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Abstract This paper is intended not as a survey, but as an introduction to some
ideas behind the class of mesh adaptive direct search (MADS) methods. Space
limitations dictate a brief description of various key topics to be provided along
with several references, which themselves provide further references.

The convergence theory for the methods presented here make a case for clos-
ing the gap between nonlinear optimizers and nonsmooth analysts. However these
methods are certainly not of purely theoretical interest; they are successful on dif-
ficult practical problems. To encourage further use, we give references to avail-
able implementations. MADS is implemented in the direct search portion of the
MathWorks MATLAB Genetic Algorithm and Direct Search (GADS) Toolbox.
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1 Introduction - the problem and its properties

For us, derivative-free optimization excludes methods that use standard finite dif-
ference approximations to derivatives in a Newton or SQP algorithmic framework.
Those are well established and valuable methods. Indeed, there are many reasons
to use them in place of really derivative-free methods like the ones treated here
if one can. However, our target class of problems are not amenable to such an
approach.

Since this is to be only one of several papers devoted to derivative-free opti-
mization, we will concentrate on summarizing our work without making an at-
tempt to give a survey of the topic. This is a relief because derivative-free opti-
mization is already a diverse area of optimization, and it is growing fast, due in
part to the importance of these algorithms for applications.

Our interest in the topic of direct search methods came directly from users,
and our interaction with users continues to be our strongest influence. However,
it would be incorrect to assume that these methods are not interesting for their
own sake. We have found all the theoretical challenge we would wish for in this
area. This leads to another point we will try to make: derivative-free optimization
will and should form closer ties between computational optimization and nons-
mooth analysis. We believe that nonsmooth analysis should be included in any
curriculum meant to train nonlinear optimization researchers.

In this paper, we consider the general nonlinear optimization problem:

min () (1)
where Q = {x € X : ¢j(x) <0, € J} CR" and f,cj: X — R"U {eo} for all
j€J=A{1,2,...,m}, and where X is a subset of R". No differentiability assump-
tions on the objective and constraints are required for these algorithms. However,
the strength of the optimality results at a limit point are closely tied to the local
smoothness of the functions there and to properties of the tangent cone to € at a
limit point produced by the algorithm.

We treat X and C(x) = (c1(x),c2(x),...,cm(x))T < 0 differently because they
are intended to model different classes of constraints. The set X includes the set
of points to which x must belong in order that the functions f(x) and C(x) can be
evaluated. We only require that the user provides a routine that says whether or
not x is in X. We refer to these constraints as “yes/no” or oracular constraints.

Another interesting aspect of these problems is that even when x € Q, we may
not get a value for f(x) or C(x), though it may take as long to find that out as it



would have if we had been able to get a value. We model this situation by setting
f(x) = +eo. This happens, for example, in some multi-disciplinary optimization
(MDO) problems, in which getting a value depends on runtime linking of legacy
PDE solvers [17].

Every trial point, as well as the initial point, must satisfy the X constraints, but
C(x) <0is only required to hold at the solution. In fact, the user is often interested
in how much optimality is possible with a slight relaxation of these constraints.
We call these open constraints, and we treat them by a modification given in [14]
of the filter method.

Filter algorithms were introduced by Fletcher and Leyffer [31]] as a way to
globalize sequential linear and quadratic programming (SLP and SQP) without
using any merit function for weighting the relative merits of improving feasibil-
ity and optimality. A filter algorithm introduces a function that aggregates con-
straint violations and then treats the resulting biobjective problem. A trial point
is accepted if it either reduces the value of the objective function or that of the
constraint violation; otherwise it is said to be filtered. Although this clearly is
less parameter-dependent than a penalty function, specifying a constraint viola-
tion function still implies an assignment of relative weights to reducing the viola-
tion of each constraint. The algorithm maintains feasibility with respect to X by
modifying the aggregate constraint violation for Q to be +oo outside of X.

A key feature of the optimization problems we most often meet in practice is
that they involve running an expensive simulation to get ancillary variables needed
to evaluate the blackbox function codes that define f and C. This means that we
need to be parsimonious with function and constraint values, and it also implies
that there are likely to be few correct digits in the output. As a result, deriva-
tives are unlikely to exist everywhere, and if they do exist, difference quotients
are not likely to give derivative approximations suited to use in derivative-based
algorithms.

Often in practice, users express a desire to obtain the “global optimizer” of
f(x) on Q. As we have described the problems, this is not something any algo-
rithm can guarantee in practice. Still, global optimization algorithms generally
find useful solutions when they can be applied to real problems. Indeed, with
some attention to globality, the algorithms we outline here give equally useful
solutions. We believe that this is because of synergy between this user request
and another important user desire - robustness. In this context, one can think of a
robust optimizer as one occurring in a broad valley. Such*“global optimizers” are
rather easier to find than those belonging to a narrow, but deeper basin.



2 What are mesh adaptive direct search (MADS)
methods?

The methods we consider here are direct search methods. As the name mesh adap-
tive direct search (MADS) implies, these methods generate iterates on a tower of
underlying meshes on the domain space. However, also as the name implies, they
perform an adaptive search on the meshes including controlling the refinement
of the meshes. The reader interested in the rather technical details should read
[12,[13]. Here we ask the reader to imagine an underlying mesh and an algorithm
for generating trial points on the mesh and adapting the fineness of the mesh to
approach a local optimizer. We stress that the full mesh is never explicitly gener-
ated.

It is possible to dispense with the mesh as in [43} 44], which seems a simpli-
fication on the face of it. The argument against doing away with the mesh is that
one must then use a sufficient decrease condition rather than accepting any point
that provides simple decrease. Sufficient decrease conditions in the derivative-
free situation are not as simple as a backtracking Goldstein-Armijo strategy in the
quasi-Newton case [30]. Our suspicion is that whether or not to use the mesh
is a matter of taste, not of algorithmic effectiveness, though we have no actual
experience without the mesh on real problems.

Above, we mentioned the utility of nonsmooth analysis in derivative-free op-
timization. MADS is a case in point. We discovered MADS as a direct result of
weaknesses in the generalized pattern search (GPS) class of algorithms [47], when
applied to nonsmooth problems, which were exposed when we used nonsmooth
analysis to analyze GPS [12, 14]].

We could also call the methods considered SEARCH — POLL methods because
each iteration consists of two steps, SEARCH and POLL . The goal of an iteration
is to find unfiltered points in X. If SEARCH fails to find an unfiltered point, then
POLL is executed, and if POLL does not succeed, then the mesh is refined.

The SEARCH step is crucial in practice because it is so flexible, but it is a
difficulty for the theory for the same reason. SEARCH can return any point on the
underlying mesh, but of course, it is trying to identify an unfiltered point. Any
aspirations to find a local minimizer in a deeper basin than the one we start in is
concentrated in the SEARCH step. When we discuss some SEARCH strategies, we
will justify this point.

The POLL step is more rigidly defined, though there is still some flexibility
in how this is implemented. Since the POLL step is the basis of the convergence



analysis, it is the part of the algorithm where most research has been concentrated.

Lewis and Torczon [39] recognized that POLL should consider points on the
mesh neighboring the incumbent solution in a set of directions whose nonnegative
linear combinations span the space. This may seem simple, but it is a crucial
observation. Coope and Price [21, 22, [23] extended this notion to the idea of
frames, which can be thought of as doing away with the requirement that the
POLL points be mesh neighbors. Audet and Dennis [13] suggested MADS as
a way to implement frames so that the directions used in infinitely many POLL
steps generate a dense set in the tangent cone at a MADS limit point X € X. This
allows strong convergence results [13} 5] and excellent computational results for
the MADS algorithms [15, 16, 41].

2.1 Some SEARCH strategies

The SEARCH step can be empty. By this we mean that the algorithm can be im-
plemented as a sequence of POLL steps only. This is a reasonable choice when a
local minimizer in the same basin as the initial guess is sufficient. Another rea-
sonable strategy is to try a step in the same direction as a previously successful
POLL step. It must be said that although this seems reasonable, we understand
that some researchers have found this approach of limited value at best.

We have experimented with random search as a SEARCH strategy. This has
some success on the initial iteration, but it seems to be a waste of function values
after that.

In our experience, the best SEARCH strategies involve the use of surrogates
for f and C. We use surrogate to mean an inexpensive function that the user
can employ to look extensively on the current mesh for points that the surrogate
predicts will improve the current incumbent solution. Surrogates generally are of
two types, simplified physics simulations and surfaces fit to a set of points in X
usually chosen by some space filling design. We use the term surrogate rather
than approximation because we do not want to imply that anything is required
with respect to how well the surrogates approximate the problem functions [18].

Boeing uses DACE surrogates [46] in their Design Explorer filter implemen-
tation [10]. They generate data sites by an orthogonal array, and then fit a DACE
model to the data. The SEARCH consists of a global Newton SQP method applied
to the surrogate problem to try to generate several good local optimizers for that
problem. Then they use the expensive “true” problem functions at those points
to decide whether the SEARCH has been successful. Whenever new values of the
true problem functions have been computed, they are used to recalibrate the sur-



rogates. This surrogate management framework leads to very successful methods.
Details are given in [10]].

Alison Marsden has solved trailing edge shape design problems using both
types of surrogates in an insightful way. She generates trial points using the MAT-
LAB DACE surrogate package [40] and then uses a less expensive turbulence
model to check whether a trial point is in X. If it is, then she runs the more ac-
curate simulation. Her SEARCH consists of applying an evolutionary algorithm to
the DACE surrogates. See [41] for details.

Another interesting application of surrogates is in [15]], where a framework to
identify good algorithmic parameter values is given. To illustrate this framework,
MADS was applied to an objective function that measured the CPU time required
by a trust-region algorithm [32] to solve a set of difficult problems. A natural
surrogate function was constructed by having the trust-region method to solve a
different list of easy problems.

2.2 The POLL step

The POLL step is more rigidly defined than the SEARCH step. It is necessarily
called when the SEARCH fails to produce an unfiltered point. The POLL step
consists of a local exploration around the current incumbent solution. The trial
points are generated in some directions scaled by a mesh size parameter. When
either the SEARCH or the POLL step is successful, then the mesh size parameter is
either kept constant or increased. Otherwise, when both steps fail to generate an
unfiltered point, the incumbent is declared to be a mesh local optimizer [21] and
the mesh size parameter is decreased.

In GPS, the POLL directions were restricted to belong to some finite set. The
GPS convergence results [12, 4] are closely tied to these fixed directions. Further-
more, there are some known examples [9] for which GPS falls short of converging
to a satisfactory solution because of this restriction.

MADS overcomes this limitation by allowing a larger set of POLL directions.
In fact, as k (the iteration counter) goes to infinity, the union of the normalized
POLL directions over all k becomes dense in the unit sphere. This algorithmic
construction allows stronger convergence results [[13]].

In some cases, incomplete derivative information may be available. For exam-
ple, in some MDO problems, derivatives for some disciplines may be available,
but not for others, and derivatives across multiple disciplines are not available. If
the full gradient is available, directions can be chosen so that all but one are ascent
directions, which can be ignored, thus reducing the required number of function
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evaluations to one per iteration [6]. In this case, MADS reduces to an approxima-
tion of steepest descent. Even if only some partial derivatives are known, MADS
can exploit this information to reduce the number of function evaluations in each
POLL step [6] without sacrificing theoretical convergence properties. In lieu of
derivatives, Custddio and Vicente [26] compute a simplex gradient from a sub-
set of previously evaluated points having certain geometrical properties and use
it as an approximation to the true gradient. However, convergence requires local
proximity to the limit point.

Since MADS is opportunistic, in that it moves immediately to a new improved
mesh point as soon as it is found, the order in which POLL points are evaluated
can impact performance. One approach in which we have witnessed such im-
provement is what we call dynamic polling, in which the most recent successful
direction is moved to the front of the queue after each successful POLL step. Dy-
namic polling was shown useful in [13] on a chemical engineering parameter fit
problem [33]. If we were to use a surrogate in the SEARCH step, then evaluating
the surrogate at each POLL point and then ordering them by surrogate function
value would also be a wise choice. Custddio and Vicente [26] have also seen a
reduction in function evaluations by computing a simplex gradient and ordering
POLL points according to how small an angle the corresponding poll directions
make with the negative of the simplex gradient. One must keep in mind, however,
that these strategies (dynamic polling, surrogate and simplex gradient ordering)
do not necessarily lead to improved computational times in all cases.

3  Why study these methods

In previous sections, we have mentioned some applications of MADS. In this
section, we will make some general remarks about applications, but since the
interested reader can find all the details we can furnish in the referenced papers,
we save space here.

Also in this section we will discuss the theoretical support for MADS. We hope
that other derivative-free optimization researchers will consider using nonsmooth
analysis to analyze their methods. The discovery of MADS was a direct result of
our nonsmooth analysis of GPS, and that has made us enthusiastic about building
a bridge to this advanced theoretical part of our discipline.



3.1 Importance in practice

It is likely that every paper in these special issues will make a case for the practical
importance of derivative-free optimization methods. We second everything the
other authors say, but we will use our space here to try to make a couple of points
that other authors may not make.

The first point is that, in spite of the formidable aspects of our target class
of problems, we are often able to solve them quite efficiently. The main reason
we were the first to solve them is that there are barriers to applying traditional
derivative-based methods, and heuristic searches use too many function evalua-
tions for these relatively expensive problem functions.

These problems typically take minutes to weeks for each function value, and
many of them have what Tim Kelley [19], who also sees such problems, likes
to call “hidden constraints”. This second point means that one calls the simu-
lation codes that must be run to evaluate the functions for perfectly innocuous
arguments, and they fail. Furthermore, they fail after running for about the same
length of time as when they succeed. In [18], this sort of failure happens to us
roughly twice in every three function calls.

The main reason we have seen for these evaluation failures is that the function
evaluations depend on runtime linking of single discipline solvers; e.g., separate
structures and fluids codes. This is characteristic of multidisciplinary design opti-
mization (MDO) problems [25, 18]]. The interested reader will find a vast amount
of MDO literature on the web.

Thus, to get the ancillary variables needed to evaluate the objective and con-
straints, one must do a multidisciplinary analysis, meaning the runtime linking of
the codes. In our experience, an MDA can be thought of as solving a large system
of nonlinear equations for which no Jacobian information is practical. In such
a circumstance, there is little one can try except simple successive substitution
or nonlinear Gauss-Seidel. This is sensitive to the order in which the blocks are
processed, and it is apt to fail.

Another difficulty inherent to some of the target problems is that the functions
are often contaminated with noise. It is not infrequent that evaluating a function
twice at the same value of x returns slightly different values.

3.2 Theoretical support

These algorithms are intended to be applied to nonsmooth problems, or to any
problems for which derivatives are impractical, even by finite differences. Typi-



cally, both the objective function and the constraints are evaluated by running a
black box computer code. There is no way one can measure the smoothness of
these functions.

The convergence results state that if the MADS algorithm is applied to such
problems, then some optimality conditions are guaranteed. In [12] and [13] we
give a hierarchy of convergence results based on various degrees of smoothness
of the objective and constraints.

At the bottom of the hierarchy, we have a result that if the iterates produced
by the algorithm are bounded, then there is an X, which is the limit of mesh local
optimizers on meshes that get infinitely fine. Assuming a bounded sequence of
iterates is a standard assumption in nonlinear optimization, and it holds for our
algorithms if the initial level set is bounded.

Then, by adding more smoothness, the local optimality results become suc-
cessively stronger for a limit point £. At the smoothest end of the hierarchy, we
have that if f is strictly differentiable near £, and if the constraint qualification
that the tangent cone Tg(X) to the feasible region Q at £ € Q is non-empty and
full-dimensional, then the directional derivative f’ satisfies

f'(£:d) >0 forevery d € To(%).

This is the KKT first-order optimality condition: there are no feasible strict de-
scent directions. In the unconstrained case, the tangent cone is the entire space,
and this last condition becomes V f(£) = 0.

The intermediate results of the convergence analysis are based on different
degrees of smoothness. The directional derivatives f” are not appropriate to deal
with non-smooth functions, as they are undefined. We turned to the nonsmooth
community and found exactly the analytical tool that we needed to analyze the
convergence of our methods: the Clarke Calculus [20].

Clarke proposes a generalization f°(£;d) of the directional derivative for lo-
cally Lipschitz functions, and generalizations [45, 20, 35] of the tangent cone;
namely, the hypertangent cone TZ! (%), the Clarke tangent cone 7S'(%), and the
contingent cone Tg" (%). Armed with these definitions, we can show that depend-
ing on the smoothness, the limit point £ generated by MADS satisfies

fo(&:d) >0 forevery deTl (%), 15'(%)
or in ngo(f)‘

Furthermore, in [5], we discover that with more smoothness (namely, that f is
twice strictly differentiable near %), X satisfies a second-order Clarke-KKT neces-

9



sary condition for optimality that depends on a generalization of the Hessian ma-
trix [34]. In fact, with additional assumptions, X satisfies a second-order Clarke-
KKT sufficient condition for optimality, thus ensuring convergence of MADS to
a local minimizer [5]].

In stating these results, we make the assumption that the set of directions used
infinitely often is dense in the hypertangent cone at X. As stated earlier, MADS
is designed specifically so that this can be accomplished, but in order to do it in
practice, our selection of positive spanning directions is done randomly. Conse-
quently, most of our convergence results are with probability one.

4 What is still needed

There are practical issues we still need to deal with for the class of problems
discussed above. Anyone who has worked with users has had the experience of
being told that the problem has a certain property, e.g., ten design variables, only
to be told after solving the problem that it would be nice to be able to deal with
one hundred design variables. This is a sure sign of progress in the project. In this
section, we will give brief descriptions of some of the main issues raised by users
after an initial success with the first formulation.

4.1 Categorical variables

Nonlinear mixed integer problems are hard enough, but many engineering design
problems involve categorical variables. These are discrete variables constrained
to a discrete set as a part of X. The problem functions cannot be evaluated unless
all categorical variables take on feasible discrete values. For example, simulating
an oil field with 25.3 oil wells is out of the question unless one interpolates and
thereby increases the number of expensive simulations required.

We use the term mixed variable programming (MVP) to denote mathematical
programming problems with both continuous and categorical variables [11]. An
example is found in the design of a fixed-length thermal insulation system [36] in
which the objective is to minimize the power required subject to some reasonable
linear constraints.

In this problem, the system consists of a series of insulators of various material
types and thicknesses, each pair of which is separated by a metal plate, called a
heat intercept, to which power is applied to maintain it at a specified temperature.
The material thicknesses and intercept temperatures are the continuous variables,
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while the number and types of insulators are categorical. In fact, the insulator
types are not even numeric, although each material type can be mapped to the
numeric value of its index into a list of seven possible material types that may
be selected. A further interesting complication is that the number of insulators,
which defines the problem dimension, is itself a design variable. This problem
was solved numerically in [36] using the algorithm introduced in [[11]]. Realistic
nonlinear constraints on system mass, tensile yield stress, and thermal contraction
were added to the problem in [3]], and the resulting problem was solved numeri-
cally using a pattern search filter method [7]].

Because of the general lack of ordinality with categorical variables, MVP
problems present some unique challenges. For example, there is no general notion
of local optimality. To overcome this challenge, the user must provide a set-valued
neighborhood function that defines the set of discrete neighbors at every point.
Local optimality is then defined with respect to this function at the limit point. In
the example above, given a design of the system, discrete neighbors were formed
in 3 ways: swapping a single insulator for another of a different material, adding
an insulator and heat intercept at any location (and adjusting the continuous vari-
ables appropriately), or deleting any insulator with its adjacent intercept. Once
the algorithm is appropriately modified, we guarantee that the resulting solution
could not be improved by moving to a neighboring point, as defined by these three
classes of neighbors.

The main modification to the algorithm consists of augmenting the POLL step
to include points in the set of discrete neighbors, along with other promising
points [11]. Convergence properties of GPS for MVP problems with a smooth
objective function and bound constraints on the continuous variables were estab-
lished in [[11] and extended to general linear constraints and nonsmooth functions
in [2]. Convergence results for the GPS filter method for MVP problems with
nonlinear constraints was introduced in [2, [7]].

The class of MVP problems is actually quite common in practice, even though
the field is very new, and there are some important algorithmic and structural
considerations that merit further research.

4.2 Multiple objectives

It is almost always true that real optimization problems have multiple objectives.
They may not appear in this form, but scratch the surface and they will. For
example, a client might suggest a bound constraint on some function y(x). But,
when asked about the value of the bound, the client will say it should be as small
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as possible. In other words, the constraint is really another objective.

Another way multiple objectives show themselves is in documenting the prob-
lem solution for the client. Presented with a solution to an optimization problem,
the client (or his/her boss) will want to know how much better/worse the objective
would be if a certain constraint were to be relaxed/tightened.

The reader will see in both cases the standard objective synthesis approach
of minimizing a weighted sum of the individual objectives is not helpful. In both
cases, the decision maker wants to trade off one objective against the others. What
we need is to give the client a notion of the Pareto surface. To see a simple case of
the deficiencies in the the weighted sum approach, see [29]. We do not recommend
this approach; however, [28]] is an interesting way to find a single important Pareto
point.

Since the filter approach is based on multi-objective ideas, we hope that our
filter approach can be adapted to provide helpful tools. However, this is not as
straight forward as one might hope.

4.3 Ability to handle more decision variables

It would be useful to extend MADS to handle hundreds of decision variables, on
problems where parallelism [37/] alone would not be sufficient to solve the prob-
lem. As with all direct search methods, we expect to see the number of function
values required to solve an arbitrary n dimensional problem increase much faster
than n. Our goal is to find alternative direct search methods that slow the growth.

5 Conclusions

Direct search methods are here to stay as a valuable subarea of optimization. They
are interesting theoretically, and they are indispensable in practice. These special
issues will document many of the advances that have been made in the area, but
much remains to be done.

We have sketched some useful properties and limitations of MADS algo-
rithms. A researcher willing to build a strong theoretical background in nons-
mooth analysis and learn to work with users will find this a satisfying and fruitful
area in which to work. The experience of helping a user formulate and solve a
problem thought to be intractable is the ultimate validation for an applied mathe-
matician. Come on in, the water is fine.

A reader interested in obtaining software should visit [1, 24, 27, 38}, 40} 42]].
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