Purebasic

A Beginner’s Guide To Computer Programming

‘.s.
\ 1
\ -y -

creative
@commons Gary Willoughby

<

Purebasic

A Beginners Guide To Computer Programming

Gary Willoughby

PureBasic - A Beginner’s Guide To Computer Programming
by Gary Willoughby

Copyright © 2006 Gary Willoughby

This book and all included source materials such as diagrams, photos and PureBasic source code is
distributed under the Creative Commons Attribution Non-Commercial Share Alike License. More
details can be found here: http://creativecommons.org/about/licenses/

PureBasic is a registered trademark of Fantaisie Software. PureBasic and all provided tools and
components contained within the PureBasic package are Copyright © 2006 Fantaisie Software.

Fantaisie Software
10, rue de Lausanne
67640 Fegersheim
France
www.purebasic.com

Published 2006, by Aardvark Global Publishing.

Editor
Gary Willoughby

Print History
July 2006 - First Edition

Disclaimer

While every precaution has been taken in the preparation of this book and the programs contained
within it, the author and publisher assumes no responsibility whatsoever for errors, omissions, or for
damages resulting from the use of the information or programs contained herein. The author or
publisher shall not be liable if incidental or consequential damages occur in connection with, or arising
from, the furnishings, performance, or use of the programs, associated instructions, and/or claims of
productivity gains. All information contained herein is considered accurate at time of publication but
because PureBasic is a language in a constant state of refinement and development, some information
over time may be rendered out-of-date. For up to date news and information regarding PureBasic
please refer to www.purebasic.com.

Trademarks

Trademarked names appear throughout this book. Rather than list the names and entities that own
the trademarks or insert a trademark symbol with each mention of the trademarked name, the
publisher states that it is using the names for editorial purposes only and to the benefit of the
trademark owner, with no intention of infringing on that trademark.

Dedication

Dedicated to my girlfriend, Sara Jane Gostick and her dog ‘Stella’ for putting up with many lonely
nights while I wrote this book and for the encouragement (and chicken dinners) she always gives
me.

Acknowledgments

Thanks to Fred and the Purebasic team for the Purebasic language, keep up the good work, it rocks!
Thanks to Paul Dixon for clarifying some of the details regarding binary encoding of floating point
numbers.

Thanks to Timo Harter for helping to choose what Purebasic data types would best substitute the
Win32 API types, and for demonstrating how to retrieve different strings from memory via the
different Win32 API String pointer types.

“With great power there must also come great responsibility!”
--Ben Parker (Spiderman’s Uncle)

Code examples contained in this book can be downloaded freely from
www.pb-beginners.co.uk

ISBN 1-4276-0428-2 19/7/2006

Table of Contents

B g] 1 ix
I. TheCoreLanguageceououuueeeeeesssnnnessscessssssnssssscassnas 1
1. Getting Startedouiiiiiiittiiiieeeeseeesssssssesssccsssssnnas 3
The History Of PUreBasiC oo i i i e e e e i ettt et et e it e s 3
The Development Philosophy Of PureBasicc.cciiuiiiininininninnenennn. 5
ATFirst LooOk At The IDEottt ittt et et ettt ettt et ettt e eeeenns 6
How To Run PureBasic Programsttt iiennnenenns 7
The DeDUGEETottt e e e e e 8
A Note On Program Structurettt ettt e e e 8
Introducing The PureBasic Help File ittt 9
2, DAlQTYPEeS « « o o oottt it ittt eeeesoseessssesoscssssssssssssssssssnssss 10
BUIlt-Tn Data TyPes « v ot vttt ettt ettt e e ettt e e e ettt e e e 10
NI DTS .ottt e e e e e et e e e e e et e 10
8 0072 PP 12
Variables And ConsStantsut ittt ittt ettt e e ettt e 12
B T 0 51 o 1 0 1 18
An Introduction To OPeratorsvuet ettt te ettt te e e e eieeaennns 18
Operator Precedencettt it et e e e 33
EXPression NOteSttt ittt ettt ettt et ettt et 34
4. Conditional Statements ANA LOOPScviiettestsssesosssassssessnns 37
BOO0lEan LOZIC .« v vttt et e e e e e e e 37
The Tf StAteMENtottt et e e et et et e e e e 38
The ‘Select’ Statementottt e e e 41
57070) 0 PP 43
5. Other Dalta SIrUCIUFES iitieeteoseosessessessessassassassssnnss 49
8 D (o1 1 X 49
BN 2/ OO 52
LinKed LSS . ottt ettt e e et et e e e e e e e 62
Sorting Arrays And Linked LiStScoiniuitiinin ittt ittt et et iaans 67
6. Procedures ANd SUDTOULINESoeeeeeeeeeeeeeeecoseoseocacscsossosnens 71
Why Use Procedures Or Subroutines?ttt 71
SUDTOULINES . .ottt e e e e e e e 71
Procedure BasiCs . ..o vv ittt e e e e 74
Program SCOPE . ..ottt e 76
The ‘Global’ Keyword e it 78
The ‘Protected” KEYWOrdottt ettt ittt et et ittt et ettt 79

The ‘Shared’ Keywordttt ittt ittt et et et ettt 80

vi Table of Contents
The ‘Static’ KeyWordottt ittt e e i ittt et et et ettt e 82
Passing Variables To Proceduresottt 83
Passing Arrays To ProCedUresouvtttiti ittt ittt et et et ettt e e 86
Passing Linked Lists To Procedurescuuuiuiimininineeinnenennnnnnnns 88
Returning A Value From Proceduresc.ouninintnn it iieieinnenenannn 91

7. Using Bullt-In Commandsooeetueeesoesesosssessesessssassssssas 93
Using The PureBasic Helpfile ittt it e 93
PB Numbers And OS Identifiersc.iuiiiiiii it ittt eieann 95
Examples Of Common Commandsuuuitiintneneneneneeetnenenenenenennnns 98
Handling Filesottt e et e ettt et et et et ettt e e 104
Read The Helpfilet i i ittt et et ettt e e 110

8. GoodProgramming Styleciiiiiiiiititiiiiiitneeeeessnnnnnns 111
Why Bother Formatting Codeiuiiinii ittt et et ettt ie e 111
The Value Of Commentst ettt e e 112
My Coding FOrmato vt ettt ettt it et et ettt i e et ettt et ettt iaaanas 113
Golden Rules For Writing Easily Readable Code 116
How To Minimize And Handle EITOISottt et et e e 117

II Graphical UserINterfacesc.ououuiiieeeeesssnneeecceasssnnnnns 129

9. Creating User INLETfaceSoieeeeteiinneneeeesssssnnssasscassans 131
L0707 T:10) (Tl i 0o - 1 1 o - 131
Creating Native User INterfacesouiiiiinitn ittt it ittt i ienennn 137
Understanding EVENtsi.iiititni ittt it it ettt e 139
AddIng Gadgets . ..ot ottt e e e e e e e 140
AddING A MENU . .o v vttt ettt ettt et et et e ettt et e e e 148
Menu Keyboard ShOrtCULSiit ittt ittt et et et it e e e 153
Including Graphics In YOUr Programvuutntn ettt ie it eeieiieneaanennn 156
A First Look At The New Visual Designercouutiininieeinnnenenenennnnns 162

IIT Graphics And Soundttt iiiiiieeetessnneesseeeassssnnnnns 165

10. 2D GPraPRICS . .o oottt ittt titeeeeeeeesosssssesssccsssssnnnnnnns 167
2D Drawing Commandsuututtn ettt ettt e e 167
SaAVINE IINAZES . . vt ittt ettt e e e e e e e 179
INtrodUCIng SCIEEIS . ..\ttt ittt ettt et e ettt e ettt et et ettt 181
DTS . vttt ittt e e e e e 192

11. 3D GrapRiCS . ..o v vt ittt it iinesesoesesoesesasssesosssssassssssassansas 203
An Overview Of The OGRE Engineiiiiiiiiiii ittt it it it ieieeeans 203
AGentle Beginningiiiiii i e e e e e 206
A Simple First Person Cameravutneenettte e e eeteeeaenenenennens 215
A Little More Advancediontuitnn i e 221

WAt S N Xt .« .ttt et e e e e e 226

Table of Contents vii

12. SOUNA . oottt it ittt eeeeoeeesesesoseosesesesssossossosescassssossscscnenes 227
WaAVE FalES . oottt e 227
Module FIles e e e e 231
DL 032 3O 233
CD AUAIO .« oottt e e e e e 237

TV Advanced TOPICS « o« o v oot v v vsetoesesonsesosssesassesasssssasssssasssssnas 243

13. Beyond TRE BASICS ..o oot vvvttnesesossesosssesosssesasssssasssssassssnnas 245
Compiler Directives And FUNCHONSo oi vttt e e ittt et et et eaeaans 245
Advanced Compiler Optionscuiuiin it in ittt ittt et ettt 252
Parsing Command Line Parametersouueenenenernenenenenenenaenenens 259
A Closer Look At Numeric Data TyPES .. vovt ittt it it ittt teee et et eiaenenns 262
PO TS .« .\ttt e e e e 269
TRECAAS . . vttt ettt e 279
Dynamic Link LIbrariesttt e et 287
The Windows Application Programming Interface 293

V APPendiCesuoituieetoneesonsesassssssssssssssssassssssessassss 303
A. UsefulInternet LInksceuiieeteesessesesosssessesssasnsasses 305
B. Helpful CRArlscoiiiiiitineetsnessonassssssessessssssassasases 307
C. GloSSATY .. vv vttt itiseenesesoesessesessssessessssssassassssnsas 317

ix

Preface

About this Book

This book provides a quick introduction to the PureBasic programming language. PureBasic’s
popularity has increased significantly in the past few years, being used for many purposes such as
rapid software prototyping, creation of commercial applications and games, Internet CGI applications,
while some people just use it for small utilities. This book has been written, with the complete novice
in mind. We all need to start somewhere and I believe PureBasic is a fantastic first leap into the
programming world. With PureBasic becoming more and more widely used, many people are starting
out and finding they need the occasional push in the right direction or need an explanation of a certain
feature or oddity. This book is to guide novices through their first steps and to give the seasoned
programmer a quick overview of the language.

This Book’s Scope

Although this book covers the essentials of the PureBasic language, I've kept this book’s scope quite
narrow to make sure it’s not information overload for new users. Sometimes this text will refer to
concepts and syntax in a simplistic way to be used as a stepping stone to more advanced texts or as a
complement to the existing PureBasic helpfile.

For example I won’t talk much about how easy it is to use DirectX or OpenGL directly in PureBasic,
otherwise this book would be triple in size and although topics such as pointers, threads and the
Win32 API is talked about later in this book, don’t expect too many fancy examples as I've only given
an overview to such advanced topics.

PureBasic raises the bar to not only what a Basic language should be but also what all languages should
be. Clean, uncluttered syntax, small compiled executable files and a fantastically active community of
programmers. Hopefully this book will give you a clear understanding of the core features of PureBasic
and the design goals and philosophies behind its creation and hopefully make you want to learn more.

X Preface

Despite this books limited scope, I think you will find this a great first book on PureBasic which will
also give you a solid grounding on programming in general if you were to migrate to other languages.
You will learn everything you need to start writing useful standalone programs. By the time you've
finished this book, you will have learned not only the essentials of the language itself, but also how to
apply that knowledge to day-to-day tasks. You will also be better equipped to tackle more advanced
topics as they come your way.

This Book’s Structure

Much of this book is designed to introduce you to PureBasic as quickly as possible and is organized by
presenting the major language features a section at a time. Each chapter is fairly self contained but
later chapters, especially the more advanced ones, use ideas introduced earlier. For example, when we
get to graphical user interfaces and graphics, I'll assume you now understand procedures and
structures.

Part I: The Core Language

This part of the book is a straightforward bottom-up explanation of the major language features, such
as types, procedures, structures and so on. Most of the examples given are not really very useful as
standalone programs but are there to demonstrate and explain the current topic.

Chapter 1, Getting Started
He we start with a quick introduction to PureBasic and the history behind the language. An overview
on how to run a PureBasic program from the IDE and what the debugger is for.

Chapter 2, Data Types

In this chapter I start by listing and explaining all the available built-in data types, such as Strings,
number types and constants. Usage guidelines are given for all the built-in data types as well as
information on memory usage and where applicable, numerical limits.

Chapter 3, Operators

Here I explain the basic means to actually assign values to variables and explain what operators are
needed for calculating data. A full explanation is given for all operators along with diagrams and
examples. The ‘Debug’ command is also introduced here as it is one of the most useful commands in
the PureBasic language and its importance should be learned early on.

Chapter 4, Conditional Statements And Loops
In this chapter I explain how PureBasic handles boolean values, the ‘If and ‘Select’ statements are
introduced and loops are explained and demonstrated. Examples and full explanations are given.

Chapter 5, Other Data Structures
This chapter reveals how to create and use other methods for storing and organizing data, such as user
defined structures, arrays and linked lists. Full explanations and examples are also given.

Preface xi

Chapter 6, Procedures And Subroutines

Procedures and Subroutines are an essential part of programming in any language as they can be used
to execute sections of code (along with variable parameters in the case of procedures) from any part of
the running program. This makes programming easier as the entire program can then be broken down
into easily manageable sections and this modular code can then be reused time and time again.

Chapter 7, Using Built-In Commands

This chapter demonstrates some of the most widely used built-in commands. It’s not a complete
reference or guide to every single command of every library but it will give you a good grounding on
how and when to use the built-in libraries. An explanation is given on Handles and IDs, both of which
are simple to understand but sometimes easily confused.

Chapter 8, Good Programming Style

This chapter gives you a guide on good programming practices for use throughout this book and
provides an overview on simple error handling. When programming in any language, errors are always
a problem, be it a simple typo or a bug in the language itself. This chapter also deals with ways in which
you can be more conscious of not introducing errors and how and why you should test for errors in
your program and how to react if one is found.

Part II: Graphical User Interfaces

Nearly every program nowadays has a user interface of some description and here I will show you how
to create one. Building on ideas and examples of creating a console application, you will eventually
learn how to construct window based applications along with standard controls (gadgets) such as
menus, buttons and graphics.

Chapter 9, Creating User Interfaces

Here I show you how you can built your own user interfaces. Starting off by explaining and
demonstrating console applications and then moving on to creating native window based interfaces.
Events are also described and examples are given on how to react when an event is detected within
your interface. The bundled visual form designer is also given an overview here.

Part III: Graphics And Sound

Graphics and sound have an important role in nearly every computer system today. This section deals
with playing sounds and ways of displaying graphics on the screen and the manipulation of these
graphics, be it in 2D or 3D.

Chapter 10, 2D Graphics

This chapter introduces two dimensional graphics such as lines and shapes and how they are drawn
on the screen. It also deals with sprites (images that can be displayed and manipulated) and an
explanation of screens and double buffering is also given.

Chapter 11, 3D Graphics

The three dimensional graphics in PureBasic are provided by the OGRE engine. An overview and a few
examples are given to demonstrate what is possible with this engine. The OGRE engine is still
undergoing development and is still being integrated fully into PureBasic, but some nice things are still
possible.

Xii Preface

Chapter 12, Sound
This chapter covers how to use sound within PureBasic and covers how to load and play familiar sound
formats.

Part IV: Advanced Topics

The last section deals with things which a novice would find very advanced. The topics contained here
are not necessary to understand to write fully functioning useful programs but they can achieve some
things that ordinary methods cannot. This section is to wet your appetite for knowledge to improve
your understanding of PureBasic and programming in general.

Chapter 13, Beyond The Basics
Here the topics covered are advanced memory management using pointers. Compiler directives are
explained and a how-to guide is written for DLL creation. There is also a section on the Windows
Application Programming Interface.

Part V: Appendices
This is the final section of this book and it ends with appendices that direct the reader to useful pages
on the Internet, provides helpful charts and includes a comprehensive glossary of words and terms.

Prerequisites

I hope that you know how to use a computer, there won’t be much talk on how to use a mouse or what
an icon is, but this book assumes you are a complete novice to computer programming, not only with
PureBasic, but in general.

All you will need to start programming today is a little bit of time and a copy of PureBasic, available
from www.purebasic.com

The Core
Language

In this section, we will study the PureBasic language itself. I call this part ‘The Core Language’, because
our focus will be on the essentials of PureBasic programming: its built-in types, statements and
expressions. By the time you finish reading this section and studying the examples, you’ll be ready to
write programs yourself.

The word ‘Core’ in the title is used on purpose, because this section is not an exhaustive document on
every minute detail of PureBasic. While I may skip certain things along the way, the basics you learn
here will stand you in very good stead for when the unknown pops up. There is also a mention of the
history and development philosophy of PureBasic for those who are interested.

Getting Started

This first chapter starts with a brief history of PureBasic and then takes a quick look at how to run
PureBasic programs. Its main goal is to get you set up to compile and run PureBasic programs on your
own computer, so you can work along with the examples and tutorials given in this book. Along the
way we’ll study different ways you can compile from within PureBasic - just enough to get you started.

We'll also take a look at the included IDE that comes with the standard installation of PureBasic. It
looks a little daunting for new users but after an overview and a little tutorial, things will look less scary

The History Of PureBasic

PureBasic started life in 1995 as a command-set expansion for BlitzBasic after PureBasic’s author,
Frédéric Laboureur hit many limitations with BlitzBasic while programming an application called
‘TheBoss’, a powerful application launcher for the Commodore Amiga. The expansion named ‘NCS’
(NewCommandSet) was entirely coded using 68000 assembly, as all new commands had to be coded
in assembly at this time of Blitz’s development. Fred’s progress was quite slow to begin with as good
documentation was hard to find for assembly programming and of course online forums didn’t then
exist for BlitzBasic plug-in programming.

Development of ‘NCS’ continued for about a year after which Fred received very positive comments
regarding his work, through which he became very familiar with assembly programming and
debugging. He was also astonished with the incredible things that could be achieved with an old 68000
processor if everything was programmed correctly.

Around this time, IBM PowerPC based processor cards for the Amiga started to appear and were a very
powerful alternative to the Motorola 68000 processor. They were very fast and sold at a relatively
cheap cost, even compared to the high-end 68060 processors. With the arrival of these new chips,
people wanted a native version of Blitz to support them, as it was an extremely popular language at
this time, but everyone knew that all development had been put on hold for the Amiga platform in
favor of the Intel x86 based PCs. An opportunity had presented itself for the creation of a new language

4 Getting Started

which would be the logical replacement and enhancement of BlitzBasic, which also would have full
support for the 680x0 and PowerPC processors.

Enter PureBasic!

The early design and the first version of PureBasic started in 1998. The main differences between
PureBasic and ‘normal’ compilers then was the inclusion of a ‘virtual processor’ (which actually used
the 680x0 assembly mnemonics) right from the start to allow different kinds of assembly output (or
any language) possible without changing the compiler core. After the initial design was finished and
programming began, things started to move very fast. Fred fully dedicated all his time to program the
compiler and learned a great deal including the C language to be able eventually to produce a fully
portable compiler.

The first version of PureBasic was initially released for the Amiga and (even if it was badly bugged) had
an integrated and fully cross platform editor, an integrated debugger and a huge internal command-
set, you guessed it, taken directly from the former ‘NCS’ Blitz package.

While refining and bug testing, Fred also studied other programming languages to give him a firm
grounding in other areas and to give him the best foundation to make better, more informed decisions
about the internal design and how PureBasic should grow and expand in the future.

During the fourth year of Fred’s computer science diploma, the Amiga was starting to be considered a
dead platform and many of Fred’s fellow students asked why wasn’t he working on a Windows based
version. Fred of course defended himself saying that it would be a piece of cake to port PureBasic to a
new system, but he had to prove it!

A Brief Overview of The Assembly Language

Assembly language or simply Assembly, is a human-readable notation for the machine language that a
specific computer architecture uses. Machine language, a pattern of bits encoding machine operations, is
made readable by replacing the raw values with symbols called mnemonics.

Programming in machine code, by supplying the computer with the numbers of the operations it must
perform can be quite a burden, because for every operation the corresponding number must be looked up or
remembered. Therefore a set of mnemonics was devised. Each number was represented by an alphabetic
code. For example, instead of entering the number corresponding to addition to add two numbers together
you can enter ‘add’. Assembly is compiled using an Assembler.

A Larger Arena

Fred started to learn Microsoft DirectX and Win32 API programming (see Chapter 13), completely in
assembly, an enormous task! During which he found the Intel x86 a nightmare to understand and
program coming from a Motorola 680x0 background, because the chip is very different in design.
Even the internal storage method of numbers in memory was reversed! After three months in
development and after the founding of his new company, Fantaisie Software, a new website was

Getting Started 5

created and PureBasic for Windows was finally released. Usage and testing of PureBasic increased and
many supportive and enthusiastic mails were received by Fred further enhancing his dedication to
develop the best language possible.

After many years of careful development, a team was formed around Fred to help him with the
development and testing of new releases. This team is composed of experienced programmers, web
designers and documentation writers, all who share the same vision for the language.

After the massive success of the Windows release the next logical step was to support more operating
systems. So Linux and Mac OS were soon to be supported and native versions of PureBasic were
released to an ever increasingly impressed public. All versions supporting the native application
programming interfaces (APIs) of these particular operating systems, all using the native graphical
user interfaces to give them the correct look and feel of the system.

Development was halted for the Commodore Amiga version in 2002 after it became clear to many
users that the Amiga itself was losing support to PCs and was eventually becoming accepted (to people
other than hardcore enthusiasts) to be a dead platform. The Windows, Linux and Mac OS versions are
still being tirelessly developed and supported today!

Version 4 is the latest incarnation of PureBasic which has nearly all been rewritten from scratch. This
is to ease future enhancements and further cross platform development. PureBasic v4 also brought
huge language improvements, nearly all of which are covered in this book.

The Development Philosophy Of PureBasic

The development philosophy of PureBasic is slightly different from that of other languages in many
respects. Here is a list of some of PureBasic’s development goals and policies.

After the initial purchase of a PureBasic license, all future updates are free of charge for life.

All Programs compiled using PureBasic can be sold commercially free of any further cost or royalties.
All programs should compile at the minimum file size they can be and contain no bloated code.

All compiled programs should not rely on any runtimes and be completely ‘stand-alone’ executables.

The above list is a big selling point in itself and contrary to many development philosophies of rival
companies. Can you imagine Microsoft giving you free version upgrades of VB.NET for life? Me
neither.

PureBasic’s development philosophy is one of creating a programming environment that is both fun
and functional to use. It’s all about giving the users the power to create the programs they need in the
simplest way possible. With all past version upgrades there has been included bug fixes, new
commands plus brand new IDEs and a Visual Designer, the last two of which are covered in later areas
of this book. So not only are bug fixes a feature of future upgrades, there are also additions to the
language command-set along with the addition of useful tools and updates to the actual development
environment itself.

6 Getting Started

A First Look At The IDE

PureBasic’s Integrated Development Environment consists of a source code editor, a visual form
designer and a compiler. The visual form designer will be given an overview later in Chapter 9 (A First
Look At The New Visual Designer), so only the source code editor and compiler will be mentioned
here. In the PureBasic community the source code editor is usually referred to as the ‘IDE’, while the
visual form designer is usually given the dubious name of the ‘VD’. This is mainly due to save typing
long names in the forums while asking questions or participating in a discussion, so I'll use that
convention here.

PureBasic _ O]

Menu — Elle Edit Compler Debugger Tools Help

Toolbar - B EEH | BER® v O&E | Z11 0 £

<Mew =" | Explorer Procedures |
1]
Editor ———— Customizable
Pane Pane
KN I

Error Log —1—

Quick He]p — | Line: 1 Column: 1 | Y

The IDE as it appears on Microsoft Windows. Fig. 1

The IDE (Fig. 1) is written entirely in PureBasic and is the main tool used to write PureBasic programs,
so let’s take a tour around the main interface of the editor. At the top is the menu bar giving access to
the menu commands, below that is a customizable toolbar which can be configured to hold many
different icons each triggering a pre-defined menu command. Underneath the toolbar on the left is the
main editor pane, here all PureBasic code is entered. On the right of the editor pane is another user
customized pane which can contain a procedure viewer, a variable viewer, a file explorer, etc... Also by
default the error log will be shown as a pane attached to the bottom of the editor pane, this can be
turned off and on via a menu command (Menu:Debugger->Error Log->Show Error Log). Below the
panes there is the status bar which shows information on what row and column is being edited and
displays the quick help.

This editor is a ‘front-end’ to the actual PureBasic compiler. Once code has been entered into the editor

Getting Started 7

pane and the ‘Compile/Run’ toolbar button has been pressed (Shortcut Key: F5) the code is then
passed to the compiler for the creation of an executable. Any plain text editor could be used to write
source code for PureBasic but I recommend using the official editor as it has been written from the
ground up to only support the PureBasic compiler. Not only that but other editors require some
configuration to correctly pass the file to the PureBasic compiler which some users find a little too
complicated to begin with.

The IDE Quick Help

As you are entering built-in library commands into the editor pane, the status bar at the bottom of the editor
will show you the completed command along with an example of what parameters (if any) are expected. This
can be a very handy reference when you are speed coding (maybe after too much coffee) and searching the
helpfile is too much hassle. Built-in Library commands are explained further in Chapter 7.

How To Run PureBasic Programs

Right, let’s get started to learn how to run programs. Before they are compiled, PureBasic programs
are just plain text files (usually containing the suffix ‘*.pb’) that contain the actual PureBasic code. All
that needs to be done to compile these text files into an executable program is to pass them to the
compiler for processing. There are many ways of doing this such as:

In the IDE:
Press the ‘F5’ keyboard shortcut for ‘Compile/Run’.
Press the ‘Compile/Run’ toolbar button.
Select the menu command: ‘Compiler->Compile/Run’.
Select the menu command: ‘Compiler->Create Executable...’.

Using the command line:
Enter the command: ‘PBCompiler filename’ where ‘filename’ is the name of the text file.

After reading the above list it seems that there is many different ways of achieving the same result, but
some of these are slightly different and should be explained more clearly.

The first three IDE methods mentioned above, achieve the same result and any one of these three can
be used while actually writing and testing the current program (it doesn’t matter which one). The
purpose of these three commands is in the name, ‘Compile/Run’.

When selected the text file is immediately compiled into a temporary executable file called
‘purebasico.exe’ within the ‘/PureBasic/Compilers’ folder and that executable file is then run. This is
handy when you need to see immediately how your program runs, without specifying a proper name
for the compiled executable. If this temporary program file is still running while another program is
compiled and run, then a new temporary file will be created called ‘purebasici.exe’, and so on. If,
however the first program has ended while using the ‘Compile/Run’ method, then the compiler re-uses

8 Getting Started

old numbers on the temporary files and keeps on using ‘purebasico.exe’ as the temporary name. This
makes sure that there aren’t huge numbers of temporary executable files within the
‘/PureBasic/Compilers’ folder.

The last IDE method, using the ‘Compiler->Create Executable...” menu command is for when all
development is finished on the current program and you are ready to compile and deploy your
executable file. Once this menu command has been selected a dialog box appears asking you to specify
a name and location for your final executable program file.

The Windows Command Prompt method is for more advanced users and enables you to manually type
in commands to pass the text file to the PureBasic compiler as a parameter. Other parameters can be
passed along with the filename to further customize the compilation. These other parameters will be
discussed later in Chapter 13 (Advanced Compiler Options).

That is all there is to compile and run your first program. After the commands are entered into the
editor pane just hit ‘F5’ and you’re away!

The Debugger

The PureBasic debugger is a tool which controls the execution of the program you’re working on. It
controls and keeps track of all variables and procedure parameters, etc. as the program is running. It
is a second pair of eyes on your code to highlight errors and to avoid potential program crashes such
as zero division, illegal array offset access and data overflow errors. It can also be used as a brake to
halt the program at any given time to see what actual variable values are. The program execution can
be stopped and forwarded step by step to locate any faults or strange behavior. This can be very useful
especially if a program falls into an endless loop or you are unsure of what value a particular variable
holds at any given time.

The Debugger can be toggled on and off at any time by pressing the ‘Enable Debugger’ toolbar button
or by selecting the menu command (Menu:Debugger->Enable Debugger). Careful when developing a
program with the debugger off, you could crash your computer if a problem isn’t recognized and is
allowed to execute.

A Note On Program Structure

The structure of a PureBasic program is quite easy to understand. The compiler processes the text file
from the top to the bottom. It’s that easy. Commands written at the top of the file are processed before
the ones written below, just as if you were reading the file yourself. If the debugger spots a problem
the compilation is stopped and an error is raised. Take this pseudo-code as an example:

1 PRINT "THIS LINE IS EXECUTED FIRST"
2 PRINT "THIS LINE IS EXECUTED SECOND"
3 PRINT "THIS LINE IS EXECUTED THIRD"

Getting Started 9

The output of this pseudo-code example would be three lines of text displayed in the order that they
were written (1-3). This is exactly how the compiler processes the text file. This is important to
understand and remember, because you will run into errors if, for example, you try to gain access to a
file that hasn’t been opened yet. This all seems pretty straightforward but you may run into this at
sometime, especially when you start to use procedures (these will be explained fully in Chapter 6).
There is more to a program’s structure than this little snippet but this will become apparent as your
journey continues and I expand more on using statements and procedures.

Introducing The PureBasic Helpfile

With every PureBasic installation, a complete helpfile is installed alongside. This helpfile is a fantastic
reference for the entire PureBasic language but can be a little daunting for new users to refer to
because sometimes things are not explained fully. If they were, then it would be a very sizable
document and not very printer friendly. As it stands though, it is an invaluable resource for looking up
keywords, checking syntax and it integrates nicely with the IDE. In fact, every time I personally create
a program using the PureBasic IDE, I like to keep the helpfile open at all times to quickly flick between
the two. This simple habit could save hours of valuable time.

IDE Integration

At anytime when you are using the IDE to create your program, you can press the ‘F1’ key on your
keyboard to trigger the launching of the PureBasic helpfile. Also, if you happen to have your cursor
within the IDE upon a PureBasic keyword while pressing ‘F1’, then the helpfile is brought to the front
and that keyword will be highlighted within the helpfile, giving you an explanation of that command.
This integration between the IDE and helpfile is invaluable once you start to gain speed while
programming,.

Let’s try a small example to show this in action, type this (exactly) into the IDE:

OpenConsole ()

Print ("Press enter to exit")
Input ()

End

After running this little program it opens a console window, then prints a line of text to it informing
the user in order to exit he or she must press ‘enter’, during which we wait for input. After the enter
key is pressed then we then end the program nicely.

If you place the flashing IDE cursor upon any keywords that are used in this program, then press ‘F1’,
the helpfile is brought to the front and flipped to the page that describes that command. For example,
place your flashing cursor anywhere within the ‘OpenConsole()’ keyword and hit ‘F1’. You will now see
the ‘OpenConsole()’ help page appear like magic!

If you want to learn more about using the built-in PureBasic helpfile, refer to Chapter 7 (Using The
PureBasic Helpfile).

10

Data Types

Now that the introductions are over let’s begin this chapter with more substance, namely Data Types.
As you may know, in computer programs you manipulate and process data. Data types are the
descriptions of the containers of this data. In this chapter I will show you all the available built-in data
types and explain fully how and when to use them.

To enable you to get up and running as soon as possible, I have included many of examples and
everything is explained using plain speech.

Built-In Data Types

Data types (or sometimes just called ‘types’) can be thought of as a way of giving stored data a
description. The basic idea of typing data is to give some useful meaning to what is ultimately just
binary digits. Be it text or numbers, describing this data using types makes it easier to understand,
manipulate or retrieve. Data is held within the computers RAM until needed by the program. The
amount of RAM needed to hold each data type depends on what type of data type is being used.

Numbers

The first data types to be introduced are the numbers types. Numbers can be used to store anything
from a date, a length or even the result from a lengthy calculation. Anything you use numbers for in
the real world, you can also use PureBasic’s numeric types to store that data.

Numbers come in two flavors in PureBasic, Integers and Floating Point Numbers. Integers are
numbers which don’t have a decimal point and can either be positive or negative. Here are a few
examples of integers:

16543 -1951434 100 -1066 0

Data Types 11

Floating Point Numbers (or ‘Floats’) on the other hand are numbers which do contain a decimal point
and can also be either positive or negative. Here are a few examples of floating point numbers:

52.887 -11.0005 1668468.1 -0.000004 0.0

PureBasic provides seven numeric data types for you to use in your programming, each one uses a
different amount of RAM and all have different numerical limits. The numerical types are described
here in Fig.2.

PureBasic’s Numeric Types

Type Suffix | Memory Usage (RAM) Numerical Limit

Byte .b 1 byte (8 bits) -128 to 127

Char (Ascii) .C 1 byte (8 bits) 0 to 255

Char (Unicode) .C 2 bytes (16 bits) 0 to 65535

Word W 2 bytes (16 bits) -32768 to 32767

Long .1 4 bytes (32 bits) -2147483648 to 2147483647

Quad .q 8 bytes (64 bits) -9223372036854775808 to 9223372036854775807

Float £ 4 bytes (32 bits) Unlimited*

Double .d 8 bytes (64 bits) Unlimited*
* This will be explained fully in Chapter 13 (A Closer Look At Numeric Data Types). Fig. 2
Numerical Limits

In Fig.2 you can see that many types have a numerical limit, this is directly linked to the amount of
RAM that particular type is allocated. The amount of RAM allocated and the names of the numerical
types are more or less the same as the C language. Note in C you will find there are many more types
than listed here but PureBasic is about keeping things simple, not bending your head with hundreds
of advanced types. For beginners, all you need to remember is the numerical limits of each type and
understand that this can’t be exceeded. To explain why the memory allocated to each type affects the
numerical limit, I'll need to explain how the numbers are stored in RAM using Binary, this you can find
in Chapter 13 (A Closer Look At Numeric Data Types).

If a numeric data type is exceeded numerically then that numeric value will wrap around the lower
numeric level. For example, if you assigned the value of ‘129’ to a Byte variable, then that value has
exceeded the numerical limit for a Byte and will be wrapped to “-127.

12 Data Types

Strings

The last standard PureBasic data type is a String. Strings are such an important and useful datatype
that they are implemented in nearly every programming language available.

As their name suggests, Strings are just simply strings of characters. Unlike a number there is a certain
way that a String has to be written to ensure it is recognized as such. This way is to use double
quotation marks to encapsulate the String. Here are a few examples of this syntax:

"abcdefghijklmnopgrstuvwxyz" "Mary had a little lamb" "123456789"
Notice the last String of these three is a string of numbers. This is recognized as a String rather than a
number because of the double quotation marks around it. Strings defined like this are also called literal
Strings.
Strings are probably the simplest data type to understand because they are so easy to use. As long as

you remember the double quotation marks around the characters then you have a String.

PureBasic’s String Types

Type Suffix Memory Usage (RAM) Character Limit
String .S 4 bytes (32 bits) Unlimited
String $ 4 bytes (32 bits) Unlimited
Fixed Length String . S{length} 4 bytes (32 bits) User Defined*
Fixed Length String ${ lengtn} 4 bytes (32 bits) User Defined*

* The ‘length’ parameter defines the string’s maximum length. Fig. 3

Strings can be made up from any character in the ASCII character set, including the control characters
(See Appendix B (Helpful Charts) for a full listing of ASCII characters) except the null character as that
is used to signify the end of a String. Strings that use the null character to define its end are referred
to as “Zero Terminated Strings’.

Variables And Constants

To store and manipulate data in any program you need to use the correct data type for storage but you
also need a way to easily find that data in memory. Variables and Constants provide a simple answer
for this problem by assigning a clear descriptive name to a particular piece of data so it can be easily
accessed later. Put simply, variables refer to data that can change its value, while constants refer to
data that will never ever change.

Data Types 13

Variables

Typically, the name of a variable is bound to a particular area and amount of RAM (defined by its data
type), and any operations on a variable will manipulate that associated area of memory. Variable
names can be named anything you want, but many people like to keep them as descriptive as possible
to convey what the actual value is that the variable holds. Variables are the building blocks of any
computer program as they hold data that can be manipulated, referred to and ultimately displayed.
Variables are essential for the organization and storage of your data.

Okay, let’s get playing with PureBasic. Open the PureBasic IDE and let’s create a variable of our own.
When you want to create a variable the syntax is very simple. You enter a variable name followed by a
type suffix to define what type of variable it is to be, followed by an operation you wish to perform on
it. This operation is primarily a value definition.

In the following statement, we assign the value of ‘1’ to the name ‘NumberOfLinesOfCode’, using the
equals operator (=) and using a Byte as its data type.

NumberOfLinesOfCode.b = 1

Look at this statement a little more closely. You will see that the variable name has no spaces, this is
very important. No variable ever has spaces! If you need to separate the words in a variable to make it
more easy to read you can use underscores like this:

Number Of Lines Of Code.b = 1

You can use any name you want for a variable but there are few rules. Variable names must not start
with a number and must not contain any operators (see Fig.15 for a complete list of operators). Also
no special characters are allowed such as accented characters (8, 4, 6, ii). The “.b’ added to the end of
the variable name is a suffix to tell the compiler that this variable is to be a Byte and as such will use
the associated amount of memory and impose the associated numerical limit. Fig.2. shows all the
suffixes you need to use for the number types, while Fig.3. shows the suffixes necessary for the String
types. If a type suffix is not used like this:

NumberOfLinesOfCode = 1

The variable is declared as a Long as this is the default type of PureBasic. This is important to
understand because if you forget the suffix on a variable you will create a Long type variable and
possible bugs could occur. PureBasic does provide a way to change the default type by using the
‘Define’ keyword like this:

Define.b
NumberOfLinesOfCode = 1
TodaysDate = 11

The ‘Define’ keyword is given a suffix of its own and every variable after that is declared as that newly
designated type. The above two variables for instance are both declared as Bytes because of the ‘b’
suffix on the end of the ‘Define’ keyword. If this keyword is not used in a PureBasic program then the
default type remains as a Long.

14 Data Types

If you want to declare a few variables for later use but don’t want to give them a value just yet, you
could also use this style syntax:

Define.w Day, Month, Year

This code switches the default type to a Word and declares three variables, ‘Day’, ‘Month’ and ‘Year’ as
Words but because these variables have no value assigned to them, they are given the value of zero (0).
Here is an example showing the creation of all variable types using PureBasic code:

ByteVariable.b = 123

CharVariable.c = 222

WordVariable.w = 4567

LongVariable.l = 891011
QuadVariable.qg = 9223372036854775807

FloatVariable.f = 3.1415927
DoubleVariable.d = 12.53456776674545
StringVariableOne.s = "Test String One"
StringVariableTwo$ = "Test String Two"
StringVariableThree.s{6} = "abcdef"
StringVariableFour${3} = "abc"

You will notice the last four variables are Strings but are all defined by slightly different suffixes. The
first two are unlimited length Strings while the last two are defined as fixed length Strings. Each one
of these types can be defined by using two suffixes. These two different suffixes are ‘.s” and ‘$’. Both of
which are identical in every way, it’s just that the ‘$’ suffix is an old style, kept to appease Basic purists
who like using the old style String suffix. Both can be used in the same program but the two suffixes
are not interchangeable. For example, these two variables are different:

StringVariable.s = "Test String One"
StringVariable$ = "Test String Two"

Even though they have the same name, the different suffixes mean they are different variables all
together. Don’t believe me? Well this can be tested by using the ‘Debug’ keyword.

StringVariable.s = "Test String One"
StringVariable$ = "Test String Two"
Debug StringVariable.s
Debug StringVariables$

In this example the ‘Debug’ keyword is used to echo the values of the two variables to the Debug
Output window. Type this example into the IDE and hit the ‘Compile/Run’ button (F5). You will see
two lines appear in the Debug Output window showing the values of the two variables that we used
‘Debug’ with. This keyword is probably the most used keyword in the whole of the PureBasic language
as it is used to test values and echo other useful text to the Debug Output window during program
development. When a final executable is made all the ‘Debug’ commands are removed from the final
program, leaving a small executable size.

Data Types 15

The ‘Debug’ Command

The ‘Debug’ command is very useful to quickly print useful text into the Debug Output window. Any data type
can be used with this command, making it invaluable for quickly printing helpful numbers, memory
addresses, returned Strings and/or values of calculations.

Any ‘Debug’ commands used within your code are ignored and will not be compiled when you disable the
debugger or compile your final executable using (Menu:Compiler->Create Executable...).

One more thing to note about variables is that they are not case sensitive. Meaning that any
capitalization is ignored, which is standard Basic language behavior. Look at this example:

TestVariable.s = "Test String One"
testvariable = "Test String Two"
TeStVaRiAbLe = "Test String Three"

Debug tEsTvArIaBlE

Here it looks as if I am assigning values to three different variables but in truth I am re-assigning a
value to the same variable, it’s just that each time I do it, 'm using different a capitalization for the
variable name. As you can see, letter case means nothing to a variable as this example outputs the text
‘Test String Three’. This example also demonstrates another feature of PureBasic’s variables, in that
once a variable has been declared using a given data type, that data type remains assigned to that
variable throughout the programs life. For example, once a variable has been declared as a String then
from then on you can never store an integer or floating point number in that variable. Let me show you
a bad example:

StringVariable.s = "Test String One"
StringVariable = 100

This example will never compile and if you try to, you will get a polite message from the IDE telling
you that you cannot write a numeric value into a String variable. This following example will work:

StringVariable.s = "Test String One"
StringVariable = "One Hundred"

Because the variable ‘StringVariable’ was originally declared as a String, only Strings can be given as
values to that variable from then on. When we change its value to ‘One Hundred’ it works fine because
we change a String for a String. So let’s recap on the main variable rules.

1). Variables must not contain spaces.

2). Variable names must not start with a number but can contain them.

3). Variable names must not contain any operators (See Fig.15).

4). Variable names must not contain any special or accented characters (B, &, 0, ii).

5). By default if no suffix is given to a variable then its data type is a Long.

6). Once a variable has been declared, its data type can never be changed during runtime.

7). Once a variable is declared you can use it freely without a suffix, the compiler remembers its type.

16 Data Types

Constants

Constants are similar to variables in that they provide an easy way to reference data and can be called
whatever you want, but that’s where the similarity ends. Constants are used when you want to give a
particular piece of data a name while knowing that value will never change. Look at this example:

#DAYS IN THE YEAR = "365"

We know that the number of days in a standard year will never change so we can use a constant to
express this. If we tried to change its value like a variable we get an error. The IDE will complain,
telling you that a constant with that name has already been declared and halt compilation.

The good thing about constants is that they use no memory, because they are never compiled as such,
they are replaced in your code by their initial values before compilation. Look at this example:

#DAYS IN THE YEAR = "365"
Debug "There are " + #DAYS IN THE YEAR + " days in the year."

Before this example is compiled into your program, it really looks like this to the compiler:

Debug "There are 365 days in the year."
because the constant is replaced by the value it was assigned, in this case ‘365’, and then compiled.

All constants follow exactly the same naming rules as variables except for the suffixes, constants don’t
use them regardless of what type of data you assign to a constant, because there is no memory
allocation needed. All constants are declared using a prefix rather than a suffix. The prefix is a hash
character (#).

Enumerating Constants
If you need a block of constants all of which are assigned numeric values enumerated one after the
other, then you can use the ‘Enumeration’ keyword.

Enumeration
#ZERO
#ONE
#TWO
#THREE
EndEnumeration

Debug #ZERO
Debug #ONE
Debug #TWO
Debug #THREE

You will see in the Debug Output window, each constant has a greater value than the one preceding it,
starting at ‘0’. If you want to start the enumeration at a number other than ‘0’, you can use an optional
numeric parameter with the ‘Enumeration’ keyword, like this:

Data Types 17

Enumeration 10
#TEN
#ELEVEN
#TWELVE
EndEnumeration

Debug #TEN
Debug #ELEVEN
Debug #TWELVE

Now you can see the constant ‘#TEN’ has the value of ‘10’ and the rest are incremented from then on.
You can even use the ‘Step’ keyword after the numeric parameter to change the increment value within
an enumeration block. Look at this example:

Enumeration 10 Step 5
#TEN
#FIFTEEN
#TWENTY
EndEnumeration

Debug #TEN
Debug #FIFTEEN
Debug #TWENTY

Now the constants are incremented by ‘5, starting at ‘10’.

If you assign a value at any time to a constant within an enumeration block, this sets a new value to be
enumerated from. Just like this:

Enumeration 5
#FIVE
#ONE_HUNDRED = 100
#ONE_HUNDRED AND ONE
#ONE_ HUNDRED AND TWO
EndEnumeration

Debug #FIVE

Debug #ONE_HUNDRED

Debug #ONE_HUNDRED AND ONE
Debug #ONE_HUNDRED AND TWO

Here you can see demonstrated, after the line: ‘#0ONE_HUNDRED = 100’, all the constants are then
enumerated from ‘100’.

Enumerated constants are used mostly in graphical user interface programing (See Chapter 9) where
each window or gadget needs its own ID, enumerated constants are a great way to provide these IDs
and enumerated blocks take all the hassle out of assigning incremented values to a lot of constants.

18

Operators

Operators are used to assign values to variables and to manipulate the data that those variables
contain. In this chapter I'll introduce you to all operators that PureBasic supports and for each one I'll
give you a brief example describing its function and use. There are also many diagrams showing how
the more advanced operators manipulate data at a binary level. Operator precedence (or operator
priority if you prefer) is also explained and notes on PureBasic’s expression evaluation are brought to
your attention.

An Introduction To Operators

Operators are a set of functions that can perform arithmetic operations on numerical data, boolean
operations on truth values and perform String operations for manipulating strings of text. Some
operators are known as Overloaded Operators, meaning that they can be used on more than one type
of data and can perform different functions. For example, the equals operator (=) can be used to assign
a value to a variable as well as being used as an equality operator to test that two variables or values
are equal.

= (Equals)
This is probably the easiest operator to explain even though it can be used in two ways. First, it can be
used to assign a value to a variable like this:

LongVariable.l = 1

Secondly, it can be used to make an equality comparison between two expressions, variables or values,
like this:

LongVariable.l = 1
If LongVariable = 1

Debug "Yes, LongVariable does equal 1"
EndIf

This is the first time you have seen the ‘If keyword but don’t worry. This keyword enables a way in
your programs to execute code based on if a certain condition is met. In this case, if ‘LongVariable’

Operators 19

equals ‘1’ then echo some text to the Debug Output window.

+ (Plus)
The plus operator is another commonly used one and is used to concatenate Strings as well as for the
addition of numbers. First, here is an example of number addition:

NumberOne.l = 50
NumberTwo.l = 25
NumberThree.l = NumberOne + NumberTwo
Debug NumberThree

The number echoed to the Debug Output window should be ‘75’ because we’ve added the value of
‘NumberOne’ to ‘NumberTwo’ (50+25) and stored the resulting value (75) in the ‘NumberThree’
variable, we then echo this value to the Debug Output window. Another way to show this might be:

NumberOne.l = 50 + 25
Debug NumberOne

You can also use a shortcut when using the plus operator with numbers, if you just need to increment
a numeric variable by another value or expression:

NumberOne.l = 50
NumberOne + 25
Debug NumberOne

Once an initial value is assigned to ‘NumberOne’ we can use the plus operator to add another value to
it, so now the number echoed to the Debug Output window is ‘75’.

Here is an example of String concatenation using the plus operator:

StringOne.s = "Mary had a"
StringTwo.s = " little lamb"
StringThree.s = StringOne + StringTwo
Debug StringThree

The word concatenate basically means to chain or join together and that’s exactly what we are doing
with these two Strings. We concatenate ‘StringOne’ and ‘StringTwo’ and store the resulting String in
‘StringThree’, we then echo this value to the Debug Output window. This is another way:

StringOne.s = "Mary had a" + " little lamb"
Debug StringOne

You can also use the shortcut when using the plus operator with strings, if you just need to concatenate
text onto an existing variable:

StringOne.s = "Mary had a"
StringOne + " little lamb"

Debug StringOne

20 Operators

This works kind of like the numeric shortcut but instead of adding the value numerically, the second
String is joined to the existing String variable.

- (Minus)

The minus operator works the exact reverse of the addition operator, in that it subtracts rather than
adds. Unlike the addition operator, the minus operator cannot work with Strings. Here is an example
of the minus operator in action:

NumberOne.l = 50
NumberTwo.l = 25
NumberThree.l = NumberOne - NumberTwo
Debug NumberThree

The text echoed to the Debug Window should be ‘25’ which is ‘NumberTwo’ subtracted from
‘NumberOne’. Again a shortcut can be used if you need to decrement a variable by a specific amount:

NumberOne.l = 50
NumberOne - 10
Debug NumberOne

Here ‘NumberOne’ is assigned the value of ‘50’ then ‘NumberOne’ is decremented by ‘10’ using the
minus operator. The new value of ‘NumberOne’ (40) is then echoed to the Debug Output window.

* (Multiplication)
The multiplication operator is used to multiply two values together and like the minus operator cannot
work with Strings. To demonstrate how this operator is used, here is an example:

NumberOne.1l 5

NumberTwo.l = 25

NumberThree.l = NumberOne * NumberTwo
Debug NumberThree

The debug output should be ‘125" because in this example we’ve multiplied ‘NumberOne’ by
‘NumberTwo’ (5*25=125). Again a shortcut can be used to multiply a variable by a specified number.

NumberOne.l = 50
NumberOne * 3
Debug NumberOne

Here ‘NumberOne’ is assigned the value of ‘50’ then ‘NumberOne’ is multiplied by ‘3’ using the
multiplication operator. The new value of ‘NumberOne’ (150) is then echoed to the Debug Output
window.

/ (Division)

The division operator is another mathematical operator that works only with numbers and not Strings.
You've probably guessed how to use it from reading the other examples but here is an example showing
its use anyway:

Operators 21

NumberOne.l = 100

NumberTwo.l = 2

NumberThree.l = NumberOne / NumberTwo
Debug NumberThree

Here ‘NumberOne’ is assigned the value of ‘100’ and ‘NumberTwo’ is assigned the value of ‘2’. We then
divide ‘NumberOne’ (100) by ‘NumberTwo’ (2) and store the result (50) in ‘NumberThree’. We then
echo the value of ‘NumberThree’ to the Debug Output window. As before a shortcut can be used to
divide a variable by a specified number:

NumberOne.l = 50
NumberOne / 5
Debug NumberOne

Here ‘NumberOne’ is assigned the value ‘50’ then we use the division operator to divide this value by
‘5’. Then we echo the result stored in ‘NumberOne’ (10) to the Debug Output window.

& (Bitwise AND)

The bitwise operators are a group of operators that manipulate numbers at a binary level. If you are a
little unfamiliar with binary and how PureBasic stores numbers using binary you can refer to Chapter
13 (A Closer Look At Numeric Data Types) where a full explanation is given. Bitwise operators cannot
be used with Floats or Strings.

The bitwise ‘& operator tests two values to see if they are both true on a bit by bit basis, if two bits are
compared and are both true (1) then the operator returns true (1) otherwise it returns false (0). This
applies to all bits within the two numbers that are to be compared. Here is a diagram to try to explain
a little better.

The ‘&’ (Bitwise AND) Operator

Binary Value of 77 ol1fojJo]1f1fo]1

Binary Value of 117 of11)11foJ1]0}|1

Resultvalueof6g O |1 [0] OO | 1|01

8 bit number
(1 byte)
Fig. 4

In Fig.4 you can see the two numbers to be evaluated using the ‘&’ operator are ‘77" and ‘117’. After the
calculation is complete, an end result of ‘69’ is achieved. To explain how this value is achieved you need

22 Operators

to look at each column of bits from the top down. If you look at the right most column (which is the
column associated with the value of ‘1’ in binary) both bits of the two numbers in this column are set
at ‘1’ so the value returned by the ‘& operator is ‘1’ (which in PureBasic is true). If we move one column
along to the left we can see that both bits of the two numbers are both ‘0’, so the ‘&’ operator returns
‘0’ (false). Remember that when using the ‘& operator both bits have to be ‘1’ before the operator will
return ‘1’ otherwise it will return ‘0’

This operator is applied to all the columns of bits starting from the right to the left and when finished
the resulting number is returned. In this case the value returned by this calculation is ‘69’. Here is an
example to translate Fig.4 into code:

NumberOne.b = 77
NumberTwo.b = 117
NumberThree.b = NumberOne & NumberTwo
Debug NumberThree

In this small example two variables are assigned numbers that are to be evaluated using the ‘&
operator and the variable ‘NumberThree’ contains the result of this calculation. The value of
‘NumberThree’ is then echoed to the Debug Output window, which in this case should be ‘69’. Just like
the other operators the bitwise ‘& operator has a shortcut if you just need to ‘&’ a number to a single
variable:

NumberOne.b = 77
NumberOne & 117
Debug NumberOne

Here ‘NumberOne’ is assigned the value ‘77" and then in the next line we ‘& the value ‘117 to
‘NumberOne’. This value is then echoed to the Debug Output window.

Fig.5 shows the comparison made between two bits and the result given by the ‘&’ operator.

‘&’ (Bitwise AND) Bit Comparison

Left Hand Side Right Hand Side Result

Rl |O| O
RlO|lFP]| O

0
0
0
1

Fig. 5

| (Bitwise OR)
The bitwise ‘|’ operator tests two values to see if one or more is true on a bit by bit basis, if two bits are
compared and either one or both are true (1) then the operator returns true (1) otherwise it returns

Operators 23

false (0). This applies to all bits within the two numbers that are to be compared.

The ‘|’ (Bitwise OR) Operator

Binary Value of 54 olofz1]1)0fl1f1]oO

Binary Valueof1o2 | O (1 (1 0|01]1/[O

Resultvalueof118/ 0 |1 |1 |1 0|1 |10

8 bit number
(1 byte)
Fig. 6

In Fig.6 you can see the two numbers to be evaluated using the ‘|’ operator are ‘54 and ‘102’. After the
calculation is complete, an end result of ‘118’ is achieved. To explain how this value is achieved you
need to look at each column of bits from the top down. If you look at the right most column (which is
the column associated with the value of ‘1’ in binary) both bits of the two numbers in this column are
set at ‘0’ so the value returned by the ‘|” operator is ‘0’ (false). If we move one column along to the left
we can see that both bits of the two numbers are both ‘1’, so the ‘|” operator returns ‘1’ (true). If we look
at the fifth column from the right you will see that the first number has a bit which is set at ‘1’ and the
second number has a bit which is set at ‘0’. In this case the ‘|’ operator still returns ‘1’ (true) because
as long as one or the other bit is true then the operator will return true. The ‘|’ operator will always
return true, unless both bits are ‘o0’.

This operator is applied to all the columns of bits in Fig.6 starting from the right to the left and when
finished the resulting number is returned. In this case the value returned by this calculation is ‘118’.
Here is an example to translate Fig.6 into code:

NumberOne.b = 54
NumberTwo.b = 102
NumberThree.b = NumberOne & NumberTwo
Debug NumberThree

In this small example two variables are assigned numbers that are to be evaluated using the ‘|’ operator
and the variable ‘NumberThree’ contains the result of this calculation. The value of ‘NumberThree’ is
then echoed to the Debug Output window, which in this case should be ‘118’. Just like the other
operators the bitwise ‘|’ operator can be used as a shortcut if you just need to ‘|’ a number to a single
variable:

NumberOne.b = 54
NumberOne | 102
Debug NumberOne

24 Operators

Here ‘NumberOne’ is assigned the value ‘54’ and then in the next line we ‘|’ the value ‘102’ to
‘NumberOne’. This value is then echoed to the Debug Output window.

Fig.7 shows the comparison made between two bits and the result given by the ‘|’ operator.

‘I’ (Bitwise OR) Bit Comparison

Left Hand Side Right Hand Side Result

Rl |O| O
RlO|l | O

0
1
1
1

Fig.7

! (Bitwise XOR)

The bitwise ‘" operator tests two values to see if one of them is true on a bit by bit basis, if the two bits
are compared and either one is true (1) then the operator returns true (1) otherwise it returns false (0).
This applies to all bits within the two numbers that are to be compared. Here is a diagram to try to
explain a little better:

The ‘I’ (Bitwise XOR) Operator

Binary Value of 38 olofz1]o0)0fl1f1]oO

Binary Value of 74 oOjrfojojrfofzr]o

Resultvalueof108(0 |1 |1 |01]1])0]0

8 bit number
(1 byte)
Fig. 8

In Fig.8 you can see the two numbers to be evaluated using the ‘I’ operator are ‘38 and ‘74’. After the
calculation is complete, an end result of ‘108’ is achieved. To explain how this value is achieved you
need to look at each column of bits from the top down again. If you look at the right most column
(which is the column associated with the value of ‘1’ in binary) both bits of the two numbers in this
column are set at ‘0’ so the value returned by the ‘!’ operator is ‘0’ (false). If we move one column along
to the left we can see that both bits of the two numbers are both ‘1’, so the ‘I’ operator still returns ‘0’

Operators 25

(false). This is because when two bits are compared the ‘!I” operator will only return ‘1’ (true) if only one
bit is set to ‘1’. If both bits are set to ‘1’ or ‘0’ then the ‘!’ operator will return ‘0’ (false).

This operator is applied to all the columns of bits in Fig.8 starting from the right to the left and when
finished the resulting number is returned. In this case the value returned by this calculation is ‘108’.
Here is an example to translate Fig.8 into code:

NumberOne.b = 38
NumberTwo.b = 74
NumberThree.b = NumberOne ! NumberTwo
Debug NumberThree

In this small example two variables are assigned numbers that are to be evaluated using the ‘!” operator
and the variable ‘NumberThree’ contains the result of this calculation. The value of ‘NumberThree’ is
then echoed to the Debug Output window, which in this case should be ‘108’.

Just like the other operators the bitwise ‘!I” operator has a shortcut if you just need to ‘!’ a number to a
single variable:

NumberOne.b = 38

NumberOne ! 74
Debug NumberOne

Here ‘NumberOne’ is assigned the value ‘38’ and then in the next line we ‘I’ the value ‘74’ to
‘NumberOne’. This value is then echoed to the Debug Output window.

Fig.g shows the comparison made between two bits and the result given by the ‘!” operator:

‘I’ (Bitwise XOR) Bit Comparison

Left Hand Side Right Hand Side Result
0 0 0
0 1 1
1 0 1
1 1 0
Fig. 9

~ (Bitwise NOT)
The bitwise ‘~’ operator is an easier operator to explain in that it simply returns a number who’s bits
have been inverted using an input number or expression as a source.

The bitwise ‘~’ operator is known as an Unary operator meaning that it uses one value or expression
to return a value. This can be demonstrated with this piece of code:

26 Operators

NumberOne.b = 43
NumberTwo.b = ~NumberOne
Debug NumberTwo

Here the variable ‘NumberOne’ is assigned the value of ‘43’ then we create a variable NumberTwo’ and

assign it the value of ‘NumberOne’ which is inverted at a binary level using the ‘~’ operator. This value
(which should be ‘-44’) is then echoed to the Debug Output window.

The ‘~’ (Bitwise NOT) Operator

Binary Value of 43 ojofjrfofj1r)ofrf|z

Resultvalueof-44 |1 |1 [0]1)J0|1]0]O0

8 bit number
(1 byte)
Fig. 10

In Fig.10 you can see the ‘~’ operator simply inverts the bits of the source number then returns that
new value. To understand better how numbers are represented in binary within PureBasic, especially
negative (signed) numbers, see chapter 13 (A Closer Look At Numeric Data Types).

<< (Bit shift left)

The bit shift operators are similar to the bitwise operators in that they manipulate numbers at a binary
level. As their name suggests they shift all bits to the left or right depending on which operator is used.
Here is some code demonstrating the use of the ‘<<’ operator:

NumberOne.b = 50
NumberTwo.b = NumberOne << 1
Debug NumberTwo

In this example we assign ‘NumberOne’ the value of ‘50’. Then we create a variable called
‘NumberTwo’ and assign it the value of ‘NumberOne’ which has been bit shifted to the left by one
place. This resulting value (which should be ‘100’) is then echoed to the Debug Output window. You
can understand the function of this operator more clearly looking at Fig.11.

As you can see the resulting value simply has its binary digits (bits) shifted to the left from their
original position, in this case by one place. When shifting bits to the left like this, zeros are created and
shifted in to fill the gap on the right, while the bits on the left will be shifted ‘off the end’ of the number
(in this case a Byte) and will be lost forever.

Operators 27

The ‘<<’ (Bit Shift Left) Operator

Binary Value of 50 ojofzf1rj)ofofzrijo

Resultvalueof100|(0O |1 |1 |00 |1]0|0O

8 bit number
(1 byte)
Fig. 11

>> (Bit shift right)
The ‘>>’ operator is exactly the same as the ‘<<’ operator but works in the opposite direction. Here is
some code demonstrating the use of the °>>’ operator:

NumberOne.b = 50
NumberTwo.b = NumberOne >> 1
Debug NumberTwo

In this example we assign ‘NumberOne’ the value of ‘50’. Then we create a variable called
‘NumberTwo’ and assign it the value of ‘NumberOne’ which has been bit shifted to the right by one
place. This resulting value (which should be ‘25’) is then echoed to the Debug Output window. You can
understand the function of this operator more clearly in this diagram:

The “>>’ (Bit Shift Right) Operator

Binary Value of 50 ojfofzf1j)ofofzrijo

Resultvalueof2s5 | O[O0 [0 |1)1 |0|O0]1

8 bit number
(1 byte)
Fig. 12

As you can see the resulting value simply has its binary digits (bits) shifted to the right from their
original position, in this case by one place. When shifting bits to the right like this it is important to
understand what bits are used to fill the gap that is created on the left hand side of the binary number.
If the number is a positive number, the left most bit (sometimes called the most significant bit) is set
to zero. In this case the gap will be filled with bits set to zero. If the source number is a negative
(signed) number then the left most bit will be one. In this case the gap will be filled with bits set to one.
The bits on the right will be shifted ‘off the end’ of the number (in this case a Byte) and will be lost
forever.

28 Operators

< (Less than)

The ‘<’ operator is used in comparisons of two variables or expressions. If the value on the left hand
side of this operator is less than the value on the right hand side then this operator will return true (1)
otherwise it will return false (0). Here is a code snippet demonstrating its usage:

NumberOne.1l
NumberTwo. 1

1
2

If NumberOne < NumberTwo

Debug "1: NumberOne is less than NumberTwo"
Else

Debug "2: NumberTwo is less than NumberOne"
EndIf

Here in the ‘If statement we test to see if ‘NumberOne’ is less than ‘NumberTwo’, which of course it
is, so the first debug statement is executed. If we change the value of ‘NumberOne’ to ‘3’, like this:

NumberOne.l = 3
NumberTwo.l = 2

If NumberOne < NumberTwo

Debug "1: NumberOne is less than NumberTwo"
Else

Debug "2: NumberTwo is less than NumberOne"
EndIf

We now see in the Debug Output window that the second debug statement has been executed because
now ‘NumberOne’ is no longer less than ‘NumberTwo’.

> (More than)

The ‘>’ operator is used in comparisons of two variables or expressions. If the value on the left hand
side of this operator is more than the value on the right hand side then this operator will return true
(1) otherwise it will return false (0). Here is a code snippet demonstrating its usage:

NumberOne.l = 2
NumberTwo.l = 1

If NumberOne > NumberTwo

Debug "1: NumberOne is more than NumberTwo"
Else

Debug "2: NumberTwo is more than NumberOne"
EndIf

Here in the ‘If statement we test to see if NumberOne’ is more than ‘NumberTwo’, which of course it
is, so the first debug statement is executed. If we change the value of ‘NumberOne’ to ‘0’, like this:

Operators 29

1]
o

NumberOne.1l
NumberTwo. 1

|
[y

If NumberOne > NumberTwo

Debug "1: NumberOne is more than NumberTwo"
Else

Debug "2: NumberTwo is more than NumberOne"
EndIf

We now see in the Debug Output window that the second debug statement has been executed because
now ‘NumberOne’ is no longer more than ‘NumberTwo’.

<= (Less than or equal to)

The ‘<=’ operator is used in comparisons of two variables or expressions. If the value on the left hand
side of this operator is less than or equal to the value on the right hand side then this operator will
return true (1) otherwise it will return false (0). Here is a code snippet demonstrating its usage:

0
1

NumberOne.1l
NumberTwo. 1

If NumberOne <= NumberTwo

Debug "1: NumberOne is less than or equal to NumberTwo"
Else

Debug "2: NumberOne is NOT less than or equal to NumberTwo"
EndIf

Here in the ‘If statement we test to see if ‘NumberOne’ is less than or equal to ‘NumberTwo’, which of
course it is, so the first debug statement is executed. If we change the value of ‘NumberOne’ to ‘1’ then
the ‘If statement will still return true (1) because ‘NumberOne’ is still less than or equal to
‘NumberTwo’.

To demonstrate the second debug statement being executed we have to make sure that the ‘If
statement is given a false result from the ‘<=" operator. This is achieved easily by making sure the value
of NumberOne’ is NOT less than or equal to the value of ‘NumberTwo’, like this:

2
1

NumberOne.1l
NumberTwo. 1

If NumberOne <= NumberTwo

Debug "1: NumberOne is less than or equal to NumberTwo"
Else

Debug "2: NumberOne is NOT less than or equal to NumberTwo"
EndIf

>= (More than or equal to)
The “>=" operator is used in comparisons of two variables or expressions. If the value on the left hand
side of this operator is more than or equal to the value on the right hand side then this operator will

30 Operators

return true (1) otherwise it will return false (0). Here is a code snippet demonstrating its usage:

2
1

NumberOne.1l
NumberTwo. 1

If NumberOne >= NumberTwo

Debug "1: NumberOne is more than or equal to NumberTwo"
Else

Debug "2: NumberOne is NOT more than or equal to NumberTwo"
EndIf

Here in the ‘If statement we test to see if ‘NumberOne’ is more than or equal to ‘NumberTwo’, which
of course it is, so the first debug statement is executed. If we change the value of ‘NumberOne’ to ‘1’
then the ‘If statement will still return true (1) because ‘NumberOne’ is still more than or equal to
‘NumberTwo’.

To demonstrate the second debug statement being executed we have to make sure that the ‘If
statement is given a false result from the >=" operator. This is achieved easily by making sure the value
of NumberOne’ is NOT more than or equal to the value of NumberTwo’, like this:

NumberOne.l = 0
NumberTwo.l = 1

If NumberOne >= NumberTwo

Debug "1: NumberOne is more than or equal to NumberTwo"
Else

Debug "2: NumberOne is NOT more than or equal to NumberTwo"
EndIf

<> (Not equal to)

The ‘<>’ operator is used in comparisons of two variables or expressions which works in the exact
opposite way of the comparison (not assignment) function of the ‘=" operator. If the value on the left
hand side of this operator is not equal to the value on the right hand side then this operator will return
true (1) otherwise it will return false (0). Here is a code snippet demonstrating its usage:

0
1

NumberOne.1l
NumberTwo. 1

If NumberOne <> NumberTwo

Debug "1: NumberOne does not equal NumberTwo"
Else

Debug "2: NumberOne does equal NumberTwo"
EndIf

Here in the ‘If statement we test to see if ‘NumberOne’ is not equal to ‘NumberTwo’, which of course
it isn’t, so the first debug statement is executed. If we change the value of ‘NumberOne’ to ‘1’, like this:

1
1

NumberOne.1l
NumberTwo. 1

Operators 31

If NumberOne <> NumberTwo

Debug "1: NumberOne does not equal NumberTwo"
Else

Debug "2: NumberOne does equal NumberTwo"
EndIf

We now see in the Debug Output window that the second debug statement has been executed because
‘NumberOne’ is now equal to ‘NumberTwo’ and the ‘<>’ operator returns false.

And (Logical AND)
The logical operators are used to combine the logical true or false results of the comparison operators
to provide a more robust solution to comparing values of multiple expressions.

The ‘And’ operator is used for checking two expressions to make sure both evaluate as true. Look at
this piece of code:

StringOne.s

"The quick brown fox"

NumberOne.l = 105
If StringOne = "The quick brown fox" And NumberOne = 105
Debug "1: Both expressions evaluate to true (1)"

Else
Debug "2: One or both of the expressions evaluate as false (0)"
EndIf

We can see here that the ‘If statement is testing to make sure that the String variable, ‘StringOne’
equals ‘The quick brown fox’ and that the Long variable ‘NumberOne’ equals ‘105’. Because both do so
the ‘And’ operator returns true and the first debug statement is executed. If either of the two
expressions on the right and left hand side of the ‘And’ operator return a false result, the ‘And’ operator
itself returns a false result. This operator is optimized in such a way that if the first of the expressions
return a false result then the ‘And’ operator immediately returns false and doesn’t bother to evaluate
the next expression. This is handy when you want to write code that runs very quickly.

Not (Logical NOT)

The ‘Not’ operator is used to perform a logical negation on an expression or a boolean value. In other
words anything that evaluates to true on the right hand side of this operator is returned as false and
vice versa. See this example:

One.1l
Two.1l

1
2

If Not One = 5

Debug "1l: One = 5 is evaluated as true (1)"
Else

Debug "2: One
EndIf

5 is evaluated as false (0)"

32 Operators

If Not Two = 2

Debug "1l: Two = 2 1is evaluated as true (1)"
Else

Debug "2: Two = 2 1s evaluated as false (0)"
EndIf

We can see here that the first ‘If statement is testing to make sure that the Long variable, ‘One’ equals
‘5’ which it doesn’t and the expression returns false. Because we have the ‘Not’ operator in front of ‘One
= 5’ this inverts the false return value to a true value. Opposite values are shown in the second ‘If
statement. The expression here returns true but because of the ‘Not’ operator it inverts it to a false
value.

Or (Logical OR)
The ‘Or’ operator is used for checking two expressions to make sure one or the other evaluate as true.
Look at this piece of code:

StringOne.s

"The quick brown fox"

NumberOne.l = 105
If StringOne = "The quick brown fox" Or NumberOne = 100
Debug "1: One or more expressions evaluate to true (1)"
Else
Debug "2: Both of the expressions evaluate as false (0)"
EndIf

Here we can see that the ‘If statement is testing to make sure that the String variable, ‘StringOne’
equals “The quick brown fox’ or that the Long variable ‘NumberOne’ equals ‘100’. You will notice that
the second expression in the ‘If statement actually returns false because ‘NumberOne’ does not equal

3 5

100°.

Because one of the expressions returns a true result, the ‘Or’ operator returns true and the first debug
statement is executed. The ‘Or’ operator will only return a false result if both expressions on the right
and left hand side return a false result themselves. This operator is also optimized in such a way that
if the first expression returns a true result then the ‘Or’ operator immediately returns true and doesn’t
bother to evaluate the next expression. This is handy when you want to write code that runs very
quickly.

XOr (Logical XOR)
The “XOr’ operator is used for checking two expressions to make sure only one evaluates as true. Look
at this piece of code:

StringOne.s = "The quick brown fox"

NumberOne.l = 105

If StringOne = "The quick brown fox" XOr NumberOne = 105
Debug "1: Only one expression is true (1)"

Else

Debug "2: The expressions are either both true (1) or both false (0)"
EndIf

Operators 33

The ‘If statement is testing both expressions using the XOr’ operator to make sure only one
expression is evaluating as true. If both are evaluating as true or false then the ‘If statement itself will
return false and execute the second debug statement, which is the case here. If this example was
changed to make sure only one expression returned a true value, then the ‘If would return true and
execute the first debug statement.

% (Modulo)
The ‘%’ operator divides the number on the left hand side by the number on the right hand side and
then returns the remainder of this division. Here is an example:

NumberOne.l = 20 % 8
Debug NumberOne

Here we divide the number ‘20’ by ‘8’ using the ‘%’ operator. In which there are two ‘8’s in ‘20’, this
leaves ‘4’ as a remainder. This remaining number is assigned to the variable ‘NumberOne’. We then
echo this value to the Debug Output window.

() (Brackets)

Brackets are not really an operator in themselves because they never return any result. They are used
to determine the execution order of nested expressions. The general rule of thumb is that the
expression within brackets is evaluated first. In the case of nested brackets the inner-most set is
evaluated first, then the next set and so on until the final set is reached. Here is an example:

NumberOne.l = 2 * 5 + 3
Debug NumberOne

Here the value of ‘NumberOne’ is ‘13’ because the order of evaluation is, ‘2 * 5’ then ‘+ 3’, if we add
brackets like this:

NumberOne.l = 2 * (5 + 3)
Debug NumberOne

Then the order of evaluation is changed to ‘5 + 3’ then “* 2’ which returns the value of ‘16’ which in turn
in assigned to ‘NumberOne’ and echoed to the Debug Output window.

Operator Precedence

Operator precedence is a term that means the order in which operators are evaluated during compile
time. If you look at Fig.13 you can see the order in which operators are evaluated based on their
individual priority.

This priority is shown in the left hand column, the lowest number (1) means these operators are
evaluated first while the higher the number means that these operators will be evaluated later.

34 Operators

Operator Precedence

Priority* Operators

1 ()
) ~
3 << >> % !
4 \ &
5 * /
6 + -
7 > >= < <= = <>
8 And Or Not XOr

* The operators at the top of this list are evaluated first. Fig. 13

In this example:

Debug 3 + 10 * 2

the multiplication operator is evaluated first before the addition operator because it has a greater
priority even though it appears after the addition operator in this expression. The result echoed to the
Debug Output window should be ‘23’

To customize the operator precedence, use brackets to encapsulate portions of code to make them
execute with a higher priority. For example, if we wanted the addition operator to execute first we
would write the expression like this:

Debug (3 + 10) * 2

Now the value echoed to the Debug Output window would be ‘26°.

Expression Notes

When PureBasic’s compiler evaluates an expression between Integers and Floats, it sometimes
changes the data type of the expression’s components to evaluate it properly. If the expression
contains a Float then each part of the expression is converted to a Float before the expression is
evaluated and a result returned. Fig.14 shows examples of how PureBasic evaluates these expressions
under certain conditions.

Operators 35

If you find that strange results are being returned from operators or expressions or that the number
returned is not of the expected type, it’s a good idea to re-check the expression to make sure the
compiler is not following these rules.

Expression Evaluation Rules

Expression Example | Evaluation Rule

a.l =Db.1 + c.1 ‘b’ and ‘¢’ both remain as a Long before and during evalua-
tion, a Long is then returned and assigned to ‘a’.

a.l =Db.1 + c.f Because this expression contains a Float, ‘b’ is converted to
Float before the evaluation. ‘b’ is then added to ‘¢’ and the
resulting Float is then converted to a Long and assigned to ‘a’.

a.f =Db.1 + c.1 ‘b’ and ‘¢’ both remain as a Long before and during evalua-
tion. The resulting Long returned by the addition operator is
then converted to a Float and assigned to ‘a’.

a.l =Db.f + c.f ‘b’ and ‘¢’ both remain as a Float before and during evalua-
tion. The resulting Float returned by the addition operator is
then converted to a Long and assigned to ‘a’.

Fig. 14

36 Operators

Operator Quick Reference

Operator Description

= Equals. This can be used in two ways. The first is to assign the value of the expression on the RHS to the variable on the LHS. The second way is when
the result of the operator is used in an expression to test whether the values of the expression on the LHS and the RHS are the same (if they are the
same the equals operator will return true, otherwise it will return false).

+ Plus. Gives a result of the value of the expression on the RHS added to the value of the expression on the LHS. If the result of this operator is not used
and there is a variable on the LHS, then the value of the expression on the RHS will be added directly to the variable on the LHS.

- Minus. Subtracts the value of the expression on the RHS from the value of the expression on the LHS. When there is no expression on the LHS this
operator gives the negative value of the value of the expression on the RHS. If the result of this operator is not used and there is a variable on the LHS,
then the value of the expression on the RHS will be subtracted directly from the variable on the LHS. (This operator cannot be used with strings).

Multiplication. Multiplies the value of the expression on the LHS by the value of the expression on the RHS. If the result of this operator is not used
and there is a variable on the LHS, then the value of the variable is directly multiplied by the value of the expression on the RHS. (This operator
cannot be used with strings).

/ Division. Divides the value of the expression on the LHS by the value of the expression on the RHS. If the result of this operator is not used and there
is a variable on the LHS, then the value of the variable is directly divided by the value of the expression on the RHS. (This operator cannot be used
with strings).

& Bitwise AND. You should be familiar with binary numbers when using this operator. The result of this operator will be the value of the expression on
the LHS AND’ed with the value of the expression on the RHS, bit for bit. Additionally, if the result of the operator is not used and there is a variable on
the LHS, then the result will be stored directly in that variable. (This operator cannot be used with strings).

Bitwise OR. You should be familiar with binary numbers when using this operator. The result of this operator will be the value of the expression on the
LHS OR’ed with the value of the expression on the RHS, bit for bit. Additionally, if the result of the operator is not used and there is a variable on the
LHS, then the result will be stored directly in that variable. (This operator cannot be used with strings).

Bitwise XOR. You should be familiar with binary numbers when using this operator. The result of this operator will be the value of the expression on
the LHS XOR’ed with the value of the expression on the RHS, bit for bit. Additionally, if the result of the operator is not used and there is a variable on
the LHS, then the result will be stored directly in that variable. (This operator cannot be used with strings).

~ Bitwise NOT. You should be familiar with binary numbers when using this operator. The result of this operator will be the NOT’ed value of the
expression on the RHS. i.e. the result will have it’s bits inverted compared to the value of the expression. (This operator cannot be used with strings).

< Less than. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression on the LHS is less than the value
of the expression on the RHS this operator will give a result of true, otherwise the result is false.

> More than. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression on the LHS is more than the
value of the expression on the RHS this operator will give a result of true, otherwise the result is false.

<= Less than or equal to. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression on the LHS is less than
or equal to the value of the expression on the RHS this operator will give a result of true, otherwise the result is false.

>= More than or equal to. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression on the LHS is more
than or equal to the value of the expression on the RHS this operator will give a result of true, otherwise the result is false.

<> Not equal to. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression on the LHS is equal to the value
of the expression on the RHS this operator will give a result of false, otherwise the result is true.

And Logical AND. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expressions on the LHS and the RHS are
both true then the result is true, otherwise the result is false.

Or Logical OR. This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression on the LHS or the RHS is true
then the result is true, otherwise the result is false.

Not Logical NOT. This is used to perform logical negation of a boolean value. In other words if an expression returns a true value, using the Not operator
can invert this value to a false. Conversely if the expression on the RHS of this operator returns false then Not will return true.

XOr Logical XOR. This is used to compare the values of the expressions on the LHS and RHS. If only one of the expressions on the LHS or the RHS is
evaluated as true then the result is true. If both expressions are either true or both false then the XOr operator returns false.

<< Arithmetic shift left. Shifts each bit in the value of the expression on the LHS left by the number of places given by the value of the expression on the
RHS. Additionally, when the result of this operator is not used and the LHS contains a variable, that variable will have its value shifted by the amount
on the RHS. It probably helps if you understand binary numbers when you use this operator, although you can use it as if each position you shift by is
multiplying by an extra factor of 2.

>> Arithmetic shift right. Shifts each bit in the value of the expression on the LHS right by the number of places given by the value of the expression on
the RHS. Additionally, when the result of this operator is not used and the LHS contains a variable, that variable will have its value shifted by the
amount on the RHS. It probably helps if you understand binary numbers when you use this operator, although you can use it as if each position you
shift by is dividing by an extra factor of 2.

% Modulo. Returns the remainder of the LHS divided by RHS using integer division.

@) Brackets. You can use sets of brackets to force part of an expression to be evaluated first, or in a certain order. Expressions in brackets are evaluated
first before any other part of the current expression. In nested brackets the inner-most set are evaluated first and then each evaluated outwards.

RHS = Right hand side ~ LHS = Left hand side Fig. 15

37

Conditional Statements
And Loops

In this chapter I'll introduce conditional statements and loops. These are major parts of any program
and help define the program flow. I start by explaining what boolean values are and how PureBasic
handles them. I then move on to conditional statements such as ‘If and ‘Select’ which are used to tell
the program how to proceed when a particular condition is met. I then finish the chapter with
explanations and examples of the different loops that are available for use in PureBasic. As always full
explanations are given along with many examples.

Boolean Logic

First let’s dig out the history books. George Boole was a mathematician and philosopher who invented
a form of algebra now called Boolean algebra. The logic behind this form of algebra has been named
Boolean Logic in honor of George Boole. This form has grown to be the basis of all modern computer
arithmetic. What is astonishing is that George Boole invented this form roughly seventy years before
the creation of the first computer that used it!

In a nutshell, the entire system revolves around two values, True and False. These two values (or
states) are tested using logic operations to determine a result. It really is as simple as that. The three
most basic logic operations were (and still are) AND, OR and NOT. It was these three operators that
formed the basis of Boole’s algebra form, and were the only operations necessary to perform
comparisons or basic mathematics. (You can see these logical operators implemented in PureBasic
and read how to use them in Chapter 3).

PureBasic does not have a boolean data type (as you can see from Fig.2 and Fig.3), unlike some
languages such as C++. So in PureBasic to express a true or false value we use numbers. ‘1’ equaling
True and ‘0’ equaling False, keep this in mind when testing for a true or false result. If you are using
these numeric values to represent true and false, then it would be a good idea to use PureBasic’s built-
in constants instead, to make your program code easier to read and understand later on.

38 Conditional Statements And Loops

Here are the two constants:

#True
#False

‘#True’ has the value of ‘1" and ‘#False’ has the value of ‘0’.

Nearly all commands in PureBasic return a value. Sometimes this is the value of a mathematical
function or it may be the status of a window you have just created. These values are returned to be
tested if needed and sometimes they are required to make sure certain actions take place. Look at this
piece of pseudo-code:

if window creation equals True

then draw graphics and buttons on the window
else

tell the user there has been a problem

end the program

This is not real compilable code but you get the idea. Here I'm testing to make sure my window has
been created. Once I have tested that it has been created then I can draw my stuff on it. If, however, it
has not been created, then I end the program after informing the user something went wrong. If I don’t
test the window creation, I might run the risk of a bad program crash if I try to draw buttons and
graphics on something that doesn’t exist.

This is a first glimpse of the value of having true and false tests. This also leads us nicely into the next
section which explains the ‘If keyword in more detail.

The ‘If Statement

An ‘If keyword is used to construct statements which effect the flow of the program. It affects which
path to choose when a certain condition arises or is met. Sometimes when programs are running, you
may get unusual input or errors and is nice to be able to direct the flow of the program to handle such
things, if and when they occur.

Constructing ‘If’ Statements

An ‘If statement is used to test for a true value, if it receives this true value, then it immediately
executes the piece of code after the first line of the ‘If statement. If it doesn’t receive this true value,
then it will execute another separate piece of code immediately after the ‘Else’ keyword further along
in the statement. Let’s take a look at an example.

a.l =5
If a =5

Debug "A true value was found"
Else

Debug "No true value was found"
EndIf

Conditional Statements And Loops 39

Here the ‘If operator is testing that the variable ‘a’ equals ‘5’. It does, and returns a true value, so the
first line after the ‘If keyword is executed. If this comparison returned false then the code after the
‘Else’ keyword would of been executed. To finished the ‘If statement off, you must use the ‘EndIf
keyword, as this defines the end of the ‘If’ statement.

Everything Is True?

As you have read earlier on, and generally in PureBasic, ‘1’=True and ‘0’=False. While this is correct, ‘If
statements are a special case regarding what they recognized as true. In ‘If statements everything equals true
unless the value returned is ‘0’ (zero) and then it equals false (unless you are making specific comparisons).
This is handy when using an ‘If statement to test if a variable, command or expression returns any value
other than ‘0’.

The first thing to take notice of when learning about ‘If statements is the expression that directly
follows the ‘If keyword. This expression is being tested to see if it evaluates as true. This expression
could be a simple variable or a very long expression. The ‘Else’ keyword is also completely optional and
is only used here to present a complete example. We could omit it completely and re-type the above
example as this:

a.l =5
If a =5

Debug "A true value was found"
EndIf

The only drawback with this smaller example is that it doesn’t provide any feedback when a false result
is encountered. There is no rule to say that you must use the ‘Else’ keyword within an ‘If statement but
sometimes it’s nice to provide a way of handling a false result for the sake of completeness.

Let’s look at a simple ‘If statement to test to see if a variable has a value.

Beads.l = 5

If Beads

Debug "The variable has a wvalue"
Else

Debug "The variable does not have a value"
EndIf

Here, after the ‘If keyword I have used just one variable as the expression to test. This variable is tested
to see if it returns a value, which in this case it does. The value is not ‘0’, so it is considered true (See
the info box ‘Everything Is True?’) and the relevant piece of code is executed. Try changing the value
of ‘Beads’ to ‘0’ and run again to see a false result.

40 Conditional Statements And Loops

Let’s take a look at a more complicated example of an expression inside an ‘If statement. Re-read
Chapter 3 if you need to understand fully all the operators used in this expression.

Valuel.l = 10
Value2.1l = 5
Value3.1l = 1

If vValuel >= 10 And (Value2 / 5) = Value3
Debug "The expression evaluates as true"
Else
Debug "The expression evaluates as false"
EndIf

This ‘If statement is testing to see if ‘Value1’ is greater than or equal to ‘10’ and that ‘Value2’ divided
by ‘5’ is equal to ‘Value3’. As you can see the expressions that can be tested can be quite complicated
and be very specific about what values you are testing for.

The ‘Elself’ Keyword

Another keyword that can be used within an ‘If statement is the ‘ElseIf keyword. The ‘Elself keyword,
as its name suggests, is a combination of ‘Else’ and ‘If. Like ‘Else’, it extends an ‘If statement to
execute a different piece of code if the original ‘If expression evaluates as false. However, unlike the
‘Else’ keyword, it will execute an alternative piece of code only if the ‘Elself conditional expression
evaluates as true. Confused? Here’s an example:

NumberOfBeads.l = 10

If NumberOfBeads < 5

Debug "The variable has a value below '5'"
ElseIf NumberOfBeads > 5

Debug "The variable has a value above '5'"
Else

Debug "The variable has a value of 's5'"
EndIf

Here we test the value of the ‘NumberOfBeads’ variable. The first ‘If tests to see if this value is less
than ‘5. Because this returns false the program then moves onto the ‘Elself part. Here the ‘Elself line
returns true because ‘NumberOfBeads’ is greater than ‘5.

The ‘Elself statement is a great way to extend an ‘If to check for multiple values and there is an
unlimited number of ‘ElseIf checks you can make within an ‘If statement. The only drawback is that
when a large number of these statements are used, things can get a little complicated while deciding
the order with which they are typed in. When a great deal of checks are needed sometimes a ‘Select’
statement is preferred.

Statement Skipping

At anytime during the execution of an ‘If statement, if any part of the statement returns true then the
rest of the ‘If statement is skipped and not executed. Because of this behavior some care is needed
when designing an ‘If statement.

Conditional Statements And Loops 41

The last example showed this skipping in action, the ‘Else’ part is completely skipped because the
‘Elself part returns true.

The ‘Select’ Statement

‘Select’ statements are a direct complement to ‘Ifs. In that they provide a way of combining several
tests of the same variable or expression into a single block of statements. While ‘If’s are very powerful
in what they do, sometimes it’s better to use a ‘Select’ when things are starting to get complicated and
a great deal of conditions are needed to be tested for. Let me show you an example of the correct syntax
and explain its use.

Days.l = 2

Select Days
Case 0
Debug "0 Days"
Case 1
Debug "1 Day"
Case 2
Debug "2 Days"
Default
Debug "Over 2 Days"
EndSelect

The ‘Select’ statement starts with the ‘Select’ keyword, which basically selects an expression or variable
to be tested, in this case it is the variable ‘Days’. The ‘Case’ keywords that follow are branches that
could potentially be executed should the value of ‘Days’ be equal to the variable or expression following
that particular ‘Case’ statement. In our example here, if the variable ‘Days’ has the value ‘0’ then the
code immediately following ‘Case 0’ is executed, if the variable ‘Days’ has the value ‘1’ then the code
immediately following ‘Case 1’ is executed and so on.

You will notice that in the last place where there would normally be a ‘Case’ statement, there is another
keyword named ‘Default’. This is the piece of code that executes if all other ‘Case’s return false, kind of
like the ‘Else’ within an ‘If statement.

Checking For Multiple Values

‘Select’ statements can check for lots of different values and can be neatly presented to produce clear
concise code. To facilitate this nice and clean approach of testing lots of values, a ‘Select’ statement can
use a few shortcuts when defining the ‘Case’ statements within. Here is an example:

Weight.1l = 12

Select Weight
Case 0
Debug "No Weight"
Case 1, 2, 3
Debug "Light"

42 Conditional Statements And Loops

Case 4 To 15
Debug "Medium"
Case 16 To 30
Debug "Heavy"
Default
Debug "Massive"
EndSelect

Here you can see shortcuts that can be used to specify a range of cases. Using the ‘To’ keyword to
specify a range or specify several numbers in one ‘Case’ statement using commas. When specifying
ranges using the ‘To’ keyword, the second number must always be larger than the first. In this example
I've used numbers but these can be replaced by expressions or variables for more precise handling of
the potential values that the selected variable or expression might have.

Here’s another fun example using a ‘Select’ statement within a console program:

If OpenConsole ()
PrintN("1. Official PureBasic Home")
PrintN("2. Official PureBasic Forums")
PrintN("3. PureArea.net")

PrintN("")
PrintN ("Enter a number from 1 To 3 and press Return: ")
Destination.s = Input()
Select Destination
Case "1"
RunProgram ("http://www.purebasic.com")
Case "2"
RunProgram ("http://forums.purebasic.com")
Case "3"
RunProgram ("http://www.purearea.net")
EndSelect
EndIf
End

In this example I've used a few new commands that you will not be familiar with but I think this simple
program neatly demonstrates one use of the ‘Select’ statement. These new commands will be explained
a little later but I think you can gather what’s going on by their descriptive names.

The main thing to notice about this example is that the ‘Select’ statement is testing the ‘Destination’
variable. This variable is assigned a String value which is returned from the ‘Input()’ command after
the Return key is pushed. The ‘Case’ statements are then also defined using Strings to match correctly
the variable’s value. Any PureBasic type or any type resulting from an expression can be tested using
a ‘Select’ or ‘Case’ statement.

As a side note, you can also see in this last example that I've used an ‘If statement to test that
‘OpenConsole()’ returns true and correctly opens a console window.

Conditional Statements And Loops 43

Loops

To be able continuously to receive and process data you need loops. All programs that use graphical
user interfaces employ loops to manage the drawing of the interface and to continuously monitor for
input from the user. For example, the PureBasic IDE uses many loops within its code, to monitor for
keypresses and mouse clicks, to update displays, etc. Loops are also a great way of processing large
amounts of data within arrays or linked lists by iterating through them, one element at a time.

‘For’ Loops

The first loop I will talk about is probably the most well known and maybe the most used loop of all,
it is the ‘For’ loop. These loops, sometimes called ‘For/Next’ loops, are a great way of looping through
data when you need an incrementing variable available to be used as a counter or as an index for an
individual element of a looping array. Here’s an example to get things started.

For x.1 = 1 To 10
Debug x
Next x

In this example we construct a loop using the ‘For’ keyword. A user defined Long variable must be
entered immediately following this keyword, which in this example I've called ‘x’. The value assigned
to X’ is the start value of our loop, here I've assigned it the value of ‘1’. After this variable assignment
the ‘To’ keyword is used to define a range, so I've entered ‘10’ as the upper limit that ‘x’ should reach
during our loop. This completes the beginning of the loop, all we need to do now is specify the end
point of the loop. We do this using the line ‘Next x’. This last line tells the compiler that after every
single step of the loop, move on to the next value of ‘x’ specified in the range in the first line, then start
the loop again.

The code between these two lines is repeated in a loop depending on how many steps there are
between the start and end value in the range specified. Once the value of X’ reaches the upper limit
specified after the ‘To’ keyword, the loop exits and normal program flow is resumed.

You will notice if you run the above example, the Debug Output window shows the different values that
‘x” has during the loop. You will see that the loop is repeated ten times as each time the ‘x’ variable is

incremented according to the specified range.

Here’s another example of using a loop to easily traverse an array.

Dim Names.s (3)

Names (0) = "Gary"
Names (1) = "Sara"
Names (2) = "Stella"
Names (3) = "MiniMunch"

For x.1 = 0 To 3
Debug Names (x)
Next x

44 Conditional Statements And Loops

Because all array values are accessed using indices, and these indices always start from zero, ‘For’
loops are fantastic for performing operations on all the elements within an array using just a small
amount of code. As you can see from the last example, it just takes three lines of code to echo all of the
array’s element values to the Debug Output window, no matter what size the array. A bigger array just
needs a bigger range in the first line of the ‘For’ loop definition.

‘For’ loops can also be constructed using expressions too:

StartVar.l = 5
StopVar.l = 10

For x = StartVar - 4 To StopVar / 2
Debug x
Next x

and, of course, loops can be nested if you need to process multi-dimensional arrays:
Dim Numbers.1l (2, 2)

Numbers (0,
Numbers (0,
Numbers (0,
Numbers (1,
Numbers (1,
Numbers (1,
Numbers (2,
Numbers (2,
Numbers (2,

NP ONMREFEONLEKE O
Il
W 0 J 0 Ul b W N R

For x = 0 To 2
For vy = 0 To 2
Debug Numbers (x, V)
Next vy
Next x

As long as the counter variables are different names, you can nest as many ‘For’ loops as you wish. The
unique configurability of ‘For’ loops make them powerful to use and extremely useful for looping code
a user defined amount of times.

Until now you’ve seen how ‘For’ loops increment the counter variable by ‘1’ on every iteration of the
loop but the incremental step can be configured manually using the optional ‘Step’ keyword. Here is
another example:

For x.1 = 0 To 10 Step 2
Debug x
Next x

You'll notice the ‘Step’ keyword appears on the first line of the ‘For’ loop. This keyword can only be
used in a ‘For’ loop and this is the only place in the loop that it can be used. Immediately after the ‘Step’

Conditional Statements And Loops 45

keyword you specify the amount that the counter variable should be incremented by on each iteration
of the loop. In this case I've used the number ‘2’, this increments the variable X’ by ‘2’ on every
iteration. If you run this example and look at the Debug Output window you will see the values echoed
are all multiples of ‘2’.

‘ForEach’ Loops

This type of loop is different from all the others in that it only works with linked lists. The syntax is
very similar to the ‘For’ loop except it doesn’t need a counter variable setting up. Here is a simple
example.

NewList Shopping.s()

AddElement (Shopping())
Shopping () = "Bunch of bananas"

AddElement (Shopping())
Shopping () = "Tea bags"

AddElement (Shopping())
Shopping () = "Cheese"

ForEach Shopping/()
Debug Shopping()
Next

In this example after the linked list is defined and a few elements added, I use a ‘ForEach’ loop to echo
the list’s contents to the Debug Output window. As you can see the syntax is very clear and very simple.
The loop starts with the ‘ForEach’ keyword followed by the linked list name. Then the end of the loop
is defined by using the ‘Next’ keyword. The code that sits between these two lines is the code that’s
repeated for the length of the linked list. Once the end of the linked list is reached the loop will exit. A
‘ForEach’ loops works on all type of linked list, even structured linked lists. I will talk more about
linked lists a little later on in Chapter 5.

‘While’ Loops

This particular loop uses an expression to determine wether it should start and how long it should
continue. If this expression returns true then the loop will start. After each individual iteration through
the loop, the expression is tested again for a true value, if this expression still returns true, the loop
continues. If this expression returns false at any time, the loop ends. Look at this example:

Monkeys.1l = 0

While Monkeys < 10
Debug Monkeys
Monkeys + 1

Wend

This loop is very simple to construct. It starts with the ‘While’ keyword, then an expression is used to
control the loop, in this case I've used ‘Monkeys < 10’. The loop is then completed using the “‘Wend’

46 Conditional Statements And Loops

keyword. The initial expression checks to see if the variable ‘Monkeys’ is below ‘10, if it is the loop will
enter and start. The code within this loop is then repeated until ‘Monkeys < 10’ returns false. If you
look at the output in the Debug Output window you will see that when ‘Monkeys’ equals ‘10’ the
expression returns false (because it is no longer less than ‘10°) and the loop ends.

One thing to keep in mind when using ‘While’ loops is that if the initial expression returns false then
the loop will never be entered and started. This can be demonstrated in this example:

Monkeys.1l = 20

While Monkeys < 10
Debug "This code is never executed"
Wend

‘Repeat’ Loops

These types of loops are pretty much the opposite of ‘While’ loops. ‘Repeat’ loops begin with the
‘Repeat’ keyword and end in one of two ways. The first way is using the ‘Until’ keyword preceding an
expression and the second way is using the ‘Forever’ keyword. I'll fully explain both ways, starting with
the ‘Until’ keyword.

Look at this example:
Bananas.l = 0

Repeat
Debug Bananas
Bananas + 1
Until Bananas > 10

Opposite to ‘While’ loops, the controlling expression is at the end of the loop and this is evaluated to
see if it returns false. If it does, the loop continues, if it returns true, the loop ends. As you can see from
the above example, when ‘Bananas’ value is greater than ‘10’ the loop ends.

Another point to take notice of is that unlike “‘While’ loops, a ‘Repeat’ loop always enters and runs at
least once before the expression on the end is evaluated. This is demonstrated here:

Bananas.l = 20

Repeat
Debug Bananas
Until Bananas > 10

You can see that even thought ‘Bananas’ is greater than ‘10’ the loop is started and run once before
evaluating the expression at the end of the loop. Once this expression is evaluated, ‘Bananas’ is greater
than ‘10’ so the expression returns true and the loop ends.

‘Repeat’ loops also have an alternative side to them, they can be used with another keyword in order
to make fully continuous loops. To construct a continuous loop just use the ‘Forever’ keyword instead

Conditional Statements And Loops 47

of the ‘Until’ keyword and an expression, like this:
Counter.l = 0

Repeat
Debug Counter
Counter + 1
ForEver

This is handy if you want to keep a loop going forever or you are not sure what condition is to be met
in order to exit it, or you may have multiple conditions that all need to be met in order jump out of the
loop. Use the ‘Kill Program’ menu command (Menu:Debugger->Kill Program) to exit this example.

Manually Stopping Never Ending Loops

Sometimes when you are using loops in your program you may run into the problem of unintended
continuous loops. This can cause problems in your programs because these loops can stop everything else
from working until they exit. One of the main headaches of unintended continuous loops is that programs
containing them are notoriously difficult to quit.

The PureBasic IDE makes this easy for you. If you need to stop the running program manually then just hit
the ‘Kill Program’ button on the IDE toolbar, it’s the one that looks like a skull or use the menu command
(Menu:Debugger->Kill Program). This not only ends the loop but also quits the whole program straight
away.

Controlling Loops Using ‘Break’ and ‘Continue’
At any time all these different types of loop can be controlled by two common keywords. These two
keywords are ‘Break’ and ‘Continue’. I'll explain ‘Break’ first.

If the ‘Break’ keyword is used anywhere within any type of loop then that loop is immediately exited
as soon as this keyword is encountered. In the case of nested loops, there is an optional parameter that
can be added to the end of the ‘Break’ keyword which specifies how many loops to exit out of. Let’s
have a look at an example of the ‘Break’ keyword:

For x = 1 To 10
If x = 5
Break
EndIf
Debug x
Next x

Here in this ‘For’ loop I've prematurely broken out of the loop using the ‘Break’ keyword when X’
equals ‘5. You will notice the loop exits even before ‘5’ is echoed to the Debug Output window. Here is
an example of breaking out of nested loops using the optional level parameter of the ‘Break’ keyword:

48 Conditional Statements And Loops

For x.1 = 1 To 10
Counter = 0
Repeat

If x =5
Break 2
EndIf
Counter + 1
Until Counter > 1
Debug x
Next

Here, once X’ equals ‘5’ then both loops are exited by using the command ‘Break 2’.

Next up is the ‘Continue’ keyword. This enables you at anytime to jump out of the current iteration and
continue to the next one inside the current loop. This is more simple than it sounds:

For x.1 = 1 To 10
If x = 5
Continue
EndIf
Debug x
Next

Here you can see that when ‘X’ equals ‘5’ (on the fifth iteration) the ‘Continue’ keyword is used. This
jumps out of the loop and continues from the top at the beginning of the sixth iteration where x’ now
equals ‘6’. Because of this jump and continuation of the loop, you will notice in the Debug Output
window that ‘5’ was never echoed because on that iteration it jumped out of the loop before the ‘Debug
x’ line was executed.

Loops can be used for a variety of things in computer programming, mainly to reduce tedious code and
to iterate quickly through vast amounts of data. Hopefully, you should now have an insight to how they
can be used.

49

Other Data
Structures

In this chapter I'll explain how to create and use other methods for storing and organizing data, such
as user defined structures, arrays and linked lists. Data structures such as these are essential for
programing applications and games as they allow for easier and faster access to multiple values of
related and non-related data. As always, full explanations and multiple examples are given.

Structures

Earlier in Chapter 2, I introduced to you the built-in types, Byte, Character, Word, Long, Quad, Float,
Double and String. Using the ‘Structure’ keyword you are able to define your own structured type and
then assign that type to a variable. Creating your own structured variable is handy if you need to group
lots of common variable names under one structure name. Confused? Then let’s look at an example of
a structure that contains several fields:

Structure PERSONALDETAILS
FirstName.s
LastName.s
Home.s

EndStructure

Me . PERSONALDETAILS

Me\FirstName = "Gary"

Me\LastName = "Willoughby"

Me\Home = "A House"

Debug "First Name: " + Me\FirstName

Debug "Last Name: " + Me\LastName
Debug "Home: " + Me\Home

Here the structure ‘PERSONALDETAILS’ is created using the ‘Structure’ keyword. After that the

50 Other Data Structures

components of the structure are then defined in exactly the same way as defining normal variables.
The ‘EndStructure’ keyword is used to define the end of the new structure. After the structure is
declared it is immediately ready for use. We assign this structured type in exactly the same way as we
assign any type to a variable, like this:

Me . PERSONALDETATILS

Here the variable name is ‘Me’ and its type is PERSONALDETAILS’. To assign values to the individual
variables (sometimes called fields) within the new ‘Me’ structured variable, we use the ‘\’ character. If
you look at the larger example, the ‘\’ character is also used to retrieve data from the individual fields
too, like this:

Father.PERSONALDETAILS
Father\FirstName = "Peter"
Debug Father\FirstName

Here in this little example, we create a new structured variable called ‘Father’ with a user defined
structured type of PERSONALDETAILS’. We assign the value of ‘Peter’ to the ‘FirstName’ field within
‘Father’. We then echo this value to the Debug Output window.

It might not of hit you yet but structures are incredibly useful things. In applications they can help to
define anything from personal records to window coordinates, in games they can be used to help
define bullets, spaceships along with all associated values.

Memory Considerations

The size in memory of a structured variable depends on the field variables used within the initial
structure definition. In the PERSONALDETAILS’ structure there are defined three field variables of
the String type, each having a size of 4 Bytes (see Fig.3 earlier in Chapter 2 for sizes of String types).
So the newly declared variable ‘Me’ takes up 12 Bytes (3 x 4 Bytes) in memory. We can test this by
echoing the output returned by the ‘SizeOf()’ command.

Structure PERSONALDETAILS
FirstName.s
LastName.s
Home. s

EndStructure

Debug SizeOf (PERSONALDETAILS)

Here ‘SizeOf()’ returns the value of ‘12’ which is how many Bytes this structure uses in memory.

The ‘SizeOf()’ Command

This command returns the size of any structure or defined variable in Bytes. It does not work with arrays,
linked lists or interfaces. This command is invaluable for Windows programming as some Win32 API
functions need the size of a particular structure or variable as a parameter. Read more about the Windows
Application Programming Interface (Win32 API) later in Chapter 13.

Other Data Structures 51

Inheriting Fields From Another Structure
Structures can also inherit fields from another structure by using the optional ‘Extends’ keyword.

Structure PERSONALDETAILS
FirstName.s
LastName.s
Home.s

EndStructure

Structure FULLDETAILS Extends PERSONALDETAILS
Address.s
Country.s
ZipCode.s

EndStructure

User.FULLDETAILS

User\FirstName = "John"

User\LastName = "Smith"

User\Home = "A House"

User\Address = "A Street"

User\Country = "UK"

User\ZipCode = "12345"

Debug "Users First Name: " + User\FirstName
Debug "Users Last Name: " + User\LastName
Debug "Users Home: " + User\Home

Debug "Users Address: " + User\Address
Debug "Users Country: " + User\Country
Debug "Users Zip Code: " + User\ZipCode

In this example the ‘FULLDETAILS’ structure is extending the ‘PERSONALDETAILS’ structure
during its creation, inheriting all the fields from the PERSONALDETAILS’ structure. These fields then
appear first in our new structure. We assign this newly created structured type to the variable ‘User’,
then proceed to assign values to all its fields. These are then tested by echoing their values to the Debug
Output window.

Structure Unions

Structure unions are a way of conserving memory by forcing groups of variables within a structure to
share the same memory address. This is maybe a little too advance to introduce this to you now but
I've included it here for completeness. You may want to read Chapter 13 (Pointers) to understand
better how unions work. Here is a simple example:

Structure UNIONSTRUCTURE
StructureUnion
One.1l
Two.1l
Three.l
EndStructureUnion
EndStructure

52 Other Data Structures

Debug SizeOf (UNIONSTRUCTURE)
UnionVariable.UNIONSTRUCTURE

UnionVariable\One = 123
Debug UnionVariable\One

UnionVariable\Three = 456
Debug UnionVariable\One

When we declared the ‘UNIONSTRUCTURE’ we have used the ‘StructureUnion’ and
‘EndStructureUnion’ keywords to encapsulate the variables we want to use the same memory area.
When we run this small program, the first debug statement echoes ‘4’ (Bytes) to the Debug Output
window. This is because there are three variables inside this structure, that all share the same place in
memory so only the size of one Long variable is returned.

Further on in the program we assign the ‘UnionVariable’ the type of ‘UNIONSTRUCTURE’ and assign
the value of ‘123’ to ‘UnionVariable\One’, then it’s echoed. We then assign a completely new value of
‘456’ to ‘UnionVariable\Three’ but because this field shares the same place in memory as the other
fields, we can access this value using any other field name, in this case we again echo the value of
‘UnionVariable\One’ to the Debug Output window and it predictably displays the shared value of
‘UnionVariable\Three’.

Structures can also contain what are known as Static Arrays but I'll need to explain Arrays before we
can apply that knowledge to structures. Arrays and Static Arrays are explained fully in the next section.

Arrays

In PureBasic, An Array can hold a user defined amount of variables of the same data type. Individual
variables within the array are accessed by an index using a consecutive range of integers (whole
numbers). Arrays can also be defined to contain structured variables instead of the standard PureBasic
variable types. This section will teach you all you need to know about arrays in PureBasic.

The ‘Dim’ Keyword
Arrays in PureBasic are created by using the ‘Dim’ keyword, like this example:

Dim LongArray.l(2)

Let me explain this line of code a little more clearly, first we use the ‘Dim’ keyword to tell the compiler
we are about to define an array. Then we give this new array a name, In this case, I've imaginatively
called it ‘LongArray’. After the name, we then assign the array type in a similar way as variable types
via a type suffix. Here I've used the ‘.I’ suffix to define that this is an array whose type is Long. After
the type is defined then we have to define how many indices this array is to hold. We use brackets to
define the last index number. In the above example we’ve used a ‘2’ to define the last index, so this
actually gives our new array three indices, this is because array indices always start at zero. Once this
array has been created, each index contains a Long variable.

Other Data Structures 53

This simple array is sometimes referred to as a One Dimensional array because it requires only one
index to assign and return all values within it. In this more complete example we define an array and
assign values to its indices:

Dim LongArray.l(2)

LongArray (0) = 10
LongArray (1) = 25
LongArray (2) = 30

Debug LongArray(0) + LongArray (1)
Debug LongArray(l) * LongArray (2)
Debug LongArray(2) - LongArray (0)

After the values are assigned, we then echoed some tests to the Debug Output window using the values
stored in the array indices. For example, the first return value to be echoed is from ‘10 + 25’, which are
the values stored in indices ‘0’ and ‘1’. The results of ‘25 * 30’ and ‘30 - 10’ are then echoed too. Array
indices can also be expressed using variables or expressions.

LastIndex.l = 2
FirstIndex.l = 0
Dim StringArray.s (LastIndex)

StringArray (FirstIndex) = "One is one and all alone"
StringArray (FirstIndex + 1) = "Two, two, the lily-white boys"
StringArray (FirstIndex + 2) = "Three, three, the rivalg"

Debug StringArray (FirstIndex)
Debug StringArray (FirstIndex + 1)
Debug StringArray (FirstIndex + 2)

Here we've defined an array with three indices each containing a String variable (note the ‘.s’ suffix
attached to the array name while using the ‘Dim’ command). We used the variable ‘LastIndex’ to assign
the last index of the new array. Then we used the variable ‘FirstIndex’ to assign a String to the first
index of the array and in later assignments we use an expression using the addition operator. This
same technique (using an expression as an index) is used to return results from the different array
indices to the Debug Output window. See Fig.16 for a graphical representation of the above array.

One Dimension String Array

Index | Value

o One is one and all alone
1 Two, two, the lily-white boys
2 Three, three, the rivals

Fig. 16

54

Other Data Structures

Because arrays are neatly ordered into indices, this makes it possible to iterate through them using
loops very quickly. Just to wet your appetite, here is an example of an array with a thousand indices
having each index assigned a value using a ‘For’ loop and then each index’s value is echoed to the

Debug Output window using a second ‘For’ loop.

Dim TestArray.l(999)

For x = 0 To 999
TestArray (x) = x
Next x

For x = 0 To 999
Debug TestArray (x)
Next x

Run it and take a look at the Debug Output window. As you can see, with arrays it’s very fast to set and

get even a thousand values.

Multi-dimensional Arrays

The best way of describing multi-dimensional arrays are in terms of tables holding columns and rows.
To create multi-dimensional arrays simply specify the number of columns and rows you want the array
to have. In the following example, we will create an array called ‘Animals’ which contains three indices,

each of which contain a further three indices.

Dim Animals.s (2, 2)

Animals (0, 0) = "Sheep"
Animals (0, 1) = "4 Legs"
Animals (0, 2) = "Baaa"
Animals (1, 0) = "Cat"
Animals (1, 1) = "4 Legs"
Animals (1, 2) = "Meow"
Animals (2, 0) = "Parrot"
Animals (2, 1) = "2 Legs"
Animals (2, 2) = "Screech"

Debug Animals (0, 0) +
Debug Animals(1l, 0) +
Debug Animals (2, 0) +

After defining the array, we then assign values to its indices. Because the

+ Animals (0,
+ Animals (1,
+ Animals (2,

" + Animals (0, 2)
" + Animals (1, 2)
" + Animals (2, 2)

‘Animals’ array has two

indices from which data is assigned and retrieved it is known as a Two Dimensional array. Two
dimensional arrays can easily be understood by representing them in a two dimensional table
consisting of rows and columns. Fig.17 shows the ‘Animals’ array in a similar way that Fig.16 shows a
one dimensional array. It shows the rows and columns that can be accessed using two indices required

by a two dimensional array.

Other Data Structures 55

Two Dimension String Array

Index o 1 2
o Sheep 4 Legs Baaa
1 Cat 4 Legs Meow
2 Parrot 2 Legs Screech

Fig. 17
Using Fig.17 as a reference we can see now how easily it is to assign and retrieve values of the various
indices. For example, if T want to echo the value of row index ‘1’ and column index ‘2’ to the Debug
Output window, we type:

Debug Animals (1, 2)

This should echo the text ‘Meow’. If you wanted to replace an entire row then we can do so like this:

Animals (0, 0) = "Tripod"
Animals (0, 1) = "3 Legs"
Animals (0, 2) = "Oo-la"

This replaces the Strings ‘Sheep’, ‘4 Legs’ and ‘Baaa’ with ‘Tripod’, ‘3 Legs’ and ‘Oo-la’ inside row index
‘0’ within the ‘Animals’ array. Fig.17 now looks like Fig.18, notice the modified first row.

Two Dimension String Array (modified)

Index o 1 2
o Tripod 3 Legs Oo-la
1 Cat 4 Legs Meow
2 Parrot 2 Legs Screech

Fig. 18

Another way to explain Multi-dimensional arrays are that they are arrays within arrays. Just think that
in each array index is contained another array and you get the idea of multi-dimensional arrays. The
number of arrays that are contained within each index of the first dimension is dependent on how the
array was first defined.

56 Other Data Structures

In this following example, I show how to define one, two, three, four and five dimensional arrays:

Dim Animals.s(5)

Dim Animals.s (5, 4)

Dim Animals.s (2, 5, 3)

Dim Animals.s (1, 5, 4, 5)
Dim Animals.s (2, 3, 6, 2, 3)

After two dimensions, things start to get a little hard on your head, but if you keep in mind, the array
within an array explanation, you should be able to work things out. Even though the maximum
number of dimensions that can be assigned to an array is two hundred and fifty five (255), using arrays
over two or three dimensions is unusual in everyday programming practices.

Structured Type Arrays
Until now we have seen how to define different arrays using only the standard PureBasic types but we
can also ‘Dim’ an array using a structure. Let’s look at a simple example using a one dimensional array:

Structure FISH
Kind.s
Weight.s
Color.s

EndStructure

Dim FishInTank.FISH(2)

FishInTank (0) \Kind = "Clown Fish"
FishInTank (0) \Weight = "4 oz."
FishInTank (0) \Color = "Red, White and Black"
FishInTank (1) \Kind = "Box Fish"

FishInTank (1) \Weight = "1 oz."

FishInTank (1) \Color = "Yellow"

FishInTank (2) \Kind = "Sea Horse"

FishInTank (2) \Weight = "2 oz."

FishInTank (2) \Color = "Green"

Debug FishInTank (0)\Kind+" "+FishInTank (0) \Weight+" "+FishInTank (0)\Color
Debug FishInTank (1) \Kind+" "+FishInTank (1) \Weight+" "+FishInTank (1) \Color
Debug FishInTank (2)\Kind+" "+FishInTank (2) \Weight+" "+FishInTank (2) \Color

Here after we define the ‘FISH’ structure we define the array using the ‘Dim’ keyword and use ‘FISH’
as the array’s type in exactly the same way as we used the ‘.s’ (String) as the ‘Animals’ array type. I've
also used ‘2’ as the last index for this array. To assign values to the fields of each of the array’s indices
it’s incredibly simple. We just amalgamate the syntax of assignment to arrays and structures like this:

FishInTank (0) \Kind = "Clown Fish"

Other Data Structures 57

Let’s break this down into easily understandable chunks. First is the name of the array, in this case it
is ‘FishInTank’. Then comes the current index contained within brackets in this case, index ‘0’. Next
we use the ‘\’ character to access the field called ‘Kind’ within the ‘FISH’ structure which has been
assigned to the ‘FishInTank’ array. We then use the ‘=" operator to assign a String value to that field.
Simple! To retrieve the value we have just assigned, we just use exactly the same syntax but without
the assignment part, like this:

Debug FishInTank (0) \Kind

If we need to assign or retrieve a value from another index we do it like an array:

Debug FishInTank (0) \Kind
Debug FishInTank (1) \Kind
Debug FishInTank (2) \Kind

This would list the ‘Kind’ fields of all the indices of the ‘FishInTank’ array. To assign or retrieve any of
the other fields we just use their names:

Debug FishInTank (1) \Kind

Debug FishInTank (1) \Weight
Debug FishInTank (1) \Color

Here we echo all the different fields to the Debug Output window of index ‘1’. To make things more
understandable refer to Fig.19 for a graphical representation of the ‘FishInTank’ array.

One Dimension Structured Type Array

Index ‘FISH’ Structure
(0] Clown Fish 4 oz. Red, White and Black
1 Box Fish 1 oz. Yellow
2 Sea Horse 2 oz. Green

Fig. 19

As with the standard type arrays you can also specify multi-dimensional arrays using a structure as the
array type. This gives you access to the unique fields of a structure within every index available inside
multi-dimensional arrays. To define a multi-dimensional structured type array we do it in exactly the
same way as one dimension structured type array but we just add more dimensions.

58 Other Data Structures

Here is an example of how to define a two dimensional structured type array:

Structure FISH
Kind.s
Weight.s
Color.s

EndStructure

Dim FishInTank.FISH(2, 2)

I'll not type anymore code out regarding this two dimensional array because it will be far too long.
Instead refer to Fig.20 for a fictional two dimensional structured type array.

Two Dimension Structured Type Array

Index o 1 2
Clown Fish Box Fish Sea Horse
(0] 4 oz. 1 oz. 2 oz.
Red, White and Black Yellow Green
Parrot Fish Angel Fish Shrimp
1 5 oz. 4 oz. 1 oz.
Red Orange Pink
Gold Fish Lion Fish Shark
2 2 oz. 8 oz. 1 1b.
Orange Black and White Grey

Fig. 20

To retrieve a value from this kind of array we need to supply two indices and a field name such as this:
Debug FishInTank (1, 1)\Kind

which would echo the text ‘Angel Fish’ to the Debug Output window. If we wanted to change this or
other values we use the same method to access this area in the array:

FishInTank (1, 1)\Kind = “Devil Fish”
FishInTank (1, 1)\Weight = “6 oz.”
FishInTank (1, 1)\Color = “Dark Red”

This would change all fields of the ‘FISH’ structure located in the middle area in the array located at
indices ‘1, 1. This is shown in Fig.21.

As you can see these types of arrays are extremely handy if a little complex (especially when you start
going beyond three dimensions), but to know how they work will give you an advantage later on in

your programming.

Other Data Structures 59

Two Dimension Structured Type Array (Modified)

Index o 1 2
Clown Fish Box Fish Sea Horse

(0] 4 oz. 1 oz. 2 oz.
Red, White and Black Yellow Green

Parrot Fish Devil Fish Shrimp

1 5 oz. 6 oz. 1 oz.
Red Dark Red Pink
Gold Fish Lion Fish Shark

2 2 oz. 8 oz. 1 1b.
Orange Black and White Grey

Fig. 21

You will probably only use one dimensional structured type arrays in your programs for now but to
know how multi-dimensional structured type arrays work will give you a good understanding of more
advanced code.

Redefining Arrays Once Created

Standard arrays in PureBasic are not completely static, meaning they can be redefined in two different
ways. The first way is to use the ‘Dim’ command again which redefines the array but in the process
destroys all previous data assigned to it. The second way is to use the ‘ReDim’ command which
redefines the array but keeps previous data intact. Here are examples showing both these behaviors.
First let’s look at redefining an array with the ‘Dim’ command:

Dim Dogs.s (2)

Dogs (0) = "Jack Russell"
Dogs (1) = "Alaskan Husky"
Dogs (2) = "Border Collie"

Debug Dogs (0)
Debug Dogs (1)
Debug Dogs (2)

Dim Dogs.s (2)

Debug Dogs (0)
Debug Dogs (1)
Debug Dogs (2)

Here after the initial array creation and assignment of data I've used the ‘Dim’ command again to
redefine the array with the same amount of indices as before. After the second definition, you will
notice that the ‘Debug’ commands return nothing from the newly defined array. This is because all
data has been destroyed during the redefinition. This data destruction can have a good use though. For
example, if I needed to free up the memory used by an array, I could just redefine it with zero (0) as
the maximum index which would free all memory associated with it. When redefining arrays like this
you must always redefine them using the same type or an error will be raised.

60 Other Data Structures

Here is an example of how to keep the data intact while redefining an array using the ‘ReDim’
command:

Dim Dogs.s (2)

Dogs (0) = "Jack Russell"
Dogs (1) = "Alaskan Husky"
Dogs (2) = "Border Collie"

For x.1 = 0 To 2
Debug Dogs (x)
Next x

Debug ""
ReDim Dogs.s(4)

Dogs (3) = "Yorkshire Terrier"
Dogs (4) = "Greyhound"

For x.1 = 0 To 4
Debug Dogs (x)
Next x

Here I've used the ‘ReDim’ command to redefine the array but this time as well as redefining it, I've
given it two extra indices. The extra two indices (‘3’ and ‘4’) are assigned data and then the whole array
has its data echoed to the Debug Output window. Notice that the data from the initial creation is not
lost. You must be aware though, if I used the ‘ReDim’ command to redefine an array with fewer indices
than it previously had then of course the data within the discarded indices are lost. Also if you are
redefining a multi-dimensional array using the ‘ReDim’ command then only the last dimension can be
resized. This is standard behavior for a Basic command such as this.

Rules For Using Arrays
Even though arrays are very flexible they have a few rules to take into account when using them. These
rules should be observed when using arrays in your programs.

1). If an array is re-defined using the ‘Dim’ command, its previous data is lost.

2). If an array is re-defined using the ‘ReDim’ command, its previous data is kept.

3). Arrays can only be made up of one type of variable (a structured or a standard variable type).
4). Arrays can be Global, Protected, Static and Shared. See Chapter 6 (Program Scope).

5). The size of an array is only limited by the current machine’s installed RAM.

6). Multi-dimensional arrays can have 255 dimensions.

7). Arrays can be dynamically defined, using a variable or an expression to define dimension size.
8). When defining dimension size, you define the last index number (all indices start at ‘0’).

9). Dimensions can be of different sizes in multi-dimensional arrays.

Other Data Structures 61

Static Arrays Within Structures

Static arrays within structures are a little bit different from the normal arrays that have been
previously described. Static arrays in their very nature are static and therefore cannot be modified
once they have been defined. These types of arrays also only exist within structures.

Static arrays also have a different set of rules to take into account when using them:

1). Once a static array is defined its internal structure cannot be modified.

2). Static arrays (like structures) cannot be redefined.

3). They can only be made up of one type of variable (a structured or a standard variable type).

4). The size of an array is only limited by the current machine’s installed RAM.

5). Static arrays can only have one dimension.

6). They can be dynamically defined, using a variable or an expression to define dimension size.

7). When defining dimension size, you define the amount of indices it is to contain, not the last index.
8). Static arrays can only be accessed through the structure variable within which they are defined.

So now that I've given you the main rules, let me give you an example of how they are used:

Structure FAMILY
Father.s
Mother.s
Children.s[2]
Surname. s

EndStructure

Family.FAMILY

Family\Father = "Peter"
Family\Mother = "Sarah"
Family\Children[0] = "John"
Family\Children[1] = "Jane"
Family\Surname = "Smith"

Debug "Family Members:"

Debug Family\Father + " " + Family\Surname
Debug Family\Mother + " " + Family\Surname
Debug Family\Children[0] + " " + Family\Surname
Debug Family\Children[1l] + " " + Family\Surname

Here in this example, the ‘FAMILY’ structure has a field called ‘Children’ which is a static String array.
When we defined this array, we used the number ‘2°. This defines this static array will hold two indices.
This behavior is completely different to standard arrays, with which you define the last index on
creation. In our new static array we now have two indices, ‘0’ and ‘1’, further on in the example I assign
values to all the fields in the ‘Family’ structured variable, including the two indices in the ‘Children’
static array. You will notice that static arrays have a slightly different syntax for assigning and
retrieving data, they use square brackets instead of the usual curved ones.

62 Other Data Structures

Assigning data to a static String array (using square brackets):

Family\Children[0] = "John"

Assigning data to a standard Long array (using curved brackets):

LongArray (0) = 10

You will also notice that you do not need to use a keyword such as ‘Dim’ when you define a static array.
You just add square brackets to the end of a field within a structure. Within the square brackets you
define how many indices you wish to give to this newly created static array. In the ‘FAMILY’ structure
above, we use the String type to create a static array but you can use any PureBasic built-in type or even
use another structure!

Let’s look at another simple example:

Structure EMPLOYEES
EmployeeName. s
EmployeeClockNumber. 1l
EmployeeAddress.s
EmployeeContactNumbers.1l[2]

EndStructure

Dim Company.EMPLOYEES (9)

Company (0) \EmployeeName = "Bruce Dickinson"
Company (0) \EmployeeClockNumber = 666
Company (0) \EmployeeAddress = "22 Acacia Avenue"
Company (0) \EmployeeContactNumbers [0] = 0776032666
Company (0) \EmployeeContactNumbers [1] = 0205467746

Company (1) \EmployeeName = "Adrian Smith"
Company (1) \EmployeeClockNumber = 1158

Here I create a user defined structure called ‘EMPLOYEES’ to describe a small company employee
record and then create a standard array to contain ten of these records (remember that in a standard
array you define the last index and these indices start at ‘0’). Inside the ‘EMPLOYEES’ structure I've
used a Long static array to store two contact phone numbers. I've then started to define the individual
employee records starting with ‘Company(0)\...” and then onto ‘Company(1)\...’, etc. I don’t actually
complete this example due to not wanting to waffle on, but you can see where I'm going with it and
how everything works.

Linked Lists

Linked Lists are similar to arrays in that they are able to refer to lots of data using one name. They are
however different to arrays in that they don’t use an index to assign and retrieve data.

Other Data Structures 63

These lists are like a book where you can flip through the data from start to finish or just turn to a page
within and read the data from there. Linked lists are also totally dynamic, meaning that they can grow
or shrink depending on how much data you need them to hold. When increasing the size of a linked
list you won’t harm or change any of the other data held within it and you can safely add elements to
the list in any position necessary.

Linked lists are a great way of storing and organizing data of an unknown length and can be sorted in
several ways. There is also a built-in ‘Linked List’ library which provides functions to perform element
additions, deletions and element swapping. Inside the built-in ‘Sort’ library there are also two
functions that are used purely for sorting linked lists, I shall mention these later. A general overview
and an introduction to PureBasic’s built-in commands is given later in Chapter 7.

The ‘NewList’ Keyword
Linked Lists in PureBasic are created by using the ‘NewList’ keyword as in this example:

NewList Fruit.s()

Defining a linked list is very similar to defining an array using the ‘Dim’ command. First we use the
‘NewList’ keyword to tell the compiler we are about to define a linked list. Next, we define a name for
the new list, in this case we’ve called it ‘Fruit’. After a name has been given we then define its type,
which again in this case is the String type. Brackets are then used to finish the list definition. You will
notice in this small example that there are no indices defined within the brackets. This is because
linked lists don’t need them, they are dynamic and will grow as you add elements. Let’s look at how we
add elements to our new list, here is a more complete example:

NewList Fruit.s()

AddElement (Fruit ())
Fruit () = "Banana"

AddElement (Fruit ())
Fruit () = "Apple"

Because linked lists don’t have any indices it may at first seem a little strange using them because you
might not know where in the list you are. In the above example, I've added two new elements to the
‘Fruit()’ list. To do this I used the ‘AddElement()’ function of the built-in Linked List library. When you
add a new element using this function, not only does it automatically define a new element but it also
makes the linked list name point to that newly created, empty element. So we just use its name to
assign a piece of data to the list, notice we still use the brackets:

Fruit () = "Banana"

When we add another element using the ‘AddElement()’ function then exactly the same process takes
place. First the new element is created, then the linked list name again points to the newly created
empty element. So then we add data to the new element in exactly the same way:

Fruit () = "Apple"

64 Other Data Structures

A Note About Using The Word ‘Point’

In this introduction and explanation of Linked Lists I've used the word ‘point’ a lot. When I'm using it here
it must not be confused with the computer science term ‘point’ or ‘pointers’. The computer science term
means to point to a particular area in memory or in the case of a ‘pointer’, a variable that holds a memory
address. When I use it here, especially when I say the Linked List name points to the current element, I use
it in a descriptive sense and not literally pointing to the area in memory that this element uses. For a further
explanation of pointers (in the computer science sense) refer to Chapter 13 (Pointers).

You would think that this is wrong because we are assigning the text ‘Apple’ to the same name as we
assigned the text ‘Banana’. Because we added a new element, the linked list name ‘Fruit()’ will point to
the new element within the list. We can also check how many elements are in our list at any time using
the built-in ‘CountList()’ function, like this:

Debug CountList (Fruit())

If we executed the above code then the number of elements contained within the ‘Fruit()’ list will be
echoed to the Debug Output window. In this case it would be ‘2’.

Let’s add a few more elements to this list and then echo all of the element values to the Debug Output
window. Here is a full example again:

NewList Fruit.s()

AddElement (Fruit ())
Fruit () = "Banana"

AddElement (Fruit ())
Fruit () = "Apple"

AddElement (Fruit ())
Fruit () = "Pear"

AddElement (Fruit ())
Fruit () = "Orange"

ForEach Fruit ()
Debug Fruit ()
Next

In this larger example, we create a new linked list called ‘Fruits()’ and within it we create four elements
and assign them individual values. We then loop through this list using a ‘ForEach’ loop and echo all
of the element’s values to the Debug Output window. The ‘ForEach’ keyword is used to define a loop
which is only used for linked lists.

Other Data Structures

Fig.22 gives a brief overview of the linked list commands available in the built-in ‘Linked List’ library.
This diagram is not a complete reference but is included here as a brief guide to see which command

to use when the need arises. The more advanced commands can be found in the PureBasic helpfile.

The Built-in Linked List Library

Function

Description

AddElement (List())

Adds an element to the linked list.

ClearList (List())

Clears the list of all elements.

CountList (List())

Counts the elements inside a list.

DeleteElement (List())

Deletes the current element within the list

FirstElement (List())

Go to the first element in the list.

InsertElement (List())

Insert another element in the list before the current element,
or at the start of the list if the list is empty.

LastElement (List())

Go to the last element in the list.

ListIndex (List())

Return the current element’s position within the list.
(Element positions start at ‘0’5).

NextElement (List())

Go to the next element within the list.

PreviousElement (List())

Go to the previous element within the list.

ResetList (List())

Reset the list’s position to ‘0’ and make the first element the
current element.

SelectElement (List (), Position)

Make the current element the one specified by the
‘Position’ parameter.

Structured Linked Lists

Now that I have explained standard linked lists, let’s move onto structured linked lists. These are very
similar to structured type arrays in that they are defined with a structure instead of a built-in variable
type. You can then effectively have a dynamically resizing linked list masquerading as a structured type
array that grows and shrinks depending on what information you have to store. Let’s take a look at a

Fig. 22

previous example but this time re-code it to use a structured linked list.

Structure FISH
Kind.s
Weight.s
Color.s

EndStructure

NewList FishInTank.FISH()

66 Other Data Structures

AddElement (FishInTank ())
FishInTank () \Kind = "Clown Fish"
FishInTank () \Weight = "4 oz."
FishInTank () \Color = "Red, White and Black"
AddElement (FishInTank ())
FishInTank () \Kind = "Box Fish"
FishInTank () \Weight = "1 oz."
FishInTank () \Color = "Yellow"
AddElement (FishInTank ())
FishInTank () \Kind = "Sea Horse"
FishInTank () \Weight = "2 oz."
FishInTank () \Color = "Green"

ForEach FishInTank ()
Debug FishInTank () \Kind+" "+FishInTank () \Weight+" "+FishInTank ()\Color
Next

You can see from this example that after you create a list it is then very similar to a structured type
array to assign and retrieve data. The main difference here though is that array style indices are not
used. Remember that when you use the ‘AddElement(FishInTank())’ command you create a new
element using the structure from the initial definition. This command then moves the current position
of the list to this newly created element. It is then safe to assign data to the new structured element
like this:

FishInTank () \Kind = "Clown Fish"
FishInTank () \Weight = "4 oz."
FishInTank () \Color = "Red, White and Black"

Because the name ‘FishInTank()’ now points to your new element there is no need to use an index. To
access the fields inside this structured element you again use the °\’ character. At the end of the
example another ‘ForEach’ loop is used to quickly and efficiently echo the data to the Debug Output
window.

Pros And Cons Of Linked Lists?

Linked lists are great for storing data when you don’t know how much of it there is. For example, in
the past I've written a program to track household expenses, and used a structured linked list to hold
the details of these expenses. Using a linked list rather than an array made it easier to add, delete and
sort the data.

While writing this program I thought that I must make this program flexible to handle new expenses
when they occur and to be able to delete old ones, just in-case I buy a new car and/or pay off a loan,
etc. This is handled very nicely by linked lists. When I need to add an entry I use the ‘AddElement()’
function and when I need to delete an entry I use the ‘DeleteElement()’ function. After the adding and
deleting is done within the list, I then transfer all this data into a nice Graphical User Interface (GUI)
for the user to see and interact with. I will give talk more extensively about GUIs in Chapter 9.

Other Data Structures 67

Linked lists are more flexible than arrays in that they can grow and shrink in size more easily but
arrays will always use less RAM to store the same amount of data than linked lists. This is because
arrays are continuous areas of memory which only use the standard amount of RAM per type for each
index. Linked lists are different in the way that each element uses roughly three times the amount of
RAM for its particular type. This is because linked lists are not in the same continuous piece of memory
and need to store information on where to find the other elements within RAM. This is something to
keep in mind when dealing with huge amounts of data as your memory requirements could be triple
if you use linked lists.

Sorting Arrays And Linked Lists

Arrays and linked lists are great for storing all sorts of data and these data structures can easily be
traversed to quickly retrieve that data. Sometimes though you may need to reorganize the data
contained within an array or linked list, so it is sorted alphabetically or numerically. Here are a few
examples of how to use the commands of the ‘Sort’ library (Helpfile:Reference Manual->General
Libraries->Sort) to sort arrays and linked lists.

Sorting A Standard Array
Sorting a standard array is extremely simple. First of all you need an array pre-filled with values then
use the ‘SortArray()’ command to sort it. Here is the syntax example:

SortArray (Array (), Options [, Start, End])

The first parameter is the array to be sorted, notice the curved brackets after the array name, these are
required to correctly pass an array as a parameter. The second parameter is an option, to specify how
you would like the array to be sorted. Here are the options for the second parameter:

‘0’ : Sort the array in ascending order being case sensitive.

‘1’ : Sort the array in descending order being case sensitive.

‘2’ : Sort the array in ascending order without being case sensitive (‘A’ is the same as ‘a’).
‘g’ : Sort the array in descending order without being case sensitive (‘A’ is the same as ‘a’).

The square brackets around the last two parameters indicate that these are optional and don’t need to
be specified when using this command. These last two parameters are used to specify an array position
range to perform the sort within.

Using the above information, we can sort a full array in ascending order and being case sensitive, using
the command like this:

Dim Fruit.s(3)

Fruit (0) = "Banana"
Fruit (1) = "Apple"
Fruit (2) = "Pear"

Fruit (3) = "Orange"

SortArray (Fruit (), 0)

68 Other Data Structures

For x.1 = 0 To 3
Debug Fruit (x)
Next x

Sorting A Structured Array
This is slightly more complicated as it uses a slightly more complicated sort command;
‘SortStructuredArray()’. Here is the syntax example:

SortStructuredArray (Array (), Options, Offset, Type [, Start, End])

The first parameter is the array name complete with brackets. The second is the sort options, these are
exactly the same as the ‘SortArray()’ command. The third parameter is an offset (a position within the
originating structure) of the field you would like to sort by. This is retrieved using the ‘OffsetOf()’
command. The ‘OffsetOf()’ command returns the number of Bytes that a particular variable field is
offset, from the beginning of a structure. The forth parameter defines what type of variable is found at
the previously passed offset. You can use built-in constants for the forth parameter to describe what
type of variable you are sorting by, these are:

‘#PB_Sort_Byte’ : The field in the structure to sort by, is a Byte (.b)
‘#PB_Sort_Character’ : The field in the structure to sort by, is a Character (.c)
‘#PB_Sort_Word’ : The field in the structure to sort by, is a Word (.w)
‘#PB_Sort_Long’ : The field in the structure to sort by, is a Long (.1)
‘#PB_Sort_Quad’ : The field in the structure to sort by, is a Quad (.q)
‘#PB_ Sort_Float’ : The field in the structure to sort by, is a Float (.f)
‘#PB_ Sort_Double’ : The field in the structure to sort by, is a Double (.d)
‘#PB_Sort_String’ : The field in the structure to sort by, is a String (.s or $)

The last two parameters in this command are optional and don’t need to be specified when using this
command. These are used to specify an array position range to perform the sort within. Using the
above information, we can sort a full structured array in ascending order and sorting by the ‘Range’
field, like this:

Structure WEAPON
Name. s
Range.1l
EndStructure

Dim Weapons.WEAPON (2)

Weapons (0) \Name = "Phased Plasma Rifle"
Weapons (0) \Range = 40

Weapons (1) \Name = "SVD-Dragunov Sniper Rifle"
Weapons (1) \Range = 3800

Weapons (2) \Name = "HK-MP5 Sub-Machine Gun"
Weapons (2) \Range = 300

Other Data Structures 69

SortStructuredArray (Weapons (), 0, OffsetOf (WEAPON\Range), #PB_ Sort Long)

For x.1 = 0 To 2
Debug Weapons (x) \Name + " : " + Str(Weapons (x)\Range)
Next x

In this example, I've chosen the ‘Range’ field to sort the structured array by, so in the sort command
I've defined this using the offset ‘OffsetOf(WEAPON\Range)’ and telling the sort command it is a Long
type variable field by using the ‘#PB_Sort_Long’ constant.

Sorting A Standard Linked List
Sorting a standard linked list is extremely simple. First of all you need a linked list pre-filled with
values then use the ‘SortList()’ command to sort it. Here is the syntax example:

SortList (ListName (), Options [, Start, End])

The first parameter is the linked list to be sorted, notice the curved brackets after the list’s name, these
are required to correctly pass the linked list as a parameter. The second is the sort options, these are
exactly the same as the ‘SortArray()’ command. The last two parameters are used to specify a linked
list position range to perform the sort within.

Using the above information, we can sort a full linked list in ascending order and being case sensitive,
using the sort command like this:

NewList Fruit.s()

AddElement (Fruit ())
Fruit () = "Banana"

AddElement (Fruit ())
Fruit () = "Apple"

AddElement (Fruit ())
Fruit () = "Orange"

SortList (Fruit (), 0)
ForEach Fruit ()

Debug Fruit ()
Next

Sorting A Structured Linked List
Sorting a structured linked list is slightly more complicated as it uses a slightly more complicated sort
command; ‘SortStructuredList()’. Here is this command’s syntax example:

SortStructuredList (List (), Options, Offset, Type [, Start, End])

The first parameter is the linked list name complete with brackets. The second is the sort options,

70 Other Data Structures

which are exactly the same as the ‘SortArray()’ command. The third parameter is an offset (a position
within the originating structure) of the field you would like to sort by. This is retrieved using the
‘OffsetOf()’ command. The forth parameter defines what type of variable is found at the previously
passed offset. You can use built-in constants for the forth parameter to describe what type of variable
you are sorting by, these are exactly the same as the ‘SortStructuredArray()’ command. The last two
parameters are used to specify a linked list position range to perform the sort within.

Using the above information, we can sort a full structured linked list in ascending order and