mem2 reg transformation in Vellvm, a Cog-based
formal semantics of the LLVM IR. The extracted implementation
generates code with performance comparable to that of LLVM’s
unverified implementation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification - Correctness Proofs; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs - Mechanical verification; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lan-
guages - Operational semantics

General Terms Languages, Verification, Reliability

Keywords LLVM, Coq, single static assignment

1. Introduction

Compiler bugs can manifest as crashes during compilation, or,
much worse, result in the silent generation of incorrect programs.
Such mis-compilations can introduce subtle errors that are difficult
to diagnose and generally puzzling to software developers. A re-
cent study by Yang et al. [20] used random test-case generation
to expose serious bugs in mainstream compilers including GCC,
LLVM, and commercial compilers. Whereas few bugs were found
in the front end of the compiler, various optimization phases of the
compiler that aim to make generated programs faster were a promi-
nent source of bugs.

Projects like CompCert [9, 16—-18] are tackling the problem of
compiler bugs by mechanically verifying the correctness of com-
pilers. Indeed, although the aforementioned study uncovered many
bugs in other compilers, the only bugs found in CompCert were in
those parts of the compiler not (yet) formally verified. Yang et al.
write [20]: “The apparent unbreakability of CompCert supports

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16-19, 2013, Seattle, WA, USA.

Copyright © 2013 ACM 978-1-4503-2014-6/13/06. .. $15.00

Milo M. K. Martin Steve Zdancewic

TRutgers University
milom@cis.upenn.edu stevez@cis.upenn.edu

a strong argument that developing compiler optimizations within
a proof framework, where safety checks are explicit and machine-
checked, has tangible benefits for compiler users.”

Despite CompCert’s groundbreaking compiler-verification ef-
forts, there still remain many challenges in applying its technology
to industrial-strength compilers. In particular, the original Comp-
Cert development, and the bulk of the subsequent work—with the
notable exception of CompCertSSA [4]—did not use a static single
assignment (SSA) [7] intermediate representation (IR) [9].

In SSA intermediate representations, each variable of a func-
tion is assigned statically only once, and each variable definition
must dominate all of its uses in the control-flow graph. These SSA
properties simplify or enable many compiler optimizations [14], in-
cluding: constant folding, sparse conditional constant propagation,
aggressive dead code elimination, global value numbering, global
code motion, partial redundancy elimination, and inductive vari-
able analysis. Consequently, open-source and commercial compil-
ers such as GCC, LLVM, and Intel CC all use SSA-based interme-
diate representations when performing such optimizations.

Despite their importance, there are few mechanized formaliza-
tions of the correctness properties of SSA transformations. This
paper tackles this problem by developing proof techniques suitable
for mechanically verifying the correctness of SSA-based optimiza-
tions. We do so in the context of our Vellvm framework [21, 22],
which formalizes the operational semantics of programs expressed
in LLVM’s SSA-based IR [10] and provides Coq [6] infrastructure
to facilitate mechanized proofs of properties about transformations
on the LLVM IR.

The key idea is to generalize the “SSA scoping” predicate,
which is an invariant of the operational semantics, to more com-
plex safety predicates. The main proof obligation then becomes a
preservation argument, but one that takes the dominance relation of
the SSA form into account. Instances of this idea are found in the
literature (see, for example, Menon, et al. [13]), and related proof
techniques have been recently used in CompCertSSA [4], which
uses translation validation to check SSA optimizations (see Sec-
tion 8). This work is the first to verify SSA algorithms in the context
of an industrial-strength compiler like the LLVM.

To demonstrate the utility of these techniques, we use them
to establish the correctness of a variant of mem2regq, a crucial
LLVM pass that is responsible for promoting un-aliased local vari-
ables and stack-based temporary values into registers. We build our
vmem2reg pass by “pipelining” several simpler transformations,
such as load-after-store elimination, which are common building
blocks of many SSA-based optimizations. To improve compilation
time, we also investigate how to fuse such multiple such passes into
one. To summarize our contributions, this paper:

e introduces general-purpose proof techniques for verifying SSA
optimizations,

e shows that the proposed SSA proof techniques are viable for
use in mechanized proofs, and verifies several simple transfor-
mations,

e describes and proves correct vmem2reg, an easier-to-verify
variant of LLVM’s mem2reqg optimization, which is a key
SSA-based transformation used by LLVM, and

¢ demonstrates that the extracted implementation of the fully ver-
ified vmem2req is effective: The vmem2reqg fully-verified
pass yields an average speedup over a LLVM -00 of 77% ver-
sus a speedup of 81% speedup obtained by LLVM’s implemen-
tation of mem2regq.

To streamline the explanation (Section 3), we describe the proof
techniques in the context of Vminus, a simplified subset the full
Vellvm framework [22], but one that still captures the essence of
SSA. We mechanically verified all the claims of the paper both for
Vminus and full Vellvm in Coq.'

2. Background
2.1 Program refinement

In this paper, we use program refinement to reason about the cor-
rectness of compilation. Following the CompCert project [9], we
define program refinement in terms of programs’ external behav-
iors (which include program traces of input-output events, whether
a program terminates, and the returned value if a program termi-
nates): a transformed program refines the original if the behaviors
of the original program include all the behaviors of the transformed
program. We define the operational semantics using traces of a la-
beled transition system.

Events e = v=fid(7’)
Finite traces t = €| et
Finite or infinite traces T ::= € | e,T (coinductive)

We denote one small-step of evaluation as config - S L 5
in program environment config, program state S transitions to
the state S’, recording events e of the transition in the trace t.
An event e describes the inputs v; and output v of an external
function call named fid. config - S 15" 8’ denotes the reflexive,
transitive closure of the small-step evaluation with a finite trace ¢.
config = S L5 o0 denotes a diverging evaluation starting from S
with a finite or infinite trace 7". Program refinement is given by the
following definition.

DEFINITION 1 (Program refinement).
1. init (prog, fid, ;7 , S) means S is the initial program state of
the program prog with the main entry fid and inputs v;.
2. final (S, v) means S is the final state with the return value v.
3. | (prog, fid, B;7 ,t,v) means IS S'. init (prog, fid, ;7 , S),
config b S —"S" and final (S, v).
4.1 (prog, fid, v;7 ,T) means 3S. init (prog, fid, v;’ , S) and
config = S AN 0. _
5. (prog, fid, v;? ,t) means 3S S’. init (prog, fid, v;7 , S),
config b S —5°S" and S’ is stuck. ‘
6. defined (prog, fid, v;7) means ¥ t, =k (prog, fid, v;’ ,t)
7. progz refines program progi, written progi 2 proge, if
(a) defined (progs, fid, ;7) ‘
(b) U(p?"OQQ,ﬁd, QTJJ 7t7 U) = U(p’roglaﬁda QTJJ 7t7 U)
(¢) t(progz, fid, v;’ ., T) = A (progs, fid, v;’,T)
(d) \‘U<(p7ﬁ0927ﬁd7 Tj] ,t) = \‘U<(p710917ﬁd7 Fjj 7t)
Note that refinement requires only that a transformed program

preserves the semantics of a well-defined original program, but
does not constrain the transformation of undefined programs.

! Annotated Coq source available at http://cis.upenn.edu/
~stevez/vellvm/release.tgz.

Lock-step Right “option” Left “option”
S| =8, S =S, SILSZ SI—8S,
t] it t| it or e ~/ |t it or N~ ie
% N v % \\\
S'I”:’S'Z S‘]”N”S‘z S'|/ S'I’Z’S'Z \\S'z
(with [S"] <[Sy]) (with [S'] <S5

Figure 1. Backward simulation diagrams that imply program refinement.
In each diagram, the program states of original and compiled programs
are on the left and right respectively. A line denotes a relation ~ between
program states. Solid lines or arrows denote hypotheses; dashed lines or
arrows denote conclusions.

We use the backward simulation diagrams in Figure 1 to prove
that a program transformation satisfies the refinement property. The
CompCert project uses similar diagrams for forward simulation [9].
At a high-level, we first need to find a relation ~ between pro-
gram states and their transformed counterparts. The relation must
hold initially, imply equivalent returned values finally, and imply
that stuck states are related. Then, depending on the transforma-
tion, we prove that a specific diagram holds: lock-step simulation
is for variable substitution, right “option” simulation is for instruc-
tion removal, and left “option” simulation is for instruction inser-
tion. Because the existence of a diagram implies that the source
and target programs share traces, we can prove the equivalence of
program traces by decomposing program transitions into matched
diagrams. To ensure co-termination, the “option” simulations are
parameterized by a measure of program states |\S| that must de-
crease to prevent “infinite stuttering” problems.

2.2 SSA

Static Single Assignment (SSA) form [7] is an intermediate repre-
sentation distinguished by its treatment of temporary variables—
each such variable may be defined only once, statically, and each
use of the variable must be dominated by its definition with respect
to the control-flow graph of the containing function.” Intuitively,
the variable definition dominates a use if all possible execution
paths to the use go through the definition first.

To maintain these invariants in the presence of branches and
loops, SSA form uses ¢-instructions, which act like control-flow
dependent move operations. Such ¢-instructions appear only at the
start of a basic block and, crucially, they are handled specially in the
dominance relation to “cut” apparently cyclic data dependencies.

The left part of Figure 2 shows an example program in SSA
form, written using the stripped-down notation of Vminus (defined
more formally in Section 3). The temporary r3 at the beginning of
the block labeled I is defined by a ¢-instruction: if control enters
the block /> by jumping from basic block /1, r3 will get the value
0; if control enters from block l» (via the back edge of the branch
at the end of the block), then r3 will get the value of 7.

The SSA form is good for implementing optimizations because
it identifies variable names with the program points at which they
are defined. Maintaining the SSA invariants thus makes definition
and use information of each variable more explicit. Also, because
each variable is defined only once, there is less mutable state to
be considered (for purposes of aliasing, etc.) in SSA form, which
makes certain code transformations easier to implement.

Program transformations like the one in Figure 2 are correct if
the transformed program refines the original program (in the sense
described above) and the result is well-formed SSA. Proving that

2 In the literature, there are different variants of SSA forms [1]. We use
LLVM’ version: memory locations are not in SSA form; LLVM does not
maintain any connection between a variable name in the IR and its original
name in the source; the live ranges of variables can overlap.

Original Transformed
Iy - ly -
te T4 :=T1 % T2
brrgl i3 brrgl i3

lo : 73 = phiint[0, li][rs, 2] lo : 73 = phiint[0, li][rs, 2]
r4I=T1 % T
r5 =713 + T4
re :=rs > 100 re ;=15 > 100
brrgls 3 brrgls 3

I3 :77 = phiint[0, 4][rs, k] I3 :r7 = phiint[0, ii][rs, l2]
TR I=T1 * T2
rg =18 + r7

T5 =13 + T4

r9 =714+ TT

Figure 2. An SSA-based optimization. In the original program with en-
try l1, 71 * r2 is a partial common expression for the definitions of 4 and
rg, because there is no domination relation between r4 and rg. Therefore,
eliminating the common expression directly is not correct: we cannot sim-
ply replace rg := r1 * rg by rg := r4 since r4 is not available at the
definition of rg if Iz does not execute before I3 runs. To transform this pro-
gram, we might first move the instruction 4 := 71 * r2 from the block lp
to the block /1, because the definitions of 71 and ro must dominate the end
of Iy, and /; dominates l>. Then we can safely replace all the uses of rg by
r4, because the definition of 74 in /; dominates I3 and therefore dominates
all the uses of rg. Finally, rg is removed, because there are no uses of rg.

such code transformations are correct is nontrivial because they
involve non-local reasoning about the program.

3. Proof Techniques for SSA

This section describes the proof techniques we have developed for
formalizing properties of SSA-style intermediate representations.
To most clearly articulate the approach, we present the results us-
ing a language called Vminus, which is a minimalist SSA language
containing only those features salient to the proof technique. Vmi-
nus is a subset of the LLVM IR formalized in Vellvm [22].

The key idea of the technique is to generalize the invariant
used for Vminus’s preservation lemma for proving safety to other
predicates that are also shown to be invariants of the operational
semantics. Crucially, these predicates all share the same form,
which only constrains variable definitions that strictly dominate the
current program counter.

The remainder of this section first presents the syntax and op-
erational semantics of Vminus, then it gives the static semantics
and proves safety (which in this context simply amounts to show-
ing that all variables are well-scoped). With these properties es-
tablished, we then show how to generalize the safety invariant to
a form that is useful for proving program transformations correct
and demonstrate its applicability to a number of standard optimiza-
tions. Because Vminus is such a stripped-down language, the rel-
evant lemmas are relatively straightforward to establish; Section 4
shows how to scale the proof technique to the full Vellvm model of
LLVM to verify the mem2reg pass.

3.1 The simple SSA language—Vminus

Syntax Figure 3 gives the syntax of Vminus. Every Vminus
expression is of type integer. Operations in Vminus compute with
values val, which are either temporaries r or constants cnst that
must be integer values. We use R to range over sets of identifiers.

All code in Vminus resides in a top-level function, whose body
is composed of blocks b. Here, b denotes a list of blocks; we also
use similar notation for other lists. As is standard, a basic block
consists of a labeled entry point [, a series of ¢ nodes, a list of
commands cs, and a terminator instruction ¢mn. In the following,
we also use the label [of a block to denote the block itself.

Types typ 1= int

Constants cnst = Int

Values val = r | cnst

Binops bop = + | x| && |=]>]<] -
Right-hand-sides rhs = waly bopvals

Commands c = r:=rhs

Terminators tmn = broall bl | rettypval

Phi Nodes ¢ = r= phitypval;, L]’
Instructions nsn = ¢ | c| tmn

Non-¢s P = ¢ | tmn

Blocks b = laftmn

Functions f = fun{b}

Values v ::= Int Locals 6 ::= r—w
Framesoc ::= (pc,0) ProgCounterspc ::= 1[4 | l.t

[val]s = Lvi I3 = (v?l : ll)
flis] = [(Is 3 cs tmns)] [@5]5 = &'

Fr (1.0, broalh b,0) —» (Is, Cs, tmns, &) 1
[vali]s = [n] [valz]s = [v2]
¢ =1 :=wvaly bopvaly eval (bop,vi,v2) = v3
E_BOP

fE(, (e, ©),tmn,d) — (I,¢,tmn, §{vs/r})

Figure 3. Syntax and Operational Semantics of Vminus

The set of blocks making up the top-level function constitutes
a control-flow graph with a well-defined entry point that cannot be
reached from other blocks. We write f[I] = |b] if there is a block
b with label [in function f. Here, the | | (pronounced “some”
indicates that the function is partial (might return “none” instead).

As usual in SSA, the ¢ nodes join together values from a list of
predecessor blocks of the control-flow graph—each ¢ node takes
a list of (value, label) pairs that indicates the value chosen when
control transfers from a predecessor block with the associated la-
bel. The commands c include the usual suite of binary arithmetic
or comparison operations. We denote the right-hand-sides of com-
mands by rhs. Block terminators (br and ret) branch to another
block or return a value from the function. We also use metavari-
able insn to range over ¢-nodes, commands and terminators, and
non-phinodes %) to represent commands and terminators.

Dynamic Semantics The operational semantics rules in Figure 3
are parameterized by the top-level function f, and relate evaluation
frames o before and after an evaluation step. An evaluation frame
keeps track of the integer values v bound to local temporaries r
in § and current program counter. We also use o.pc and 0.9 to
denote the program counter and locals of o respectively. Because
Vminus has no function calls, the rules ignore program traces. This
simplification does not affect the essence of the proof techniques.
Section 5 shows the full Vellvm semantics with traces.

Instruction positions are denoted by program counters pc: [.3
indicates the ¢-th command in the block [; [. t indicates the termi-
nator of the block [. We write f[pc] = |insn] if some insn is at
the program counter pc of function f. We also use I.(¢ + 1) to de-
note the next program counter of /.i. When [.7 is the last command
of block [, I.(i + 1) = [. t. To simplify presentation of the opera-
tional semantics, we use [, ¢, tmn to “unpack” the instructions at a
program counter in function f. Here, [is the current block, ¢ and
tmn are the instructions of [that are not executed yet. It is easy
to see how the “block & offset” specification is equivalent to the
“continuation commands” representation so we omit the details of
the correspondence here.

vr. =r € sd
r.(Y usesr = r € sdom(pc)) NONPHI

fl= ik ¢;” A\fFc, @Li"AfFtmnQ (I.t)

- WF_B

f @ pc FH1g; G itmn
uniq (3;7) Tjj = preds (f,1) Vrj.(valjusesr; =r; € sdomf(lj.t))] len ([val;, lj}]) >0 floal;: typj -
f, Ut r = phityp [valj, lj]j
fFwaly i int fFwale : int flRwal sint fllh] = [b1] flk] = [b2]
WEF_BOP WF_BR
f Fr:=waly bopvala fEbrvall lx
@ - iq (def iq (label =fun{b;’} FFb,’ wfent
fEv@pe fry o uniq(defs(f) uniq(abels(f)) f=fun{l,’} TFb’ wiemtryf

frv@pe

v

Figure 4. Static Semantics of Vminus (excerpt)

Most of the Vminus commands have straight-forward interpre-
tation. The arithmetic and logic instructions are all unsurprising—
the Jval]s function computes a value from the local state 6 and val,
looking up the meanings of variables in the local state as needed;
eval implements arithmetic and logic operations. We use [rhs]s
to denote evaluating the right-hand-side rhs in the state d.

There is one wrinkle in specifying the operational semantics
when compared to a standard environment-passing call-by-value
language. All of the ¢ instructions for a block must be executed
atomically and with respect to the “old” local value mapping due to
the possibility of self loops and dependencies among the ¢ nodes.
For example the well-formed code fragment bellow has a circular
dependency between 1 and 72

lo :

l1: r; = phi il‘lt[TQ, 11][0, lo]
ro = phiint|ri, 4][1, o]
r3i=T1 = T2
brrsilaly

Iy: ---

If control enters this block from ly, 71 will map to 0 and 72 to 1,
which causes the conditional branch to fail, jumping back to the
label /1. The new values of r; and r2 should be 1 and 0, and not 1
and 1 as might be computed if they were handled sequentially. This
atomic update of the local state, similar to “parallel assignment,” is
handled by the [¢,]5 function as shown in rule E_BR.

Static semantics Vminus requires that a program satisfy certain
invariants to be considered well formed: every variable in the top-
level function must dominate all its uses, and be assigned exactly,
once statically. At a minimum, any reasonable Vminus transfor-
mation must preserve these invariants; together they imply that the
program is in SSA form [7].

Figure 4 shows the judgments to check the SSA invariants with
respect to the control-flow graph and program points of the function
f. To explain the judgments we need the following definitions.

DEFINITION 2 (Domination).

1. valusesr £ val = r.

2. insnusesr = Jval. val uses r A val is an operand of insn.

3. A variable r is defined at a program counter pc of function f,
written f definesr @ pc if and only if f[pc] = |insn] and
r is the left-hand side of insn. We write defs (f) to denote the
set of all variables defined in f.

4. In function f, block l, dominates block ly, written f = 1) = b,
if every path from the entry block of f to lo must go through ly;
Iy strictly dominates ly, written f & li > by, if every path from
the entry block of f to lo must go through ly and Iy # .

5. In function f, pci strictly dominates pco, written f = pci >
pce, if per and pea are at distinct blocks by and Iy respectively
and f = Iy > lz; if pc1 and pea are in the same block, then pci
appears earlier than pca.

6. sdomy (pc) is the set of variables strictly dominating pc:
sdom;(pc) = {r | f definesr @Q pc’ and f F pc’ = pc}

Rule WE_F of Figure 4 ensures that variables defs (f) defined
in the top-level function are unique, which enforces the single-
assignment part of the SSA property. Additionally, all block la-
bels labels (f) in the function must be unique for a well-formed
control-flow graph, and the entry block should have no predeces-
sors (wf_entry f).

The rule WF_B checks that all instructions in reachable blocks
(written f ~~ [) satisfy the SSA domination invariant. Because un-
reachable blocks have no effects at runtime, the rule does not check
them. Rule NONPHI ensures that a ¢ at pc is strictly dominated by
the definitions of all variables used by 1. The rule PHI ensures that
the number of incoming values is not zero, that all incoming labels
are unique, and that the current block’s predecessors is the same as
the set of incoming labels. If an incoming value val; from a pre-
decessor block [; uses a variable r; at pc;, then pc; must strictly
dominate the terminator of /;. Importantly, this rule allows “cyclic”
uses of SSA variables of the kind shown in the example above.

Dominance analysis Dominance analysis plays an important
role in the type system, so we must first prove the following lem-
mas about the domination relations. They are needed to establish
the SSA-based program properties in the following sections. De-
tails about these lemmas can be found our prior work [21].

LEMMA 1 (Domination is transitive).
LEMMA 2 (Strict domination is acyclic).

By Lemma 1, sdom (pc) has the following properties:
LEMMA 3 (sdom step).

1. If l.i and 1.(i + 1) are valid program counters of f, then
sdomy (I.(i+1)) =sdomy (1.i)U{r} where f definesr @ [.3.
2. Ifl.t and I’ .0 are valid program counters of f, and l' is a suc-

cessor of 1, then sdomy(1'.0) — defs(¢) C sdomy(l.t)

where ¢ are from the block " and defs (¢) denotes all vari-
ables defined by ¢.

3.2 Safety of Vminus

There are two ways that a Vminus program might get stuck. First,
it might try to jump to an undefined label, but this property is ruled
out statically by WF_BR. Second, it might try to access a variable
whose value is not defined in §. We can prove that this second case
never happens by establishing the following safety theorem:

THEOREM 4 (Safety). If &+ f and f + (entry.0,0) —"* o, then
o is not stuck.

The proof takes the standard form using preservation and
progress lemmas with the invariant for frames shown bellow:

pc € [Vr.(r € sdomy(pc) = Fv.d[r] = |v))
[(pe,d)

This rule is similar to the predicate used in prior work for
verifying the type safety of an SSA-based language [13]. The
invariant WF_FR shows that a frame (pc, §) is well-formed if every
definition that strictly dominates pc is defined in §. The initial
program state satisfies this invariant trivially:

WEF_FR

LEMMA 5 (Initial State). If & f then f + (entry.0,0).

The preservation and progress lemmas are straightforward—but
note that they crucially rely on the interplay between the invariant
on § “projected” onto sdomy(pc) (Lemma 3), and the PHI and
NONPHI rules of the static semantics.

LEMMA 6 (Preservation). If - f, f - oand f - o0 — o, then
fEo.

LEMMA 7 (Progress). If - f, f - o, then o is not stuck.

3.3 Generalizing Safety to other SSA Invariants

The main feature of the preservation proof, Lemma 6, is that the
constraint on sdom s (pc) is an invariant of the operational seman-
tics. But—and this is a key observation—we can parameterize rule
WE_FR by a predicate P, which is an arbitrary proposition about
functions and frames:

opc € f Pf(oly)

FPro GWF_FR

Here, ol is (o.pc, (0.0)|(sdom (0.pc))) and we write (Olr)[r] =
|v] iff € R and §[r] = |v] and observe that dom (§|r) = R.
These restrictions say that we don’t need to consider all variables:
Intuitively, because SSA invariants are based on dominance prop-
erties, when reasoning about a program state we need only consider
the variable definitions that strictly dominate the program counter
in a given state.
For proving Theorem 4, we instantiated P to be:

Paatery = Af. Ao ¥r.r € dom (0.0) = Jv.(0.8)[r] = |v]

For safety, it is enough to show that each variable in the domina-
tion set is well defined at its use. To prove program transformations
correct, we instantiate I with a different predicate, Psem, that re-
lates the syntactic definition of a variable with the semantic value:

M- Ao Vr.fr] = |rhs] = (0.0)[r] # - = (0.9)[r] = [rhs](0.5)

Just as we proved preservation for Piafety, We can also prove
preservation for Psem (using Lemma 2):

THEOREM 8. If+ f and f, Psem = o and f = 0 — o', then
fy Psem - 0.

As we show next, Theorem 8 can be used to justify the cor-
rectness of many SSA-based transformations. Instantiating P with
other predicates can also be useful—Section 5 shows how.

3.4 The correctness of SSA-based transformations

Consider again the example code transformation from Figure 2. It,
and many other SSA-based optimizations, can be defined by using
a combination of simpler transformations: deleting an unused defi-
nition, substituting a constant expression for a variable, substituting
one variable by another, or moving variable definitions. Each such
transformation is subject to the SSA constraints—for example, we

can’t move a definition later than one of its uses—and each trans-
formation preserves the SSA invariants. By pipelining these basic
transformations, we can define more sophisticated SSA-based pro-
gram transformations whose correctness is established by the com-
position of the proofs for the basic transformations.

In general, an SSA-based transformation from f to f’ is correct
if it preserves both well-formedness and program behavior.

1. Preserving well-formedness: if - f, then - f’.
2. Program refinement: if = f, then f O f’ (see Section 2.1).

Each of the basic transformations mentioned above can be
proved correct by using Theorem 8. For the sake of space, here
we present only the correctness of variable substitution (though we
proved correct all the mentioned transformations in our Coq de-
velopment). Section 4 shows how to extend the transformations to
implement memory-aware optimizations in the full Vellvm.

Variable substitution Consider the step of the program transfor-
mation from Figure 2 in which the use of rg on the last line is
replaced by r4 (this is valid only after hoisting the definition of r4
so that it is in scope). This transformation is correct because both 74
and rg denote the same value, and the definition of r4 (after hoist-
ing) strictly dominates the definition of rg. In Figure 2, it is enough
to do redundant variable elimination—this optimization lets us re-
place one variable by another when their definitions are syntacti-
cally equal; other optimizations, such as global value numbering,
allow a coarser, more semantic, equality to be used. Proving them
correct follows the same basic pattern as the proof shown below.

DEFINITION 3 (Redundant Variable). In a function f, a variable
r2 is redundant with variable r if:

1. fdefinesry @ pci, f definesrs Q pee and f + per = pee
2. flpa] = lei], flper] = |e2] and c1 and ¢z have syntactically
equal right-hand-sides.

We would like to prove that eliminating a redundant variable
is correct, and therefore must relate a program f with f{ri/ra}.
Since substitution does not change the control-flow graph, it pre-
serves the domination relations.

LEMMA 9.

1. fF =l <— f{’l‘z/’m} Flho=0b
2. fFper = pea = f{ra/ri}F pe1 = peo

Applying Lemma 1 and Lemma 9, we have:

LEMMA 10. Suppose that in f, r1 is redundant with r2. If & f,
then b f{ra/r}.

Let two program states simulate each other if they have the
same local state § and program counter. We assume that the original
program and its transformation have the same initial state.

LEMMA 11. Ift f, ro is redundant with 1 in f, and (pc,d) is a
reachable state, then

1. If val is an operand of a non-phinode at program counter pc,
then Jv. [val]ls = |v] A [val{ri/r2}]s = |v].
2. If pcis li.t, and l; is a previous block of a block with ¢-nodes

6, then35'.[6,°1% = 18') A&y (i frad 15 = 19,

Proof (sketch): The proof makes crucial use of Theorem 8. For
example, to show part 1 for a source instruction r := rhs (with
transformed instruction r := rhs{ri/r2}) located at program
counter pc, we reason like this: if r2 is an operand used by rhs,
then ro € sdomy(pc) and by Theorem 8, property Paem, implies
that 6[r2] = [rhsz]s for some rhs; defining 72. Since 1 is used as
an operand in rhs{ri/r2}, similar reasoning shows that §[r1] =

ADCE, GVN,
PRE, SCCP, ...
w/o SSA

LLVM SSA LLVM SSA
w/o @-nodes [Pmem2reg with @-nodes
construction

Figure 5. The tool chain of the LLVM compiler

Frontends

[rhs1]s, but since rg is redundant with r1, we have rhsy = rhs,
and the result follows immediately. O

Using Lemma 11, we can easily show the lock-step simulation
lemma, which completes the correctness proof:

LEMMA 12. Ifb f, ro is redundant with 1 in f, f{ri/r2} +
o1 — 02, then f o1 — oo

4. LLVM and mem2reg

From Vminus to Vellvm Vminus provides a convenient minimal
setting in which to study SSA-based optimizations, but it omits
many features necessary in a real intermediate representation. To
demonstrate that our proof techniques can be used for practical
compiler optimizations, we next show how to apply them to the
LLVM IR used in Vellvm [22].

LLVM [10] (Low-Level Virtual Machine) is a robust, industrial-
strength, and open-source compilation framework that competes
with GCC in terms of compilation speed and performance of the
generated code. LLVM uses a platform-independent SSA-based
intermediate representation [10], and provides a large suite of
optimization passes, including aggressive dead code elimination,
global value numbering, partial redundancy elimination, and sparse
conditional constant propagation, among others. Each transforma-
tion pass consumes and produces code in this SSA form, and they
typically have the flavor of the code transformations described
above in Section 3. Figure 5 depicts LLVM’s tool chain.

The Vellvm infrastructure provides a Coq implementation of
the full LLVM 3.0 intermediate language and defines (several)
operational semantics along with some useful metatheory about
the memory model. Figure 6 shows the additional Vellvm features
needed to explain the following proofs; more details about the
operational semantics can be found in our earlier Vellvm work [22].

A program prog includes a list of products prod that are either
global constants or function definitions. The address of a global
constant with type typ is a constant typ * gid of type typ*. Vellvm
also has memory operations that include stack allocation, loads, and
stores. At runtime, a pointer in is represented by a block name blk
and an offset ofs within the block. All globals are allocated before
the start of a program and stored in a mapping g. A program state
S is composed of a memory state M and a list of stack states &.

We denote small-step evaluation by config - S L S’ where a
program configuration config includes a program prog and globals.
Judgment - prog denotes a well-formed program—it checks that
all definitions of globals and functions are unique, each function is
well-formed, etc.

4.1 The mem2reg Optimization Pass

A critical piece of LLVM’s compilation strategy is the mem2reqg
pass, which takes code that is “trivially” in SSA form and converts
it into a minimal, pruned SSA program [15]. This strategy simpli-
fies LLVM’s many front ends by moving work in to mem2reg. An
SSA form is “minimal” if each ¢ is placed only at the dominance
frontier of the definitions of the ¢ node’s incoming variables [7]. A
minimal SSA form is “pruned” if it contains only live ¢ nodes [15].
This pass enables many subsequent optimizations (and, in particu-
lar, backend optimizations such as register allocation) to work ef-
fectively.

Programs prog = prod
Products prod = gid = global typ const | f
Functions f = define typ fid(arg) {b}
Types typ = | typ=
Constants cnst = - | typ*gid
Commands c = .-
| r:=allocatyp
| r:=load (typx*)r1
| store typ vali T2
| optionr = call typ fid param
Values v = .-+ | blk.ofs
Globals = r—wv
Configurations config = prog,g
Allocas o = 0| bk«
Frames o = (f,pc,é,a)
Call stacks T = 0| o7
Program states S = M,o

Figure 6. The syntax and program states of Vellvm (excerpt)

Figure 7 demonstrates the importance of the mem2reqg pass
for LLVM’s generated code performance. In our experiments, run-
ning only the mem2reqg pass yields a 81% speedup (on average)
compared to LLVM without any optimizations; doing the full suite
of —01 level optimizations (which includes mem2regq) yields a
speedup of 102%, which means that mem2reg alone captures all
but %12 of the benefit of the —O1 level optimizations. Comparison
with —03 optimizations yields similar results. These observations
make mem2reg an obvious target for our verification efforts.

The “trivial” SSA form is generated directly by compiler front
ends, and it uses the alloca instruction to allocate stack space
for every source-program local variable and temporary needed. In
this form, an LLVM SSA variable is used either only locally to
access those stack slots, in which case the variable is never live
across two basic blocks, or it is a reference to the stack slot, whose
lifetime corresponds to the source-level variable’s scope. These
constraints mean that no ¢ instructions are needed—it is extremely
straightforward for a front end to generate code in this form.

As an example, consider this C program:

int i = 0; while (i<=100) i++; return i;

The “trivial” SSA form that might be produced by the frontend
of a compiler is shown in the left-most column of Figure 8. The
ro := allocaint instruction on the first line allocates space for
the source variable i, and rq is a reference from which local load
and store instructions access 1’s contents.

The mem2 reg pass converts promotable uses of stack-allocated
variables to SSA temporaries. An alloca’ed variable like r¢ is
considered to be promotable, written promotable (f,ro), if it
is created in the entry block of function f and it doesn’t escape—
i.e., its value is never written to memory or passed as an argument
to a function call. The mem2req pass identifies promotable stack
allocations and then replaces them by temporary variables in SSA
form. It does this by placing ¢ nodes, substituting each variable
defined by a load with the previous value stored into the stack slot,
and then eliminating the memory operations (which are now dead).
The right-most column of Figure 8 shows the resulting pruned SSA
program for this example.

Proving that mem2 reg is correct is nontrivial because it makes
significant, non-local changes to the use of memory locations and
temporary variables. Furthermore, the specific mem2reg algo-
rithm used by LLVM is not directly amenable to the proof tech-
niques developed in Section 3—it was not designed with verifica-
tion in mind, so it produces intermediate stages that break the SSA
invariants or do not preserve semantics. This section therefore de-
scribes an alternate algorithm that is more suitable to formalization.

; 2509 | O LLVM-mem2reg @ LLVM-Ol

S oo | @ LLVM-03 ® GCC-03

j 0

§ 150%

3 100% ree |7 y
= 509 Al BT ;l
R f | AL A
‘a 0% - d / P P '

S “Qe% %’L\Q \IQ‘ 6\6@&

ot WY NG o\ﬁ ‘o & S W™ N en® A{Gﬁ PN
PRI Q@i QO (07 0 ““i‘g@’%‘\\ A\ O e \\16660’«\6

Figure 7. Normalized execution time improvement of the LLVM’s mem2reg, LLVM’s O1, and LLVM’s O3 optimizations over the LLVM
baseline with optimizations disabled. For comparison, GCC-O3’s speedup over the same baseline is also shown.

“trivial” SSA Maximal ¢ nodes placement After LAS/LAA/SAS After DSE/DAE After ¢ nodes elimination
Iy :rg := allocaint Iy :rg := allocaint Iy :rg := allocaint hh: hh:
storeint 0rg storeint 0rg storeint 0rg
r7 = load (int *) rg
br lp br br lp br lp br l»
lo : lo :7¢ = phi[rr, li][rg, 3] l2:re = phi[0,l4][re, i3] l2:r¢ = phi0,l][ra,l3] Il :7¢ = phi|0,l1][ra,ls]
storeint rg rg storeint rg rg
r1 := load (int) rg r1 := load (int *) rg
ro :=1r1 < 100 ro:=1r1 < 100 ro :=1rg < 100 ro :=1rg < 100 ro =16 < 100
rg := load (int *) rg
brrolsly brrolsly brralsly brralsly brrals iy
I3 : l3 :710 = phi[rs, k] I3 :710 = phi|[re, I2] I3 :710 = phi|[re, I2] I3 :
storeint r1g 7o
r3 := load (int) rg r3 := load (int *)rg
rg:=r3 + 1 rg:=r3 + 1 rg =110 + 1 rg =110 + 1 rg =16 + 1
storeint r4 rg storeint r4 rg storeint r4 rg
rg := load (int *) rg
br b br b br by br by br by
Iy : lg : 711 = phi|rs, k2] lg : 711 = phi[rs, i2] lg : 711 = phi[rs, &2] ly :
storeint r11 g storeint r11 g
r5 := load (int *) ro r5 := load (int x) rg
retint rs retint rs retintrq; retintrq retint rg

Figure 8. The SSA construction by the vmem2 reg pass

4.2 The vmem2reg Algorithm

The vmem2reqg algorithm is structured to lead to a clean for-
malism and yet still produce programs with effectiveness similar
to the LLVM mem2reg pass. To demostrate the main ideas of
vmem2reg, this section describes an algorithm that uses straight-
forward micro-pass pipelining. Section 6 presents a smarter way to
“fuse” the micro passes, thereby reducing compilation time. Prov-
ing pipeline fusion correct is (by design) independent of the proofs
for the vmem2 reg algorithm shown in the section.

At a high level, vmem2reg (whose code is shown in Fig-
ure 10) traverses all functions of the program, applying the trans-
formation vmem2reg_£fn to each. Figure 9 depicts the main loop,
which is an extension of Aycock and Horspool’s SSA construc-
tion algorithm [3]. vmem2reg_fn first iteratively promotes each
promotable alloca by adding ¢ nodes at the beginning of every
block. After processing all promotable allocas, vmem2reg_fn
removes redundant ¢ nodes, and eventually will produce a program
almost in pruned SSA form,® in a manner similar to previous algo-
rithms [15].

3 Technically, fully pruned SSA requires a more aggressive dead-¢-
elimination pass that we omit for the sake of simplicity. Section 7 shows
that this omission is negligible.

The transformation that vmem2reg_fn applies to each func-
tion is a composition of a series of micro transformations (LAS,
LAA, SAS, DSE, and DAE, shown in Figure 9). Each of these
transformations preserves the well-formedness and semantics of its
input program; moreover, these transformations are relatively small
and local, and can therefore be reasoned about more easily.

At each iteration of alloca promotion, vmem2reg_£fn finds
a promotable allocation 7. Then ¢-nodes_placement (code
shown in Figure 10) adds ¢ nodes for r at the beginning of ev-
ery block. To preserve both well-formedness and the original pro-
gram’s semantics, ¢-nodes_placement also adds additional
loads and stores around each inserted ¢ node. At the end of ev-
ery block that has successors, ¢p-nodes_placement introduces a
load from r, and stores the result in a fresh temporary; at the begin-
ning of every block that has a predecessor, ¢-nodes_placement
first inserts a fresh ¢ node whose incoming value from a predeces-
sor [is the value of the corresponding load added at the end of [,
then inserts a store to r with the value of the new ¢ node.

The second column in Figure 8 shows the result of running the
¢-node placement pass starting from the example program in its
trivial SSA form. It is not difficult to check that this code is in SSA
form. Moreover, the output program also preserves the meaning of
the original program. For example, at the end of block /;, the pro-

eliminate store/load

L |

find promote alloca
promotable L —

alloca
LAS _— :
ot st BAE |- AH ¢-nodes
placement st/ld pair ¢
SAS - D ¢-nodes

Figure 9. Basic structure of vmem2reg_fn

let vmem2reg prog =
map (function f — vmem2reg_fn f
| prod — prod) prog
let ¢-nodes_placement f r =
let define typ fid(arg) {b} = f in
let (ldnms, phinms) = gen_fresh_names b in
define typ fid(arg) { (map
(function laitmn —
let r:=allocatyp € f in

let (, @) =
match predecessors_of f [with
I [1 = (¢, ©
| 7 — let 77 = map (find ldnms) §’ in
let 7’ = find phinms [in
(r' = phityp [rj, l]-]] ::p,storetypr'rT::¢)
end in
let ¢’ = match successors_of f [with
I [l =<
| _— let ' = find ldnms [in
T1 ++ [r :=load (typ*)r]
end in

14 ¢ tmn) b)}
let rec eliminate_stld f r =
match find_stld_pair f r with
| LAS (pc2, walz, T1) —
eliminate_stld (f{vala/ri}—r1) r
| LAA 71 — eliminate_stld (f{0/ri}—r1) 7
| SAS (pci, pc2) — eliminate_stld (f —pc1) 7
| NONE — f
end

Figure 10. The algorithm of vmem2reg

gram loads the value stored at ro into r7. After jumping to block
I, the value of r7 is stored into the location 7o, which should con-
tain the same values as r7. Therefore, the additional store does not
change the status of memory. Although the output program con-
tains more temporaries than the original program, these temporaries
are used only to connect inserted loads and stores, and so they
do not interfere with the original temporaries.

To remove the additional loads and stores introduced by the
¢-node placement pass and eventually promote allocas to regis-
ters, vimem2 reg_fn next applies a series of micro program trans-
formations until no more optimizations can be applied.

First, vmem2 reg_fn iteratively does the following transforma-
tions (implemented by eliminate_st1d shown in Figure 10):

1. LAS (71, pce, valz) “Load After Store”: 71 is loaded from r
after a store of vals to r at program counter pcz, and there are
no other stores of r in any path (on the control-flow graph)
from pco to 1. In this case, all uses of r2 can be replaced by
vals, and the load can be removed.

2. LAA r; “Load After Alloca”: As above, but the load is from
an uninitialized memory location at 7. 71 can be replaced by
LLVM'’s default memory value, and the load can be removed.

3. SAS (pci, pc2): The store at program counter pcs is a store
after the store at program counter pc;. If both of them access
r, and there is no load of r in any path (on the control-flow
graph) from pc; to pca, then the store at pc; can be removed.

At each iteration step of eliminate_stld, the algorithm
uses the function find_stld_pair to identify each of the above
cases. Because the ¢-node placement pass only adds a store and
a load as the first and the last commands at each block respec-
tively, find_st1d_pair only needs to search for the above cases
within blocks. This simplifies both the implementation and proofs.
Moreover, eliminate_st1d must terminate because each of its
transformations removes one command. The third column in Fig-
ure 8 shows the code after eliminate_st1d.

Next, the algorithm uses DSE (Dead Store Elimination) and
DAE (Dead Alloca Elimination) to remove the remaining unnec-
essary stores and allocas. The fourth column in Figure 8 shows
the code after DSE and DAE.

Finally, vmem2reg_fn eliminates unnecessary and dead ¢
nodes. A ¢-node is unnecessary [3] if ¢ is of the form r =

phi typ [val;, lj}] where all the val;’s are either equal to r or
to val. In this case, uses of r can be replaced by wval, and the ¢
node can be removed. Aycock and Horspool [3] proved that when
there is no such ¢ node in a reducible program, the program is of
the minimal SSA form. The right-most column in Figure 8 shows
the final output of the algorithm.

5. Correctness of vmem2reg

We prove the correctness of vmem2reg using the techniques de-
veloped in Section 3. At a high level, the correctness of vmem2reg
is the composition of the correctness of each micro transformation
of vmem2 reg shown in Figure 10. Given a well-formed input pro-
gram, each shaded box must produce a well-formed program that
preserves the semantics of the input program. Moreover, the mi-
cro transformations except DAE and ¢-nodes elimination must pre-
serve the promotable predicate, because the correctness of sub-
sequent transformations relies on fact that promotable allocations
aren’t aliased.

Formally, let prog{ f’/ f} be the substitution of f by f’ in prog,
and let (f]) be a micro transformation of f applied by vmem2reg.
(-) must satisfy:

1. Preserving promotable: when () is not DAE or ¢-nodes
elimination, if promotable (f, r), then promotable ((f), r).

2. Preserving well-formedness: if promotable (f,r) when (-)
is ¢-nodes placement, and - prog, then - prog{(f)/f}.

3. Program refinement: if promotable (f,r) when () is not ¢-
nodes elimination, and - prog, then prog 2 prog{(f)/f}

5.1 Preserving promotability
At the beginning of each iteration for promoting allocas, the

algorithm indeed finds promotable allocations.

LEMMA 13. If prog = f, and vmem2reqg_fn finds a promotable
allocation r in f, then promotable (f,).

We next show that ¢-nodes placement preserves promotable:

LEMMA 14. Ifpromotable (f,r),
then promotable (¢p—nodes_placement fr,r).

Each of the other micro transformations is composed of one
or two more basic transformations: variable substitution, denoted
by f{wval/r}, and instruction removal, denoted by filter check f
where filter removes an instruction insn from f if check insn =

Before @-nodes placements‘ After ¢-nodes placements ‘

Figure 11. The simulation relation for ¢-node placement

false. For example, f{valz/r1} — r1 (LAS) is a substitution fol-
lowed by a removal in which check insn = false iff insn de-
fines r1; DSE of a promotable alloca 7 is a removal in which
check insn = false iff insn is a store to r. We first establish
that substitution and removal preserve promotable.

LEMMA 15. Suppose promotable (f,r),

1. If ~(valy usesr), then promotable (f{vali/r1},7).
2. If checkinsn = false = insn does not define r, then
promotable (filter check f,r).

We can show that the other micro transformations preserve
promotable by checking the preconditions of Lemma 15.

LEMMA 16. Suppose promotable (f,r), r is still promotable
after LAS, LAA, SAS or DSE.

The substituted value of LAS is written to memory by a storein f,
which cannot use r because r is promotable in f. The substituted
value of LAA is a constant that cannot use r trivially. Moreover,
LAS, LAA, SAS and DSE remove only loads or stores.

5.2 Preserving well-formedness

It is sufficient to check the following conditions to show that a
function-level transformation preserves well-formedness:

LEMMA 17. Suppose

1. (f) and f have the same signature.
2. if prog &= f, then prog{(f)/f} + ().

If & prog, then = prog{(f)/f}.

It is easy to see that all transformations vmem2reg applies
satisfy the first condition. We first prove that ¢-nodes placement
preserves the second condition:

LEMMA 18. If promotable (f,r), prog + f and let f' be
¢—nodes_placement fr, then prog{f'/f}+ f.

Similarly, to reason about other transformations, we first estab-
lish that substitution and removal preserve well-formedness.

LEMMA 19. Suppose prog - f,
L If f Fwaly = 1o, f' = f{vali/r2}, then prog{f'/f} F f.

2. If check insn = false = f does not use insn, and let f' be
filter check f, then prog{f'/f} \ f.

Here, f F valy > r2if f = r1 > 7r2 when val; usesr,. Note
that the first part of Lemma 19 is an extension of Lemma 10 that
only allows substitution on commands. In vmem2reg, LAS and
¢-nodes elimination may transform ¢-nodes.

LAS, LAA and ¢-nodes elimination remove instructions after
substitution. The following auxiliary lemma shows that the substi-
tuted definition is removable after substitution (by Lemma 2):

LEMMA 20. If f Fwvali > ro, then f{vali/r2} does not use rs.

By Lemma 19, Lemma 20 and the proofs [3], we have:

LEMMA 21. LAS, LAA, SAS, DSE, DAE and ¢-nodes elimination
preserve well-formedness.

5.3 Program refinement

The proofs of program refinement use the simulation diagrams
in Section 2 and different instantiations of the GWF_FR rule we
developed in Section 3, where instead of just a function f and
frame o, we now have a configuration config that also includes
the program memory.

Promotability As we discussed above, the micro transformations
(except ¢-nodes elimination) rely on the promotable property.
We start by establishing the invariants related to promotability,
namely that promotable allocations aren’t aliased. This proof is
itself an application of GWF_FR.

The promotable property ensures that a promotable alloca
of a function does not escape—the function can access the data
stored at the allocation, but cannot pass the address of the al-
location to other contexts. Therefore, in the program, the pro-
motable alloca and all other pointers (in memory, local tem-
poraries and temporaries on the stack) must not alias. Formally,
given a promotable allocation = with type typ* in f, we define

Pnoalias(f7 T, typ)

Aconfig. AS.
Voi1++o0 :02=507.f =0.fAN[r]es = [blk]| =
Jv.load (S.M, typ, blk) = |v]
A VbIk' Vtyp'.—load (S.M, typ’, blk') = | blk |
AV *r= ﬁ[[T/ﬂgAa = LblkJ
A Yo' e TV A1] ors = | blk]

The last clause ensures that the alloca and the variables in the
callees reachable from f do no alias. In CompCert, the translation
from C#minor to Cminor uses properties (in non-SSA form) similar
t0 Proalias(f, 7, typ) to allocate local variables on stack.

LEMMA 22 (A promotable alloca is not aliased). At any reach-
able program state S, config, Pooatias(f, 7, typ) F S holds.

The invariant holds initially. At all reachable states, the invariant
holds because a promotable allocation cannot be copied to other
temporaries, stored to memory, passed into a function, or returned.
Therefore, in a well-defined program no external code can get its
location by accessing other temporaries and memory locations. Im-
portantly, the memory model ensures that from a consistent initial
memory state, all memory blocks in temporaries and memory are
allocated—it is impossible to forge a fresh pointer from an integer.

¢-node placement Figure 11 pictorially shows an example (which
is the code fragment from Figure 8) of the simulation relation ~ for
proving that the ¢-node placement preserves semantics. It follows
left “option” simulation, because ¢-node placement only inserts
instructions. We use the number of unexecuted instructions in the
current block as the measure function.

The dashed lines indicate where the two program counters must
be synchronized. Although the pass defines new variables and
stores (shaded in Figure 11), the variables are only passed to the
new ¢ nodes, or stored into the promotable allocation; additional
stores only update the promotable allocation with the same value.
Therefore, by Lemma 22, ~ requires that two programs have the
same memory states and the original temporaries match.

LEMMA 23.
If f' = ¢p—nodes_placement fr, and promotable (f,r), and
F prog, then prog 2 prog{f’/f}.

{ Promotable

LAllocation !

DSE ﬂ % % i ([Il Il %
| I EATSEAIEA
DAE ﬂ } i i 2 2) i
1 iE 7
 Globals Allocated | |

Memory simulation Frame simulation

Figure 12. The simulation relation for DSE and DAE

The interesting case is to show that ~ implies a correspondence
between stuck states. Lemma 22 ensures that the promotable al-
location cannot be dereferenced by operations on other pointers.
Therefore, the inserted memory accesses are always safe.

LAS/LAA We present the proofs for the correctness of LAS. The
proofs for the correctness of LAA is similar. In the code after ¢-
node placement of Figure 8, 7 := load (int *) ro is an LAS of
store int 0 7o. We observe that at any program counter pc between
the store and load, the value stored at ro must be 0 because
alive (pci, pez) holds—the store defined at pe; is not overwritten
by other writes until pc.

To formalize the observation, consider a promotable r with
type typ+in f.Suppose find_stld-pair f r = LAS (pca,
valz, 1) . Consider the invariant Pias(f, 7, typ, pcz, valz):

Aconfig. \S.Vo € S.5.
(f =o.f ANwal2]o.s = |v2] Ar]e.s = [blk]A
alive (pc2, 0.pc)) = load (S. M, typ, blk) = | v2]

Using Lemma 22, we have that:

LEMMA 24. [f promotable (f,r), then alive (pcz,r1) and at
any reachable state S, config, Pas(f, 7, typ, pcz, valz) b S holds.

Let two programs relate to each other if they have the same
program states. Lemma 24 establishes that the substitution in LAS
is correct. The following lemma shows that removal of unused
instructions preserves semantics in general.

LEMMA 25. If check insn = false = f does not use insn, and
F prog, then prog O prog{filter check f/f}.

Lemma 20 shows that the precondition of Lemma 25 holds after
the substitution in LAS. Finally, we have that:

LEMMA 26. LAS preserves semantics.

SAS/DSE/DAE Here we discuss only the simulation relations
used by the proofs. SAS removes a store to a promotable allo-
cation overwritten by a following memory write. We consider a
memory simulation that is the identity when the program counter is
outside the SAS pair, but ignores the promotable alloca when the
program counter is between the pair. Due to Lemma 22 and the fact
that there is no load between a SAS pair, no temporaries or other
memory locations can observe the value stored at the promotable
alloca between the pair.

Figure 12 pictorially shows the simulation relations between
the program states before and after DSE or DAE. Shaded mem-
ory blocks contain uninitialized values. The program states on the
top are before DSE, where 72 is a temporary that holds the pro-
motable stack allocation and is not used by any loads. After DSE,
the memory values for the promotable allocation may not match the
original program’s corresponding block. However, values in tem-
poraries and all other memory locations must be unchanged (by

Lemma 22). Note that unmatched memory states only occur after
the promotable allocation; before the allocation, the two memory
states should be the same.

The bottom part of Figure 12 illustrates the relations between
programs before and after DAE. After DAE, the correspondence
between memory blocks of the two programs is not bijective, due to
the removal of the promotable alloca. However, there must exist
a mapping ~ from the output program’s memory blocks to the
original program’s memory blocks. The simulation requires that all
values stored in memory and temporaries (except the promotable
allocation) are equal modulo the mapping ~.

¢-nodes elimination Consider r = phi typ [val;, lj}J (an AH
¢-node) where all the val;’s are either equal to r or some val’.
Lemma 21 showed that f F val’ = . Intuitively, at any pc that
both val’ and r strictly dominate, the values of val’ and r must be
the same. Consider the invariant P,y (f, 7, val’):

Aconfig. \S.Vo € S.7.
f=0afA[res= v Aval']es = [v2] = v1 = v2

LEMMA 27. config, Pan(f,r,val’) = S holds for any reachable
program state S.

Lemma 27 establishes that the substitution in ¢-nodes elim-
ination is correct by using the identity relation. Lemma 20 and
Lemma 25 show that removing dead ¢-nodes is correct.

5.4 The correctness of vmem2reg

Our main result, fully verified in Coq, is the composition of the
correctness proofs for all the micro program transformations:

THEOREM 28 (vmem2req is correct). If f' = vmem2reqg f and
t= prog, then &= prog{f'/ f} and prog 2 prog{f'/f}.

6. Pipeline Fusion

In vmem2reg (show in Figure 9), there are two loops of micro
pass-pipelinings: eliminate_st1d and the redundant ¢-node
elimination. This section gives a smarter pipelining vimem2reg-0
that “fuses” the micro passes, reducing compilation time. For the
sake of space, we present the fused version of eliminate_st1d;
the fused ¢-node elimination follows similarly (see our Coq devel-
opment). The design and correctness proofs described here should
be applicable to other optimizations besides vmem2reg.

At a high level, Figure 13 gives eliminate_st1d.O, the
fused eliminate_st1d, which first takes a pass to find all initial
eliminations, fuses them, and then takes another pass that elimi-
nates load’s and store’s in terms of fused eliminations.

We use actions ac to denote micro eliminations:

Actions ac ::= re—wval | pc— #

Here, » — wval denotes LAS (r, pc, val) or LAA r with the default
memory value val and pc — # denotes SAS (pc, pc’). We use AC
to denote a list of actions, and AC'(f) to denote a single pass of f
that, for each r — val, replaces all uses of r by val, then removes
the definition of r and, for each pc — #, removes the store at pc.

To find all initial actions, eliminate_st1d_O traverses the
blocks of a function, uses find_stld pairsblock to find
actions for each block, and then concatenates them. At each
block, find_st1ld_pairs_block traverses each command (by
find-stld-pairs_cmd), and uses st1d_state to keep track
of the search state: ST_INIT is the initial state; ST_AL typ records
the element type of the promotable allocation; ST_ST pc val
records the value stored by the latest store at pc to the promotable
allocation.

let find_stld_pair_cmd r acc ¢ =

let (st, AC) = acc in
match ¢ with
| ro:= allocatyp —

if r = r9 then (ST_AL typ, AC) else acc
| pco:store typ valy ro —

let st’ = ST_ST pco valp in

if r = ro then

match st with

| ST_ST pc _ — (st’, (pc— #,AQC))
| _— (st’, AC)
end

else acc

| ro:=load (typ*)r;i —
if r = r1 then
match st with
| ST_ST _ wal = (st, (ro+> val, AC))
| ST_AL typ — (st, (ro+~— undef typ, AC))
| _ — acc
end
else acc
| _ — acc
end
let find_stld_pairs_block 7 b =
let (_ _ ¢ _) =b in
fold_left (find_stld_pair_cmd r) ¢ (ST_INIT, 0)
let rec fuse_actions AC =
match AC with
| 00— 0
| r—wval, AC" —
let AC"” = fuse_actions AC’ in
let wval’ = find_parent AC' wal in
r— wval', AC" {val' /T}
| pcw— #,AC" — pcr #,fuse_actions AC’
end
let eliminate_stld_O r f =
let fheader{b} = f in
let AC = flat_map (rev (snd
(find_stld_pairs_block r))) b in
(fuse_actions AC) (f)

Figure 13. eliminate_stld of vimem2reg-0

eliminate_st1d-O must fuse the initial actions before
transforming f. Let values be vertices, and elements in actions
be edges. A list of actions found from a well-formed function
forms a forest because SSA ensures acyclicity of def/use chains.
fuse_actions fuses the forest to be a forest with depth one:
each non-root node in a tree of the original forest maps to the root
of the tree. In fuse_actions, find_parent AC wal returns
the parent of val in the forest formed by AC' if val has a parent;
otherwise returns val; AC{val/r} substitutes r in the codomain
of AC by wal. Suppose that eliminate_st1d_O finds a list of
actions: r4 — T3,T5 > T4, T2 —> T1,T3 > T2,T6 — T3,[].
fuse_actions returns 74 — 71,75 — T1,T2 — T1,73 >
71,76 F—r T1, []

The interesting part for the correctness of vmem2reg-0O is
showing that the fused pass produces the same output as the
pipelined transformations:

LEMMA 29 (eliminate_st1d.Ois correct). If prog - f, then
eliminate_stldr f =eliminate_st1d.Or f.

By Lemma 29 and Theorem 30, we have that

THEOREM 30 (vmem2reg-0 is correct). If f' = vmem2reg-0
f and & prog, then = prog{f'/f} and prog D prog{f'/f}.

200%

W Extracted vmem2reg
O LLVM’s mem2reg

00

150%

100%

g
|

speedup over LLVM:

0% -
Vs G g et o R et W g
«

N ﬂ‘\‘.\‘&\\a“‘“‘“ W @i A\;(\‘é“ o "A’c‘;\o. e

Figure 14. Execution speedup over LLVM -00 for both the ex-
tracted vmem2reg and LLVM’s original mem2reg pass.

7. Discussion and Evaluation

Coq Development Our Coq development for SSA optimizations
consists of approximately 838 lines of algorithm implementations
and 50k lines of (not particularly automated) correctness proof
scripts and supporting infrastructure. We expect that much of these
proofs can be reused for other SSA-based optimizations—that is
the reason why we chose the pipeline of micro transformations
structure. The development relies on about a dozen axioms, almost
all of which define either the initial state of the machine (i.e., where
in memory functions and globals are stored) or the behavior of
external function calls. One axiom asserts that memory alignment
is a power of two, which is not necessary for LLVM programs in
general, but is true of almost all real-world platforms.

Extracted vmem2reg and experimental methodology We used
the Coq extraction mechanism to obtain a certified implementation
of the vmem2reqg optimization directly from the Coq sources.
mem2req is the first optimization pass applied by LLVM®, so
we tested the efficacy of the extracted implementation on LLVM
IR bitcode generated directly from C source code using the clang
compiler. At this stage, the LLVM bitcode is unoptimized and in
“trivial” SSA form. To prevent the impact of this optimization pass
from being masked by subsequent optimizations, we apply either
LLVM’s mem2reg or the extracted vmem2 reg to the unoptimized
LLVM bitcode and then immediately invoke the back-end code
generator. We evaluate the performance of the resultant code on a
2.66 GHz Intel Core 2 processor running benchmarks selected from
the SPEC CPU benchmark suite that consist of over 336k lines of
C source code in total.

Figure 14 reports the execution time speedups (larger is better)
over a LLVM’s-O0 compilation baseline for various benchmarks.
The left bar of each group shows the speedup of the extracted
vmem2reg, which provides an average speedup of 77% over the
baseline. The right bar of each group is the benefit provided by
LLVM’s mem2regq, which provides 81% on average; vmem2reg
captures much of the benefit of the LLVM’s mem2reg.

Comparing vmem2reg and mem2reg The vmem2reg pass
differs from LLVM’s mem2req in a few ways. First, mem2reqg
promotes allocas used by LLVM’s intrinsics, while vmem2reg
conservatively considers such allocas to potentially escape, and so
does not promote them. We determined that such intrinsics (used
by LLVM to annotate the liveness of variable definitions) lead to
almost all the difference in performance in the equake benchmark.
Second, although vimem2 req deletes most unused ¢-nodes, it does
not aggressively remove them and, therefore, does not generate
fully pruned SSA as mem2reg does. However, our results show
that this does not impose a significant difference in performance.

Compilation time The focus of this work is compiler correctness,
not compilation time. Although the code generated by vmem2reg
is comparable to that of mem2reg, their compilation times differ,
for two reasons. First, the extracted OCaml programs use purely
functional data structures that impose O(log n) overhead compared
to the efficient imperative hash tables available in C++. Second, the

4 All results reported are for LLVM version 3.0.

pessimistic ¢-node placement algorithm introduces unnecessary ¢
nodes. In our future work, we plan to use the minimal ¢-node place-
ment algorithm in vmem2reg, whose correctness is (by design)
independent of the proofs presented in this paper. Moreover, unlike
“all or nothing” translations, vmem2 reg maintains the SSA in-
variants at each pass and can thus be applied incrementally to boost
performance. In practice, should compilation time be an issue, it is
always possible to use mem2 reg for development and vmem2reqg
to ensure correctness for a final release.

8. Related Work and Conclusions

Verifying the correctness of compiler transformations is an active
research area with a sizable amount of literature. We focus here on
the work relevant to SSA-based optimizations.

CompCertSSA CompCertSSA [4] improves the CompCert com-
piler with a verified SSA-based middle-end and a GVN optimiza-
tion pass. CompCertSSA verified a translation validator for an
SSA construction algorithm that takes imperative variables to vari-
ables in a pruned SSA form. In contrast, our work fully verifies
the SSA construction pass vmem2reg for LLVM directly. A bug
in the CompCertSSA compiler will cause the validator to abort the
compilation, whereas verifying the compiler rules out such a pos-
sibility. More pragmatically, translation validation is harder to ap-
ply in the context of LLVM, because the compiler infrastructure
was not created with verification in mind. For example, the Comp-
CertSSA translations maintain a close mapping between source and
target variable names so that simulation can be checked by simple
erasure; this is not feasible in the LLVM framework. The Comp-
CertSSA project reports performance measurements of only small
benchmarks totaling about 6k lines, whereas we have tested our
pass on 336k lines, including larger programs.

Unsurprisingly, the CompCertSSA and Vellvm proofs share
some similarities. For example, CompCertSSA’s GVN proof uses
an invariant similar to the one in our Theorem 8 and Lemma 12.
However, the LLVM’s strategy of promoting allocas means that
our proofs need a combination of both SSA and aliasing properties
to prove correctness. Moreover, our proof technique of pipelining
“micro” transformations is novel, and should be broadly applicable.

Other related work In less closely related work, Mansky et al.
designed an Isabelle/HOL framework that uses control-flow graph
rewrites to transform programs and uses temporal logic and model-
checking to specify and prove the correctness of program trans-
formations [11]. They verified an SSA construction algorithm in
the framework. Other researchers have formalized specific SSA-
based optimizations by using SSA forms with different styles of
semantics: an informal semantics that describes the intuitive idea
of the SSA form [7]; an operational semantics based on a matrix
representation of ¢ nodes [19]; a data-flow semantics based term
graphs using the Isabelle/HOL proof assistant [5]. Matsuno et al.
defined a type system equivalent to the SSA form and proved that
dead code elimination and common subexpression elimination pre-
serve types [12]. There are also conversions between the programs
in SSA form and functional programs [2, 8].

Conclusion We have presented a proof technique for formally
verifying SSA-based compiler optimizations. Using the Coq proof
assistant, we fully mechanized the proof technique and the correct-
ness of several micro optimizations. For the full LLVM IR seman-
tics in Vellvm, we have formalized and implemented an extractable
SSA optimization pass vmem2reg that is an easier-to-prove vari-
ant of LLVM’s mem2 reg pass but that delivers most of its benefits.

Acknowledgments We would like to thank Delphine Demange,
Vivien Durey, and Dmitri Garbuzov for their comments and sug-
gestions about this work.

References

[1] Static Single Assignment Book, 2012. Working draft available at
http://ssabook.gforge.inria.fr/latest/book.pdf.

[2] A. W. Appel. SSA is functional programming. SIGPLAN Not., 33(4):
17-20, April 1998. ISSN 0362-1340.

[3] J. Aycock and N. Horspool. Simple generation of static single assign-
ment form. In CC, 2000.

[4] G. Barthe, D. Demange, and D. Pichardie. A formally verified SSA-
based middle-end - Static Single Assignment meets CompCert. In
ESOP, 2012.

[5] J. O. Blech, S. Glesner, J. Leitner, and S. Miilling. Optimizing code
generation from SSA form: A comparison between two formal cor-
rectness proofs in Isabelle/HOL. Electron. Notes Theor. Comput. Sci.,
141(2):33-51, 2005.

[6] The Coq Proof Assistant Reference Manual (Version 8.3pll). The Coq
Development Team, 2011.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. TOPLAS, 13:451-490, 1991.

[8] R. A. Kelsey. A correspondence between continuation passing style
and static single assignment form. In /R, number 3, 1995.

[9] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363-446, December 2009. ISSN 0168-7433.

[10] The LLVM Reference Manual (Version 3.0). The LLVM Develop-
ment Team, 2011. http://1lvm.org/releases/3.0/docs/
LangRef.html.

[11] W. Mansky and E. L. Gunter. A framework for formal verification of
compiler optimizations. In /7P, 2010.

[12] Y. Matsuno and A. Ohori. A type system equivalent to static single
assignment. In PPDP, 2006.

[13] V. S. Menon, N. Glew, B. R. Murphy, A. McCreight, T. Shpeisman,
A. Adl-Tabatabai, and L. Petersen. A verifiable SSA program repre-
sentation for aggressive compiler optimization. In POPL, 2006.

[14] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.
ISBN 1-55860-320-4.

[15] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing
¢-nodes. In POPL, 1995.

[16] J.-B. Tristan and X. Leroy. Formal verification of translation valida-
tors: a case study on instruction scheduling optimizations. In POPL,
2008.

[17] J.-B. Tristan and X. Leroy. Verified validation of lazy code motion. In
PLDI, 2009.

[18] J. B. Tristan and X. Leroy. A simple, verified validator for software
pipelining. In POPL, 2010.

[19] B. Yakobowski. Etude sémantique d’un langage intermédiaire de type
Static Single Assignment. Rapport de dea (Master’s thesis), ENS
Cachan and INRIA Rocquencourt, Sept. 2004.

[20] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In PLDI, 2011.

[21] J. Zhao and S. Zdancewic. Mechanized verification of computing
dominators for formalizing compilers. In CPP, 2012.

[22] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. For-
malizing the LLVM intermediate representation for verified program
transformations. In POPL, 2012.

This research was funded in part by the U.S. Government. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, ei-
ther expressed or implied, of the U.S. Government. This research was
funded in part by DARPA contract HR0011-10-9-0008 and ONR award
NO000141110596. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1116682, CCF-1065166,
and CCF-0810947. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

