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ABSTRACT. An interval in the circle S! is one-way with respect to a map
f: St — Sl if under repeated applications of f all points of the interval move
in the same direction. The main result is that every locally one-way interval
is either one-way or is the union of two overlapping one-way subintervals. An
example is given which illustrates that the latter case can occur; however, it is
proved that the latter case cannot occur if the interval is covered by the image
of the map. As a corollary, it is shown that if f has periodic points, then every
interval which contains no periodic points is either one-way or is the union of
two overlapping one-way subintervals.

1. INTRODUCTION

We orient the unit circle S! counterclockwise, which allows us to speak of the
positive and negative directions in S*. If n > 3 and x1,29,...,2, € S, we write
Ty < T2 < -0 < xy if 21, 29,..., 2, are distinct points and, if moving away from
z1 in ST in the positive direction, one encounters the points zo,x3, ..., T, in that
order before one encounters x; again. If in the expression 1 < 9 < --- < x,,, One
or more of the <’s are replaced by <’s, then let this expression have the obvious
meaning.

Let a,b be distinct points of S'. The preceding notation allows us to define
(a,b)={reSl:a<z<b},[a,b)={zeS:a<z<b}, (a,b]={zeS:a<
z < b} and [a,b) = {x € S1 : a < z < b}. We call (a,b) an open interval and [a, b]
a closed interval.

Let f: S' — S! be a map, and let J be a connected open proper subset of S*.
J is free (with respect to f) if no iterate of a point of J returns to J (i.e., for every
x € Jandn > 1, f(z) ¢ J). J is positive (with respect to f) if J is not free and
whenever z € J and f"(z) € J for some n > 1, then f™(z) # z and (z, f™(z)) C J.
J is negative (with respect to f) if J is not free, and whenever x € J and f™(x) € J
for some n > 1, then f™(z) # « and (f™(z),x) C J. J is one-way (with respect to
f) if it is either free, positive, or negative. J is locally one-way (with respect to f)
if every point of J lies in a one-way open subinterval of J.

The dynamic behavior of a map on a one-way interval is relatively uncomplicated,
because all sequences of iterates {f,(z)}22; intersect the interval in monotone
subsequences moving in the same direction. The properties of one-way intervals for
maps of the real line are studied in [1] where it is proved (in Lemma 9 on page 75
of Chapter 4) that intervals containing no periodic points are one-way. This result
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fails for maps of the circle, as we show in an example. The notion of a one-way
interval for a map of the circle is introduced in [2] where dynamic properties of
circle maps are explored. In the present paper, we continue the study of one-way
intervals for maps of the circle. Our principal results are:

Example. There is a map f : S' — S! and points a; < az < --- < a5 in S' such
that the connected open subset S' — {a;} is locally one-way (and, thus, contains
no periodic points) but is not one-way. Moreover, (a1, a4) and (as, a1) are free, and
(a1, as) is negative and (asz,aq) is positive.

Theorem. If f : S' — S is a map and (a,d) is a locally one-way open interval
in S, then either (a,d) is one-way or there are points b and c in (a,d) such that
a<b<c<dand (a,c) is negative and (b, d) is positive. Furthermore, if (a,d) C
f(SY), then (a,d) is one-way.

Corollary 1. If f : S* — S' is an onto map, then every locally one-way open
interval is one-way.

Corollary 2. If f : S — S' is a map with a non-empty set P of periodic points,
then at most one component of S* — cl(P) is not one-way. Moreover, if (a,d) is
a component of S* — cl(P) which is not one-way, then there are points b and c in
(a,d) such that a < b < ¢ < d and (a,c) is negative and (b, d) is positive.

Corollary 3. If f : S' — S is an onto map with a non-empty set P of periodic
points, then every component of S — cl(P) is one-way.

The hypothesis that the map has periodic points in Corollaries 2 and 3 cannot
be omitted. For consider an irrational rotation of S*. It has no periodic points. So
every subinterval of S! is free of periodic points. However, no subinterval of S* is
one-way.

Some of the results in this paper are from the second author’s Ph.D. thesis at the
University of Wisconsin-Milwaukee. Others are from a paper submitted by the first
author to the Westinghouse Science Competition when she was a senior at Nicolet
High School in Glendale, Wisconsin.

The remainder of the paper is divided into three sections. Section 2 establishes
some lemmas used in the proof of the Theorem and its corollaries. Section 3 contains
the proofs of the Theorem and corollaries. Section 4 presents the Example.

2. PRELIMINARY LEMMAS

Lemma 1. If f : St — S is a map and (a,b) is a positive open interval in S*,
then for every « € (a,b), there is a y € (a,b) and ann > 1 such that f™(y) € (x,b).
Proof. Let e : R — S! be the exponential covering map e(t) = e*™. We can
assume there is a z € (a,b) such that ¢ < z < f"(2) <z <b. Let d < 2/ <
7' < b < a + 1 be points of R such that e maps a’,2’,z’, and ¥’ to a,z,z, and b
respectively. Let g : R — R be a map which covers f™ (i.e., eog = f™oe) such that
2" < g(2') < 2'. Since f|(a,b) has no fixed points, then ¢t < g(¢) for a’ <t < ¥". So
(2',b") C g((#,V)). Hence, (z,b) C f™((2,b)). O

The following result is Lemma 3.2 of [2].

Lemma 2. If f : S' — S is a map, and J is an open interval in S* which contains
no periodic points and is not one-way, then ;- f*(J) = S*. O



ONE-WAY INTERVALS OF CIRCLE MAPS 1193

Lemma 3. If f : S* — S' is a map, (a,b) is a positive open interval in S,
a<z<y<bandn>1, then there is ani > 1 such that f(z) ¢ (a,y].

Proof. If not, the monotone increasing sequence { fi"(x)}izo converges to a point
€ (a,y]. It then follows that f™(z) = z, contradicting the positiveness of (a,b). O

Lemma 4. If f : S* — St is a map, (a,b) is a positive open interval in S, and
¢ € (a,b), then there is an x € (c,b) such that f™([c,z])N[c,x] = & for everyn > 1.

Remark. The following proof is an adaptation to the circle of part of the proof of
Proposition 6 on pages 73—74 of [1]. A more complete adaptation of this proposition
to the circle appears in [3] as Proposition 2.1.

Proof. Assume that for each z € (¢, b), there is an n > 1 such that f([c, z])N[e, z] #
<. We will derive a contradiction.

Since (a,b) is positive, there is an xo € (¢,b) such that no iterate of ¢ lies in
(a, zg].

Claim 1: For all j,k > 1, fi(c) ¢ int(f*([c, z0])). Assume f7(c) € int(f*([e, 20]))
for some j, k > 1. f¥([c, zo]) is a closed interval because ¢ ¢ f*([c, 2o]). Hence, there
are points z and 2’ in S! such that ¢ < 2z < 2/ < z¢ and f7(c) € int(f*([z,2])).
The continuity of f provides a y € (c,2) such that fi([c,y]) N [c,x0] = @ for
1 <i < jand fi([c,y]) C int(f*([z,2'])). By hypothesis, there is an n > 1
such that f™([c,y]) N[c,y] # @. Then n > j, and there is a w € [c, y] such that
fr(w) € [e,y]. Since fi(w) € f¥([z,2']), then fi(w) = f¥(z) for some = € [z, 2/].
Therefore, =74k (z) = f*(w) € [c,y]. Sincea <c<y < z< 2z <b,x € [z 2]and
9tk (x) € [c,y], we have contradicted the positiveness of (a,b). This establishes
Claim 1.

Set A={n>1: f"([c,x0]) NIc,z0] # T}.

Claim 2: For each n € A, f™([c,x0]) = [yn,d] where ¢ < y, < a9 < d; ¢ <
yr < y; for j,k € A and j < k; and {yn}nea converges to c. For each n > 1, since
f™(c) ¢ int(f™([e,z0])), then f"(c) is one of the endpoints of the closed interval
f™([e,0]). Let y, denote the other endpoint. For n € A, since ¢ ¢ f"([c, z0]),
f™(c) & [e,x0] and f™([c, xo]) N [e, xo] # &, then necessarily ¢ < y, < xg < f™(c).
We claim that f7(c) = f¥(c) for all j,k € A. For if there are j,k € A such that
zo < fi(c) < f¥(e), then fi(c) € (yx, f*(c)) = int(f*([c, z0])), contradicting Claim
1. Hence, there is a point d € S such that f"(c) = d for every n € A. Therefore,
¢ <yn <z <dand f"([c,z0]) = [yn,d] for each n € A.

Let j,k € A such that j < k. We assert that ¢ < yi < y;. For suppose ¢ < y; <
y. Then f*([c,x0]) C f7([e, x0]). It follows that the infinite union (J27; £™([c, zo))
is equal to the finite union UZ: f™([c, zo]). Since the finite union is a closed set not
containing ¢, there is an z € (¢, zg) such that [c, 2] is disjoint from |J;~ ; f™([c, zo]).
However, by hypothesis, there is an n > 1, such that [c,z] N f™([¢, z]) # @. Since
f™([e,z]) € f™([e, zo]), we have reached a contradiction. Our assertion follows.

If z € (¢,z0), then f"([c,x]) N [e,z] # & for some n > 1. Since [c, x] C [c, zo], it
follows that n € A and [y, d] N [c,z] # @. Consequently, y,, € [c,z]. This proves
{Yn}nea converges to ¢, and completes Claim 2.

Set m =min{k —j: j,k € A and j < k}.

Claim 3: f™((c¢,d]) = (¢,d]. Choose i € A such that i + m € A, and set
S =U;<nea f"(c,20]). Then S = J,;<,,c alyn,d]. Since ¢ <y, <d for n € A, and
since {yn }nea converges to ¢, then S = (c, d].
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We assert that {n € A:n > i} = {i+pm:p > 0}. First let p > 0. Since
i,i+m € A, then Claim 2 implies f**™([c,70]) = [Yirm,d] D [yi,d] = fi([c,x0]).
Repeated application of f™ yields fi*?™([c,z0]) D f*([c,x0]). Since fi([c,zo])
intersects [c, 7o, so does fiTP™([c,zo]). Hence, i +pm € A. On the other hand,
if n € A and n > i, then there is a p > 0 such that i + pm < n < i+ (p+ 1)m.
Then n = i 4+ pm follows from the definition of m. This proves the assertion.
Consequently, S = [~ f"7"([¢, xo]). Thus, f(S) = U, f*"([e, xo]). Since
fi[e, zo]) € fi+™([e, x0]), it follows that f™(S) = S, proving Claim 3.

Since f™((c,d]) = (¢, d], then f™(c) = ¢, contradicting the positiveness of (a,b).

O

Let P denote the set of periodic points of a map f : S' — S!. Since a one-way
interval contains no periodic points, then every point of S' which has a one-way
neighborhood lies in S* — cl(P). Conversely:

Lemma 5. If f : S' — S' is a map with a non-empty set P of periodic points,
and if a point x of S* has no one-way neighborhood, then x € cl(P).

Proof. Assume z ¢ cl(P). We will derive a contradiction. Lemma 2 implies that for
each open interval neighborhood J of z which is disjoint from cl(P), U2, f"(J)
covers S — J. Tt follows that f(S') D S — {z}. Since f(S*) is a closed subset of
S, we conclude that f is onto.

We now refer the reader to the third paragraph of the proof of Theorem A of [2].
That paragraph, with some cosmetic changes, completes the proof of the present
lemma. O

3. PROOF OF THE THEOREM AND COROLLARIES

The Theorem will be derived from the following three propositions. In all three
propositions, f : S — S'is a map and a < b < ¢ < d are points of S*.

Proposition 1. If (a,c) is positive and (b,d) is one-way, then (a,d) is positive.
Also if (b,d) is negative and (a,c) is one-way, then (a,d) is negative.

Proof. Assume (a,c) is positive, (b,d) is one-way, and (a,d) is not one-way. We
will derive a contradiction.

Lemma 1 provides an € (a,c¢) and an m > 1 such that f™(z) € (b,c). Let
a’ € (a,z) such that (a’,d) is not one-way. Then Lemma 2 provides a y € (a’,d)
and an n > 1 such that f*(y) = a’. It follows that a < f™(y) <z < f™(z) <y < d.
See Figure 1.

FIGURE 1
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We claim that there is an i > 1 such that = < f™(z) < fi™(z) <y < fOHI™(g).
If (b,d) is negative or free, then f>™(z) ¢ (a,d); and the claim follows if we set
¢ = 1. On the other hand, if (b, d) is positive, then Lemma 3 provides an ¢ > 1 such
that fO—Dm(fm(2)) C (b,y] and f™(f™(x)) ¢ (b,y]; and the claim follows.

Since @ ¢ " ([z, f™(x)]), then f([x, f™(x)]) > [f"™(2), fTD™ (2)]. Hence,
thereis a z € [z, f™(z)] such that f™(z) = y. See Figure 2. Therefore, fm+"(2) =
f™(y). So a < fim+n(z) < 2 < z < ¢. This contradicts the positiveness of (a, c).

The situation in which (b, d) is negative and (a, ¢) is one-way can be transformed

into the preceding situation dealt with simply by reversing the orientation on S*.
|

Proposition 2. If (a,c) is free or negative, (b,d) is free or positive, and (a,d) is
not one-way, then there are points b’ in (a,b] and ¢ in [c,d) such that (a,c’) is
negative and (V',d) is positive.

Proof. Claim 1: If (a,c) is free and (b, d) is positive or free, then there is a point ¢’ €
[e,d) such that (a,c") is negative. The union of all the one-way open subintervals
of (a,d) with left endpoint a is a one-way open interval (a,c’) where ¢ < ¢’ < d.
If (a,c’) is negative, we are done. If (a,c’) is positive, then (a,d) is one-way by
Proposition 1; so (a,c’) cannot be positive. Assume (a,c’) is free. There is a
point z € (c’,d] such that f*([¢/,z]) N[¢/,2] = @ for each k > 1. (This follows
from Lemma 4 in the case that (b,d) is positive and from the freeness of (b,d)
otherwise.) Since (a,x) is not one-way, there is a y € (a,z) and an m > 1 such that
a < f™(y) <y <z Since (a,c) is free, then y € (¢/,z). Since (b,d) is positive,
then f™(y) € (a,b]. Since (a,y) is not one-way, then Lemma 2 provides a point
z € (a,y) and an n > 1 such that f™*(z) = y. Then z ¢ [¢/,z]. Hence, z € (a,c)
and fT(2) = f™(y) € (a,c’), contradicting the freeness of (a,c’). We conclude
that (a,c’) must be negative.

By reversing the orientation in Claim 1, we obtain:

Claim 2: If (a,c) is negative or free and (b,d) is free, then there is a point
b € (a,b] such that (V,d) is positive.

Clearly, an application of Claim 1, or of Claim 2, or of Claim 1 followed by Claim
2 yields a proof of Proposition 2. O

Proposition 3. If (a,c) and (b,d) are one-way and (b,c) C f(S'), then (a,d) is
one-way.

Proof. By Proposition 1, we need only consider the situation in which (a,c) is
negative or free, and (b, d) is positive or free. Assume (a, d) is not one-way. We will
derive a contradiction.

Let z € (b,c). Since x ¢ f"((a,x]) for every n > 1, and = ¢ f"([z,d]) for every
n > 1, then z ¢ f"((a,d)) for every n > 1. By hypothesis, f(y) = x for some
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y € S1. Lemma 2 provides a z € (a,d) and an m > 0 such that f™(z) = y. Hence,
z= f(y) = f"(2) € f"*1((a,d)). We have reached a contradiction. O

Proof of the Theorem. Let f : S' — S* be a map and let (a, d) be a locally one-way
interval in S*. Then (a,d) contains a one-way open interval (b,¢’). We enlarge
(t/, ¢’) to a maximal one-way open subinterval (b, ¢) of (a, d) by the following process.
First take the union of all the one-way open subintervals of (a, d) with right endpoint
¢’ to obtain a one-way open subinterval (b,¢’) of (a,d). Then take the union of all
the one-way open subintervals of (a,d) with left endpoint b to obtain a one-way
open subinterval (b, ¢) of (a,d).

Case 1. (b,c) is free. We prove b = a and ¢ = d. For suppose b # a. Since (a,d)
is locally one-way, there is a one-way open subinterval (z,z’) of (a,d) such that
x < b <z’ <ec. Since (b,c) is maximal, then Proposition 1 implies (z,z') can’t be
positive, and Proposition 2 implies (x,2’) can’t be free or negative, a contradiction.
¢ = d is proved similarly. Hence, (a,d) is one-way.

Case 2. (b,c) is positive. We first prove that ¢ = d. For if ¢ # d, then there
is a one-way open subinterval (y,y’) of (a,d) such that b < y < ¢ < y’. Then
Proposition 1 implies that (b,y') is positive, contradicting the maximality of (b, c).

If b = a, then (a,d) is one-way and we are done. So assume b # a. Then there
is a one-way open subinterval (z/,z) of (a,d) such that 2’ < b < z < d. Since
(b, d) is maximal, then Proposition 1 implies (', z) must be free or negative. Then
Proposition 2 allows us to assume (2, x) is negative. The union of all the one-way
open subintervals of (a,d) with right endpoint x is a negative open subinterval
(2", z) of (a,d) which is the maximal one-way open subinterval of (a,d) with right
endpoint x. We claim that z” = a. For if 2" # a, then there is a one-way open
subinterval (z, z’) of (a,d) such that z < '’ < 2’ < 2. Then Proposition 1 implies
that (z, x) is negative, contradicting the maximality of (z”,x). Thus,a < b <z < d
where (a, z) is negative and (b, d) is positive.

Case 3: (b, ¢) is negative. We can transform Case 3 to Case 2 by simply reversing
the orientation on S?.

We have now proved the first conclusion of the Theorem: either (a, d) is one-way
or there are points b and ¢ in (a,d) such that a < b < ¢ < d and (a, c) is negative
and (b, d) is positive.

To complete the proof of the Theorem suppose (a,d) C f(S*) and (a,d) is not
one-way. Then there are points b and ¢ in (a,d) such that a < b < ¢ < d and
(a,c) and (b,d) are one-way. But then Proposition 3 implies (a,d) is one-way, a
contradiction. (]

Corollary 1 is an obvious consequence of the Theorem.

Proof of Corollaries 2 and 3. Let f : S — S! be a map with a non-empty set P of
periodic points. Lemma 5 implies that each component of St —cl(P) is a locally one-
way open interval. If f is onto, then by Corollary 1 each component of S* — cl(P)
is one-way. So assume f is not onto. Since P C f(S'), then cl(P) C f(S'). Let
z € S — f(S'), and let (a,d) be the component of S — cl(P) which contains z.
Then a,d € cl(P) C f(S'). Since f(S') is connected and contains a and d but
not x, then [d,a] C f(S*). Hence, every component of S! — cl(P) except (a,d) is
contained in f(S!). Thus, every component of S*—cl(P) with the possible exception
of (a,d) is one-way. Furthermore, by the Theorem, either (a,d) is one-way or there
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are points b and ¢ in (a,d) such that a < b < ¢ < d and (a, ¢) is negative and (b, d)
is positive. O

4. THE EXAMPLE

Let a; < as < az < a4 < as be points of S1. Let f: S' — S! be a map such
that f([as,as] U [as,as]) = {a1}, f((a2,a3)) = [as,a1) and f((as,a5)) = (a1, as].
See Figure 3. It is easily verified that (a1, a4) and (as,a1) are free, (a1, as) is neg-
ative and (as, a1) is positive. Thus S' — {a;} is locally one-way but not one-way.
Moreover, S' — {a;} is covered by two overlapping free intervals, by overlapping
negative and free intervals, by overlapping free and positive intervals, and by over-
lapping negative and positive intervals. Since S — {a1} is not covered by f(S*)
and is not one-way, then these four types of overlapping interval pairs (free-free,
negative-free, free-positive, and negative-positive) are the only types of overlapping
interval pairs that are allowed by the proof of the Theorem. Moreover, the phenom-
enon described in Proposition 2 is illustrated here: the free-free, negative-free and
free-positive overlapping interval pairs enlarge to a negative-positive overlapping
interval pair.

ay

ay

ag

thickened arc = f1({a;})

FIGURE 3
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