
AN ELEMENTARY PROOF OF THE GROUP LAW FOR ELLIPTIC
CURVES

Abstract. We give a proof of the group law for elliptic curves using explicit for-
mulas.

1. Introduction

In the following K will denote an algebraically closed field with char(K) > 3. An
elliptic curve is defined as a pair (E, O) where E is a smooth algebraic curve of genus
one and O ∈ E a point.

Proposition 1.1. [S86, prop. 3.1] Let E be an elliptic curve E. Then there exist
a, b ∈ K with 4a3 + 27b2 6= 0 and an isomorphism of curves

φ : E → Ea,b := {(x : y : z) ∈ P(K)2|zy2 = x3 + axz2 + bz3}

such that φ(O) = [0 : 1 : 0]. Conversely, for any a, b with 4a3 + 27b2 6= 0 the variety
(Ea,b, [0 : 1 : 0]) is an ellipictic curve.

Corollary 1.2. Let E be an elliptic curve E. Then there exist a, b ∈ K with 4a3 +
27b2 6= 0 and a bijection

φ : E → Eaffine
a,b := {(x, y) ∈ K2|y2 = x3 + ax + b} ∪ {O}

such that φ(O) = O.

In the following we will take the affine point of view, i.e. an elliptic curve E
will mean the set Eaffine

a,b for some a, b ∈ K with 4a3 + 27b2 6= 0. The point O
is called the ‘point at infinity’. For points A, B, C, · · · ∈ E \ {O} we will write
A = (xA, yA), B = (xB, yB), C = (xC , yC), . . . for the coordinates.

Definition. We define + : E × E → E, (A, B) 7→ A + B as follows. We set A + O =
O + A := O for all A. If (xA, yA) = (xB,−yB), then A + B := O. Otherwise
A + B := (xAB, yAB) where

xAB := α(A, B)2 − xA − xB
(1)

yAB := −yA + α(A, B)(xA − xAB)

with α(A, B) = yA−yB

xA−xB
if xA 6= xB and α(A, B) =

3x2
A+a

2yB
if xA = xB.
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Remark. This definition is motivated by geometry. If A, B 6= O, then we can take
the line through A and B (respectively the tangent to A if A = B). This line
intersects the curve E in three points (counted with multiplicities) A, B, C. Then
define A + B := −C where −C is the reflection of C about the x-axis.

Theorem 1.3. (E, +) is an abelian group with neutral element O.

This theorem is of course well known. For example in [S86] it is shown that the
above structure is isomorphic to the group structure of Pic0(E), the Picard group
of E. In particular (E, +) forms a group. A more geometric argument, that (E, +)
defines a group is given in [K95, p. 87] or [H87]. Perhaps the most elementary proof
can be found for K = C using the Weierstrass function (cf. [L78]). By the Lefschetz
principle this shows the theorem for any algebraically closed field of characteristic
zero.

We will give a completely elementary proof, just using the above explicit definition
of the group structure through formulas. It was always clear that such a proof exists,
but it turns out that this direct proof is more difficult than one might have imag-
ined initially. Many special cases have to be dealt with separately and some are non
trivial. Furthermore it turns out that the explicit computations in the proof are very
hard. The verification of some identities took several hours on a modern computer;
this proof could not have been carried out before the 1980’s.

It is clear that + is commutative, that O is a neutral element and that the inverse
element for A = (xA, yA) is given by −A := (xA,−yA). The only difficult part is to
show that “+′′ is in fact associative. This proof will require the remainder of this
paper.

2. Proof of the associativity law for elliptic curves

In the following let E be a fixed elliptic curve.
We will use the following facts which follow immediately from the definition.

(1) “+” is commutative.
(2) For A = (xA, yA) ∈ E \ {O} we have A + A = O if and only if y = 0.
(3) If A, B ∈ E \ {O} and xA = xB, then A = B or A = −B.

Except for three special cases the operation “+” is given by formula 1. In section
2.1 we will show the associativity in 3 out of 4 cases in which addition is given by
either of the two formulas. This will be done using explicit calculations.

In section 2.2 we will prove several lemmas, which we will use in section 2.3 to give
the proof in the general case.

2.1. Proof for the generic cases. In this section we consider the cases in which
only formula 1 is being used in the definitions of (A + B) + C and A + (B + C).
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Lemma 2.1. Let A, B, C ∈ E \ {O}. If A 6= ±B, B 6= ±C, A + B 6= ±C and
B + C 6= ±A, then

(A + B) + C = A + (B + C).

Proof. Write (x1, y1) := (A + B) + C and (x2, y2) := A + (B + C). Let

α := yB−yA

xB−xA
, β := yA+yC−α(2xA+xB−α2)

xA+xB+xC−α2 ,

γ := yB−yC

xB−xC
, τ := yA+yB−γ(2xB+xC−γ2)

xA+xB+xC−γ2 .

We get using formula 1

x1 = β2 + xA + xB − xC − α2, y1 = −yC + β(2xC − xA − xB − β2 + α2),
x2 = τ 2 + xB + xC − xA − γ2, y2 = −yA + τ(2xA − xB − xC − τ 2 + γ2).

Setting

α̃ := yB − xA, β̃ := (yA + yC)(xB − xA)3 − α̃((2xA + xB)(xB − xA)2 − α̃2),
γ̃ := yB − yC , τ̃ := (yA + yB)(xB − xC)3 − γ̃((2xB + xC)(xB − xC)2 − γ̃2),
η̃ := xB − xA, µ̃ := xB − xC .

one can show that x1 = x2 is equivalent to

(β̃2(xB − xC)2 + (((2xA − 2xC)(xB − xC)2 + γ̃2)(xB − xA)2 − α̃2(xB − xC)2)

((xA + xB + xC)(xB − xA)2 − α̃2)2)((xA + xB + xC)(xB − xA)2 − γ̃2)2

−τ̃ 2((xA + xB + xC)(xB − xA)2 − α̃2)2(xB − xA)2 = 0

and y1 = y2 is equivalent to

(yA − yC)((xA + xB + xC)η̃2 − α̃2)3((xA + xB + xC)µ̃2 − γ̃2)3η̃3µ̃3

+β̃(((2xC − xA − xB)η̃2 + α̃2)((xA + xB + xC)η̃2 − η̃2)2 − β̃2)

((xA + xB + xC)µ̃2 − γ̃2)3µ̃3

−τ̃(((2xA − xB − xC)µ̃2 + γ̃2)((xA + xB + xC)η̃2 − γ̃2)2 − τ̃ 2)

((xA + xB + xC)η̃2 − α̃2)3η̃3 = 0.

By abuse of notation we now consider the equations over the polynomial ring P :=
Z[xA, xB, xC , yA, yB, yC , a, b]. It suffices to show that the equalities hold in P/I where
I := (y2

A − x3
A − axA − b, y2

B − x3
B − axB − b, y2

C − x3
C − axC − b). This is equivalent

to showing that both left hand sides lie in I. This was shown using the commutative
algebra package ‘cocoa’. �

In a very similar way one can show the following two lemmas.

Lemma 2.2. If A, B 6= O,A 6= −A, A 6= ±B, A + A 6= ±B and A + B 6= ±A, then

(A + A) + B = A + (A + B).

.
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Lemma 2.3. If A 6= O,A 6= −A, A + A 6= −(A + A), (A + A) + A 6= ±A and
A + A 6= ±A, then

(A + A) + (A + A) = A + (A + (A + A)).

The next step would be to show that under the usual restrictions, (A + B) + (A +
B) = A+(B+(A+B)). We will show this without reverting to explicit computations
in the proof of theorem 2.13.

2.2. Proof of basic properties.

Lemma 2.4.
−A−B = −(A + B)

Proof. The cases A = O,B = O and A = −B are trivial. In the other cases the
lemma follows from an easy calculation using formula 1. �

Lemma 2.5. If A + B = A−B and A 6= −A, then B = −B.

Proof. The cases A = O respectively B = O are trivial. If A = ±B, then B = −B
follows easily from the uniqueness of the inverse element. So assume that A, B 6=
O,A 6= ±B. Using formula 1 we get(

yB − yA

xB − xA

)2

− xA − xB =

(
−yB − yA

xB − xA

)2

− xA − xB.

This simplifies to −2yAyB = 2yAyB. Since A 6= −A it follows that yA 6= 0. We get
yB = 0 since char(K) > 3, hence B = −B. �

Lemma 2.6 (Uniqueness of the neutral element). If A + B = A, then B = O.

Proof. The cases A = O and A = −B are trivial. Now assume that A 6= O,A 6= −B.
Assume that B 6= O. Write (xC , yC) := A + B = A = (xA, yA). It follows from
formula 1 that

yA = yC = −yA + α(P, Q) (xA − xC)︸ ︷︷ ︸
=0

= −yA

i.e. yA = 0, therefore A = −A. It follows that

A + B = A = −A = −A−B = A−B

According to lemma 2.5 this means that B = −B, i.e. yB = 0. In particular A 6= B,
because otherwise we would get B = A = A + B = A + A = A− A = O. According
to formula 1 we get

xA = xC =

(
yB − yA

xB − xA

)2

− xA − xB = −xA − xB

since yA = yB = 0. Therefore xA and xB = −xA − xA are zeros of the polynomial
P := X3 + aX + b. It follows that x0 = −xA − xB = xA is the third zero since the
second highest coefficient of P is zero. In particular xA is a zero of degree 2. This
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leads to a contradiction, since we assumed that the discriminant 4a3 + 27b2 of the
polynomial X3 + aX + b is non–zero, i.e. the polynomial has distinct zeros. �

Lemma 2.7. If A 6= −A and A + A 6= −A, then (A + A)− A = A.

Proof. The cases A = O and A + A = O are trivial. The general case follows from an
easy computation using formula 1. �

Lemma 2.8. If A + B = −A, then B = −A− A.

Proof. The cases A = O, B = O, A = B, A = −B are trivial. If A = −A, then
−A + B = −A. Using lemma 2.6 it follows that B = O. Hence B = O = A − A =
−A− A. Now assume that A 6= ±B and A 6= −A, A, B 6= O. From −A = A + B it
follows that

xA =

(
yA − yB

xA − xB

)2

− xA − xB

which is equivalent to 2yAyB = y2
A + axB + b− 2x3

A + 3x2
AxB, squaring we get

4x3
By2

A − x2
B(3x2

A + a)2 + xB(2a2xA + 6x5
A − 12bx2

A)− (y2
A − b)2 + 4ax4

A + 8bx3
A = 0

which in turn is equivalent to(
xB −

((
3x2

A + a

2yA

)2

− 2xA

))
(xB − xA)2 = 0.

Since we excluded the case xA = xB we get

xB =

(
3x2

A + a

2yA

)2

− 2xA

i.e. B = A+A or B = −(A+A) = −A−A. If A+A = −A, then B = ±(A+A) = ±A.
Hence A + A 6= −A. By lemma 2.7 it follows that B = −A− A is a solution for the
equation A + B = −A. If B = A + A is also a solution, then A + B = A + (A + A) =
−A = A− (A+A) = A−B. Since A 6= −A it follows from lemma 2.5, that B = −B.
Therefore B = −B = −A− A. �

Lemma 2.9 (Cancellation rule). If A + B = A + B̃, then B = B̃.

Proof. If A = O, then immediately B = B̃. The cases B = O and A + B = O
follow immediately from the uniqueness of the neutral element (lemma 2.6) and the
uniqueness of the inverse element. If A + B = A + B̃ = −A, then using 2.8 we see
that B = −A− A and B̃ = −A− A.

We therefore can assume that A, B, B̃ 6= O and A+B = A+ B̃ 6= O,A+B 6= −A.
Writing A + B = A + B̃ =: (xC , yC) we get

xC = α(A, B)2 − xA − xB = α(A, B̃)2 − xA − x̃B

yC = −yA + α(A, B)(xA − xC) = −yA + α(A, B̃)(xA − xC).
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From A+B 6= ±A it follows that xA 6= xC , from the second equation we get α(A, B) =
α(A, B̃). Using the first equation we get xB = x̃B, i.e. B = −B̃, or B = B̃. We
consider the following two cases:

(1) If A = −A, then B, B̃ 6= −A = A, hence

yB − yA

xB − xA

= α(A, B) = α(A, B̃) =
ỹB − yA

x̃B − xA

.

Since xB = x̃B we get yB = ỹB, therefore B = B̃.
(2) If A 6= −A, then assume that B = −B̃. It follows that A+B = A+B̃ = A−B.

By lemma 2.5 B = −B, since A 6= −A. Therefore B = B̃.

�

Lemma 2.10.

(A + B)−B = A

Proof. The cases A = O, B = O respectively A = −B are trivial. The case A = B
follows from lemma 2.7. If A+B = −B and A 6= −B, then by lemma 2.8 A = −B−B,
hence (A + B)−B = −B −B = A.

Now assume that A, B 6= O,A 6= ±B, A + B 6= −B. This case follows from an
explicit computation using formula 1. �

Corollary 2.11. If A + B = C, then A = C −B.

Proof. From lemma 2.10 we get A+B = A+(C−A), the corollary now follows from
lemma 2.9. �

2.3. Completion of the proof.

Lemma 2.12. Assume that

(1) (A + B) 6= C and A 6= (B + C), or
(2) A = B, or B = C, or A = C, or
(3) O ∈ {A, B, C,A + B, B + C, (A + B) + C, A + (B + C)},

then

(A + B) + C = A + (B + C).

Proof. The cases A = O, B = O, C = O and A = C are trivial. The cases A = −B
and C = −B follow immediately from lemma 2.10. If A + B = −C, then by lemma
2.10

(A + B) + C = O = A− A = A + (B + (−B − A)) = A + (B + C).

The case B + C = −A works the same. We thus established part (3) of the lemma.
We can therefore assume that A, B, C 6= O, A 6= C, B 6= −A,−C, A + B 6= −C

and B + C 6= −A.
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If A = B, then we have to show that (A + A) + C = A + (A + C). This follows
from lemmas 2.2 (C 6= A + A) and 2.3 (C = A + A). The case B = C again works
the same. This shows part (2) of the lemma.

The remaining cases of part (1) now follow immediately from lemma 2.1. �

Theorem 2.13. Let A, B, C ∈ E(K), then

(A + B) + C = A + (B + C)

Proof. By lemma 2.12. we only have to prove the theorem for A, B, C with A+B = C
or B+C = A. It is clearly enough to consider only the case A+B = C. We therefore
have to show that

(A + B) + (A + B) = A + (B + (A + B)).

By lemma 2.12 we can assume that A, B, C,A+B, B+C, (A+B)+C, A+(B+C) 6= O
and A, B, C are pairwise different.

If (A + B) + (A + B) = −A, then A + B = (−B − A) − A by corollary 2.11.
Furthermore (−B − A) − A = −B + (−A − A) by the second part of lemma 2.12,
hence A + B = −B + (−A− A). We get

A + (B + (A + B)) = A + (B + (−B + (−A− A))) = A + (−A− A) =

= −A = (A + B) + (A + B).

If (A+B)+ (A+B) 6= −A, then ((A+B)+ (A+B))−A = (A+B)+ ((A+B)−A)
by the second part of lemma 2.12. Hence

((A + B) + (A + B))− A = (A + B) + ((A + B)− A) = (A + B) + B =

= (A + (B + (A + B)))− A.

From lemma 2.9 it follows, that (A + B) + (A + B) = A + (B + (A + B)). �
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