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1. Introduct ion  

This paper is concerned with developing measures 
of 'decision making efficiency' with special reference 
to possible use in evaluating public programs. As we 
shall use it, the term 'program'  will refer to a collec- 
tion of  decision making units (DMU's) with common 
inputs and outputs. These outputs and inpms will 
usually be multiple in character and may also assume 
a variety of forms which admit of only ordinal mea- 
surements. For example, in an educational program 
like 'Follow Through' l, the efficiency of various 
schools, viewed as DMU's in this program, may be 
measured by reference to outputs involving the stan- 
dard education categories: viz., cognitive, affective 
and psycho-motor skills via, respectively, (1) arith- 
metic scores, (2) psychological tests of student atti- 
tudes, e.g., toward the communi ty  and (3) student 
ability to understand and control bodily motions, 
e.g., by observing their ability to tread water and 
turn from front to back (and vice versa) in a swim- 
ming pool 2. These are all to be regarded as 'valued' 

outputs  even when there is no apparent market  for 
them or even when other possible sources for reason- 
ably supportable systems of weights are not readily 
available. The inputs may similarly range from fairly 

easy to measure (and weight) quantities like 'number  
of teacher hours' and extend to more difficult ones 
line ' t ime spent in program activities by communi ty  
leaders and/or parents'. 

Our use of terms like 'DMU' (decision making 
unit) and 'programs' will help to emphasize that ~ur 
interest is centered on decision making by not-for- 
profit entities rather than the more customary 'firms'  
and 'industries'. It will also help us to ernphasiz; 
that our data (as in the above example) are not read- 
fly weighted by reference to market prices "~ and/or 
other economic desiderata - such as costs of pro- 
ducing income earning capacity in students, with 
related rates of discount - in accordance with the 

A discussion of this Federally sponsored program which 
includes a use of the efficiency measures we shall be dis- 
cussing may be found in [21]. This includes a use of 
various statistical tests of significance (using the so called 
Kullback-Leibler statistic), which will not be discussed in 
the present paper. 
See the discussion in [31 for a use of measures like these 
in program- planning- budgetir~g (PPBS) contexts. 
We are referring to actual market prices and costs. Later 
we shall show how to obtain estimates of (optimal) pro- 
duction coefficients and relate them to theoretical (oppor- 
tunity) costs and prices. 
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ways in which some public sector activities are some- 
times evaluated. 

Naturally we shall want to relate our ideas to 
developments in economics. This will be done by 
reference to production functions and related con- 
cepts such as "cost duality', etc. Although adapta- 
tions of these concet~ts will be needed we shall also 
try to indicate wl~at is involved at suitable points in 
this paper. (See below, Section 6, for instance.) 

"ige shall also want to relate our ideas to other 
disciplines, iike engineering, which are also concerned 
with efficiency measurement. This will be done not 
only in the interests of greater unity but also in the 
interest of distinguishing between efficiencies asso- 
ciated with an underlying production 'technology' 
and those due to managerial decision making when 
the former can be identified and separated from the 
latter by, e.g., engineering characterizations. 

Of course, when this cannot be done (the usual 
case in empirical economics) 4 we will need to rest 
content with the somewhat less satisfactory concept 
of 'relative efficiency'. The latter will be determined 
by reference to suitably arranged 'rankings' of the 
observed results of decision making by various DMU's 
in the same program (e.g., the different schools in 
program Follow Through)while allowing for the 
fact that different amounts of inputs (sometimes 
legally stipulated) may be involved so that, e.g., 
some DMU's are more like members of one subset 
and less like members of other subsets, etc., in the 
'amounts' of particular inputs and outputs utilized. 

The meaning and significance to be accorded these 
characterizations will be clarified in the sections that 
follow. First we shall introduce our proposed mea- 
sures and models. Then we shall provide characteriza- 
tions which are wholly computatienal. Relations to 
selected lines of ongoing research will be delineated, 
followed by methods of estimation and interpretation 
in terms of simple numerical illustrations and analyti- 
cal characterizations. A concluding section will then 
summarize what has been done and point up relevant 
shortcomings along with possible further lines of 
development. 

4 Such separation is even more difficult ha public sector pro- 
grams such as education, public safety, etc., where the 
meaning of a ' technology' is likely to be more ambiguous 
than in the case of  manufaet'aring ha the private sector, 
and even many service operations. 

2. Model and definition 

Our propo~d measure of the efficiency of any 
UMU is obtained as the maximum of a ratio of 
weighted outputs to weighted inputs subject to the 
c, mdition that the similar ratios for every DMU be 
less than or equal to unity. In more precise form, 

naax ho - 

$ 

~ UrYrO 
r=l 

m 

~ OiXio 
i= 1 

(1)  

~abject to: 
$ 

urYri 
r = 1 

< 1 ;  / = l , . . . , n ,  
m 

vixi/ 
i= I 

t,!r, V i ) O  , r= 1, . . . ,s ; i = 1, . . . ,m. 

lte~e the Yr], x i / (al l  positive)are the known outputs 
~nd inputs of the/ th DMU and the Ur, vi >I 0 are the 
variable weights to be determined by the solution of 
this problem -- e.g., by the data on all of the DMU's 
which are being used as a reference set. The efficiency 
~f one member of this reference set of] = l, .... n 
I)MU's is to be rated relative to the others. It is there- 
fore represented in the functional, for optimization - 
as well as in the constraints - and further distin- 
t~ished by assigning it the subscript '0'  in the func- 
tional (but presetting its original subscript in the 
constraints). The indicated maximization then accords 
~his DMU the most favorable weighting that the con- 
~;traints allow. 

For the DMU's which concern us, these x i / a n d  Yr] 
,ralues, which are constants, will usually be observa- 
tions from past decisions on inputs and the outputs 
chat resulted therefrom. We can, however, replace 
:;ome or all of these observations by theoretically 
Jetermined values if we wish (and are able) to con- 
:luct our efficiency evaluations in that manner. 

Consider, for instance, the following definition 
~quoted from [14]) from the field of combustion 
~ngineering - viz., 'efficiency is the ratio of the actual 
amount of hea~: liberated in a given device to the 
maximum amount which could be liberated by the 
fuel [being used]'. In symbols, 

- Y , h ' n  
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where 

YR = Maximum heat that can be obtained from a 
~ven input of fuel, 

Yr = Heat obtained by the input being rated from 
the same fuel input. 

Although the definition of efficiency varies from one 
engineering field to another, the one above captures 
the essentials - viz., the rating is relative to some 
maximum possibility so that, always, 0 ~ Er ~ I. 

We can also obtain the above defined Er from (1) 
as follows. For any given input amount x substitution 
in (1) gives 

max ho = 
uYo 

o x  o 

s.t. UYR 
~ < 1  , 
OXR 

uyr 
~ < 1 ,  
VXr 

u , v  >~O, 

where r = 0 in the functional designates that the latter 
is being rated. 

Let u*, u* represent an optimal pair of values. 
Since YR >I Yr and xR - Xr = X this implies u*ye  = 
V*xR and using Xo = x we then have the functional 
equal tOyr/YR as required. 

In common with most engineering definitions we 
have here confined our development to ratios of 
single outputs and/or inputs, or weighted sums there- 
of. The latter may be determined, again by engineer- 
ing considerations (e.g., efficient fuel combinations), 
which are ordinarily not available for the economic 
applications we are considering. Provided we have 
the indicated observations on inputs and outputs for 
individual ~ , DMU s, however, we can at least achieve 
'relative efficiency' ratings along the lines that we 
have been suggesting. This is the way the rest of the 
paper will be developed although, as already indi- 
cated, we can also insert engineering or other data 
for such ratings, if we wish, in various combinations. 

Note that our weightings, as above, are objectively 
determined to obtain a (dimensionless) scalar mea- 
sure of efficiency in any case s. I.e., the choice of 
weights is determined directly from observational 
data subject only to the constraints set forth in (1). 
Under these observations and constraints no other 

set of common weights will give a more favorable 
rating relative to the reference set. Hence if a (rela- 
tive) efficiency r;ting of 100% is not attained under 
this set of weights then it will also not be attained 
from any other set. 

3. Reduction to linear programming forms 

The above model is an extended nonlinear pro- 
gramming formulation of an ordinary fractional pro- 
gramming problem. We have elsewhere (in [ 10] and 
[7]) supplied a complete theory in terms of which 
fractional programming problems may be replaced 
with linear programming equivalents. We dlerefore 
propose to use that theory here to make the above 
formulation computationally tractable for tt~e large 
numbers /(n) of observations as well as the smaller 
numbers of inputs i(m) and outputs r(s) which are 
likely to be of interest at least in economics applica- 
tions. . 

We shall do this in a way that should provide 
further conceptual clarity (and flexibility) and also 
facilitate our making contact with related develop- 
ments in economics. First consider the following 
model which is the reciprocal (inefficiency) measure 
version of (1): 

m 

~ OiXio 
i= 1 

min f0 = - 
$ 

UrYrO 
r = 1 

subject to: 

(2) 

m 

vixii 
i= 1 

> t l ;  ] = 1  .... , n ,  
$ 

urYd 
r = 1 

vi, ur >~ 0 . 

Now we propose to ieplace these nonconvex non- 
linear formulations with an ordinary linear program- 
ming problem. We therefore first consider 

max z 0 (3) 

subject to: 

5 Scaling and invariance properties wMch are dealt with in 
[ 12] - see also [21 ] - will not be discussed in this paper. 

n 

- ~ yr/X/+ YroZo <<- 0 ; 
]--- 1 

r = 1, . . . , s ,  
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n 

x i iX j  < X i o  ; i = 1, . . . , m ,  
/=1 

Xi~>0; j = l  . . . .  , n .  

Because (3) is an ordinary linear pro~amming prob- 
lem it has a Knear programming dual which we can 
write as follows: 

m 

min go = ~ WiXiO (4) 
i=  1 

subject to: 

$ m 

r = l  i = 1  

larYro 
r = l  

= 1 ,  

lZr, Wi  >~ O . 

Because of the structure of (4) one can recognize 
that it is equivalent to an ordinary linear fractional 
programming problem. (See [ 10] and [7] .) In fact, 
utilizing the theory of linear fractional programming 
with the transformation 

¢oi = toi ; i = l . . . .  , m , 

la r = tU r ; r = 1 . . . . .  S ,  

several standpoints. We have a completely symmetric 
definition of efficiency which generalizes single out- 
put ratio definitions not only in economies but in 
engineering and other natural sciences. We do not 
need to solve the nonlinear (and noneonvex) prob- 
lems in which these definitions are forraalized. We 
need only solve the ordinary linear programming 
problem (4) in order to obtain both the optimal f~ 
or h l  and the weights v/', u~ ~ 0, since the change in 
variables does not alter the value of the functional. 

Thus, 

f~ =g~ =z~ (7.1) 

and therefore 

h l  = l [ z ~ .  (7.2) 

Also we have the wanted relative weights. Thus 
nothing more is required than the solution of (4) or 
(3) in order to determine whetherf~ > 1 or, corre- 
spondingly, whether h l  < 1, with efficiency prevail- 
ing if and only if 

f(~ = h i = 1. (7.3) 

We can also effect extensions in a variety of addi- 
tional (new) directions 6. Here, however, we prefer to 
make contact with various developments and also 
sketch a few of the ideas that are elsewhere described 
as Data Envelopment Analysis 7 For this purpose we 
introduce 

t - 1  = ~ ~rYrO , 
r 

which, with t > 0, gives explicitly 

r f l in  f o  = 

$ 

~-- l  O i X  iO 
i= 1 

$ 

~ UrYrO 
r = 1 

subject to: 

(6) 

I Y i \  
Pi =~ : ~ • / = l n (8) , . - o 9  , 

~ ..¢']k j / ,  

~,herein the subvector Yi contains observed output 
caluesy d, r = 1, ..., s for its components and the sub- 
~ector X~ contains observed input values xi i ,  i = 1, 

• . $  ~ n , .  

Now consider the following vector reformulation 
,if(3): 

maxz0 (9) 

in  $ 

oix j - u , y ,  i >1 o ; 
i = 1 r= 1 

] =  1 . . . . .  n ,  

vi, u rn>0 ,  

as the linear fractional programming equivalent of (4). 
By very evident manipulations, however, we can see 
that (6) is the same as (2). Hence we can use (4) to 
solve (6) and therefore (2) and (1) as well. Q.E.D. 

We are now in ~ advantageous position from 

For instance, we could utilize the duality theory that is 
now associated with fractional programming (as discussed 
in [18] and [25] -see also [5] and [7])as distinguished 
Iron" the duality theory of ordinary linear programming or 
what is sometimes called duality theory (see l:elow) in cost 
and production theory. 
This is a method for adjusting data to prescribed theoretical 
requirements such as optimal production surfilces, etc., 
prior to undertaking various statistical tests fc.r purposes of 
public policy analysis. See [21 ]. 
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with 

n 

- Z~ Dxj + ro~o < 0 ,  
j=l 

n 

23 x~xj < X o ,  t-=l 

xj~>0; / = l ,  . . . ,  n . 

Let its optimal solution in the equivalent equation 
form with slack variables be represented by 

z~, s *+, s* - ,  X] ~ ; / = 1, . . . , n ,  ( I0)  

where s *+ represents a vector of non-negative slack 
associated with the output inequalities and s*- repre- 
sents a vector of non-negative slack associated with 
the input inequalities. If z~ > 1 then via (7.1)-(7.3) 
the efficient frontier of the production possibility 
surface has not  been attained. 

Here, however, we can observe something more. If 
s *+ has any positive components then it is possible to 
increase the associated outputs in the amounts of 
these slack variables without altering any of the X]' 
values and without violating any constraints. Simi- 
larly if s*-  has any positive components then we can 
reduce the inputs from ,go to Xo - s*- in an analo- 
gous manner. Thus, in either case the DMU being 
evaluated has not achieved (relative) efficiency even 
with z~ = 1. That is, unlike (1)and (2), the subse- 
quent models for characterizing efficiency do not 
necessarily determine whether the DMU is efficient 
only by reference to the optimal functional value. 

For ease of reference, we summarize what is in- 
volved for these latter cases as follows. No DMU can 
be rated as efficient unless the following conditions 
are both satisfied 

(i) z~= 1,and 
( l l )  

(ii) The slack variables are all zero. 

lit may be observed that these conditions are also the 
conditions for Pareto efficiency a _ extended to 
cover production as well as consumption. Note that 
this assumes that a reduction in any input or an ex- 
pansion in any output has some value, it does not 
require that these values be stipulated or prescribed 
in advance in any way. Indeed if efficiency measures 
are to be restricted to a scalar measure only, then ob- 

8 Also called Pareto-Koopmans efficiency. See Chapter IX 
in [81. 

jective computation of the we i~ t s  from (4) 9, as 
already discussed, will suffice to produce what is 
wanted by direct substitution in (1). 

Now suppose we want to adjust all observations 
for purposes, say, of evaluating a program's potential 
for a given DMU on the assumption that this program 
is efficiently managed by the specified DMU. This 
can be done by applying (11) in the following manner. 

First, for a selected DMU we proceed via (9) to 
obtain the solution (10). Then we form a new prob- 
lem from these data and their solution - viz., 

max Zo (! 2) 

with 

n 

- Z) DXj + (roz~ + ~*+1 io < o,  
j= 1 

I'! 

xjXj < Xo - c - ,  
i=l 

Xj>~O; j = l  .... , n .  

We shall refer to (12) as the 'varied problem' and 
show that it may be used to eliminate all the ir~effi- 
ciencies detected in proceeding from (9) to (lO). 
This includes (a) reducing inputs from the original 
,go vector of observations to the new (adjusted) input 
vector X0 - s*-, and also (b) increasing the originally 
observed output vector Yo to new (adjusted) v;~!ues 
( Y o z ;  + s*+). 

We now show that the thus adjusted observatkm~:. 
satisfy the conditions for efficiency in (l 1 ) as f<)Hows 
F',idently, we must have ~ >1 1 since k~ = t in (12 
together with (10) gives us the already secured opti- 
mal solution to (9). Now suppose we could have 
~ > I in (12). This would yield 

n 

- 23 rjx; + r o s y ;  
j = 1 

< _ ~ r'~X; + (Yoz~ + s**) ~;~ < 0 ,  
]=  1 

l'l 

siX; <So- ,*- <So, 
/=1 

9 When an extreme point method, such as the simplex 
method, is used then either (3) or (4) may be used ~ince, 
as is well known, these methods sgrnultaneou~ly produce 
optimal solutions to both problems. See, e.g., [8]. 
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fince s °+ and s*-  are both non-negative. Evidently, 
the expressions on the ~eft then satisfy the 'unvaried 
problem' (9) with z~ in place of z~, and ~* in place 
of X~. However, then also 

Max z o >1 ZoZ o *  "* > z~ 

when ~ > 1, But z~ = max z6, by hypothesis. Thus a 
contradiction occurs which proves that z~ = I is the 
optimal value for the varied problem (12). 

Now we want to show that the optimal solution, 
~,~, j = 1 .. . .  , n, to the unvaried problem (9) is an op- 
timal solution to the varied problem (12) with zero 
slack, i.e., the vectors s*+ and ~*- have zeros in all 
components as required for efficiency. First, via (10) 

n 

- r j V  + roz  
]= 1 

Z )  x j v  - X o -  s'-  
j= 1 

Thus ~j* is a feasible solution of the varied problem 
with zo = 1. That is 

n 

- YJV + (Yoz  + s *÷) -- 0 
/= ! 

n 

x j V  - xo  - 
/-- 1 

with Zo = 1. It is also optimal since a~ we have just 
showta, z~ = i. Further, the optimal slacks s*+ and 
s*-  are all zero. Q.E.D. 

In short, the indicated adjustments do, in fact, 
always bring the original observations into the rele- 
vant efficient produ,ztion set. No new computations 
are required after the z~, s*- adjustments are effected 
for the original Yo, Xo data for the efficiency com- 
parisons we may subsequently want to make. 

As we shall shortly see - in sectien (6) below - 
we can use these results to obtain a surface corre- 
sponding to a well-defined relation between output 
and inputs. For the single output case this relation 
corresponds to a function in which output is maximal 
for all the indicated inputs. It therefore formally ful- 
l'dis the requirements of a 'production function' er, 
more generally, a 'production possibility surface' lo 

I0 We are using this term in these sense of the activity vec- 
tors discussed in Arrow and Hahn [4 ]. Indeed, in Section 
5, below, we shall explicitly show how our duality charac- 

in the case of multiple outputs, in this manner we 
obtain a new type of production function which has 
a ~,afiety of advantages that we shall indicate as we 
pl oceed. Here we may adumbrate some of these ad- 
vzntages in a summary way as follows. Unlike other 
t~ pes of production functions, this one derives from 
(and is therefore directly applicable to) empirical 
observations. It also bypasses the intractable prob- 
lems of aggregations associated with other types of 
pl oduction functions It and, finally, it lends itself to 
comparative statics for such purposes as determining 
whether technological change is occurring. These 
'comparative' static uses may be accomplished in 
various ways such as adopting the com, ention that 
the same DMU is to be regarded as a different entity 
in each relevant time period. 

By means of these production function concepts 
and the procedures we shall associate with them, the 
requirements of economic theory may then be 
brought to bear in new and modified ways for public 
policy evaluations, and, at the same time, provide a 
variety of new predictiorL~ and control possibilities 
for program managers - Le., managers, legislators, 
e~c., who have total program responsibility. For 
example, it then becomes possible to distinguish be- 
tween the 'program efficiency' - that may be pre- 
dicted with efficient managemem - and to distinguish 
this from other predictions (and evaluations) that 
might be effected on the assumption that all managers 
will continue to operate only at past levels of effi- 
ciency 12. Similarly, it is possible to allow for predic- 
tions of future changes in technology instead of 
assuming that a static longru,~ production function 
has been achieved - as is presently being done in 
many of the extant studie: for energy policy guidance 
in Western countries. 

This may all be accom[llshed, we should note, 
with~mt interferhag with s absequent statistical testing 
arm evaluation. As in the DEA approach which we 
discuss elsewhere, these s Latistieal tests, which are 

11 

12 

terization may be used to secure numerical estimates of 
these coefficient values (or, rather, their production func- 
tion counterparts) from ob~rvational data. 
Disaggregation may be necessary, however, when data on 
individual DMU's are not available. See the guidelines 
supplied in [12] and [21 ]. For a discussion and an attempt 
t~J deal with the difficulties of aggregation in other types 
of production functions, see [ 24 ]. 
See [21 ] for further discussion and a detailed application 
that distinguishes between 'program efficiency' and 
'manager~l efficiency' in 'Program Follow Throu~' of 
the U.S. Office of Education. 
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applied after  the indicated adjustments, are often 
greatly simplified relative to other alternatives. Pro- 
ceeding without first effecting such adjustments in 
the data would not only fail to utilize the underlying 
theory-, it would also contradict the requirements of 
that theory unless (a) one can assume that all DMU's 
are operating efficiently or (b) one can supply some 
alternate method of  allowing for observations wl'dch 
are no t  on the efficient prod:,.ction possibility 
frontier 13. 

n 

xi /Xj  <x;o 
/= ! 

i = 1 . . . .  ,m  

X / D O "  j = l , . . . , n  

where, because we are concerned with only one out- 
put,  the extra subscript is dropped on the y / f o r  each 
of the j = 1 .. . .  , n DMU's. Making the scaling change 
of variables Xj = Xjy j ,  z o = Z'o/Yo, then dropping the 
primes and the constant multiplier 1/y o in the func- 
tional, we obtain the equivalent form, 

4. Isoquant analysis and Farrell efficiency 

We proceed to still further implications of our 
definitions of  efficiency and its production - eco- 
nomics - management consequences. For this we 
turn to the more familiar form of isoquant analyses, 
and related production function concepts. This will 
also allow us to make contact with the important  
work initiated by M.J. Farrell [ 15 ] 14 

First we will undertake the wanted clarification 
(and provide contact)  via an isoquant analysis which 
corresponds to the one that Farrell used. Then we 
shall supply a model for generating the related effi- 
cient surface for the production function. We will 
also relate the latter to an associated cost function, 
and an extension of  Shephard's lemma. Then we 
shall exhibit further relations between this and Farrell 
efficiency, in between we shall show how the duals 
(See [8], [12] and also [13].) to our models may be 
used to provide a new way of estimating production 
function coefficients either in their own right or in 
association with statistical estimation techniques 
(e.g., via the DEA approach outlined at the close of 
the last section). 

To initiate these developments we first observe 
that we are now concerned with the caee of  only one 
output,  which is the same for every DMU. In this 
case (3) specializes to 

max go 

subject to: 

(13) 

I'1 

- ~ y/X/+ yoZo < o ,  
j -  1 

! 3 For a discussion of problems involved in dealing with 
such estimation problems even in the case of a single 
output and very few inputs see [1] and [2]. 

14 Examples involving continuation of this work may be 
found in [ 2 ] and [ 16 ]. 

/ I  

max Zo = Z )  
j= ! 

subject to: 

(14) 

n 

' a, ' .  xi /  <~ Xio i = 1, ..., m ,  
j= 1 

x/>0;  /=  l, . . . ,n ,  
F I' 

wherein the values xi/  = xi i /Yi;  i = 1 . . . . .  n and xio  = 
Xio/Yo, are obtained from the change of variable 
operation we have just described. 

We have made the transformation from (13) to 
( i 4 )  in the indicated manner to facilitate contact  
with the work of Farrell 25. We shall also represent 
(14) equivalently as 

max Zo = 
/= 1 

with 

~14.1) 

<- ,'o, 
! 

xj >o; 

or its equivalent 

/ =  1 . . . . .  rt 

/'1 

max Zo = E3 Xj 
j=l 

with 

n m 

P/X/ + ~ eis i = Po and 
j=  1 i= I 

15 To make full contact with Farrell's work it i~ also neces- 
sary to deal wRh (and eliminate) some of his awkward 
concepts such as 'points at infinity', etc. This is done ia 
[ 12] but m the interest of brevity we shall not attempt to 
repeat thes~e developments here. 

~14.2) 
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i / ,  ,,t ......-.-" To QlfMel 

Fig. 1. Efficiency points and isoquent. 

>,j, si>~O , 

wherein the Pj represent 
(a) a normed version of (8), in which the compo- 

nents of X~ are divided by their corresponding output 
amounts, and 

(b) the output is then elim!nated from the vector 
and (in normed version) associated instead with the 
unit coefficients of the variables ~,] in the functional. 
In short, P~ = X} with only normed inputs x~l for its 
components. The ei are unit vectors with unity in 
row i = 1, .... m and zeros elsewhere and the si are 
'slack' variables. 

The conditions (11) continue to apply, of course, 
but now the referent for efficiency is only to inputs 16. 
To see what this means refer to Fig. 1 on which is 
depicted a situation for six DMU's using two irputs 
normed on their respective Gutput values. Her~=, the 
DMU's are all portrayed for the case of two ~puts 
normed on their respective outputs. E.g., Ps has 

t '  I ! IF , ~  

Xls = 1, x2s = 4 while P~ hasx13 = 3, x23 = ,:, and 
SO Oil. 

Suppose it is now decided to test the efficiency 
c,f P2- This can be done by inserting P2 ---- Po in (14.2) 
and utilizing any adja~nt extreme point method, 
sttch as the simplex or dual methods 17, to obtain: 

5 ~ P4 + I P3 =Po f P2 " 

I.e., these methods express P2 in terms of an optimal 
basis with ~ = -~, X~ = -~ and all other }'i* = 0. Thus 
we have z~ (P2) = ~ so that, by reference to (I 1),P2 
i~; not efficient. 

We can now give this measure of efficiency opera- 
tional meaning by convexifying the above expresssion, 
which we do by dividing by -~, to obtain" 

~ p 4 +  = . 

As in Fig. 1 this expresses/¢2 as a convex combina- 
tion of the optimal basis vectors, P4 and P3, and 
hence brings the resulting P' 2 point onto the line seg- 
ment connecting them. In efficiency terms this means 
fhat if P2 had been producing as efficienetly as P'2 - 
or, equivalently, as efficiently as the indicated convex 
combination of P4 and P3 - then it should have been 

16 We refer only to inpuB in order to shorten the discussion 
that follows, although: of course, the manipuIations can 
also be extended to possible output increases. 

17 See the discussion of these methods and an analysis of 
their special properties in Chapter XIII of [8]. 
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able to secure its one unit of output with only ~ of 
the amount of each o f x l  and x2 that it was observed 
to utilize. 

"lhe line connecting P4 and/)3 represents one seg- 
ment of what Farrell refers to as the 'unit isoquant'. 
It is also efficient. That is, there cannot be a point 
such as F~ between this unit isoquant and the origin 
since that would imply that/)4 and P3 were not an 
optimal basis is. 

The above analysis has employed two assumptions 
which we shall refer to as the 'isoquant' and 'ray 
assumptions', respectively. The latter, i.e., the ray 
assumption, which corresponds to assuming constant 
returns to scale 19, may be relaxed but at a cost in 
complications and resulting explanations which we 
shall not undertake here. The former, i.e., the isoquant 
assumption representation, is critical and it may not 
be relaxed in the sense that it provides the comparison 
point between/)2 and//2 20. 

We have just described the operational significance 
that we wish to accord to our efficiency measure for 
the case of/)2. Now consider Pl for which we obtain 

5 

when employing adjacent extreme point methods. 
That is, the optimal basis consists of P4 and P3 (which 
are both thereby characterized as efficient) with 
z~(Pt) = X,~ + X~ = ~ so that, by virtue of (1 ~ ),  P~ is 
also not efficient. 

As can be seen, we have z~(Pl) = z~(P2) = -76. How- 
ever, Pl and P2 are expressed in terms of different 
bases and hence have different referents, q he con- 
vexification process used for P2 is also employable 
for Pt to obtain 

s 

so that, also, the same ratio of contraction for all 
resources is needed to bring Pt onto the efficient sur- 
face. However, it lies in the cone through the origin 

18 Proofs of propositions like these, which are fairly trans- 
parent, will not be given in the present paper. They may 
be found in [12]. The latter source may also be consulted 
for ways in which the formulations being used here differ 
from the one suggested to Farrell by A. Hoffman in rite 
discussion associated with [15] and subsequently em- 
ployed by Farre|l and Fieldhouse in [ 16]. 

19 Note, however, that this constant will be different, in 
general, for every Pp 

20 it is to be understood, however, that our analyses are also 
applicable when various trav.sformations are utilized to 
bring other functions such as, e.g., Cobb-Douglas func- 
tions, into suitable piecewise linear representations. 

formed from/)4 and Ps whereas P2 is in the cone 
formed from/)4 and P3. This condition (which arises 
from the non-negativity imposed on the admissible 
~'i values) has an advantage for the sorts of public 
program applications we are considering. As observed 
in the opening section, many DMU's such as different 
school districts, etc., work under varying constraints 
with respect to inputs (as well as outputs) for the 
same program conducted in different locales or differ- 
ent parts of the country. Hence it is well to have the 
referents used for scoring the efficiency of each DMU 
as alike to it as possible, at least in some loose sense, 
while not interfering 'too much' with the wanted 
efficiency ratings 21. 

We now conclude this section with the case of P6 
in Fig. 1, for which alternate optima are present 
since 

1/)6 =/)6 and 1P 3 + 1 el =/ '6 

with z~(P6) = 1 in either case. Note, however, that 
the second of these two solutions has s~ = I, which is 
to say that efficiency is not attained for P6 until 
slack in the amount of s~ = 1 is subtracted from the 
first component in/)6 - after which it is coincident 
with P3 in Fig. 1; see (1 1). 

To avoid ambiguity, and to retain the wanted 
operational meaning for efficiency, it is necessary to 
maxim~e the slack values, but in a way that accords 
this a lower priority than maximizing the ~/~Mues. 
This is done by replacing (14.2) with 

rl  m 

m a x  Z o -  + 
/= 1 m -- 

subject to: 

(14.3t 

f/  m 

Po = ~ PfX/+ Z~ eisi ,  
/= 1 i= 1 

X/,si>~O ; / =  l , . . . , n ,  i = I , . . . ,m 

where M is the usual large (non-Archimedean) 'quan- 
tity' (cf., e.g., [22]) which insures that I[M > 0 is 
always smaller than any positive real value that may 

be assumed by any X]. 

21 Note that both P! and P2 are also in the cone formed 
from Ps and P3 in Fig. 1 but the line segment connecting 
P3 and Ps is not efficient - and hence P~ and P5 will not 
be an optimal basis unIess one wants to impose further 
constraints on the basis choices. See the discussion in 
Section 2, above. 
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5. Duality relations for coefficient estimaticn 

Farrell distinguished between the above efficiency 22 
which he referred to as 'technical efficiency' and 
other types of efficiency which he referred to as 
'price efficiency" and "o~erall efficiency' - with the 
latter being characterized, as involving both 'price and 
technical efficiency'. Here we may note that Farrell 
restricted his studies mainly to technical efficiency - 
and for the reasons set forth in our iatroduction we 
shall do the same. Concerning price efficiency (in the 
sense of 'actual market prices') Farrell contented 
himself, for the most part, with pointing to the formi- 
dable difficulties involved in assessing even relative 
price efficiency, e.g., because of the varying motives 
of buyers and sellers. One may, however, come at 
this problem from the standpoint of "in principle 
prices' and/or 'opportunity costs' such as are obtain- 
able via standard economic theorems. This, in any 
case, is the route we shall follow as we also show how 
the dual to the above linear programming formula- 
tions may be used to secure the values of the slope 
coefficients for the efficient isoquants. 

Of course, we shall generally be dealing with 
m-dimer~sional representations in which line segments 
such as those portrayed in Fig. l are replaced by effi- 
cient 'facets'. We have, however, now provided a 
model and a me~hod 23 for generating these factors 
for any finite number of inputs since these facets cor- 
respond to all of the convex combinations of points 
that can be generated from the optimal bases. Speci- 
fication of these optimal bases thus constitutes one 
v~ay of representing these facets. 

Another w~y is available by reference to the duality 
relations of linear programming as we shill now show. 
We therefore write the dual to (14.1) as 

rain go = coTpo (15) 

with 

c o ~ ' ~ )  I ; 

( D T ~ 0  , 

/ =  l . . . .  , t / ,  

where the superscript T represents transposition, as 
usual, so that, e.g., ~o T represents the transpose of 
the column vector w with components col, ..., Wm 
and co *T denotes an optimum vector for these varia- 
bles in the above problem. 

We now observe that w*TP i = 1 for each Pi in an 
optimal basis. To obtain our alternate representation 
of this facet in terms of the slopes of the efficient 
isoquant surface we therefore need only show that 
co *T is orthogonal (see [20] and/or [8]) to the effi- 
cient facet spanned by these Pi. To do this it suffices 
to show that w* is orthogonal to any direction lying 
in the facet, e.g., to any vector which is the difference, 
P - P ,  of two vectors in the facet. Since, by assump- 
tion, P and P are in the facet, we can express them 
in terms of these same Pi via 

ff  = ~ PiFi , ff  = ~ Pi~ , (16.1) 
i i 

i i 

where summation is over the indexes of these Pi. But 
then 

~ . o * T ( ] ~ - ~ )  = ~(G3"TpiPi-o3®TpI~i) (16 .2)  
i 

i 

i i 

22 The above representation, given at the conclusion of the 
preceding section, implicitly retains concepts like 'points 
at infinity', - e.g., as represented by Q t and Q2 in Fig. 1 - 
but we lay aside the development necessary to eliminate 
them. !~ any case, we may have recourse to (1) for the 
wanted ~calar measure of efficiency without reference to 
these considerations. I.e., h~ = 1 then suffices to deter- 
mine w~lether or not  the corresponding Po is efficient. 

23 Any adjacent extreme point method will do. 

since XtF i = Xi~/= 1. Q.E.D. Hence, the ~*  corre- 
sponding to this efficient facet determined by this 
optimal basis is orthogonal (or normal) to it. Thus, 
~*  is normal to the hy,perplane cortaining this facet. 
The equation of this h [perplane is 

¢o*Tx = 1 ; (17) 

i.e., any x satisfying this equation is a point in the 
linear space spanned b:, the totality of the P/'s and 
ei's. The portion of th~ hyperplane consisting of the 
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efficient facet is the set of all x which are convex 
combinations of the Pi which form the optimal basis. 

Of course, we will need to obtain the generality 
different to *T for the 'slopes' associated with the dif- 
ferent facets of the efficient surfaces and the ranges 
for which they are valid. These ¢o *T values, however, 
are obtainable within the computational process for 
the X*. For, as is well known (see, e.g. [8]), adjacent 
extreme point methods (such as the simplex and dual 
methods) simultaneously solve both (14.1) and (15). 
That is, the optimal k* and ¢o *T values are obtained 
from the same tableau. Hence the solution to one of 
these problems also provides the solution to the other 
without extra computational effort. 

For instance, the tableau that provided the solu- 
tion and hence the optimal basis for characterizing 
the efficiency of P1 with )~ = s, k;  = 2 _ see pre- 
ceding section - also provides the associated dual 
variables ~o~ = -~, co~ = ~. But, as previously noted, 
we can express any x T = (x~, x2) in th~s facet via the 
basis vectors, P4, Ps, as 

X = P4P4 + PsVs 

with v4, Vs >t 0 and v4 + vs = 1. Hence also 

 *Tx = +  o x2. 

For this segment we have ~ = ~, ~o~ = -~ and there- 
fore 

SIPs, P4]- 
((Xl, X2): t X l  + l x 2 =  1 "1 < x  I < 2 , 2 < x 2 < 4  ) , 

where the square brackets mean that the points Ps, 
/'4 designate this facet (=segment) with the relation 
prescribed for the ranges indicated in the curly 
brackets. 

Similarly for SIPs, P3] we have 

SIP4, P3] = 

{ ( x , , x 2 ) : ~ x l + [ x 2  =1 ; 2 < x l < 4 , 1 < x 2 < 2 } .  

while the isoquant segment from P3 to Q ~ (see Fig. 1) 
may be represented by 

We now replace (17)with 

S[Pi: all i ~ / ]  = (17.1) 

{X: ¢o* T = 1; X = ~ Ply i for  all vi >1 O, ~ v i = ! 
i E I  i ~ I  

in order to extend the preceding analysis to higher 
dimensions. Here the efficient surfaces are composed 
of facets and w.T is the normal to such a facet (a 
simplex) (see [8], p.242) which is the convex set 
spanned by the optimal basis. The theory that has 
been developed around the usual adjacent extreme 
point methods, including their nonlinear extensions 
allows us to obtain all of the needed information for 
interpretation as well as continuation from one effi- 
cient facet to another via the computational strate- 
gies that these methods allow in conjunction wit] ~, 
each other 24 

To conclude this section we can obtain a straight- 
forward way of interpreting the components of the 
normal vector, w *T, as marginal productivities in the 
indicated inputs. We do this by returning to *he two 
dimensional case, such as the one depicted in Fig. 1. 
The condition for remaining on the same isoquant 
when effecting substitutions is 

+ = + 

where x :/: J: are two points on the indicated isoqua~t, 
but on possibly different segments with slope vectors 
w* and w*. Adding w~J:l - ~ ] x  1 = 0 on the left 
and ¢o~x 2 - w~-r2 = 0 on the right, we then effect a 
series of algebraic manipulations to obtain 25 

~¢2_  ~o~ A~l -~1 A~2 ;c2 

where 

Axi =x~ - x l  ; 
= - ; 

~lX2 = X2 -- ~2 

When both x and .v are on the same isoquant segmen 
we will have Awl = A¢,32 = O. Indeed, in fllis case we 

S[P3, QI)-- 
1 

((xl, xD: l= xl+x2;4<xl, l < x 2 )  

where the square bracket indicates that P3 is included 
while the parenthesis on the right indicates that Ql = 
Mel, is excluded from the set and a similar characte- 
rization applies for points like Q2, etc. 

24 E.g., the simplex method of G.B. Dantzig and the dual 
method of C.E. Lemke may be joined together for the~e 
purposes. See [12] and [21] for further discussion a~ong 
with numerical illustrations. For a discussion of the 
wealth of information relevant to economic and mar~a- 
germl (policy) interpretations available in the resulting 
tableaus, see Ch. V| in [8]. 

25 This can be restated in terms of elasticities of substitu- 
tions, if desired. 



~,0 A. Charnes et aL / Measuring the zfJiciency of  dicision making units 

~ill have a well defined derivative and so we may 
replace the above f'mite difference formulation with 

~ 2 _  (..+~ ~ 
dx I 60"2 ' 

which is the usual expression relating the marginal 
rate of substitution between two inputs, as charac- 
terized by the derivative on the left, and the negative 
reciprocal of the ratio of their marginal productivi- 
ties, on the fight, with equality between the two sides 
required to stay on the same isoquant. In short, 601 is 
the marginal productivity of the ith factor, i = 1, 2. 
Since, by the assumptions of economics, these margi- 
nal productivities are never negative, it follows that 
the marginal rate of substitutions is non-positive and 
the isoquant is also assumed to be convex (and con- 
tinuous), etc.. if we want to maintain contact with 
the asual theorems in these parts of economic theory. 

6. Production functions and cost-price relations 

We are now ready to construct the production 
function and cost relations from the just derived ~* 
values. Before providing the model for doing this, 
however, we might sharpen some of the points that 
have already made by pausing to see what we have 
achieved and how it relates to other kinds of models 
and approaches in economics. 

Our function is evidently derived from empirical 
observations. Although these observations are all at 
the level of the individual 'firms' 26, we evidently 
have something that differs from other studies and 
pro0uction function estimates at the individual firm 
level (see [19]) since, by hypothesis, we are con- 
sidering all pertinent DMU's. 

Approaches which include all such data have cus- 
tomarily been undertaken only at aggregate levels, 
with a]i the attendant difficulties (and assumptions) 
cequired to ensure that the functions thus estimated 
have the extremal properties that a 'production func- 
tion' must possess 27. Our functions evidently differ 
from the latter in that (a) the data are not aggregated 
prior to estimation and (b) the resulting estimates 
are optimal - i.e., they have the requisite extremal 

26 We are using the term 'firms' interchangeably with DMU's 
in this section in order to avoid circumlocutions in relating 
these developments to pertinent parts of traditional 
economies. See Johnston [19]. 

27 For a discussion of the onerous (and unrealistic) condi- 
tions needed to obtain these properties at aggregate levels, 
see Sato [24], pp. 3-8 ff. 

properties - to the extent that the data allow 2s. It 
follows that we are entitled to use these optimality 
properties in deducing the further theorems and rela- 
tions that we shall note below 29 since they also refer 
to these same data or else to estimates derived there- 
from via rigorously established optimizing methods 
and principles. 

In some ways these production functions are remi- 
niscent of ones that might be associated with Alfred 
Marshall's concept of a 'representative firm'. (Discus- 
sion in [28]; also [9].) Here, however, the referent 
is rather to 'representative efficient firms'. Note that 
the plural is required insofar as there is more than a 
single efficient facet. The continuum within each 
facet is then 'representative' of the efficiency for 
which the originally observed efficient firms serve as 
referents. 

411 We commented earlier on ,he appropriateness of 
these 'representative' facets (and the cones generated 
from them) 30 for evaluating the efficiency of DMU's 
in various public programs. They prc~vide an equally 
appropriate referent for making estimates of what 
various DMU's should be able to produce in the way 
of outputs 31 given the factor amounts and/or the 
relations between various inputs that may be pre- 
scribed for them. This is to say that we shall want to 
refer each DMU to its 'representative' facet (or cone) 
en route to making the translations and transforma. 
tions prescribed in (12) for bringing them onto the 
relevant production function surface. Given the latter 
projections we are then in a position to estimate 
what outputs we may expect with efficient produc- 
tion from various resource allocations to each DMU 
in the programs being considered. These results may 
then be aggregated in a variety of ways for assessing 
or controlling the activities to be generated by these 
DMU's 32. 

28 Including ex cathedra allowances, when available, as 
noted in Section 2. 

29 For a further critique of the use of these optimality 
properties in association with such aggregate functions 
(e.g., in some of the current energy policy studies) along 
with simple counteramples to the assumptions used in 
such studies see [ 13 ]. 

3O See the discussion of 'representative convex sets' and the 
cones they 'represent' on p. 236 in [8]. 

3 | Including multiple outputs as discussed in Section 2, 
above, since the principles  we are discussing extend in 
relatively obvious ways to the more general case of pro- 
duction possibility surfaces. 

32 The principles to be used in effecting these aggregations 
are set forth in [12]. 
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To allow for all possible variations in such inputs 
and outputs we, of course, need to have a suitable 
way of obtaining the production function surface. 
We therefore now provide a way of doing this that 
relates our results to another type of 'duality" in 
economics ~3 

The latter, as introduced by Samuelson [23] and 
Shephard [26,27], proceeds by introducing a cost 
function CO', p) as determined via 

CO', p) = min pTX for X E LO') (18) 

where 

LO') ~ {x: at least the output rectory is produced}. 

In other words LO') is the point-to-set mapping 
y -'> L0 ' ) .  For instance, in the single output case, as 
in Fig. I, if it is obtained via the isoquant associated 
wi thy  = 1 we would have L(y) designating the set of 
all of the points x = (xl, x2) interpreted as input 
combinations on or to the northeast of this isoquant. 
From a knowledge of these relations, the cost time- 
tion CO', p) is then to be obtained via the indicated 
minimization where p is a 'price' vector with compo- 
nent Pi representing the 'price' per unit xi, the amount 
of the ith factor input. 

In our case we want our production function to be 
empirically based. That is, we want our production 
function to be based on observed input output data 
or estimates derived from them such that no firm 
from the observation set has a larger output for any 
inputs that may be specified. Also no non-negative 
combination of these firms can have a larger output 
when extrapolations or interpolations from the origi- 
nal observations must be undertaken for the specified 
input values. 

To these ends we now proceed to obtain the 
wanted production function as follows. Let y be some 
prescribed output a4 and let aTs, the sth row of the 
matrix A, represent the set of coefficients associated 
with the sill efficient facet estimated from the data, 
as described in the preceding section. I.e., asi =- ~s~. 
See (17) or (17.1). Then also let P be a matrb: with 
its column vectors P/representing the ebservational 
data for each of the original ] = 1, ..., n DMU's as. 

33 We have elsewhere suggested that these relations might 
better be associated with the mathematics of 'transform 
theory'. See [ 13 ]. 

34 We can, of course, extend this to the multiple output 
case very readily, as in (18). 

aS One can omit the Pi which are not efficient or else one 
can adjust and bring them into the efficient set in the 
manner indicated in (12). 

Then we write 

min pTx 

with 

(18.1) 

A x  >t ye , 

- P h  +Ix = 0 ,  ) ,1>0,  

in which e is a column vector with all elements equal 
to unity while I is the identity matrix so that (i) 
Ix = P'A, X t> 0 assures us that we will be deriving our 
production function from empirical observations, 
and (ii) the way the vectors as were derived in arsx >1 y, 
together with the minimizing objective, assures us 
that we will always be on an efficient frontier when 
an optimum solution is obtained to (18.1) for any 
prescribed y. 

The x*, y values resulting from the solutions to 
(18.1) for different p are all points on the production 
function surface. When this surface is available one 
can evidently also proceed in the reverse manner, if 
desired, to estimate the output value that can be 
secured from any prescribed x. 

Also, more is available since the above model can 
be used in various ways. Here, however, we mainly 
want to relate it to the cost-production function 
duality relations of economic theory. Therefore we 
write the mathematical programming dual to (18.1 ) as 

max yrffe ( i 8.2) 

with 

~TA + u~l = pX,  

-uT  P ~ 0 ,  r~ ~ >1 0 .  

Via the duality theorem of mathematical program- 
ruing, we then have 

p r x  >~ yrff e (19.1) 

for all x, X and 77, u which satisfy the constraints and 

prx* = y~*Te , (19.2) 

at an optimum. In other words, 

C~,  p) = y72*r e =PrX* (19.3) 

is the required (minimizing) cost function, which 
varies with each choice o fy  and p. 

Here we have proceeded from the production func- 
tion to the cost function but, of course, °,,e could 
also have proceeded via the opposite course. The lat- 
ter is only an 'in principle' statement, however, since, 
as noted in the introduction, many of the inputs and 
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outputs in public sector applications are not ~.asily 
priced or costed without recourse to arbitrary and 
ex cathedra procedures and assumptions. Further- 
more, the use of price data also has difficulties such 
as were discussed in connection with Farrell efficiency 
(in the preceding section) to which we should now 
like to note further difficulties such as determining 
whether the data for each DMU refers to list or actual 
prices and whether allowances have been made for 
finan~ng considerations, intermingled with produc- 
~:ion considerations, such as cash discounts, quantity 
~scounts, and so on. 

Although we prefer to continue from the produc- 
tion side for reasons such as have just been indicated, 
the:e may be cases where prices can also (or alterna- 
tively) be used with advantage. We have elsewhere 
[ 13] extended 'Shephard's lemma' by dropping the 
assumption of differentiability and so we now adapt 
that result for use in the present case as well. 

For this purpose we reexpress (19.2) via 

pTx* =YrI*Te=y ~ n; =yc (20.1) 
$ 

I where 

- ~ ] , *  c = qs , (20.2) 
$ 

so that c is the (total) per unit cost of producing y 
units of output. Note that we can generally vary the 
components ofp  T within some range without altering 
the x* val, :s "6. Thus, if we select one component, 
say p~ "or such variation, we can obtain 

z,Wix; =yAw ( 21 .2 )  

o r  

Ac _ ACO', p) (21 .2 )  X~' =1/ 
" ~ D i  Z~P i 

which is Shephard's lemma in discrete form. 
The definition of efficiency in (1)has thus enabled 

us to make contact with this line of work as well. We 
can also do more. We can open up new possib~ties 
for employing the latter, e.g., in effecting estimates 
of extremal relations from original data, just as we 
have done for Farrell efficiency. 

To briefly show such possibilities it will suffice to 
relate Shephard's measure of distance to Farrell effi- 
ciency in the context of the models given in Section 2. 

36 Necessary and sufficient conditions as applicable to each 
component ofp T are given in [81, Ch. IX. 

This will enable us to deal with this measure in the 
context of original data. It will also enable us to close 
thig section by returning to the multiple output case. 

In Shephard's notation we replace the first portion 
of (18) with 

CO,, p)= minx {pTx: ~(y ,  X)>~ l} (22.1) 

where 

1 
x ) -  ,'(y. x) ' 

w~th 

v*0,, x)  - rain v ,  vx E L ( y ) ,  v/> 0 ,  

and L(y) is defined as in the second part of(18). This 
g,(y, x) is what Shephard calls a 'distance function '37. 

"[he above development assumes that the produc- 
tion relations have been determined and hence are 
available, as in (18.1), for the determination ofx. 
Here, however, we want to regard the latter as data. 
Thelefore, we revert to (8) and write 

min v n (22.2) 

 ,ith vXo - XiXi >t O, 
j= i 
n 

E; r xj> ro ,  
/= ! 

Xi~'3  ; / =  1, . . . ,n ,  

in which Yo =Y is now a vector of outputs. 
If we regard z~ I> 1 as an extension of Farrell effi- 

ciency to the multiple output case of (9) then we can 
also regard rain v = v* in the above formulation as an 
extension of Shephard's distance function (and related 
concepts) for use in evaluating the efficiency of 
DMU's. As a comparison with (9) makes clear, these 
z~ and v* values are complementary to each other. 

(They are in fact reciprocals. See [ 13] .) In other 
words, Shephard's distance function is thereby con- 
verted into a measure of efficiency with v* < 1 and 
v* = 1 only when the designated DMU is efficient 
relative to the other observations and/or theoretically 
prescribed conditions (e.g., via ex cathedra engineer- 
ing conditions). 

In this way we have employed our definition of 

37 Lau in [17], p. 179 - see also Jacobsen in [17], p. 172 - 
refers to this as a 'gauge function' (its classical denotation 
in convex set theory) since it does not have the usual 
properties of a distance function. See, e.g., Appendix A in 
[81. 
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efficiency not only to tie together two previously 
separate strands of economic research, but also to 
open new possibilities for each of them which include 
new ways of estimating extremal relations from em- 
pirical data. 

7. Summary and conclusion 

We have now provided a variety of ways of assessing 
the efficiency of DMU's in public programs in order to 
improve the planning and control of these activities. 
This was initiated with a new definition of efficiency, 
in Section 2, which we have now related to both 
engineering and economic concepts. We also supplied 
operational vehicles 38 and interpretations for actual 
applications. In addition we have introduced a new 
kind of production function and new methods of 
securing estimates from empirical data which we have 
done in ways that have enabled us to bring a variety 
of economic concepts to bear in new and potentially 
useful ways. This was done with new models and 
interpretations, to be sure, but without altering any 
of the extremization principles which form the essen- 
tial basis of these concepts. 

We can (and will) extend these developments in a 
variety of additional ways 39. Here we may best con- 
clude with some comments on possible limitations 
and alternatives to these approaches. 

One limitation may arise because of lack of data 
availability at individual DMU levels. This is likely to 
be less of a problem in public sector, as contrasted 
with private sector, applications. In addition the 
term DMU can be accorded considerable flexibility 
in interpretation as when data unavailability may 
make it desirable to move to school district instead of 
individual school level and, indeed, it may even be 
necessary to move to statewide office of education 
levels when data are not available even at the district 
level. After all, the objective is to measure the effi- 

38 I.e., we have supplied both models and computational 
procedures. 

39 E.g., as already observed the above developments can be 
extended to functions which are piecewise Cobb-Douglas. 

40 The (act that one must generally include such organiza- 
tion considerations as part of the prJduction function in 
empirical investigations is in an economic tradition that 
goes back at least as far as Sune Carlson. See [6]. (In 
future papers, however, we shall show how the concepts 
we have introduced here may be extended for use in 
separating these managerial features in observed data 
fror.1 other aspects of a production technology.) 

ciency of resource utilization in whatever combi aa- 
tions are present (loose or tight) in the orgapizadons 
as well as the technologies utilized 4o. This" ~o sug- 
gests a strategy for research in that given the ,es~tlts 
obtained at one level a systematic basis may be 
secured for proceeding to other levels by raising perti- 
nent questions and requiring further justification 
from responsible officials for whatever inefficiencies 
are uncovered. 

Concerning private sector applications, the case 
for our proposed measure of efficiency begins to 
weaken to the extent that competition is pre~.cnt. In 
particular it begins to weaken as soon as freedom for 
the deployment of resources from one 'industry' to 
another (perhaps in a removed region) is present. 
Assessment of such possibilities would involve the 
introductioo of prices, oF other weighting devices, for 
the evaluation of otherwise non-comparable alterna. 
tives. 

Although our measures are not designed for this 
sort of application they are designed for public sector 
programs in w~,ich the managers of various DMU's 
are n o t  free to divert resources to other programs 
merely because they are more profitable - or other- 
wise more attractive. Our measure is intended to 
evaluate the accomplishments, or resource conserva- 
tion possibilities, for every DMU with the resources 
assigned to it. in golfing terminology it is, so to 
speak, a measure of 'distance' rather than 'direction' 
with respect to what has been (and might be) accom- 
plished 4j 
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