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For more weekly classroom activities about astronomy and space visit 
the NASA website,  

http://spacemath.gsfc.nasa.gov
 

Add your email address to our mailing list by contacting Dr. Sten 
Odenwald at           

Sten.F.Odenwald@nasa.gov 

 This collection of activities is based on a weekly series of space science 
problems distributed to thousands of teachers during the 2004-2008 school years. 
They were intended as supplementary problems for students looking for additional 
challenges in the math and physical science curriculum in grades 10 through 12.  
The problems are designed to be ‘one-pagers’ consisting of a Student Page, and 
Teacher’s Answer Key.  This compact form was deemed very popular by 
participating teachers.  
 
 The topic for this collection is Black Holes, which is a very popular, and 
mysterious subject among students hearing about astronomy. Students have 
endless questions about these exciting and exotic objects as many of you may 
realize!  Amazingly enough, many aspects of black holes can be understood by 
using simple algebra and pre-algebra mathematical skills. This booklet fills the gap 
by presenting black hole concepts in their simplest mathematical form.  
 
General Approach: 
 The activities are organized according to progressive difficulty in 
mathematics. Students need to be familiar with scientific notation, and it is assumed 
that they can perform simple algebraic computations involving exponentiation, 
square-roots, and have some facility with calculators. The assumed level is that of 
Grade 10-12 Algebra II, although some problems can be worked by Algebra I 
students. Some of the issues of energy, force, space and time may be appropriate 
for students taking high school Physics.  
 

Cover credits: Black hole magnetic field (XMM/Newton); Accretion disk (April Hobart NASA 
/Chandra) Accretion disk (A. Simonnet, Sonoma State University, NASA Education and Public 
Outreach); Galactic Center x-ray (NASA/Chandra) 
 
Inside Credits: 3) Black hole magnetic field XMM/Newton); 4) Tidal disruption (XMM/Newton); 5) 
Milky Way center (NASA/Chandra) Infrared (ESA/NAOS); 6) Accretion disk (M. Weiss; NASA 
/Chandra); 7) Accretion disk (April Hobart NASA/Chandra); 8) Black hole disk artist rendition  (M. 
Weiss NASA/Chandra); 10) Accretion disk (M. Weiss NASA /Chandra); 11) x-ray emission (Ann 
Field STScI); 

This booklet was created through an education grant NNH06ZDA001N-
EPO from NASA's Science Mission Directorate.  

http://spacemath.gsfc.nasa.gov/
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vi                                                                     How to use this book 

 Teachers continue to look for ways to make math meaningful by providing 
students with problems and examples demonstrating its applications in everyday 
life.  Space Mathematics offers math applications through one of the strongest 
motivators-Space. Technology makes it possible for students to experience the 
value of math, instead of just reading about it. Technology is essential to 
mathematics and science for such purposes as “access to outer space and other 
remote locations, sample collection and treatment, measurement, data collection 
and storage, computation, and communication of information.”  3A/M2 authentic 
assessment tools and examples.  The NCTM standards include the statement that 
"Similarity also can be related to such real-world contexts as photographs, models, 
projections of pictures" which can be an excellent application for Black Hole data.  
 
Black Hole Math  is designed to be used as a supplement for teaching 
mathematical topics. The problems can be used to enhance understanding of the 
mathematical concept, or as a good assessment of student mastery.   
 
An integrated classroom technique provides a challenge in math and science 
classrooms, through a more intricate method for using Black Hole Math. Read the 
scenario that follows: 
 
Ms. Green decided to pose a Mystery Math Activity for her students.  She 
challenged each student with math problem from the Black Hole Space Math book.  
She wrote the problems on the board for students to solve upon entering the 
classroom; she omitted the words Black Hole from each problem.  Students had to 
solve the problem correctly in order to make a guess to solve the “Mystery.”   If the 
student got the correct answer they received a free math homework pass for that 
night.  Since the problems are a good math review prior to the end of the year final 
exam, all students had to do all of the problems, even if they guessed the correct 
answer.   
 
 
Black Hole Math can be used as a classroom challenge activity, assessment tool, 
enrichment activity or in a more dynamic method as is explained in the above 
scenario.  It is completely up to the teacher, their preference and allotted time.  
What it does provide, regardless of how it is used in the classroom, is the need to 
be proficient in math. It is needed especially in our world of advancing technology 
and physical science   
 



                                                                                                                                                                        viiAlignment with  Standards

 
AAAS:  Project:2061 Benchmarks 
 
(3-5) - Quantities and shapes can be used to describe objects and events in the world around 
us. 2C/E1  --- Mathematics is the study of quantity and shape and is useful for describing 
events and solving practical problems. 2A/E1  (6-8) Mathematicians often represent things with 
abstract ideas, such as numbers or perfectly straight lines, and then work with those ideas 
alone. The "things" from which they abstract can be ideas themselves; for example, a 
proposition about "all equal-sided triangles" or "all odd numbers". 2C/M1  (9-12) - 
Mathematical modeling aids in technological design by simulating how a proposed system 
might behave. 2B/H1 ---- Mathematics provides a precise language to describe objects and 
events and the relationships among them. In addition, mathematics provides tools for solving 
problems, analyzing data, and making logical arguments. 2B/H3 ----- Much of the work of 
mathematicians involves a modeling cycle, consisting of three steps: (1) using abstractions to 
represent things or ideas, (2) manipulating the abstractions according to some logical rules, 
and (3) checking how well the results match the original things or ideas. The actual thinking 
need not follow this order. 2C/H2  
 
NCTM:    Principles and Standards for School Mathematics 
Grades 6–8 : 

• work flexibly with fractions, decimals, and percents to solve problems;  

• understand and use ratios and proportions to represent quantitative relationships;  

• develop an understanding of large numbers and recognize and appropriately use 
exponential, scientific, and calculator notation; .  

• understand the meaning and effects of arithmetic operations with fractions, decimals, 
and integers;  

• develop, analyze, and explain methods for solving problems involving proportions, such 
as scaling and finding equivalent ratios.  

• represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, 
when possible, symbolic rules;  

• model and solve contextualized problems using various representations, such as 
graphs, tables, and equations.  

• use graphs to analyze the nature of changes in quantities in linear relationships.  

• understand both metric and customary systems of measurement;  

• understand relationships among units and convert from one unit to another within the 
same system. 

Grades 9–12 : 

• judge the reasonableness of numerical computations and their results.  

• generalize patterns using explicitly defined and recursively defined functions;  

• analyze functions of one variable by investigating rates of change, intercepts, zeros, 
asymptotes, and local and global behavior;  

• understand and compare the properties of classes of functions, including exponential, 
polynomial, rational, logarithmic, and periodic functions;  

• draw reasonable conclusions about a situation being modeled. 
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viii                                                                 Teacher Comments 

 
"Your problems are great fillers as well as sources of interesting questions. I have 
even given one or two of your problems on a test! You certainly have made the 
problems a valuable resource!" (Chugiak High School, Alaska) 
 
 
"I love your problems, and thanks so much for offering them! I have used them for 
two years, and not only do I love the images, but the content and level of 
questioning is so appropriate for my high school students, they love it too. I have 
shared them with our math and science teachers, and they have told me that their 
students like how they apply what is being taught in their classes to real problems 
that professionals work on." (Wade Hampton High School ,SC) 
 
 
"I recently found the Space Math problems website and I must tell you it is 
wonderful! I teach 8th grade science and this is a blessed resource for me. We do 
a lot of math and I love how you have taken real information and created 
reinforcing problems with them. I have shared the website with many of my middle 
and high school colleagues and we are all so excited. The skills summary allows 
any of us to skim the listing and know exactly what would work for our classes and 
what will not. I cannot thank you enough. I know that the science teachers I work 
with and I love the graphing and conversion questions. The "Are U Nuts" 
conversion worksheet was wonderful! One student told me that it took doing that 
activity (using the unusual units) for her to finally understand the conversion 
process completely. Thank you!" (Saint Mary's Hall MS, Texas) 
 
 
"I know I’m not your usual clientele with the Space Math problems but I actually 
use them in a number of my physics classes. I get ideas for real-world problems 
from these in intro physics classes and in my astrophysics classes. I may take 
what you have and add calculus or whatever other complications happen, and then 
they see something other than “Consider a particle of mass ‘m’ and speed ‘v’ 
that…”  (Associate Professor of Physics) 
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A Short Introduction to Black Holes 

 The basic idea of a black hole is simply an object whose gravity is so strong that light 
cannot escape from it. It is black because it does not reflect light, nor does its surface emit any 
light.  
 
Before Princeton Physicist John Wheeler coined the term black hole in the mid-1960s, no one 
outside of the theoretical physics community really paid this idea much attention.  
 
In 1798, the French mathematician Pierre Laplace first imagined such a body using Newton's 
Laws of Physics (the three laws plus the Law of Universal Gravitation). His idea was very simple 
and intuitive. We know that rockets have to reach an escape velocity in order to break free of 
Earth's gravity. For Earth, this velocity is 11.2 km/sec (40,320 km/hr or 25,000 miles/hr). Now let's 
add enough mass to Earth so that its escape velocity climbs to 25 km/sec…2000 
km/sec…200,000 km/sec, and finally the speed of light: 300,000 km/sec. Because no material 
particle can travel faster than light, once a body is so massive and small that its escape velocity 
equals light-speed, it becomes dark. This is what Laplace had in mind when he thought about 
“black stars.” This idea was one of those idle speculations at the boundary of mathematics and 
science at the time, and nothing more was done with the idea for over 100 years.  
 
Once Albert Einstein had completed developing his Theory of General Relativity in 1915, the 
behavior of matter and light in the presence of intense gravitational fields was revisited. This time, 
Newton's basic ideas had to be extended to include situations in which time and space could be 
greatly distorted. There was an intense effort by mathematicians and physicists to investigate all 
of the logical consequences of Einstein's new theory of gravity and space. It took less than a year 
before one of the simplest kinds of bodies was thoroughly investigated through complex 
mathematical calculations.  
 
The German mathematician Karl Schwarzschild investigated what would happen if all the matter 
in a body were concentrated at a mathematical point. In Newtonian physics, we call this the center 
of mass of the body. Schwarzschild chose a particularly simple body: one that was a perfect 
sphere and not rotating at all. Mathematicians such as Roy Kerr, Hans Reissner, and Gunnar 
Nordstrom would later work out the mathematical details for other kinds of black holes.  

 
Schwarzschild black holes are actually very simple. Mathematicians even call them elegant 
because their mathematics is so compact, exact, and beautiful. They have a geometric feature 
called an “event horizon” (Problem 1) that mathematically distinguishes the inside of the black 
hole from the outside. These two regions have very different geometric properties for the way that 
space and time behave. The world outside the event horizon is where we live and contains our 
universe, but inside the event horizon, space and time behave in very different ways entirely 
(Problem 9). Once inside, matter and light cannot get back out into the rest of the universe. This 
horizon has nothing to do, however, with the Newtonian idea of an escape velocity.  
 
By the way, these statements sound very qualitative and vague to students, but the mathematics 
that goes into making these statements is both complex and exact. With this in mind, there are 
four basic kinds of black hole solutions to Einstein's equations:  
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Schwarzschild: These are spherical and do not rotate. They are defined only 
by their total mass.  

 
Reissner-Nordstrom: These possess mass and charge but do not rotate.  
 
Kerr: These rotate and are flattened at the poles, and only described by their 
mass and amount of spin (angular momentum).  
 
Kerr-Nordstrom: These possess mass and charge, and they rotate.  

 
There are also other types of black holes that come up when quantum mechanics is applied to 
understanding gravity or when cosmologists explore the early history of the universe. Among 
these are 

Planck-Mass: These have a mass of 0.00000001 kilograms and a size that is 100 
billion billion times smaller than a proton.  

Primordial: These can have a mass greater than 10 trillion kilograms and were 
formed soon after the big bang and can still exist today. Smaller black holes have long-
since vanished through evaporation in the time since the big bang. 

A Common Misconception 
Black holes cannot suck matter into them except under certain conditions. If the sun turned into 
a black hole, Earth and even Mercury would continue to orbit the new sun and not fall in. There 
are two common cases in the universe in which matter can be dragged into a black hole. Case 
1: If a body orbits close to the event horizon in an elliptical orbit, it emits gravitational radiation, 
and its orbit will eventually decay in millions of years. Case 2: A disk of gas can form around a 
black hole, and through friction, matter will slowly slide into the black hole over time.  
 
    How Black Holes are Formed 
Black holes can come in any size, from microscopic to supermassive. In today's universe, 
massive stars detonate as supernovae and this can create stellar-mass black holes (1 solar 
mass = 1.9×1030 kg). When enough of these are present in a small volume of space, like the 
core of a globular cluster, black holes can absorb each other and in principle, can grow to 
several hundred times the mass of the sun. If there is enough matter (i.e., gas, dust, and stars) 
for a black hole to “eat,” it can grow even larger. There is a black hole in the star-rich core of the 
Milky Way that has a mass equal to nearly 3 million suns. The cores of more massive and 
distant galaxies have supermassive black holes containing the equivalent of 100 million to as 
much as 10 billion suns. Astronomers are not entirely sure how these supermassive black holes 
evolved so quickly to their present masses given that the universe is only 14 billion years old.  
 
Currently, there are no known ways to create black holes with masses less than about 0.1 times 
the sun's mass, and through a speculative process called Hawking Radiation, black holes less 
than 1 trillion kg in mass would have evaporated by now if they had formed during the Big Bang.  
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A Short List of Known Black Holes  

 
 
Stellar-Mass 
 

Name Constellation Distance Mass 
(Light years) (in solar units) 

Cygnus  X-1 Cygnus 7,000 16 
SS 433 Aquila 16,000 11 

Nova Mon 1975 Monocerous 2,700 11 
Nova Persi 1992 Perseus 6,500 5 

IL Lupi Lupus 13,000 9 
Nova Oph 1977 Ophiuchus 33,000 7 

V4641 Sgr Sagittarius 32,000 7 
Nova Vul 1988 Vulpecula 6,500 8 

V404 Cygni Cygnus 8,000 12 
 
Note: The mass is the sum of the companion star and the black hole masses. 
'16' means 16 times the mass of the sun. 
 
 
 
Galactic - Mass 
 

Name Constellation Distance Mass 
(Light years) (in solar units) 

NGC-205 Andromeda 2,300,000 90,000 
Messier-33 Triangulum 2,600,000 50,000 

Milky Way SgrA* Sagittarius 27,000 3,000,000 
Messier-31 Andromeda 2,300,000 45,000,000 
NGC-1023 Canes Venatici 37,000,000 44,000,000 
Messier-81 Ursa Major 13,000,000 68,000,000 
NGC-3608 Leo 75,000,000 190,000,000 
NGC-4261 Virgo 100,000,000 520,000,000 
Messier-87 Virgo 52,000,000 3,000,000,000 

 
Note: The first three are called 'Intermediate-mass' black holes. The remainder 
are called 'supermassive'. 
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1 The Nearest Stellar Black Holes 

 
An artist's concept of Cygnus X-1 shows hot gas from 
the giant blue star flowing toward the black hole, 
forming a bright accretion disk. [ESA/Hubble & ESA 
Information Centre (Kornmesser & Christensen)] 

 How close is the nearest black 
hole to our own sun? Because our 
Milky Way galaxy is a very flat disk of 
stars, we can use Cartesian 
coordinates to map out where the 
nearest black holes are! 
 
 Black holes are created when 
very massive stars explode as 
supernova. Fortunately, this does not 
happen very often in our corner of 
the Milky Way, so black holes are 
actually very far apart ! 

 The table below gives the coordinates of the seven nearest black holes to 
our sun and solar system. The mass of each black hole is given in terms of solar 
mass units so that ‘16’ means that the mass of the black hole is 16 times that of 
our sun. All distances (X, Y and D) are given in light years, where 1 light year = 
9.6 trillion kilometers. 
 

Name Mass  X Y D 
A)  Cygnus X-1 16 6600 -2400  
B)  SS-433 11 8000 -14000  
C)  Nova Monocerotes 1975 11 -1400 2400  
D)  Nova Persi 1992 5 5600 3300  
E)  IL Lupi 9 6500 -11000  
F)  Nova Vulpeculi 1988 8 2200 -6100  
G)  V404 Cygni 12 6900 -4000  
 
 
Problem 1 – Create a Cartesian coordinate grid with coordinate intervals of 5, 10, 15 
representing distances of 5000, 10000, 15000, light years, with the sun at the Origin. On 
this grid, plot the location of each black hole shown in the table above. 
 
 
Problem 2 – Using a ruler, measure the distance between the sun and each black hole, 
convert this to its true distance rounded to the nearest thousands of light years, and enter 
the result in the last column of the table.  
 
 
Problem 3 – What is the mean, median and mode distance between stellar black holes 
in the neighborhood of our sun rounded to the nearest thousands of light years? 
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Answer Key 1 
  

 
Problem 1 – Create a Cartesian coordinate grid with coordinate intervals of 5, 10, 15 
representing distances of 5000, 10000, 15000, light years, with the sun at the Origin. On 
this grid, plot the location of each black hole shown in the table above. 
 
Answer: See diagram above. 
 
Problem 2 – Using a ruler, measure the distance between the sun and each black hole, 
convert this to its true distance rounded to the nearest thousands of light years, and 
enter the result in the last column of the table.  
 
Answer: In order from top to bottom in the table:  7000, 16000, 3000, 7000, 14000, 
7000, 8000. Note: Students may also use the Pythagorean Theorem. 
 
 
Problem 3 –What is the mean, median and mode distance between stellar black holes 
in the neighborhood of our sun to the nearest thousands of light years? 
 
Answer: Mean = (7000+16000 +3000 +7000+ 14000+7000+ 8000)/ 7 
  Mean = 9,000 light years.    
  Median= 7,000 light years.    
  Mode=7,000 light years 
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2 The Nearest Supermassive Black Holes 

Artist image of a supermassive black 
hole. Courtesy (NASA/Hubble/Dana Berry) 

 Within the dense cores of most 
galaxies, lurk black holes that have 
grown over the eons into supermassive 
objects containing millions of times the 
mass of a stellar black hole. Some rare 
galaxies have two or three of these 
black holes, but far more have only one.  
 
 Black holes may never lose 
mass. They steadily gain mass over the 
millennia by consuming interstellar gas, 
and even entire stars that are 
unfortunate enough to become trapped 
by their colossal gravity.  

 The table below gives the distances and locations of the ten closest 
supermassive black holes to the Milky Way galaxy. The mass of each supermassive 
black hole is given in terms of solar mass units so that ’90,000’ means that the mass of 
the supermassive black hole is 90,000 times that of our sun. All distances (X, Y) are 
given in millions of light years, where 1 light year = 9.6 trillion kilometers. 
 

Name Mass X Y D 
NGC-205 90,000 1.1 2.0  

Messier-33 50,000 0.5 2.6  
Sagittarius A*     3 million 0 0  
Messier-31   45 million 1.2 2.0  
NGC-1023   44 million -35.0 12.7  
Messier-81   68 million 6.5 -11.3  
NGC-3608 190 million -70.5 -25.7  
NGC-4261 520 million -64.3 -76.7  
Messier-87    3 billion -33.4 -39.8  

 
Problem 1 – Use the 2-point distance formula to determine the distance, in millions of 
light years, between the Milky Way (0,0) and each of the nearby supermassive black 
holes. Enter your answer in the ‘D’ column. 
 
 
Problem 2 – Which supermassive black hole is the closest to Messier-87?  
 
 
 
Problem 3 – From the location of NGC-3608 as the new origin (0,0) what would be the 
new coordinates of the other supermassive black holes? 
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Answer Key 2 
  
Name Mass X Y D 

NGC-205 90,000 1.1 2.0 2 
Messier-33 50,000 0.5 2.6 3  

Sagittarius A*     3 million 0 0 0 
Messier-31   45 million 1.2 2.0 2 
NGC-1023   44 million -35.0 12.7 37 
Messier-81   68 million 6.5 -11.3 13 
NGC-3608 190 million -70.5 -25.7 75 
NGC-4261 520 million -64.3 -76.7 100 
Messier-87    3 billion -33.4 -39.8 52 

 
Problem 1 – Use the 2-point distance formula to determine the distance, to the nearest 
million light years, between the Milky Way (0,0) and each of the nearby supermassive 
black holes. Enter your answer in the ‘D’ column. 
 
 
 
Problem 2 – Which supermassive black hole is the closest to Messier-87?  
 
Answer:  NGC-1023 is located  D2 = (-33.4 – (-35.0))2 + (-39.8 – (12.7)2 so  
D =  52 million light years;   
 
 
 
Problem 3 –  From the location of NGC-3608 as the new origin (0,0) what would be the 
new coordinates of the other supermassive black holes? 
 
Answer:  Subtract the coordinate (-70.5, -25.7) from the other coordinates to get: 
 

Name Mass X Y 
NGC-205 90,000 71.6 27.7 

Messier-33 50,000 71.0 28.3 
Sagittarius A*     3 million 70.5 25.7 
Messier-31   45 million 71.7 27.7 
NGC-1023   44 million 35.5 38.4 
Messier-81   68 million 77.0 14.4 
NGC-3608 190 million 0 0 
NGC-4261 520 million 6.4 -51.0 
Messier-87    3 billion 37.1 -14.1 
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3 Exploring the Size and Mass of a Black Hole 

 Black holes are so incredibly 
dense that enormous amounts of 
matter can be compressed into their 
very small volumes. No known 
physical event can make black holes 
smaller than the mass of a small star. 
But because black holes are a 
product of gravity, at least 
theoretically, there is no limit to how 
big or how small they can be. 
 

 The table below gives the predicted radius of black holes containing 
various amounts of matter. None of these black holes have been  observed, but 
their sizes have been determined from their stated masses. The masses are all 
given in terms of the mass of our Earth, 5.7x1024 kilograms so that ‘2.0’ means a 
black hole with twice the mass of our Earth. 
 

Mass Radius 
2.0 16.8 cm 
3.2 26.9 cm 
5.0 42.0 cm 
7.5 63.0 cm 
8.7 73.1 cm 

11.0 96.6 cm 
 
 
Problem 1 – Graph the data in the table. 
 
Problem 2 – From the graph, use any method to calculate the slope, S, of the 
data. What are the physical units for the value of this slope? 
 
Problem 3 – From the table, calculate the slope, S, of the data. 
 
Problem 4 – Write a linear equation of the form R(M) = R0 + S M that expresses 
the black hole Mass-Radius Law. 
 
Problem 5 – To the nearest tenth of a meter, what would you predict as the 
radius of a black hole with the mass of the planet Jupiter, if the mass of Jupiter is 
318 times the mass of Earth? 
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3 Answer Key 
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 Problem 1 – Graph the data in the table. (see above) 
 
 
Problem 2 – From the graph, use any method to calculate the slope of the data. What 
are the physical units for the value of this slope? 
 
Answer: Select any two points:  (2,16.8) and (5,42.0). Draw a line between the points 
and the slope is just the change in the y values (42-16.8) divided by the change in the x 
values (5-2) so S = 25.2/3 = 8.4. The units are centimeters per Earth mass. 
 
Problem 3 – From the table, calculate the slope of the data. 
 
Answer: From the table, if M = 2.0, R = 16.8cm, and if M=5.0, R = 42.0 cm. The slope is 
just S = (42.0-16.8)/(5.0-2.0) =  25.2/3.0 = 8.4 cm/Earth mass. 
 
 
Problem 4 – Write a linear equation of the form y = b + S x that expresses the black 
hole Mass-Radius Law. 
 
Answer:   We know that the slope, S = 8.4.  If we substitute the coordinates for one of 
the points into this equation (2.16.8) we get  16.8 = b + 8.4 (2). Then solving for the y 
intercept we get b= 0.0, so the formula reads R(M) = 8.4 M 
 
 
Problem 5 – To the nearest tenth of a meter, what would you predict as the radius of a 
black hole with the mass of the planet Jupiter, if the mass of Jupiter is 318 times the 
mass of Earth? 
 
Answer: For M = 318 Earths, R(318) = 8.4 x 318 =  2671 centimeters or 2.7 meters. 
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4 The Moon as a Black Hole! 

 Suppose that a group of 
hostile aliens passed through our 
solar system and decided to convert 
our moon into a black hole! 
 
 
 A body with the mass of our 
moon (about 7 million trillion tons!) 
would be compressed into a black 
hole with a diameter of only 0.2 
millimeters! 

Problem 1 – In the space below, draw a black disk 0.2 millimeters in diameter to 
represent the size of Black Hole Moon. 
 
 
 
 
Problem 2 - The Earth as a black hole would have a radius of 8.7 millimeters. In 
the space below, draw a circle the size of Black Hole Earth. 
 
 
 
 
 
 
 
 
 
 
 
Problem 3 - If the distance to the moon is 356,000 kilometers, how far from our 
Black Hole Earth would the new Black Hole Moon be located if its diameter were 
only 0.2 millimeters? 
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Answer Key 4 
   

Problem 1 - Moon black hole shown as the following dot    . 

                                                                 
 
 
 
 
Problem 2 - Earth black hole shown above. It has a diameter of 17 millimeters, or about the same 
diameter as a dime. 
 
 
Problem 3 - Answer: It would still be 356,000 kilometers because this is NOT a scaled drawing of 
the black holes sizes, but an illustration of their actual sizes, so the distance between the black 
disks above would be 356,000 kilometers! 
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5 Exploring Black Holes 

 All bodies produce 
gravity. The more mass a body 
has, the more gravity it creates.  
 It is also true that the 
smaller you make a body by 
compressing it, the more 
intense its gravity is at its 
surface. 
 Suppose you made a 
body that had such an intense 
gravity that even light could not 
escape from it. 
 That body would be 
called a black hole, because 
anything falling into it, even 
light, could never escape from it 
again. 

 

 Black holes can come in all imaginable sizes. Suppose that some aliens 
could turn the planets and moons in our solar system into black holes. How big 
would they be? 
 On a black piece of paper, use a ruler and a compass to make circles that 
are as large as the black holes mentioned in each of the following problems.  
 Cut these circles out, and make a black hole mobile of the smaller bodies 
in the solar system! 
 
Problem 1 - Mercury is a black hole with a radius of           0.5 millimeters. 
Problem 2 - Venus is a black hole with a radius of                7 millimeters
Problem 3 - Earth is a black hole with a radius of                  9 millimeters 
Problem 4 - The moon is a black hole with a radius of       0.1 millimeters
Problem 5 - Mars is a black hole with a radius of               1.0 millimeter
Problem 6 - Pluto is a black hole with a radius of             0.02 millimeters
 
The giant planets will need black circles that are much bigger! 
 
Problem 7 - Jupiter is a black hole with a radius of      280 centimeters
Problem 8 - Saturn is a black hole with a radius of        83 centimeters
Problem 9 - Uranus  is a black hole with a radius of      13 centimeter
Problem 10 - Neptune is a black hole with a radius of   15 centimeter
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Answer Key (approximate sizes) 5 
 

            
 

      

Mercury 
Diameter = 1 mm 

       

Venus 
Diameter= 14 mm  

      

Earth 
Diameter= 18 mm  

            . 
          

Moon 
Diameter= 0.2 mm  

Mars 
Diameter= 2 mm           

        

Pluto 
Diameter= 0.04 mm  

               . 
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Exploring a Full-Sized Black Hole  6 
 This black ball shown below is the exact size of a black hole with a 
diameter of 9.0 centimeters. Such a black hole would have a mass of  5 times 
the mass of our Earth. All of this mass would be INSIDE the ball below. 

 

 Although it looks pretty harmless, if this black hole were at arms-length, you 
would already be dead. In fact, if you were closer to it than the distance from New 
York to San Francisco, 1 150-pound person would weigh 3 tons and would be 
crushed by their own weight!  
 Suppose that you could survive being crushed to death as you got closer to 
the black hole shown above.  To stay in an orbit around the black hole so that you did 
not fall in, you have to be traveling at a specific speed V, in kilometers per second, 
that depends on your distance R, in meters from the center of the black hole, is given 
below: 

                                            44,700V
R

=   

  
Problem 1 - If you were orbiting at the distance of the Space Shuttle (R=6,800 km) 
from the center of this black hole, what would your orbital speed be in A) 
kilometers/sec? B) kilometers/hour? C) miles per hour (1 mile = 1.6 km). 
 
Problem 2 -  If a small satellite were orbiting 20 centimeters away from the center of 
the black hole shown above, how fast would it be traveling in A) km/second? B) 
percentage of the speed of light? (The speed of light = 300,000 km/sec). 
 
Problem 3) If the orbit is a circle, how long: A) would the Space Shuttle in Problem 1 
take to go once around in its orbit? B) would it take the satellite in Problem 2  to go 
once around in its orbit? 
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Answer Key 6 
 Problem 1 - If you were orbiting at the distance of the Space Shuttle (R=6,800 km) from 

the center of this black hole, what would your orbital speed be in A) kilometers/sec? B) 
kilometers/hour? C) miles per hour (1 mile = 1.6 km). 
 
Answer; A)  The formula says that for R = 6,800,000 meters, V = 17 km/sec. 
              B)  1 hour = 3600 seconds, so V = 17 km/sec x (3600 sec/1 hour) = 61,200 
km/hour. 
               C) V = 61,200 km/sec x (1 mile / 1.6 km) =  38,250 miles/hr 
 
 
 
 
Problem 2 -  If a small satellite were orbiting 20 centimeters away from the center of the 
black hole shown above, how fast would it be traveling in A) km/second? B) percentage of 
the speed of light? (The speed of light = 300,000 km/sec). 
 
Answer;   A)  R = 0.2 meters, so from the formula V = 100,000 km/sec 
                 B)  Speed =   100% x (100000/300000) so speed = 33% the speed of light. 
 
 
 
 
Problem 3) If the orbit is a circle, how long: A) would the Space Shuttle in Problem 1 take 
to go once around in its orbit? B) would it take the satellite in Problem 2  to go once around 
in its orbit? 
 
A) Orbit circumference, C = 2πR so for R = 6,800 km, C = 40,000 kilometers. The Shuttle 
speed is  V=17 km/sec, so the time is T = C/V  or  2,353 seconds. This equals about 39 
minutes. 
 
B) A) Orbit circumference, C = 2πR so for R = 0.2 meters, C = 1.25 meters. The satellite 
speed is  V=100,000 km/sec. Converting this to meters we get  100,000,000 meters/sec,  
so the time is T = C/V  or  0.000000013 seconds. This is 13 billionths of a second! 
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7 A Scale-Model Black Hole - Orbit Speeds 

Black holes can come in all sizes, so let's 
build one that fits on your desk top, and explore 
some of its interesting properties! 
 Get a basket ball (diameter 25 cm) and 
paint it black. Note: An actual black hole of 
this size would have a mass equal to about 
29 times the Earth! 
 Most of the real weird things about black 
holes are hidden in the ‘numbers’ that define 
their properties.  

Distance 
(cm) 

Orbit 
Speed 
(km/s) 

40 174,000 
35 186,000 
30 200,000 
29 204,000 
28 208,000 
27 212,000 
26 216,000 

25.5 218,000 
25.1 220,000 

Orbit Speed – At a distance of 40 cm from the center of the black hole, a 
satellite would orbit at a speed of 174,000 km/sec.  
 
Problem 1 - If the speed of light is 300,000 km/sec, what is the orbit speed at 25.1 
cm from the center of this ‘toy’ black hole in terms of a percentage of the light-speed? 
 
 
Problem 2 - How far above the surface (called the event horizon) is the satellite at 
that distance?  
 
 
Problem 3 – Suppose you wanted to move the satellite from an orbit distance of 40 
centimeters to 29 centimeters in order to study the event horizon more closely. By 
how much would you have to change the satellites speed? 
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Answer Key 7 
 Problem 1 - If the speed of light is 300,000 km/sec, what is the orbit speed at 25.1 cm 

from the center of this ‘toy’ black hole in terms of a percentage of the light-speed?  
 
Answer: The tables says that at 25.1 cm the speed will be 220,000 km/s so in terms of 
the speed of light this is  100% x (220,000/300,000) =  73% the speed of light! 
 
 
 
 
Problem 2 - How far above the surface (called the event horizon) is the satellite at 
that distance?  
 
Answer: The radius of the black hole is 25 centimeters, so the distance of the satellite 
above the event horizon is  25.1 cm – 25 cm = 0.1 centimeters or 1 millimeters! 
 
 
 
 
Problem 3 – Suppose you wanted to move the satellite from an orbit distance of 40 
centimeters to 29 centimeters in order to study the event horizon more closely. By how 
much would you have to change the satellites speed? 
 
Answer:  The satellites speed would have to increase from 174,000 km/sec to 204,000 
km/sec or  30,000 km/sec. 
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8 A Scale-Model Black Hole  - Orbit Periods 

Black holes can come in all sizes, so let's 
build one that fits on your desk top, and explore 
some of its interesting properties! 
 
 Get a basket ball (diameter 25 cm) and 
paint it black. Note: An actual black hole of 
this size would have a mass equal to about 
29 times the Earth! 
 
 Most of the real weird things about black 
holes are hidden in the ‘numbers’ that define 
their properties.  

Distance 
(cm) 

Satellite 
Period 

(nanosec) 

Observed 
Period 

(nanosec) 
40 14 21 
35 12 22 
30 9 23 
29 8 24 
28 8 26 
27 8 29 
26 8 39 

25.5 7 53 
25.1 6 114 

Time Distortion –  The typical speed of an object that would be orbiting our ‘toy’ black 
hole is about 200,000 km/s or 70% the speed of light! That means a satellite would only take 
a few billionths of a second to make one orbit. As a comparison, for a normal Earth satellite, 
it takes about 90 minutes!  The table below gives two ‘time’ columns.  For example, a clock 
carried by the satellite at a distance of 30 centimeters from the center of the black hole would 
record that it took 9 nanoseconds (or 0.000000009 seconds) to make one complete orbit. 
Because of the distortion of gravity, a distant observer would see the satellite take 23 
nanoseconds to make one complete orbit! As viewed by the distant observer, time is actually 
passing more slowly on the satellite. 
 
 
Problem 1 – Suppose an instrument to study the black hole spends 1 year orbiting at a 
distance of 30 cm from the center of the black hole. How much time would have passed as 
viewed by a distant observer on Earth? 
 
 
Problem 2 – A meteor falls into the black hole and produces a brilliant flash of light that lasts 
6 nanoseconds just before it passes across the event horizon at 25 centimeters. How long 
will this flash last as seen from Earth? 
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Answer Key 8 
 Problem 1 – Suppose an instrument to study the black hole spends 1 year orbiting at a 

distance of 30 cm from the center of the black hole. How much time would have passed as 
viewed by a distant observer on Earth? 
 
Answer:   At  30 cm, the satellite clock takes  9 nanoseconds to orbit once, while the distant 
observer sees 23 nanoseconds pass. The amount of time dilation is just the ratio of these two 
times or  23 ns/9 ns = 2.5 times. That means that if one second passes on the satellite, the 
Observer will see 2.5 seconds pass; if 1 hour passes on the satellite, this will be seen as 2.5 
hours by the Observer and so on. If 1 year passes on the satellite, the distant observer will 
see 2.5 years pass. 
 
 
Problem 2 – A meteor falls into the black hole and produces a brilliant flash of light that lasts 6 
nanoseconds just before it passes across the event horizon at 25 centimeters. How long will 
this flash last as seen from Earth? 
 
Answer:  From the table, if the meteor is close to the event horizon, a 6 nanosecond event will 
be seen to last 114 nanoseconds as viewed by a distant observer. 
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9 A Scale-Model Black Hole - Doppler Shifts 

Black holes can come in all sizes, so let's 
build one that fits on your desk top, and explore 
some of its interesting properties! 
 
 Get a basket ball (diameter 25 cm) and 
paint it black. Note: An actual black hole of 
this size would have a mass equal to about 
29 times the Earth! 
 
 Most of the real weird things about black 
holes are hidden in the ‘numbers’ that define 
their properties.  

Distance 
(cm) 

Wavelength
(Nm) 

40 163 
35 187 
30 245 
29 269 
28 306 
27 367 
26 510 

25.5 714 
25.1 1584 

Wavelength Stretching – A light wave is defined by its wavelength, and because it 
travels at the speed of light, this wave takes a certain amount of time to pass-by. But if the 
passage of time is distorted near a black hole, this means that wavelength of light is also 
distorted. The time between crests of the wave will pass-by in a different time interval. The 
table on the left shows what happens to a light wave that starts out with a wavelength of 100 
nanometers at each of the distances from our toy black hole.  (Note: Electromagnetic 
radiation with a wavelength of 100 nm are called X-rays). The table to the right gives the 
wavelengths for common types of light energy. For example, as seen by the distant observer 
on Earth, x-rays emitted from 26 centimeters have there wavelengths stretched from 100 nm 
to 510 nanometers! 
 
Problem 1 – An astronomer wants to study a burst of X-ray light emitted by a meteor falling 
into the black hole at a distance of 25.5 cm from the center of the black hole. At what 
wavelength on Earth will the burst be observed? What is the name for this radiation detected 
at Earth? 
 
Problem 2 – If the meteor is emitting the x-rays the whole time that it falls from a distance of 
40 cm to 25 cm, what will the astronomer on Earth observe about the radiation that she 
detects? 
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Answer Key 9 
 Problem 1 – An astronomer wants to study a burst of X-ray light emitted by a meteor falling 

into the black hole at a distance of 25.5 cm from the center of the black hole. At what 
wavelength on Earth will the burst be observed? What is the name for this radiation detected at 
Earth? 
 
 
Answer: The x-ray light will be shifted to a wavelength of about 714 nanometers. This 
radiation is called infrared radiation. 
 
 
Problem 2 – If the meteor is emitting the x-rays the whole time that it falls from a distance of 
40 cm to 25 cm, what will the astronomer on Earth observe about the radiation that she 
detects? 
 
Answer:  It will look like the meteor is first emitting x-ray light, then as it gets closer to 
the black hole, the light will shift into ultraviolet, visible and then infrared. 
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10 A Scale-Model Black Hole - Gravity 

Black holes can come in all sizes, so let's 
build one that fits on your desk top, and explore 
some of its interesting properties! 
 
 Get a basket ball (diameter 25 cm) and 
paint it black. Note: An actual black hole of 
this size would have a mass equal to about 
29 times the Earth! 
 
 Most of the real weird things about black 
holes are hidden in the ‘numbers’ that define 
their properties.  

Distance 
(cm) 

Earth 
Gravitys 

40 1.2 x 1015

35 1.0 x 1016

30 1.4 x 1016

29 1.5 x 1016

28 1.6 x 1016

27 1.7 x 1016

26 1.8 x 1016

25.5 1.9 x 1016

25.1 2.0 x 1016

Gravity – The amount of gravity generated by a black hole can be tremendous because 
of all the matter that gets stuffed into such a small region of space! The table below gives the 
acceleration of gravity at the different distances from the toy black hole in terms of multiples 
of one Earth Gravity at Earth’s surface. For example, if the gravity field had a strength of 10 
Earth gravities, you would weigh 10 times your normal ‘1-G’ weight. A 150-pound (667.5 
Newtons) person would feel as though they weighed 1,500 pounds (6675 Newtons)! 
 
Problem 1 – A 100-pound student stands 40 centimeters away from the toy black hole. How 
much will the student weigh at that distance? 
 
Problem 2 –  According to the old Bohr Model for atoms, an electron orbits the single proton 
inside a hydrogen atom. It experiences an acceleration equal to about 9.6 x 1019 Gs. How 
much less is the acceleration due to the gravity of the toy black hole at 25.1 centimeters? 
 
Problem 3 – If the acceleration is proportional to the inverse-square of the distance from the 
black hole, at what distance, in kilometers, will the acceleration be exactly 1 G? 
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Answer Key 10 
 Problem 1 – A 100-pound student stands 40 centimeters away from the toy black hole. How 

much will the student weigh at that distance? 
 
Answer: The table says that at 40 centimeters, the acceleration of gravity will be 1.2 x 1015  Gs, 
so the student will weigh  (100 pounds/ 1 G) x 1.2 x 1015  Gs = 1.2 x 1017   pounds…that’s 120 
thousand trillion pounds!! 
 
 
 
Problem 2 –  According to the old Bohr Model for atoms, an electron orbits the single proton 
inside a hydrogen atom. It experiences an acceleration equal to about 9.6 x 1019 Gs. How 
much less is the acceleration due to the gravity of the toy black hole at 25.1 centimeters? 
 
Answer:   9.6 x 1019 Gs /  2.0 x 1016 Gs =  4800 times less. 
 
 
Problem 3 – If the acceleration id proportional to the inverse-square of the distance from the 
black hole, at what distance, in kilometers, will the acceleration be exactly 1 G? 
 
Answer: This inverse-square relationship says that if I double my distance from the black hole, 
the acceleration will decrease by a factor of 4 times so that its strength is now ¼ of its closer 
value.  If the acceleration is 1.0 x 1016 Gs at a distance of 35 centimeters from the center of 
the toy black hole, we need to diminish the acceleration by a factor of 1/1.0 x 1016  to get to 1 
G. We will have to increase the distance by  (1.0 x 1016)1/2  = 1.0 x 108  times its original 
distance of 35 cm. This means that at D = 3.5 x 109  centimeters the acceleration will be 1 G. 
Since there are 100,000 centimeters in 1 kilometer, this is equal to 35,000 kilometers! 
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11 Exploring the Environment of a Black Hole 

 For masses, M, given in terms of the mass of Earth,  the radius of a black 
hole is given by Rh = 8.4M in centimeters. For black holes of stellar mass, M, we 
have Rh = 2.8M  in kilometers. 
 
 The other important regions surrounding a black hole scale with the 
horizon radius, Rh, of the black hole. 
 
 
 
Problem 1 – What is the event horizon radius, Rh, for a black hole with a mass of 
5.0 times our sun’s mass? 
 
 
Problem 2 – If a ray of light passes a black hole, it can be captured into orbit if it 
gets closer than R = 1.5xRh. What is the ‘Photon Capture’ radius for a black hole 
with a mass of 5 solar masses? 
 
 
Problem 3 – If a particle of matter gets closer than R = 3.0 Rh from a black hole, 
it will not be able to remain in a stable orbit no matter how it moves. It will 
eventually fall into the black hole. What is the Radius of the Last Stable Particle 
Orbit, for a black hole with a mass of 5.0 solar masses? 
 
 
Problem 4 – A black hole has a mass of 10 times the mass of our Earth, with a 
horizon radius of 84 millimeters. Draw an exact model of this black hole, and 
shade-in the main regions surrounding the black hole. 
 
 
Problem 5 – An astronomer detects an asteroid orbiting a black hole with a mass 
of 8 times our sun, at a distance of  150  kilometers. Is it in a stable orbit, or will it 
be dragged into the black hole? 
 

 
 
 A simulated view of the gas 
stars orbiting the black hole at the center 
of the Milky Way are shown in blue. 
(Courtesy of ESO) 

 Although the physical 
environment around a black hole can 
be complicated with gas flowing in, 
energy being released, and even 
stars being shreaded apart, 
mathematically they are very simple. 
 
 We have seen that the radius 
of a black hole is a simple function of 
the black hole’s mass.  
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Answer Key 11 
   Problem 1 – What is the event horizon radius, Rh, for a black hole with a mass of 5.0 

times our sun’s mass? 
 
Answer:  R = 2.8 x 5 = 14 kilometers. 
 
 
 
Problem 2 – If a ray of light passes a black hole, it can be captured into orbit if it gets 
closer than R = 1.5xRh. What is the ‘Photon Capture’ radius for a black hole with a 
mass of 5 solar masses? 
 
Answer: R = 1.5 x 14 km = 21 kilometers. 
 
 
 
Problem 3 – If a particle of matter gets closer than R = 3.0 Rh from a black hole, it will 
not be able to remain in a stable orbit no matter how it moves. It will eventually fall into 
the black hole. What is the Radius of the Last Stable Particle Orbit, for a black hole with 
a mass of 5.0 solar masses? 
 
Answer: R = 3.0 x 14 km =  42 km. 
 
 
 
Problem 4 – A black hole has a mass of 3.6 times the mass of our Earth, with a horizon 
radius of 30 millimeters. Draw an exact model of this black hole, and shade-in the main 
regions surrounding the black hole. 
 
 
Answer:  Rh = 3.0 cm.   
Region 1 = 0 to 3.0 cm =  Inside the black hole. 
Region 2:   Rh to 1.5xRh;  3.0 cm to  4.5 cm = region of last stable photon orbits. 
Region 3: 1.5 Rh to 3.0 Rh;  4.5 cm to 9.0 cm = region of last stable particle orbits. 
Region 4:  3.0Rh to +infinity:  9.0cm to +infinity = External region. 
 
 
 
 
Problem 5 – An astronomer detects an asteroid orbiting a black hole with a mass of 8 
times our sun, at a distance of  150  kilometers. Is it in a stable orbit, or will it be 
dragged into the black hole? 
 
Answer:  If M = 8.0 solar masses, Rh = 2.8 x 8 = 22.4 kilometers. As a particle of matter, 
we would check which side of the last stable orbit radius it was on. R = 3.0xRh, so R = 
67.2 kilometers. Our asteroid is outside this boundary at 150 km, so it can be in a 
stable orbit. 
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12                          The SN1979C Black Hole 

 The Chandra X-Ray Observatory 
recently confirmed the discovery of an 
infant black hole in the nearby galaxy 
Messiar-100. The product of the 
supernova of a star with a mass of 20 
times our sun, the resulting black hole 
may only involve about 8 times our sun’s 
mass.  
 For black holes that do not rotate, 
called Schwarschild Black Holes, there 
are several different sizes for such black 
holes that all scale with the mass of the 
black hole. When referring to the size of 
a black hole, astronomers usually 
mention its mass, which is well defined, 
rather than its diameter, which depends 
on the specific kinds of physical 
processes involved.  

The Schwarschild Radius – This is the distance from the center of the black hole 
at which an incoming person, or light signal, can enter the black hole interior, but 
cannot emerge back out into the universe. It is also called the Event Horizon. It is a 
perfectly spherical surface with a radius of Rs = 3.0 M kilometers, where M is the 
mass of the black hole in multiples of the sun’s mass (1 M = 2.0 x 1030 kg).   For 
the SN1979C black hole, with an estimated mass of 8 M, what is its Schwarschild 
Radius, Rs, in kilometers? 
 
 
Last Photon Orbit – At this distance outside the Event Horizon, an incoming 
photon of light can enter into an exactly circular orbit, where it will stay until it is 
disturbed, at which time it will fall into the Event Horizon and never get back out. If 
Rp =1.5 Rs, what is the radius of the photon orbit for black hole SN1979C in 
kilometers? 
 
 
Last Stable Particle Orbit – Inside this distance, a material particle cannot be in a 
stable circular orbit, but is relentlessly dragged to the Event Horizon and 
disappears. This occurs at a distance from the black hole center of Rl = 3.0 Rs.  
How close can a hydrogen atom, an asteroid or a planet remain in a stable circular 
orbit around the SN1979C black hole? 
 
 
Problem – An asteroid is spotted at a distance of 700 km from a black hole with a 
mass of 120 solar masses. Can it escape or remain where it is? 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



Answer Key 12 
 NASA Press release ‘Youngest Nearby Black Hole’   November 15, 2010 

 
“Data from Chandra, as well as NASA's Swift, the European Space Agency's XMM-Newton and the 
German ROSAT observatory revealed a bright source of X-rays that has remained steady for the 12 
years from 1995 to 2007 over which it has been observed. This behavior and the X-ray spectrum, or 
distribution of X-rays with energy, support the idea that the object in SN 1979C is a black hole being fed 
either by material falling back into the black hole after the supernova, or from a binary companion. 
 
The scientists think that SN 1979C formed when a star about 20 times more massive than the Sun 
collapsed. It was a particular type of supernova where the exploded star had ejected some, but not all of 
its outer, hydrogen-rich envelope before the explosion, so it is unlikely to have been associated with a 
gamma-ray burst (GRB). Supernovas have sometimes been associated with GRBs, but only where the 
exploded star had completely lost its hydrogen envelope. Since most black holes should form when the 
core of a star collapses and a gamma-ray burst is not produced, this may be the first time that the 
common way of making a black hole has been observed.    
 
The very young age of about 30 years for the black hole is the observed value, that is the age of the 
remnant as it appears in the image. Astronomers quote ages in this way because of the observational 
nature of their field, where their knowledge of the Universe is based almost entirely on the 
electromagnetic radiation received by telescopes.”  
(http://www.nasa.gov/mission_pages/chandra/multimedia/photoH-10-299.html) 
 
 
The Schwarschild Radius – This is the distance from the center of the black hole at which an 
incoming person, or light signal, can enter the black hole interior, but cannot emerge back out 
into the universe. It is also called the Event Horizon. It is a perfectly spherical surface with a 
radius of Rs = 3.0 M kilometers, where M is the mass of the black hole in multiples of the sun’s 
mass (1 M = 2.0 x 1030 kg).   For the SN1979C black hole, with an estimated mass of 8 M, 
what is its Schwarschild Radius, Rs, in kilometers? 
 
Answer:  M = 8, so Rs = 3.0 x 8 = 24 kilometers. 
 
Last Photon Orbit – At this distance outside the Event Horizon, an incoming photon of light 
can enter into an exactly circular orbit, where it will stay until it is disturbed, at which time it will 
fall into the Event Horizon and never get back out. If Rp =1.5 Rs, what is the radius of the 
photon orbit for black hole SN1979C in kilometers? 
 
Answer:  Rs = 24 kilometers so  Rp = 1.5 x 24 km =  36 kilometers. 
 
Last Stable Particle Orbit – Inside this distance, a material particle cannot be in a stable 
circular orbit, but is relentlessly dragged to the Event Horizon and disappears. This occurs at a 
distance from the black hole center of Rl = 3.0 Rs.  How close can a hydrogen atom, an 
asteroid or a planet remain in a stable circular orbit around the SN1979C black hole? 
 
Answer:   R = 3.0 x 24 km = 72 kilometers. 
 
Problem – An asteroid is spotted at a distance of 700 km from a black hole with a mass of 120 
solar masses. Can it escape or remain where it is? Answer: Rs = 3.0 x 120 = 360 kilometers. 
Rp = 1.5 x 360 km = 540 km; Rl = 3.0 x 360 km = 1080 km. Since the asteroid is at 700 km, 
it is inside the distance where it can remain in a stable orbit, so it is about to fall 
through the black hole’s event horizon located some 700-360 = 340 kilometers inside its 
current position. 
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13 The Event Horizon Defined 

 
 
 

Black holes are objects that have such intense 
gravitational fields, they do not allow light to escape from 
them. They also make it impossible for anything that falls 
into them to escape, because to do so, they would have 
to travel at speeds faster than light. No forms of matter or 
energy can travel faster than the speed of light, so that is 
why black holes are so unusual! 
 
 
There are three parts to a simple black hole: 
 
Event Horizon - Also called the Schwarzschild radius, 
that's the part that we see from the outside. It looks like a 
black, spherical surface with a very sharp edge in space. 
 
Interior Space - This is a complicated region where 
space and time can get horribly mangled, compressed, 
stretched, and otherwise a very bad place to travel 
through. 
 
Singularity - That's the place that matter goes when it 
falls through the event horizon. It's located at the center 
of the black hole, and it has an enormous density. You 
will be crushed into quarks long before you get there! 
 
Black holes can, in theory, come in any imaginable size. 
The size of a black hole depends on the amount of mass 
it contains. It's a very simple formula, especially if the 
black hole is not rotating. These 'non-rotating' black holes 
are called Schwarzschild Black Holes. 
 

2

27

2Equation 1)     

Equation 2)     1.48 10

GMR
c

R x M−

=

=
 

Problem 1 -  The two formulas above give the Schwarzschild radius, R, of a black hole in terms 
of its mass, M. From Equation 1, verify Equation 2, which gives R in meters and M in kilograms, 
using  c= 3 x 108 m/sec for the speed of light, and  G = 6.67x10-11 Newtons m2/kg2 for the 
gravitational constant. 
 
Problem 2 - Calculate the Schwarzschild radius, in meters, for Earth where  
    M = 5.7 x 1024 kilograms.  
 
Problem 3 - Calculate the Schwarzschild radius, in kilometers, for the sun, where  
    M = 1.9 x 1030 kilograms. 
 
Problem 4 - Calculate the Schwarzschild radius, in kilometers, for the entire Milky Way, with a 
mass of 250 billion suns. 
 
Problem 5 - Calculate the Schwarzschild radius, in meters,  for a black hole with the mass of 
an average human being with M = 60 kilograms. 
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13 
Answer Key 
 
 
 
 
 
 

Problem 1 -  The two formulas above give the Schwarzschild radius, R, of a black hole in terms 
of its mass, M. From Equation 1, verify Equation 2, which gives R in meters and M in kilograms, 
using  c= 3 x 108 m/sec for the speed of light, and  G = 6.67x10-11 Newtons m2/kg2 for the 
gravitational constant. 
 
Answer:   Radius =  2 x (6.67 x 10-11) / ( 3 x 108 )2   M   meters 
   
       = 1.48 x 10-27  M      meters 
 
where M is the mass of the black hole in kilograms. 
 
 
Problem 2 - Calculate the Schwarzschild radius, in meters, for Earth where M = 5.7 x 1024 
kilograms.  
 
                 Answer:   R =  1.48 x 10-27  ( 5.7 x 1024 )  meters 
 
   R =  0.0084 meters ! 
 
Problem 3 - Calculate the Schwarzschild radius, in kilometers, for the sun, where M = 1.9 x 1030 
kilograms. 
 
                Answer:   R =  1.48 x 10-27  ( 1.9  x 1030 )  meters 
 
                                R  =  2.8 kilometers 
 
 
Problem 4 - Calculate the Schwarzschild radius, in kilometers, for the entire Milky Way, with a 
mass of 250 billion suns. 
 Answer:  If a black hole with the mass of the sun has a radius of 2.8 kilometers, a black 
 hole with 250 billion times the sun's mass will be 250 billion times larger, or 
 
 R = (2.8 km / sun) x 250 billion suns =   700 billion kilometers. 
 
Note: The entire solar system has a radius of about  4.5 billion kilometers! 
 
Problem 5 - Calculate the Schwarzschild radius, in meters,  for a black hole with a mass of an 
average human being with M = 60 kilograms. 
 
Answer:              R =  1.48 x 10-27  (  60  )  meters 
  
                           R =  8.9 x 10-26 meters. 
 
Note: A proton is only about 10-16 meters in diameter. 
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14   The Milky Way Black Hole 

 
 
 

At the center of our Milky Way Galaxy lies a black hole, 
called Sagittarius A*, with over 2.6 million times the mass 
of the Sun. Once a controversial claim, this astounding 
conclusion is now virtually inescapable and based on 
observations of stars orbiting very near the galactic 
center.  
 
The Chandra image to the left shows the x-ray light from 
a region of space a few light years across. The black hole 
is invisible, but it is near the center of this image. The gas 
near the center produces x-ray light as it is heated. Many 
of the 'stars' in the field probably have much smaller 
black holes near them that are producing the x-ray light 
from the gas they are consuming. 

Astronomers patiently followed the orbit of a particular star, designated S2. Their results 
convincingly show that S2 is moving under the influence of the enormous gravity of an 
unseen object, which must be extremely compact and contain huge amounts of matter yet 
emits no light -- a supermassive black hole. The drawing above shows the orbit shape. 
 
Problem 1 - Kepler's Third Law can be used to determine the mass of a body by measuring 
the orbital period, T,  and orbit radius, R, of a satellite.  If R is given in units of the 
Astronomical Unit (AU) and T is in years, the relationship becomes R3 / T2= M, where M is 
the mass of the body in multiples of the sun's mass.  In these units, for Earth, R = 1.0 AU, 
and T = 1 year, so M = 1.0 solar masses. In 2006, the Hubble Space Telescope, found that 
the star Polaris has a companion, Polaris Ab, whose distance from Polaris is 18.5 AU and 
has a period of  30 years. What is the mass of Polaris? 
 
Problem 2 -  The star S2 orbits the supermassive black hole Sagittarius A*. Its period is 
15.2 years, and its orbit distance is about 840 AU. What is the estimated mass of the black 
hole at the center of the Milky Way? 
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14 
Answer Key: 
 
 
 
 
 
 

Problem 1 - Kepler's Third Law can be used to determine the mass of a body by measuring 
the orbital period, T,  and orbit radius, R, of a satellite.  If R is given in units of the 
Astronomical Unit (AU) and T is in years, the relationship becomes R3 / T2= M, where M is 
the mass of the body in multiples of the sun's mass.  In these units, for Earth, R = 1.0 AU, 
and T = 1 year, so M = 1.0 solar masses. In 2006, the Hubble Space Telescope, found that 
the star Polaris has a companion, Polaris Ab, whose distance from Polaris is 18.5 AU and 
has  a period of  30 years. What is the mass of Polaris? 
 
Answer:    M = (18.5)3 / (30)2 = 7.0 solar masses. 
 
 
Problem 2 -  The star S2 orbits the supermassive black hole Sagittarius A*. Its period is 
15.2 years, and its orbit distance is about 840 AU. What is the estimated mass of the black 
hole at the center of the Milky Way? 
 
Answer:   M = (840)3 / (15.2)2 =   2.6 x 106 solar masses. 
 
The infrared image below shows the central few light years of the Milky Way. The box contains the 
location of the supermassive black hole and Sagittarius A*. (Courtesy  ESA - NAOS) 
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15 Black Holes and Gas Temperature 

 

 
Artist's impression of gas falling into a black hole 
Image credit: NASA / Dana Berry, SkyWorks 
Digital 

 When gas flows into a 
black hole, it gets very hot and 
emits light. The gas is heated 
because the atoms collide with 
each other as they fall into the 
black hole. Far away from the 
black hole, the atoms do not 
travel very fast so the gas is 
cool. But close to the black hole, 
the atoms can be moving at 
millions of kilometers/hour and 
the gas can be thousands of 
degrees hot! 

 The circle below represents the spherical shape of a black hole with a mass of 
about 5 times our Earth. Its diameter is 9 centimeters. 
 

                              
 
 
 The formula that gives the gas temperature, T in Kelvins, at a distance of R in 
meters from the center of the black hole, is given by: 

                                                         3
4

35,000T  
R

=

Problem 1 - Sketch a life-sized illustration of the gas surrounding the above black hole 
and give the temperature at a distance of 1 meter, 50 centimeters and 5 centimeters from 
the center of the black hole. 
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Answer Key 15 
  

Problem 1 - Sketch a life-sized illustration of the gas surrounding the above black hole 
and give the temperature at a distance of 1 meter, 50 centimeters and 5 centimeters from 
the center of the black hole. 
 
Answer:   At 1 meter, T = 35,000 K, which is 6 times the surface temperature of our sun. 
At 50 cm or 0.5 meters,  T = 59,000 K.   
At 5 centimeters or 0.05 meters, T =  331,000 K. 
 
Students may color many different versions, but they should all show that the most distant 
gas is cooler (35,000 K) than the gas near the black hole (331,000 K) which could be 
temperature coded using some plausible scheme like the 'yellow to white' scheme below. 
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16 X-rays from Hot Gases Near the SN1979C Black Hole 

 

 The Chandra X-Ray Observatory 
recently found evidence for an infant 
black hole in the nearby galaxy Messiar-
100. The black hole is thought to have 
been produced when a star with a mass 
of about 20 times that of the sun 
exploded and left behind a black hole 
with a mass about 8 times the sun’s 
mass. 
 The satellite observatory has 
detected x-rays from the gasses in the 
orbiting accretion disk that are falling into 
this young black hole. Infalling gas can 
be heated to over 100,000,000 K as 
atoms collide at higher and higher speed 
during the infall process. The 
temperature of this x-ray emitting gas is 
related to its distance from the black 
hole.

 At a distance of R kilometers from a black hole with a mass of M times the 
sun, suppose that the two equations below relate the temperature of the gas, T, 
and the wavelength, L, at which the in-flowing gas emits most of its light:  
 

Equation 1  -   
1/4

3100,000,000 MT   Kelvin 
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Equation 2 -   3,600,000L
T

=   nanometers 

 
where M is in solar mass units, and R is in kilometers. 
 
Problem 1  -  Combining these equations using the method of substitution, what is 
the new formula L(R,M), for the wavelength, L,  emitted by the gas as a function of 
its distance from the black hole center, R, and the mass of the black hole, M? 
 
Problem 2 – X-rays are detected from the vicinity of the SN 1979C black hole at a 
wavelength of 0.53 nanometers (2,300 electronVolts). If the mass of the black hole 
is 8 times the sun, at what distance from the center of the black hole is the gas 
being detected? 
 
Problem 3 – The Event Horizon of a black hole that is not rotating (called a 
Schwarschild black hole) is located at a distance of Rs = 3.0 M from the center of 
the black hole, where M is the mass of the black hole in units of our sun, and Rs is 
in units of kilometers. What is Rs for the SN 1979C black hole, and where is the  x-
ray emitting gas in relation to the Event Horizon? 
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Answer Key 16 
 NASA Press release ‘Youngest Nearby Black Hole’   November 15, 2010 

 
“Data from Chandra, as well as NASA's Swift, the European Space Agency's XMM-Newton and the 
German ROSAT observatory revealed a bright source of X-rays that has remained steady for the 12 
years from 1995 to 2007 over which it has been observed. This behavior and the X-ray spectrum, or 
distribution of X-rays with energy, support the idea that the object in SN 1979C is a black hole being fed 
either by material falling back into the black hole after the supernova, or from a binary companion. 
 
The scientists think that SN 1979C formed when a star about 20 times more massive than the Sun 
collapsed. It was a particular type of supernova where the exploded star had ejected some, but not all of 
its outer, hydrogen-rich envelope before the explosion, so it is unlikely to have been associated with a 
gamma-ray burst (GRB). Supernovas have sometimes been associated with GRBs, but only where the 
exploded star had completely lost its hydrogen envelope. Since most black holes should form when the 
core of a star collapses and a gamma-ray burst is not produced, this may be the first time that the 
common way of making a black hole has been observed.   
 
The very young age of about 30 years for the black hole is the observed value, that is the age of the 
remnant as it appears in the image. Astronomers quote ages in this way because of the observational 
nature of their field, where their knowledge of the Universe is based almost entirely on the 
electromagnetic radiation received by telescopes.”  
(http://www.nasa.gov/mission_pages/chandra/multimedia/photoH-10-299.html) 
 
 
Problem 1  -  Answer: Substitute Equation 1 into Equation 2 to eliminate T, 
 

                                    
1/433,600,000( , )

100,000,000
RL R M
M

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

                             so   
1/43

( , ) 0.036 RL R M
M

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 nanometers. 

 
 
Problem 2 –  Answer:    0.53 = 0.036 (8-1/4 ) R3/4  so  solve for R to get 
                                        R =  (24.8)4/3        
                            and so R =  72 km. 
 
 
 
Problem 3 – Answer: The Event Horizon is at Rs = 3.0 x 8 = 24 kilometers. The x-ray 
emitting gas is located at R = 72 km, just outside the Event Horizon at a distance 
of about 48 kilometers. 
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17 A Black Hole - Up Close! 

 The sketch below shows the edge of a black hole on the right hand-side. The 
distance in centimeters from the edge of the black hole, called the event horizon, 
increases from right to left to a maximum distance of 240 centimeters from the event 
horizon (Bulb A). In this figure, the radius of the black hole is about 1 meter. This 
corresponds to a black hole with a mass equal to 120 times the mass of our Earth. 
 Although all of the light bulbs would be destroyed this close to an actual event 
horizon, we will pretend, for simplicity, that they can survive.

 Someone far away from a black hole will see things very differently than someone 
close to a black hole. Because of the intense gravitational forces, ordinary light emitted 
close to a black hole will have its wavelength stretched as viewed by someone far away. 
The closer the light source, the more wavelength -stretching will be seen by the distant 
observer.  
  
 Suppose all of these light bulbs in the above figure are emitting light at a 
wavelength of 450 nanometers (nm), and are shining brightly with a color near yellow like 
our sun. A distant observer will see this light stretched to longer wavelengths. The 
wavelength they will observe, W, in nanometers depends on the distance of the light 
source, R to the center of the black hole in centimeters according to the formula: 

                                             450
1001

W

R

=
−

 

 For example, the event horizon for this black hole is at R=100 centimeters. If the 
light bulb is 50 centimeters to the left of the horizon, R = 150 centimeters, and so W = 780 
nanometers. The middle of the Visible Band is at about 500 nm, so instead of yellow light, 
you would see this light bulb emitting very deep red color! 
 
Problem 1 - Suppose the bulbs were located at the distances from the event horizon 
shown in the figure above. What would be the wavelengths you would observe for Bulbs 
B, C, D and E? 
 
Problem 2 - The human eye can only detect light at a wavelength shorter than about 650 
nm. Which of the light bulbs would appear to be invisible to you and 'black'?  
 
Problem 3 - How close to the event horizon would the light bulb have to be in order for 
you to only detect it as an invisible heat source emitting at a wavelength of just 14,000 
nm? 
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Answer Key 17 
 Problem 1 - Suppose the bulbs were located at the distances indicated above. What 

would be the wavelengths you would observe for Bulbs B, C, D and E? 
 
Bulb A     240 cm   R = 340 cm      W =  535 nm 
Bulb B     120 cm   R = 220 cm      W =  609 nm 
Bulb C     100 cm   R = 200 cm      W =  636 nm 
Bulb D       50 cm   R = 180 cm      W =  780 nm 
Bulb E       30 cm   R = 130 cm      W =  937 nm 
 
 
Note: In the visible spectrum  
Bulb A = yellow 
Bulb B =  orange 
Bulb C =  red 
Bulb D = deep crimson or dull red and nearly invisible 
Bulb E = infrared and invisible to the eye. 
 
Problem 2 - The human eye can only detect light at a wavelength shorter than about 
650 nm. Which of the light bulbs would appear to be invisible to you and 'black'?  
 
Answer: From your location far from the black hole, you see that the Bulbs D and E are 
not visible to your eyes. Note: With the proper light detectors you could still see 
them shining at these longer wavelengths!  
 
 
Problem 3 - How close to the event horizon would the light bulb have to be in order for 
you to only detect it as an invisible heat source emitting at a wavelength of just 14,000 
nm? 
 
Answer:   We need to solve for R the equation: 
 

45014,000
1001
R

=
−

                  from this we get        
2

100 4501  
14,000R
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 
1001 0.001
R

− =                         so R =  100.1 centimeters.    

 
This means that the bulb is located 0.1 centimeters or 1 millimeter just outside the 
event horizon! 
 
Note: A black hole with a radius of 100 centimeters would have a mass of about 
120 times that of Earth, or a little bit more than the planet Saturn. 
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18 Time Dilation Near the Earth 

The modern theory of gravity, called the Theory of 
General Relativity,  developed by Albert Einstein in 1915 
leads to some very unusual predictions, which have all 
been verified by experiments. 
 
One of the strangest ones is that two people will 
experience the passage of time very differently if one is 
standing on the surface of a planet, and the other one is 
in space. This is because the rate of time passing 
depends on the strength of the gravitational field that the 
observer is in. 
 
For example, at the surface of a very dense neutron star, 
R = 20 km and M = 1.9 x 1030 kg, so  
 
                             T = t  (1- 0.15)1/2  =  0.92 t 
 
 This means that for every hour that goes by on 
the surface of the neutron star (T = 60 minutes), 
someone in space will see  t = 60 / 0.92 =  65 minutes 
pass from a vantage point in space.  

 
 
 

T  =   the time measured by someone  
located on a planet (seconds) 

  
t  =  the time measured by someone 

located in space (seconds) 
 
M  =   the mass of the planet (kg) 
 
R = the distance to the far-away 

observer from the planet (m) 
 
And the natural constants are: 
G = 6.67 x 10-11  Nt m2/kg2 
C = 3 x 108   m/sec 

 The following problems require accuracy to the 11th decimal place. Most 
hand calculators only provide 9 digits. Students may use the 'calculator' 
accessory provided on all PCs and Macs.  
 
Problem 1 - The GPS satellites orbit Earth at a distance of R = 26,560 km. If the mass 
of Earth is 5.9 x 1024 kg, use the formula to determine the time dilation factor.  
 
Problem 2 - What is the time dilation factor at  Earth's surface?           
 
Problem 3 - What is the ratio of the dilation in space to the dilation at earth's surface? 
 
Problem 4 - At the speed of light (3 x 108 m/sec) how long does it take a radio signal 
from the GPS satellite to travel 26,560 km to a hand-held GPS receiver? 
 
Problem 5 - The excess time delay between a receiver at Earth's surface, and the 
GPS satellite is defined by the ratio computed in Problem 3, multiplied by the total 
travel time in Problem 4. What is the time delay for the GPS-Earth system?  
 
Problem 6 - From your answer to Problem 5, how much extra time does the radio 
signal take compared to your answer to Problem 4? 
 
Problem 7 - At the speed of light, how far will the radio signal travel during the extra 
amount of time? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - The GPS satellites orbit Earth at a distance of R = 26,560 km. If the mass 
of Earth is 5.9 x 1024 kg, use the formula to determine the time dilation factor. Be very 
careful with the small numbers in the 9th, 10th and 11th decimal places! 
 
Answer:    ( 1 - 0.0084/2.65x107 m)1/2 =   
                 ( 1 - 3.1 x 10-10) 1/2 =    
                 (0.99999999969)1/2 =   0.99999999984 
 
 
Problem 2 - What is the time dilation factor at  Earth's surface? 
                 ( 1 - 0.0084/6.38x106 m)1/2 =   
                 ( 1 - 1.3 x 10-9) 1/2 =    
                 (0.9999999987)1/2 =   0.99999999934 
 
 
Problem 3 -  What is the ratio of the dilation in space to the dilation at Earth's surface? 
Answer -  0.99999999984  /  0.99999999934  =   1.00000000050 
 
 
Problem 4 - How long does it take a radio signal from the GPS satellite to travel 26,560 
km to a hand-held GPS receiver? 
 
Answer -    Distance = 26,560 km x (1000 m / km)  =  2.65 x 107 meters.  
                     Time = Distance / speed  of light  
                              =   2.65 x 107  m / 3 x 108 m/sec =   0.088 seconds. 
 
Problem 5 - The excess time delay between a receiver at Earth's surface, and the GPS 
satellite is defined by the ratio computed in Problem 3, multiplied by the total travel time 
in Problem 4. What is the time delay for the GPS-Earth system?  
 
Answer -  0.088 seconds * 1.00000000050  =  0.088000000044 seconds. 
 
 
Problem 6 - From your answer to Problem 5, how much extra time does the radio 
signal take compared to your answer to Problem 4? 
Answer -  0.088000000044 - 0.088 seconds =  0.000000000044 seconds. 
 
Problem 7 - At the speed of light, how far will the radio signal travel during the extra 
amount of time? 
Answer = 3 x 108 m/sec x 4.4 x 10-11 sec =  0.17 meters. 
 
 
This shows that Einstein's Theory of General Relativity is required to allow the GPS 
satellite system to make precise measurements of the locations of objects on Erarth's 
surface. 
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19   Time Dilation Near a Black Hole 

 
 
 

Artists illustration of a black hole with an orbiting 
disk of gas and dust. Friction in the disk causes 
matter to steadily flow inwards until it reaches the 
black hole event horizon. Magnetic forces in the 
disk cause matter to flow in complex jets and 
plumes. Time dilation causes delays in events 
taking place near the black hole compared to what 
distant observers will record. 

T  =   time measured by someone  located on a 
planet (sec) 

  
t  =  time measured by someone located in space 

(sec) 
 
M  =   mass of the planet (kg) 
 
R = distance to the far-away observer from the 

planet (m) 

 Time dilation near a black hole is a lot more 
extreme than what the GPS satellite network 
experiences in orbit around Earth. 

Problem 1 - In the time dilation formula above, evaluate the quantity 2 G M /c2  for a 
black hole with a mass of one solar mass (1.9 x 1030 kg), and convert the answer to 
kilometers to two significant figures. 
 
 
Problem 2 - Re-write the formula  in a more tidy form using your answer to Problem 1. 
 
 
Problem 3 - In the far future, a scientific outpost has been placed in orbit around this 
solar-mass black hole at a distance of 10 km. What will the time dilation factor be at this 
location? 
 
 
Problem 4 - A series of clock ticks were sent out by the satellite once each hour. What 
will be the time interval in seconds between the clock ticks by the time they reach a distant 
observer? 
 
 
Problem 5 - If one tick arrived at 1:00 PM at the distant observer, when will the next clock 
tick arrive? 
 
 
Problem 6 - A radio signal was sent by the black hole outpost to a distant observer. At the 
frequency of the signal, when transmitted from the outpost, the individual wavelengths take 
0.000001 seconds to complete one cycle. From your answer to Problem 3, how much 
longer will they take by the time they arrive at the distant observer? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - In the time dilation formula above, evaluate the quantity 2 G M /c2  for a black 
hole with a mass of one solar mass (1.9 x 1030 kg), and convert the answer to kilometers to 
two significant figures. 
 
Answer:  2 x 6.67 x 10-11 x 1.9 x 1030 / (3.00 x 108)2  =  2,816 meters or 2.8 km. 
 
 
Problem 2 - Re-write the formula in a more tidy form using your answer to Problem 1. 
 
Answer :  

                            
2.81T t
R

           where R will now be in units of kilometers. 

 
Problem 3 - In the far future, a scientific outpost has been placed in orbit around this solar-
mass black hole at a distance of 10 km. What will the time dilation factor be at this location? 
 
Answer:   (1 - 2.8/10)1/2 =  (0.72)1/2 =  0.85 
 
 
Problem 4 - A series of clock ticks were sent out by the satellite once each hour .What will 
be the time interval between the clock ticks by the time they reach a distant observer? 
 
Answer:  Time interval = 3600 / 0.85 =  4,200 seconds. 
 
Note: The raw answer would be  4235 seconds, but to 2 significant figures it is 4,200 
 
 
Problem 5 - If one tick arrived at 1:00 PM at the distant observer, when will the next clock 
tick arrive? 
 
Answer:   1:00 PM + 4200 seconds =  1:00 PM + 1 Hour + (4200-3600) = 2:00 PM + 600 
seconds =  2:10:00 PM 
 
 
Problem 6 - A radio signal was sent by the black hole outpost to a distant observer. At the 
frequency of the signal, when transmitted from the outpost, the individual wavelengths take 
0.000001 seconds to complete one cycle. From your answer to Problem 3, how much longer 
will they take by the time they arrive at the distant observer?  
 
Answer:   0.000001 seconds / 0.85 =  0.0000012 seconds. 
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20   Extracting Energy from a Black Hole 

 

 
 
 

Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a 
supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by 
NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but 
never confirmed until now. Giant black holes in just the right mass range would pull on the front of a 
closely passing star much more strongly than on the back. Such a strong tidal force would stretch out a 
star and likely cause some of the star's gasses to fall into the black hole. The infalling gas has been 
predicted to emit just the same blast of X-rays that have recently been seen in the center of galaxy RX 
J1242-11 located 700 million light years from the Milky Way, in the constellation Virgo. (NASA news report 
at  http://chandra.harvard.edu/photo/2004/rxj1242/ 
 
Problem 1 - The size of the event horizon of a black hole (called the Schwarschild radius) is 
given by the formula R = 2.8 M, where R is the radius in km, and M is that mass of the black 
hole in units of the sun's mass. A supermassive black hole can have a mass of 100 million 
times the sun. What is its Schwarschild radius in: A) kilometers, B) multiples of the Earth orbit 
radius called an Astronomical Unit (1 AU = 149 million km), C) compared to the orbit of Mars 
(1.5 AU) 
 
 
Problem 2 - Black holes are one of the most efficient phenomena in converting matter into 
energy. As matter falls inward in an orbiting disk of gas, friction heats the gas up, and the 
energy released can be as much as 7% of the rest mass energy of the infalling matter.  The 
quasar 3C273 has a power output of  3.8 x 1038 Joules/second. If E = mc2 is the formula that 
converts mass (in kg) into energy (in Joules) and c = the speed of light, 3 x 108 m/sec, how 
many grams per year does this quasar luminosity imply if 1 year = 3.1 x 107 seconds? 
 
 
Problem 3 - If the mass of the Sun is 1.9 x 1030 kg, how many suns per year have to be 
consumed by the 3C273 supermassive black hole at the black hole conversion efficiency of 
7%?  (Note: 7% efficiency means that for every 100 kg involved, 7 kg are converted into pure 
energy by E=mc2 )  
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Answer Key: 
 
 
 
 
 
 

 
Problem 1 - The size of the event horizon of a black hole (called the Schwarschild radius) is 
given by the formula R = 2.8 M, where R is the radius in kilometers, and M is that mass of the 
black hole in units of the sun's mass. A supermassive black hole can have a mass of 100 
million times the sun. What is its Schwarschild radius in: A) kilometers, B) multiples of the 
Earth orbit radius called an Astronomical Unit (1 AU = 149 million km), C) compared to the 
orbit of Mars (1.5 AU) 
 
Answer: A)  R = 280 million km  B)   280 million / 149 million =  1.9 AU. C) 1.9/1.5 = 1.3 times 
the orbit of Mars. The event horizon would be just beyond the orbit of Mars! 
 
 
 
Problem 2 - Black holes are one of the most efficient phenomena in converting matter into 
energy. As matter falls inward in an orbiting disk of gas, friction heats the gas up, and the 
energy released can be as much as 7% of the rest mass energy of the infalling matter.  The 
quasar 3C273 has a power output of  3.8 x 1038 Joules/second. If E = mc2 is the formula that 
converts mass (in kg) into energy (in Joules) and c = the speed of light, 3 x 108 m/sec, how 
many kilograms per year does this quasar luminosity imply if 1 year = 3.1 x 107 seconds? 
 
Answer:  3.8 x 1038 Joules/second x (3.1 x 107 seconds/year) / (3 x 108)2  
  =  1.3 x 1029 kilograms/year 
 
 
 
Problem 3 - If the mass of the Sun is 1.9 x 1030 kg, how many suns per year have to be 
consumed by the 3C273 supermassive black hole at the black hole conversion efficiency of 
7%? 
 
Answer:     7% efficiency means that for every 100 kilograms involved, 7 kilograms are 
converted into pure energy ( by E=mc2 ). So,  
 
   0.07 suns per year / (7/100) = 1.0 suns per year for 7% efficiency. 
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21   Black Hole Power 

Black holes are sometimes surrounded by a disk 
of orbiting matter. This disk is very hot. As matter 
finally falls into the black hole from the inner 
edge of that disk, it releases about 7% of its rest-
mass energy in the form of light. Some of this 
energy was already lost as the matter passed 
through, and heated up, the gases in the 
surrounding disk. But the over-all energy from 
the infalling matter is about 7% of its rest-mass in 
all forms (heat+ light). 
 
The power produced by a black hole is 
phenomenal, with far more energy per kilogram 
being created than by ordinary nuclear fusion, 
which powers the sun.  
 
A black hole accretion disk  (M. Weiss NASA/Chandra )

 
 
 

Problem 1 -  The  event horizon of a black hole has a radius of R = 2.8 M kilometers, where 
M is the mass of the black hole in multiples of the sun's mass. Assume the event horizon is a 
spherical surface, so its surface area is S = 4 R2. What is the surface area of A) a stellar 
black hole with a mass of 10 solar masses? B) a supermassive black hole with a mass of 
100 million suns? 
 
 
Problem 2 - What is the volume of a spherical shell with the surface area of the black holes 
in Problem 1, with a thickness of one meter? 
 
 
Problem 3 - If the density of gas near the horizon is 1016 atoms/meter3 of hydrogen, how 
much matter is in each black hole shell, if the mass of a hydrogen atom is 1.6 x 10-27 kg? 
 
 
Problem 4 - If E = m c2 is the rest mass energy, E, in Joules, for a particle with a mass of m 
in kg, what is the rest mass energy equal to the masses in Problem 3 if c = 3 x 108 m/sec is 
the speed of light and only 7% of the mass produced energy? 
 
 
Problem 5 - Suppose the material was traveling at 1/2 the speed of light as it crossed the 
event horizon, how much time does it take to travel one meter if c = 3 x 108 m/sec is the 
speed of light? 
 
 
Problem 6 - The power produced is equal to the energy in Problem 4, divided by the time in 
Problem 5. What is the percentage of power produced by each black hole compared to the 
sun's power of  3.8 x 1026 Joules/sec? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 -  The  event horizon of a black hole has a radius of R = 2.8 M kilometers, where M is 
the mass of the black hole in multiples of the sun's mass. Assume the event horizon is a 
spherical surface, so its surface area is S = 4 R2. What is the surface area of: A) a stellar black 
hole with a mass of 10 solar masses? B) a supermassive black hole with a mass of 100 million 
suns? 
 
Answer; A)   The radius, R, is 2.8 x 10 =  28 km. The surface area  S =  4 x 3.14 x (2.8 x 104)2 = 
9.8 x 109 m2, B) R=2.8 x 1011 m so  S = 4 x 3.14 x (2.8 x 1011)2 = 9.8 x 1023 m2, 
 
 
Problem 2 - What is the volume of a spherical shell with the surface area of the black holes in 
Problem 1, with a thickness of one centimeter? 
 
Answer: Stellar black hole, V = S x 1 meter =  9.8 x 109 m3;  
              Supermassive black hole, V = 9.8 x 1023 m3. 
 
 
Problem 3 - If the density of gas near the horizon is 1016 atoms/meter

3
 of hydrogen, how much 

matter is in each black hole shell, if the mass of a hydrogen atom is 1.6 x 10
-27 kilograms? 

 
Answer - Stellar:  M = (9.8 x 109 m3 ) x (1.0 x 1016 atoms/m3) x (1.6 x 10-27 kg/atom = 0.16 kg.  
Supermassive:  M = (9.8 x 1023 cm3 ) x (1.0 x 1016 atoms/cm3) x (1.6 x 10-27 grams/atom = 1.6 x 
1013 kilograms. 
 
 
Problem 4 - If E  = m c2 is the rest mass energy, E, in Joules, for a particle with a mass of m in 
kg, what is the rest mass energy equal to the masses in Problem 3 if c = 3 x 108 m/sec is the 
speed of light and only 7% of the mass produced energy? 
 
Answer: Stellar:  E =  0.07 x (0.16 ) x ( 3 x 108)2  =  1.0 x 1015 Joules  
               Supermassive  E =  0.07 x (1.6 x 1013) x (3 x 108)2   =  1.0 x 1029 Joules 
 
 
Problem 5 - Suppose the material was traveling at 1/2 the speed of light as it crossed the event 
horizon, how much time does it take to travel one meter if c = 3 x 108 m/sec is the speed of light? 
 
Answer;  1 m / ( 0.5 x 3 x 108 m/sec) =  6.7 x 10-9 seconds. 
 
 
Problem 6 - The power produced is equal to the energy in Problem 4, divided by the time in 
Problem 5. What is the percentage of power produced by each black hole compared to the sun's 
power of  3.8 x 1026 Joules/sec? 
 
Answer Stellar:  1.0 x 1015 Joules / 6.7 x 10-9 seconds = 1.5 x 1023 Joules/sec  
                           Percent = 100% x (1.5 x 1023 / 3.8 x 1026) =  0.04 % 
 
Supermassive: 1.0 x 1029 Joules / 6.7 x 10-9 seconds = 1.5 x 1037 Joules/sec  
                           = (1.5 x 1037 / 3.8 x 1026) =  39 billion times the sun's power! 
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22   Black Holes and Accretion Disk Temperatures 

The farther a particle falls towards a black hole, 
the faster it travels, and the more kinetic energy it 
has. Kinetic energy is mathematically defined as 
K.E. = 1/2 m V2 where m is the mass of the 
particle and V is its speed. 
 
Suppose all this energy is converted into heat 
energy by friction as the particle falls, and that this 
added energy causes nearby gases to heat up. 
How hot will the gas get? The equivalent amount 
of thermal energy, T.E., carried by a single particle 
is 

                 
3. .
2

T E  

 
 
 

kT=

where Boltzman's Constant k = 1.38 x 10-23 
Joules/deg.  If we set K.E = T.E we get 

                          
2

3
mVT  

k
=

If all the particles in a gas carried this same kinetic 
energy, then we would say the gas has a 
temperature of T in kelvins. We also know that the 
potential energy of the particle is given by  

     . . GMmP E

An artist's impression of a black hole 
orbiting a companion star, and 
gravitationally attracting gas from the 
star into an orbiting accretion disk. 
Through friction, the gas becomes hotter 
as it approaches the black hole, turning 
from red to yellow to white. Most of the 
gas is swallowed by the black hole, but 
some is magnetically launched in jets 
away from the black hole at almost the 
speed of light. (Credit: M. Weiss, 
NASA/Chandra)

R
=  

 
So if we set P.E = T.E we also get the 
temperature 

                   
2

3
GMmT    

kR
=

Problem 1 - The formula T = 2 G M m/(3kR) gives the approximate temperature of hydrogen 
gas (m = 1.6 x 10-27 kg) in an accretion disk around a black hole. To two significant figures, 
what is the temperature for the material at the distance of Earth's orbit for a solar-mass black 
hole? (R = 1.47 x 1011 m, M = 1.9 x 1030 kg, for the constant of gravity  G = 6.67 x 10-11 Nt 
m2/kg2)? 
 
 
Problem 2 - How hot would the disk be at the distance of Neptune (R = 4.4 x 1012 meters)? 
 
 
 
Problem 3 - X-rays are the most common forms of energy produced at temperatures above 
100,000 K. Visible light is produced at temperatures above 2,000 K.  Infrared radiation is 
commonly produced for temperatures below 500 K. What would you expect to see if you 
studied the accretion disk around a solar-mass sized black hole? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - The formula T = 2/3 G M m/kR gives the approximate temperature of hydrogen 
gas (m = 1.6 x 10-27 kg) in an accretion disk around a black hole. To two significant figures, 
what is the temperature for a solar-mass black hole disk near the orbit of Earth? (R = 1.47 x 
1011 m, M = 1.9 x 1030 kg, for G = 6.67 x 10-11 Nt m2/kg2)? 
 
Answer:  T = 2/3 x 6.67 x 10-11 x 1.9 x 1030 x 1.6 x 10-27 / (1.38 x 10-23 x 1.47 x 1011)  
                   = 65,000 K.  to 2 significant figures 
 
 
 
Problem 2 - How hot would the disk be at the distance of Neptune (R = 4.4 x 1012 meters)? 
 
Answer:  T = 2/3 x 6.67 x 10-11 x 1.9 x 1030 x 1.6 x 10-27 / (1.38 x 10-23 x 4.4 x 1012)  
                   = 2,200 K. 
 
 
 
Problem 3 - X-rays are the most common forms of energy produced at temperatures above 
100,000 K. Visible light is produced at temperatures above 2,000 K. What would you expect 
to see if you studied the accretion disk around a solar-mass sized black hole? 
 
Answer: The inner disk region would be an intense source of x-rays and visible light, 
because the gas is mostly at temperatures above 65,000 K.  In the outer disk, the gas 
is much cooler and emits mostly visible or infrared light. 
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23   Falling Into a Black Hole 

 
 
 

 

An object that falls into a black hole will cross the event 
horizon, and speed up as it gets closer. This is like a ball 
traveling faster and faster as it is dropped from a tall 
building. Suppose the particle fell from infinity. How fast 
would it be traveling? We can answer this question by 
considering the concepts of kinetic energy (K.E.) and 
gravitational potential energy (P.E.): 

          21.
2

K E mV            and       . . GMmP E
R

   

The kinetic energy that the particle with mass, m, will 
gain as it falls, will depend on the total potential energy it 
has lost in traveling from infinity to a distance R. By 
setting the two equations equal to each other, we can 
relate the kinetic energy a particle gains as it falls to its 
current distance of R from the center of mass. The 
quantity, M, is the mass of the gravitating body the 
particle is falling towards. G is the constant of gravitation 
which equals 6.67 x 10-11 Nt m2/kg2 

                               21
2

GMmmV
R

   

We can then solve for the speed, V, in terms of R 
 

                           
2GMV

R
   

 

Problem 1 - Suppose a body falls to Earth and strikes the ground. How fast will it be traveling 
when it hits if M = 5.9 x 1024 kg and R = 6,378 km? Explain why this is the same as Earth's 
escape velocity? 
 
 
Problem 2 -  NASA's ROSSI satellite was used in 2004 to determine the mass and radius of a 
neutron star in the binary star system named EXO 0748-676, located about 30,000 light-years 
away in the southern sky constellation Volans, or the Flying Fish. The neutron star was 
deduced to have a mass of  1.8 times the sun, and a radius of 11.5 km. A) How fast, in km/sec, 
will a particle strike the surface of the neutron star if the mass of the sun is 1.9  x 1030 kg? B) 
In terms of percentage, what will be the speed compared to the speed of light: 300,000 
km/sec? 
 
 
Problem 3 - The star HD226868 is a binary star with an unseen companion. It is also the 
most powerful source of X-rays in the sky second to the sun - it's called Cygnus X-1. 
Astronomers have determined the mass of this companion to be 8.7 times the sun. As a black 
hole, its event horizon radius would be R = 2.8 x 8.7 = 24 km. A) How fast, in km/sec, would a 
body be traveling as it passed through the event horizon? B) In percentage compared to the 
speed of light? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - Suppose a body falls to Earth and strikes the ground. How fast will it be 
traveling when it hits? Explain why this is the same as Earth's escape velocity? 
 
Answer:  R = 6,378 km and  M = 5.9 x 1024 kg, so 
 
 V = (2 x 6.67 x 10-11 x 5.9 x 1024/6.4 x 106)1/2  
      = 1.1 x 104 m/sec or 11 kilometers/second.   
 
The particle fell from infinity, so this means that, if you gave a body a speed of 11 km/sec 
at Earth's surface, it would be able to travel to infinity and escape from Earth. 
 
 
Problem 2 - NASA's ROSSI satellite was used in 2004 to determine the mass and radius 
of a neutron star in the binary star system named EXO 0748-676, located about 30,000 
light-years away in the southern sky constellation Volans, or the Flying Fish. The neutron 
star  was deduced to have a mass of  1.8 times the sun, and a radius of 11.5 km. A) How 
fast, in km/sec, will a particle strike the surface of the neutron star if the mass of the sun 
is 1.9  x 1030 kg? B) In terms of percentage, what will be the speed compared to the 
speed of light: 300,000 km/sec? 
 
Answer:  A)  Mass = 1.8 x 1.9 x 1030 kg  
                               = 3.4 x 1030 kg  
              V = (2 x 6.67x10-11 x 3.4 x 1030/1.15 x 104)1/2  
                 = 1.98 x 108 m/sec  
                  = 198,000 km/sec.   
 
              B)  198,000/300,000 = 66 % of the speed of light! 
 
 
Problem 3 - The star HD226868 is a binary star with an unseen companion. It is also the 
most powerful source of X-rays in the sky second to the sun - it's called Cygnus X-1. 
Astronomers have determined the mass of this companion to be 8.7 times the sun. As a 
black hole, its Event Horizon radius would be R = 2.8 km x 8.7 = 24 km. A) How fast, in 
km/sec, would a body be traveling as it passed through the event horizon? B) In 
percentage compared to the speed of light? 
 
Answer:  A)  Mass = 8.7 x 1.9 x 1030 kg  
                               = 1.7 x 1031 kg.  
                      V = (2 x 6.67x10-11 x 1.7 x 1031/2.4 x 104)1/2  
                          = 2.98 x 108 m/sec  
                           = 298,000 km/sec.   
 
               B)  298,000/300,000 = 99 % of the speed of light!  
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24   Black  Holes  and Tidal Forces  

 
 
 

A tidal force is a difference in the strength of gravity 
between two points. The gravitational field of the 
Moon produces a tidal force across the diameter of 
Earth, which causes Earth to deform. It also raises 
tides of several meters in the solid Earth, and larger 
tides in the liquid oceans.  
  
If the tidal force is stronger than a body's 
cohesiveness, the body will be disrupted. The 
minimum distance that a satellite comes to a planet 
before it is shattered this way is called its Roche 
Distance. The artistic image to the left shows what 
tidal disruption could be like for an unlucky moon. 
 
A human falling into a black hole will also 
experience tidal forces. In most cases these will be 
lethal! The difference in acceleration between the 
head and feet could be many thousands of Earth 
gravities. A person would literally be pulled apart, 
and his atoms drawn into a narrow string of matter! 
Some physicists have termed this process 
spaghettification! 

Problem 1 - The equation lets us calculate the tidal acceleration, a,  across a body with a 
length of d. The acceleration of gravity on Earth's surface is 9.8 m/sec2. The tidal 
acceleration between your head and feet is given by the above formula. For M = the mass 
of Earth (5.9 x 1024 kg), R = the radius of Earth (6.4 x 106 m) and the constant of gravity 
whose value is G = 6.67 x 10-11 Nt m2/kg2 calculate the tidal acceleration, a, if d = 2 
meters. 
 
 

Problem 2 - What is the tidal acceleration across the full diameter of Earth? 
 
 
Problem 3 - A stellar-mass black hole has the mass of the sun (1.9 x 1030 kg), and a 
radius of 2.8 km. What would be the tidal acceleration across a human at a distance of 100 
km?  
 
 
 
Problem 4 - A supermassive black hole has 100 million times the mass of the sun (1.9 x 
1038 kg), and a radius of 280 million km. What would be the tidal acceleration near the 
event horizon of the supermassive black hole?  
 
 
Problem 5 - Which black hole could a human enter without being spaghettified? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 - The equation lets us calculate the tidal acceleration, a,  across a body with a 
length of d. The acceleration of gravity on Earth's surface is 9.8 m/sec2. The tidal 
acceleration between your head and feet is given by the above formula. For M = the mass 
of Earth (5.9 x 1024 kg), R = the radius of Earth (6.4 x 106 m) and the constant of gravity 
whose value is G = 6.67 x 10-11 Nt m2/kg2 calculate the tidal acceleration, a, if d = 2 
meters. 
 
Answer:   a = 2 x (6.67 x 10-11 ) x (5.9 x 1024) x 2 / (6.4 x 106)3  
                   =  0.000003 x (2)  
                   = 0.000006 m/sec2 

 

Problem 2 - What is the tidal acceleration across the full diameter of Earth? 
Answer:  d = 1.28 x 107 m, so  a = 0.000003 x 1.28 x 107 = 38 m/sec2 
 
 
Problem 3 - A stellar-mass black hole has the mass of the sun (1.9 x 1030 kg), and a 
radius of 2.8 kilometers. What would be the tidal acceleration across a human at a distance 
of 100 km?   
 
Answer:      a = 2 x (6.67 x 10-11 ) x (1.9 x 1030) x 2 / (1.0 x 105)3 

                      = 507,000 m/sec2 

                    
This is equal to 507,000/9.8 = 52,000 times the acceleration of gravity at Earth's surface.  
 
Problem 4 - A supermassive black hole has 100 million times the mass of the sun (1.9 x 
1038 kg), and an event horizon  radius of 280 million km. What would be the tidal 
acceleration near the event horizon of the supermassive black hole?  
 
Answer:  a = 2 x (6.67 x 10-11 ) x (1.9 x 1038) x 2 / (2.8 x 1011)3 

                  = 2.3 x10-6 m/sec2 

 
 
Problem 5 - Which black hole could a human enter without being spaghettified? 
Answer: The supermassive black hole, because the tidal force is far less than what a 
human normally experiences on the surface of Earth. That raises the question that as a 
space traveler, you could find yourself  trapped by a supermassive black hole unless you 
knew exactly what its size was before hand. You would have no physical sensation of 
having crossed over the black hole's event horizon before it was too late. 
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25   Black Hole…Fade-out!  

As seen from a distance, not only does the 
passage of time slow down for someone 
falling into a black hole, but the image fades 
to black!  
 
This happens because, during the time that 
the object reaches the event horizon and 
passes beyond, a finite number of light 
particles (photons) will be emitted. Once 
these have been detected to make an image, 
there are no more left because the object is 
on the other side of the event horizon and 
the photons cannot escape. A star, 
collapsing to a black hole, will be going very 
fast as it collapses, then appear to slow 
down as time dilates. Meanwhile, the image 
will become redder and redder, until it literally 
fades to black! 
 
Photographs taken by the Hubble Space 
Telescope of the black-hole candidate called 
Cygnus XR-1 detected  two instances where 
a hot gas blob appeared to be slipping past 
the event horizon for the black hole. Because 
of the gravitational stretching of light, the 
fragment disappeared from Hubble's view 
before it ever actually reached the event 
horizon. The pulsation of the blob, an effect 
caused by the black hole's intense gravity, 
also shortened as it fell closer to the event 
horizon. Without an event horizon, the blob 
of gas would have brightened as it crashed 
onto the surface of the accreting body. See 
The Astrophysical Journal, 502:L149–L152, 
1998 August 1. (Diagram courtesy  Ann Field: 
STScI) 

 
 
 

Problem 1 -  The exponential formula above predicts the decay of the light from matter 
falling in to a black hole. T is the time in seconds measured by distant observer, and M is the 
mass of the black hole in units of solar masses. How long does it take for the light to fall to 
half its initial luminosity (i.e. power in units of watts) given by L0 for a M =1.0 solar mass, 
stellar black hole? 
 
Problem 2 -  How long will your answer be, in years, for a supermassive black hole with M = 
100 million times the mass of the Sun? 
 
Problem 3 -  The supermassive black hole in Problem 2 'swallows' a star. If the initial 
luminosity, L0, of the star is 2.5 times the Sun's, to two significant figures,how long will it take 
before the brightness of the star fades to 0.0025 Suns, and can no longer be detected from 
Earth? 
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Answer Key: 
 
 
 
 
 
 

Problem 1 -  The exponential formula predicts the decay of the light from matter falling in to 
a black hole. T is the time in seconds measured by distant observer, and M is the mass of 
the black hole in units of solar masses. How long does it take for the light to fall to half its 
initial luminosity (i.e. power in units of watts) given by L0 for a M =1.0 solar mass, stellar 
black hole?? 
 
Answer :     Set L = 1/2 L0, and M = 1.0, then solve for T.   The formula is  0.5 = e 

(-0.19 T)
 

Take the natural logarithm of both sides to get   -0.69 = -0.19 T  so T = 3.6 sec. 
 
 
 
Problem 2 -  How long will your answer be, in years, for a supermassive black hole with M = 
100 million times the mass of the sun? 
 

Answer:   The formula will be    
91.9 100.5 x Te
  

 
So taking the natural log of both sides,    -0.69 = -1.9 x 10-9 T, and so T = 3.6 x 108 sec. If 
there are 3.1 x 107 seconds in 1 year, T = 11.5 years. 
 
 
 
Problem 3 -  The supermassive black hole in Problem 2  'swallows' a star. If the initial 
luminosity, L0, of the star is 2.5 times the Sun's, to two significant figures, how many years 
will it take before the brightness of the star fades to 0.0025 Suns, and can no longer be 
detected from Earth? 
 

Answer:     
91.9 100.0025 2.5 x T

sun sunL L e
  

 
                  Ln(0.001) = -1.9x10-9 T 
 
                    -6.9 = -1.9x10-9 T 
 
  T = 6.9/1.9x10-9 

 
              T = 3.6 x 109 sec 
 
                        T =  3.6 x 109 sec  x   (1.0 year /3.1 x 107 sec ) 
 
                        T =  120 years to 2 significant figures 
 
 
Note: Students need to use natural-log not log base-10. 
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26 Gravity Probe-B : Testing  Einstein Again! 
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Copyright James Overduin, Pancho Eekers and Bob 
Kahn.

 Physicists at Stanford 
University have recently completed 
their analysis of data from the 
Gravity Probe-B (GP-B) satellite, 
launched in 2004, and have 
confirmed two predictions of Albert 
Einstein's relativistic theory of 
gravity called General Relativity. 
 The pointing direction of a 
high-precision gyroscope was 
measured for over 50 weeks as it 
orbited Earth. If Newton's theory of 
gravity were correct, the pointing 
direction should stay absolutely the 
same. If Einstein's theory was 
correct, it should point in a slightly 
different direction. 

 The effect is called 'frame dragging' and was first predicted in 1918 by Austrian 
physicists Josef Lense (1890-1985) and Hans Thirring (1888-1976) using Einstein's 
mathematical theory of gravity published in 1915. The rate at which the pointing angle will 
change is given by the formula for Ω, in degrees/sec,  shown below: 
 

                                               
( )3/22 3 2

360
22 1

GJ

c a e π
⎛ ⎞
⎜ ⎟
⎝ ⎠−

Ω =                

 
c is the speed of light:                                        c = 300,000,000 m/s  
J is the angular momentum of Earth:                 J = 5.861 x 1033   m2 kg sec-1   
G is the Newtonian Gravitational constant        G = 6.67 x 10-11 m3 kg-1 s-2

a is the semi-major axis of the satellite orbit 
e is the eccentricity of the satellite orbit 
 
 
Problem 1- The GP-B satellite orbits at a distance from Earth's center of a = 7020 
km, in a circular orbit for which e=0. To two significant figures, what is the value 
for Omega in A) degrees per second? B) arcseconds per year? (Note 1 degree = 
3600 arcseconds and 1 year = 3.1x107 seconds) 
 
 
 
 
 
Problem 2 -  The GP-B spacecraft took observations for 50 weeks. About what 
would be the accumulated angular shift by the end of this time to two significant 
figures? 
 



Answer Key 26 
  

Problem 1 - The GP-B satellite orbits at a distance from Earth's center of a = 7020 km, in a 
circular orbit for which e=0. To two significant figures, what is the value for Omega in A) 
degrees per second? B) arcseconds per year? (Note 1 degree = 3600 arcseconds and 1 year 
= 3.1x107 seconds) 
 
 

( )3/22 3 2

360
22 1

GJ

c a e π
⎛Ω = ⎜
⎝ ⎠−

⎞
⎟

)

      in degrees/sec  

 

( ) ( ) (
11 33

2 38 6

(6.67 10 )(5.861 10 )(360)

4(3.141) 3.0 10 7.02 10 1 0

x x

x x

−

Ω =
−

3/22
     3.66 x 10-13 degrees/sec 

 
 
Answer  
A)  Ω =  3.6 x 10-13 degrees/sec 

  B)  Ω = 3.6 x 10-13 degrees/sec  x (3600 arcsec/1 degree) x (3.1x107 sec/1 year) 
            =  0.04 arcseconds/year 
 
 
Problem 2 -  The GP-B spacecraft took observations for 50 weeks. About what would be the 
accumulated angular shift by the end of this time to two significant figures? 
 
 
Answer:   50 weeks is   50/52 = 0.96 years, so the total shift is just 
Θ = Ω x 0.96 
    =  0.04 arcseconds/year x (0.96 years) 
    =  0.038 arcseconds. 
 
Note: This calculation is an approximation to the actual models used to represent the 
complex spacecraft motion and Earth's gravitational field. Because a more detailed 
model for Earth and the satellite's motion was used by the GP-B science team, the 
actual shift detected by the Gravity Probe-B satellite was 0.041 arcseconds, in 
agreement to within 1%  with refined calculations from Einstein's theory.  
 
The equation used in this problem, which predicts the rate of advance of the right 
ascension of the ascending node of the spacecraft's orbit due to the Lens-Thirring 
Effect, was obtained from the article: 
 
"Gravitation, Relativity and Precise Experimentation" by  C.W. Everitt, Proceedings of 
the First Marcel Grossmann Meeting on General Relativity, pp. 545-615, North 
Holland, 1977 (p. 567, Equation 22).  See the archive of scientific papers at the GP-B 
website    http://einstein.stanford.edu/content/sci_papers/index.html 
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27 Lens-Thirring effect near the sun and a neutron star 

 A prediction of Albert 
Einstein's relativistic theory of 
gravity says that the pointing 
direction of a spinning gyroscope 
orbiting a massive body should 
slowly change over time. For Earth, 
this amount equals   degrees/year, 
and this was recently confirmed by 
NASA's Gravity Probe-B satellite in 
2011.  
 Einstein's theory predicts 
much larger shifts if the satellite 
orbits close to our sun, or to a 
dense body such as a neutron star. 

 
Copyright James Overduin, Pancho Eekers and Bob 
Kahn.

 The effect is called 'frame dragging' and was first predicted in 1918 by Austrian 
physicists Josef Lense (1890-1985) and Hans Thirring (1888-1976) using Einstein's 
mathematical theory of gravity published in 1915. The rate, in degrees per second,  at 
which the gyroscope pointing angle will change is given by the formula for  Ω,  in 
degrees/sec,   shown below: 
 

          3 2 2

360
2

Rac
r a r Ra π

⎛ ⎞Ω =         where     ⎜ ⎟+ + ⎝ ⎠ 2

2GMR
c

=       and     
22 R 2

5
sa π

c T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
and where c is the speed of light (300,000,000 m/s), Rs is the radius of the massive body 
in meters,  M is its mass in kilograms, T is the satellite orbit period in seconds, and G is 
the Newtonian Gravitational constant 6.67 x 10-11 m3 kg-1 s-2. For the GP-B satellite 
orbiting near Earth at an altitude of 700 km, the measured value for Ω is  about 1.2 x 10-5 
degrees/year.  
 
Problem 1 - In the future, physicists might like to verify this effect near the sun by placing 
a satellite in a circular orbit at a distance of 10 million kilometers (r = 1010 meters). If the 
radius of the sun is  Rs = 6.96x108 meters, and its rotation period is  T =  24.5 days, and 
the mass of the sun is M = 2.0 x 1030 kg. To two significant figures, what is the value for 
the Lens-Thirring rate, Ω, in degrees/year?  (Note: 1 degree = 3600 arcseconds) 
 
 
 
Problem 2 -  A neutron star is the compressed nuclear core of a massive star after it has 
become a supernova. Suppose the mass of a neutron star is equal to our sun, its radius 
is 12 kilometers,  a gyroscope orbits the neutron star at a distance from its center of r =  
6,000 kilometers, and its orbit period is  T =  8 seconds.  To two significant figures, what 
is Ω for such a dense, compact system in degrees/year? 
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Answer Key 27 
  

Problem 1 - In the future, physicists would like to verify this effect near the sun by placing a 
satellite in a circular orbit at a distance of 10 million kilometers (r = 1010 meters). The radius of the 
sun is  Rs = 6.96x108 meters, and its rotation period is  T =  24.5 days, and the mass of the sun is 
M = 2.0 x 1030 kg. To two significant figures, what is the value for the Lens-Thirring rate, Ω, in 
degrees/year?  
 

11 30

2

2(6.67 10 )(2.0 10 )
(300,000,000)

x xR
−

=    =  2,964 m        
8 22(6.96 10 ) 2(3.141)

5(300,000,000) 24.5(24)3600)
xa ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 =   1,883  m 

 
then 

( )
8

310 2 10 2

(2964)(1883)(3 10 ) 360
2(3.14)10 1883 (10 ) (2964)(1883)

x ⎛ ⎞
Ω = ⎜

⎝ ⎠+ +
⎟  = 9.60x10-14 degrees/sec 

 
Ω = 9.6x10-14 deg/sec x (365d/1yr) x (24h /1day) x (3600 s / 1 hr) = 3.0 x 10-7 deg/yr 
 
Note, for GP-B the effect near Earth was 1.2 x 10-5 degrees/year because GP-B was orbiting 
closer to the mass of Earth than our hypothetical satellite around the sun. 
 
Problem 2 - A neutron star is the compressed nuclear core of a massive star after it has become a 
supernova. Suppose the mass of a neutron star is equal to our sun, its radius is 12 kilometers,  a 
gyroscope orbits the neutron star at a distance from its center of r =  6,000 kilometers, and its orbit 
period is  T =  8 seconds.  To two significant figures, what is Ω for such a dense, compact system 
in degrees/year? 
 
 

11 30

2

2(6.67 10 )(2.0 10 )
(300,000,000)

x xR
−

=  =  2,964 meters    
22(12,000) 2(3.141)

5(300,000,000) 8.0
a ⎛= ⎜

⎝ ⎠
⎞
⎟  =  0.15 meters 

 
then 

( ) ( ) ( ) ( )

8

3 2 26 6

(2964)(0.15)(3 10 ) 360
2(3.141)6.0 10 0.15 6.0 10 (4150) 0.15

x

x x

⎛ ⎞
Ω = ⎜ ⎟

⎝ ⎠+ +
  

 

( ) ( )
11

20 5

(1.33 10 ) 360
(6.242)2.16 10 1.35 10 (93.4)

x
x x

⎛ ⎞
Ω = ⎜+ + ⎝ ⎠

⎟ = 3.65 x 10-8 degrees/sec 

 
Ω = 3.65 x10-8 deg/sec x (365d/1yr) x (24h /1day) x (3600 s / 1 hr) = 1.1 deg/yr 
 
Note this is nearly 100,000 times the corresponding Lens-Thirring rate near Earth. 
 
For a detailed discussion of the derivation of the formula for Ω in the equatorial plane of a spinning 
body, see  Wikipedia: 
                                               http://en.wikipedia.org/wiki/Frame-dragging 
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28 Estimating the Size and Mass of a Black Hole 

 On March 28, 2011 Swift's Burst Alert Telescope discovered the source in the 
constellation Draco when it erupted with the first in a series of powerful X-ray blasts. The 
satellite determined a position for the explosion, now cataloged as gamma-ray burst 
(GRB) 110328A, and informed astronomers worldwide. As dozens of telescopes turned 
to study the spot, astronomers quickly noticed that a small, distant galaxy appeared very 
near the Swift position. A deep image taken by Hubble on April 4 pinpoints the source of 
the explosion at the center of this galaxy, which lies 3.8 billion light-years away. 
 That same day, astronomers used NASA's Chandra X-ray Observatory to make a 
four-hour-long exposure of the puzzling source. The image, which locates the object 10 
times more precisely than Swift can, shows that it lies at the center of the galaxy Hubble 
imaged. 
 The duration of the x-ray bursts tells astronomers approximately how large the 
emitting region is, and since the source is a black hole, it gives the approximate diameter 
of the black hole. The radius of a black hole is related to its mass by the simple formula R 
= 3 M ,where M is the mass of the black hole in units of the sun's mass, and R is the 
radius of the Event Horizon in kilometers. 
 
Problem 1 - What is the average duration of the three flare events seen in the X-ray plot 
above? 
 
Problem 2 - Light travels at a speed of 300,000 km/s. How many kilometers across is the 
x-ray emitting region based on the average time of the three x-ray flares? 
 
Problem 3 - The size of the x-ray emitting region from Problem 2 is a crude estimate for 
the diameter of the black hole. For reasons having to do with relativity, a better black hole 
size estimate will be 100 times smaller than your answer for Problem 2. From this better-
estimate, about what is the mass of the black hole  GRB110328A in solar masses? 
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Answer Key 28 
 Problem 1 - What is the average duration of the three flare events seen in the X-ray 

plot above? 
 
 
Answer: There were about 3 flares in one day, so the average flare duration is about 8 
hours. 
 
 
Problem 2 - Light travels at a speed of 300,000 km/s. How many kilometers across is 
the x-ray emitting region based on the average time of the three x-ray flares? 
 
Answer:  Distance = speed x time, so D = 300,000 km/s x 8 hours x (3600 sec/1 hour) 
= 8.6 billion kilometers. 
 
 
 
Problem 3 - The size of the x-ray emitting region from Problem 2 is a crude estimate 
for the diameter of the black hole. For reasons having to do with relativity, a better 
black hole size estimate will be 100 times smaller than your answer for Problem 2. 
From this better-estimate, about what is mass of the black hole in solar masses? 
 
Answer:  If 8.6 billion kilometers is the width of the emitting region, then the radius of 
the region is about 4.3 billion kilometers, and the  estimated radius of the black hole is 
about 100 times smaller than this or 43 million kilometers. Since the radius of a black 
hole is R = 3 x M, the mass of the black hole is   43 million = 3 x M, or M = 14 million 
solar masses.  
 
Note: Astrophysicists have studied and modeled these kinds of events for decades, 
and it is generally agreed that gamma-ray bursts are probably caused by beams of 
particles and radiation leaving the vicinity of the black hole. Because of this, the 
estimated light-travel size of the emitting region from the changes in the gamma ray or 
x-ray brightness will greatly over-estimate the actual size of the emitting region. The 
'factor of 100' is added to this calculation to account for this 'beaming' effect. Actual 
astrophysical models of these regions that take into account relativity physics are still 
in progress and will eventually lead to much better estimates for the black hole size 
and mass. Also, the relationship between black hole radius and mass that we used 
only works for black holes that do not rotate, called 'Schwarschild Black Holes'. In 
actuality, we expect most black holes to be rotation, at speeds that are perhaps even 
near the speed of light, and these will be significantly larger in size. These are called 
Kerr Black Holes. 
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The Pythagorean Distance Formula 29 

 Suppose we had two points P1 
and P2 on the Cartesian plane at 
locations P1(x1,y1) and P2(x2,y2). By 
constructing a right triangle with 
these points defining the hypotenuse 
of this triangle, it is easy to see that 
the Pythagorean Theorem would 
lead to the ‘2-point’ distance formula: 
 
           2 2

2 1 2 1( ) (D x x y y= − + − 2)

Problem 1 – Erica’s parents said that she could not bicycle more than 5 miles 
from home without being accompanied.  
 
 Her friend Barbara lives at  (+3 ¾ miles, -4 ¼ miles)  
 Her friend Susan lives at    (+2/5 miles, -4 2/5 miles)  
 
If Erica lives at (+1/3 miles, -2/3 miles), how far do her friends live from Erica’s 
house, and which friend can she visit without being accompanied? 
 
 
 
 
 
 
 
 
 
Problem 2 – An electrical engineer is designing a wiring harness for cables in a 
satellite, and wants to use the least amount of gold wire. The points on the 
satellite base plate that he needs to connect are located at the following locations: 
A(7,9), B(4,10), C(5,2) and D(2,7) where all units are in centimeters.   
 
What is the total length of the gold wire, to the nearest tenth of a centimeter, 
connecting B to A to D to C? 
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Answer Key 29 
  Problem 1 – Erica’s parents said that she could not bicycle more than 5 miles from 

home without being accompanied.  
 
 Her friend Barbara lives at  (+3 ¾ miles, -4 ¼ miles)  
 Her friend Susan lives at    (+2/5 miles, -4 2/5 miles)  
 
If Erica lives at (+1/3 miles, -2/3 miles), how far do her friends live from Erica’s house, 
and which friend can she visit without being accompanied? 
 
Answer:   Barbara :     D2 =  (15/4 – 1/3)2 + (-17/4-(-2/3))2  
          D2 =  (41/12)2 + (-49/12)2

    D2 = 1581/144 + 2401/144     
    D2 = 3982/144 
    D = 5.26 miles 
    
     Susan:        D2 = (2/5-1/3)2 + (-22/5 – (-2/3))2

   D2 = (6/15 – 5/15)2 + (-66/15 + 10/15)2

   D2 = (1/15)2 + (-56/15)2

   D2= 3137/225 
   D = 3.73 miles. 
So she can visit Susan. 
 
 
 
 
 
Problem 2 – An electrical engineer is designing a wiring harness for cables in a 
satellite, and wants to use the least amount of gold wire. The points on the satellite base 
plate that he needs to connect are located at the following locations: A(7,9), B(4,10), 
C(5,2) and D(2,7) where all units are in centimeters.   
 
What is the total length of the gold wire, to the nearest tenth of a centimeter, connecting 
B to A to D to C? 
 
 
Answer:  B to A :  D2 = (7-4)2 + (9-10)2 ,         so D =    3.16 cm 
    A to D:   D2 = (2-7)2 +(7-9)2    so D =    5.38 cm 
    D to C:   D2 = (5-2)2 + (2-7)2              so D =    5.83 cm 
 
Total length = 3.16 + 5.38 + 5.83 = 14.37 cm, rounded to the nearest tenth this becomes 
14.4 cm of gold wire. 
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Working with Flat Space – The Distance Formula 30

 Suppose we had two points P1 
and P2 on the Cartesian plane at 
locations P1(x1,y1) and P2(x2,y2). By 
constructing a right triangle with 
these points defining the hypotenuse 
of this triangle, it is easy to see that 
the Pythagorean Theorem would 
lead to the ‘2-point’ distance formula: 
 
           2 2

2 1 2 1( ) (D x x y y= − + − 2)

 
Problem 1 – Assuming that 3-dimensional space can be created by extending 
the Cartesian plane by adding a third coordinate axis, Z, what is the Distance 
Formula for 3-dimensional Cartesian space when each point is defined by the 
coordinate triad (x,y,z)? 
 
 
 
 
 
 
Problem 2 – Suppose that our sun is located at P1(3, 4, 5) and the nearby star 
Sirius is located at P2(8, 10, 7) where the units are in light years. What is the 
distance between these two stars to the nearest light year? 
 
 
 
 
 
 
Problem 2 – A beam of light, traveling at 300,000 km/sec is sent in a round trip 
between spacecraft located Earth (0,0), Mars ( 220, 59), Neptune (-3200, -3200) 
and back to Earth. If the coordinate units are in millions of  kilometers, what is  
 

A) The total round-trip distance (Earth, Mars, Neptune, Earth) in     
 billions of kilometers?  
 

 B) The round trip time in hours ? 
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Answer Key 30 
  Problem 1 – Assuming that 3-dimensional space can be created by extending the 

Cartesian plane by adding a third coordinate axis, Z, what is the Distance Formula for 3-
dimensional Cartesian space when each point is defined by the coordinate triad (x,y,z)? 
 
Answer:                 2 2 2 2

2 1 2 1 2 1( ) ( ) ( )D x x y y z z= − + − + −

2 2 2 2(2 3) (10 4) (7 5)D = − + − + −

 
 
Problem 2 – Suppose that our sun is located at P1(3, 4, 5) and the nearby star Sirius is 
located at P2(8, 10, 7) where the units are in light years. What is the distance between 
these two stars to the nearest light year? 
 
 
                            
 
 
Problem 4 – A beam of light, traveling at 300,000 km/sec is sent in a round trip between 
spacecraft located Earth (0,0), Mars ( 220, 59), Neptune (-3200, -3200) and back to 
Earth. If the coordinate units are in millions of  kilometers, what is A) the total round-trip 
distance in billions of kilometers? B) The round trip time in hours? 
 
Answer:   A) Earth to Mars:   D2 = (220-0)2 +(59-0)2 so D = 228 
Mars to Neptune:  D2 = (-3200 – (220))2 + (-3200 – 59)2   so D = 4724 
Neptune to Earth:  D2 = (-3200)2 + (-3200)2   so D = 4525 
Total round-trip =  228 + 4724 + 4525 =  9477 million kilometers. 
This is also 9.477 billion kilometers. 
 
B)  Speed = 300,000 km/s so Time = Distance/speed and so 
Time = 9477000000/300000  = 31590 seconds. Since 1 hr = 60x60 = 3600 seconds, 
this round trip time is just 8.8 hours. 
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31 The Distance Formula in Dilated Space 

 Many things in Nature cannot be 
represented on a ‘rectangular’ Cartesian 
coordinate grid. One or more of the three 
possible directions may be dilated so that the 
resulting grid work is distorted. Even though 
all points can be labeled with unique 
coordinates, (x,y,z), the standard 
Pythagorean Theorem distance formula no 
longer works. The intervals between the 
points are not all equal in physical measure 
(e.g. meters).  
 For example, although the 1-unit 
distance separating (2,2) and (1,2) might 
represent exactly 1 meter, the 1-unit distance 
between (8,15) and (8,16) may represent  1.5 
meters or even 50! 

Problem 1 – Suppose we change the y-axis scale by a simple dilation so that 1 
unit on the y-axis is equal to 2 units on the x-axis. If a point is located at (3,2) 
how far is it located from the origin in terms of the x-axis unit scale? 
 
 
 
 
 
 
 
 
Problem 2 -  A carpenter wants to stretch a square, rubber membrane on the 
top of a rectangular roof before he installs the roofing tiles. The square 
membrane has the dimensions of 5 meters x 5 meters. The roof has dimensions 
of 5 meters x 8 meters, and the circular opening is located at the position (3 
meters, 7 meters).  
 
 A) What is the new Pythagorean Theorem for the stretched membrane in 
  terms of the measurements for x and y? 
 
 B) What are the coordinates of the hole translated onto the coordinate 
       grid of the square membrane before it was stretched?  
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Answer Key 31 
    Problem 1 – Suppose we change the y-axis scale by a simple dilation so that 1 

unit on the y-axis is equal to 2 units on the x-axis. If a point is located at (3,2) 
how far is it located from the origin in terms of the x-axis unit scale? 
 
Answer:  It is 3 units from the origin along the x-axis and 2 units from the Origin 
along the y-axis, so by the Pythagorean Theorem we have  
 
D = (32 + (2x2)2)1/2 = (25)1/2 = 5 units. 
 
 
 
 
 
 
 
Problem 2 -  A carpenter wants to stretch a square, rubber membrane on the 
top of a rectangular roof before he installs the roofing tiles. The square 
membrane has the dimensions of 5 meters x 5 meters. The roof has dimensions 
of 5 meters x 8 meters, and the circular opening is located at the position (3 
meters, 7 meters).  
 
 A) What is the new Pythagorean Theorem for the stretched membrane in 
terms of the measurements for x and y? 
 
 B) What are the coordinates of the hole translated onto the coordinate 
       grid of the square membrane before it was stretched? 
 
Answer:  A)   If (x,y) = coordinates on unstretched membrane and (X,Y) are the 
coordinates on the stretched membrane, we have  X = x and Y = 8/5 y, then 
 
  D2 = X2 + (5/8 Y)2     and so    D2 = X2 + (25/64) Y2. 
 
 
B)   The X axis remains unstretched. The y axis is stretched from 5-meters to 8-
meters so the dilation factor is  8/5.   So, if the y value of the opening is 7-meters 
on the stretched membrane, it will be  7 meters x 5/8 = 35/8 or 4 3/8 meters on 
the unstretched membrane.  
 
The coordinates on the unstretched membrane is (5, 4 3/8) 
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32 Working with Spacetime – Points and Events 

 Three-dimensional space is our 
basic frame of reference for thinking 
about the world around us, but we all 
know that time is an important 
ingredient too. In fact time is so 
important that physicists consider time 
and space to be a single mathematical 
object called, simply, spacetime. 
 
 Unlike 3-dimensional space, 
spacetime exists in 4 dimensions, with 
time being the fourth coordinate. 

 The diagram above shows time increasing  from t=0 to t=5 minutes along 
the vertical axis, and we have reduced the number of space dimensions from 
three to one along the x-axis to show the motion of a traveler. The two houses are 
located at x=0 and x=5 miles apart, and the traveler moves along the green line at 
a steady travel speed (constant slope).   The diagram also shows the two vertical 
lines for each house, which indicate that the houses remained at x=0 and x=5 
during the time the traveler was in motion. This diagram is called a ‘spacetime’ or 
‘Minkowski Diagram’, and it shows the histories of the two houses and the 
traveler, which are called worldlines. 
 
 In this 4-dimensional geometry, all points are called events, and all events 
have four coordinates (x, y, z, t).  
 
 Draw a 2-D spacetime diagram with time increasing upwards along the 
vertical axis and 1-dimension of space increasing to the right along the horizontal 
axis.  Label the x-axis with tick marks at 1 kilometer intervals. Label the t-axis with 
marks every hour. In the following problems, all coordinates have the form (x,t) 
where x is the space position and t is the time) 
 
Problem 1 – You are located at (0,0) and a store is located at (5,0). Where on the 
spacetime diagram will the store be after 5 hours? 
 
 
Problem 2 -  Starting from your position (0,0) you go for a walk to the store and 
arrive after 5 hours. Draw the worldline for your journey to the store.  
 
 
Problem 3 – After staying at the store for an hour, you return to where you 
started at x=0 at 8 hours after you left. Draw the worldline diagram for this 
complete journey. Where is the store on this diagram by the time you return to 
x=0? 
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Answer Key 32 
  Problem 1 – You are located at (0,0) and a store is located at (5,0). Where on 

the spacetime diagram will the store be after 5 hours? 
 
Answer: at coordinates (5,5) 
 
Problem 2 -  Starting from your position (0,0) you go for a walk to the store and 
arrive after 5 hours. Draw the worldline for your journey to the store.  
 
 
Answer: See diagram below 
 
 
Problem 3 – After staying at the store for an hour, you return to where you 
started at x=0 at 8 hours after you left. Draw the worldline diagram for this 
complete journey. Where is the store on this diagram by the time you return to 
x=0? 
 
Answer: See diagram below 
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33 Working with Time – Two Observers 
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 A frame of reference is a 
coordinate system that follows a 
specific person or object. Every human 
benign moves through life anchored to 
their own personal coordinate system.  
 
 If two people are sitting on a 
couch and measuring things in the 
room around them, they will measure 
the same things both in terms of where 
things are in space, and what the clock 
on the wall says. If one of these two 
people start to move, they will no 
longer agree to the precise values of 
these measurements! 

 
Problem 1 –  Observer A, uses coordinates labeled by (x, t) and has his own meter stick 
and clock in his hands. In the upper figure, he measures the time it takes a beam of light 
to travel L meters to a mirror and then back to him. If the speed of light is given by the 
quantity, c, what is the formula that gives the total time it takes the light to travel to the 
mirror? 
 
 
 
Problem 2 -  Observer B uses the coordinates (X,T) which are measured by a meter 
stick and clock he is carrying.  He watches Observer A traveling at a speed of V, and 
sees the light beam travel along the path shown in the bottom figure.  What is the length 
of the path, l, for the light beam traveling to the mirror that Observer B will see in his 
coordinate frame as he watches the light clock pass by? (Hint: Use the Pythagorean 
Theorem). 
 
 
Problem 3 – If the length of the light clock, L, is the same as measured by Observer A 
and B, what is the relationship between the time, t, measured on Observer As wristwatch, 
and time, T, measured by Observer Bs wristwatch? 
 
 
Problem 4 – If the distance that the light beam travels to the mirror as seen by Observer 
B is c x T = l, re-write your formula in Problem 3 to show how T and t are related to each 
other. 
 
Problem 5 – Because Observer A is riding with the light clock, his time his called the 
proper time. If the proper time measured by Observer A is 1 second, how much time will 
elapse per ‘tick’ as observed by Observer B, if V = 90% the speed of light? 



Answer Key 33 
  Problem 1 –  Observer A, uses coordinates labeled by (x, t) and has his own meter 

stick and clock in his hands. In the lower figure, he measures the time it takes a beam of 
light to travel L meters to a mirror and then back to him. If the speed of light is given by 
the quantity, c, what is the formula that gives the total time it takes the light to travel to 
the mirror? 
 
Answer:  t =  L /c             
 
Problem 2 -  Observer B uses the coordinates (X,T) which are measured by a meter 
stick and clock he is carrying.  He watches Observer A traveling at a speed of V along 
the path shown in Figure 2. He can see Observer A clearly, and he can also see the 
‘light clock’ that Observer A is operating.  What is the length of the path, l, for the light 
beam traveling to the mirror that Observer B will see in his coordinate frame as he 
watches the light clock pass by? (Hint: Use the Pythagorean Theorem). 
 
    Answer:  l2 = L2 + (VT)2          
 
 
Problem 3 – If the length of the light clock, L, is the same as measured by Observer A 
and B, what is the relationship between the time, t, measured on Observer As 
wristwatch, and time, T, measured by Observer Bs wristwatch? 
 
Answer:   l2 = (ct)2 +(VT)2

 
 
Problem 4 – If the distance that the light beam travels to the mirror as seen by 
Observer B is c x T = l, re-write your formula in Problem 3 to show how T and t are 
related to each other. 
 
Answer:   (cT)2 = (ct)2 + (VT)2

 
      T2 = t2 + (V/c)2 T2

 
     t2 = T2 – (V/c)2 T2

 
     t2 = T2 (1-(V/c)2) 
 
    t = T (1-(V/c)2) )1/2

 
Problem 5 – Because Observer A is riding with the light clock, his time his called the 
proper time. If the proper time measured by Observer A is 1 second, how much time will 
elapse per ‘tick’ as observed by Observer B, if V = 90% the speed of light? 
 
Answer:  t = 1 second and V = 0.9 so T = 1 sec/(1-(0.9)2)1/2   and so T = 2.3 seconds! 
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34 Working with Spacetime – The Distance Formula 

 Three-dimensional space is our 
basic frame of reference for thinking 
about the world around us, but we all 
know that time is an important 
ingredient too. In fact time is so 
important that physicists consider time 
and space to be a single mathematical 
object called, simply, spacetime. 
 
 Unlike 3-dimensional space, 
spacetime exists in 4 dimensions, with 
time being the fourth coordinate. 

 The diagram above shows time increasing  from t=0 to t=5 minutes along the 
vertical axis, and we have reduced the number of space dimensions from three to one 
along the x-axis to show the motion of a traveler. The two houses are located at x=0 and 
x=5 miles apart, and the traveler moves along the green line at a steady travel speed 
(constant slope).   The diagram also shows the two vertical lines for each house, which 
indicate that the houses remained at x=0 and x=5 during the time the traveler was in 
motion. This diagram is called a ‘spacetime’ or ‘Minkowski Diagram’, and it shows the 
histories of the two houses and the traveler, which are called world lines. 
 
 In this 4-dimensional geometry, all points are called events, and all events have 
four coordinates (t, x, y, z). Although the Pythagorean Theorem still works to determine 
the space distance between two events (x1,y1,z1) and (x2,y2,z2), a different 
Pythagorean Theorem has to be used to give the full 4-dimensional spacetime distance, 
S, between two events.  An approximate form for this new distance formula is given by 
 
 
Problem 1 – What is the 3-dimensional distance, D, between the two events 
E1(1,3,2,5)   and E2(5,4,5,2)?   
 
 
Problem 2 – What is the 4-dimensional distance between these two events? 
 
 
Problem 3 – A ray of light travels from (0,3,2,5) to (191/2,4,5,2). What is: A) the 3-
dimensional distance that it travels? B) the 4-dimensional distance that it travels? 
 
 
Problem 4 – Matter can only travel on worldlines for which S > 0. Light rays can 
only travel on worldlines for which S = 0.  Two events are connected by a 
worldline ‘history’. If the event coordinates (t,x,y,z) are (1,4,6,9) and (5,3,8,10) is 
this the worldline of a beam of light, or a particle of matter? 
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Answer Key 34 
  Problem 1 – What is the 3-dimensional distance, D, between the two events 

E1(1,3,2,5)   and E2(5,4,5,2)?   
 
Answer:   D = ((4-3)2 + (5-2)2 + (2-5)2)1/2 = (19)1/2

 
 
 
 
Problem 2 – What is the 4-dimensional distance between these two events? 
 
Answer:  S = ((4-3)2 + (5-2)2 + (2-5)2 – (5-1)2)1/2 =  (19 – 16)1/2 = (3)1/2

 
 
 
 
Problem 3 – A ray of light travels from (0,3,2,5) to (191/2,4,5,2). What is A) the 
3-dimensional distance that it travels? B) the 4-dimensional distance that it 
travels? 
 
Answer:  D = ((4-3)2 + (5-2)2 + (2-5)2)1/2 =  (19)1/2

               S = ((4-3)2 + (5-2)2 + (2-5)2 – ((19)1/2 - 0)2)1/2 =  (19 – 19)1/2 = 0 
 
 
 
 
Problem 4 – Matter can only travel on worldlines for which S > 0. Light rays can 
only travel on worldlines for which S = 0.  Two events are connected by a 
worldline ‘history’. If the event coordinates (t,x,y,z) are (1,4,6,9) and (5,3,8,15) is 
this the worldline of a beam of light, or a particle of matter? 
 
 
Answer:   S = ((3-4)2 + (8-6)2 + (15-9)2 – (5-1)2)1/2 =  (41-16)1/2 = +5 
 
Since S > 0, this worldline can  not be that of a beam of light (S=0) but it 
can be the history of a particle of matter that has traveled from Event 1 to 
Event 2 after an elapsed time of  (5-1) = +4 units. 
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35 The Spacetime Interval 

 The four-dimensional distance 
between two events tells you if they 
can be connected by the ends of a 
meter stick, (S2 > 0), a beam of light 
(S2=0) or the ticks of a clock (S2 <0) by 
some other observer. The interval this 
given a specific name depending on 
the magnitude of S2: 
  
S2 > 0   then it is a space-like interval 
S2 < 0   then it is a time-like interval 
S2 = 0   then it is a null interval. 

where the spacetime interval is given by 
 
                      S2 = (x2 - x1)2 – (t2 – t1)2

 
 
 
Problem 1 – Draw a 2-D spacetime diagram with time, t, on the vertical axis and 
the space coordinate, x, on the horizontal axis.  
 
 
 
Problem 2 – Graph the following spacetime events  given by the (x,t) 
coordinates: A(2,5), B(4,2), C(5,4), D(6,7), E(4,-3) and F(8,5). 
 
 
 
Problem 3 – Which events are located in the future of event C? 
 
 
 
Problem 4 – Which events are located to the right of event C? 
 
 
 
Problem 5 – For the following spacetime segments, determine which ones have 
a spacetime interval S2 that is space-like, time-like or null:  AC, BD, EA, and DF. 
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Answer Key 35 
  Problem 1 – Draw a 2-D spacetime diagram with time, t, on the vertical axis and 

the space coordinate, x, on the horizontal axis.  
 
 
 
Problem 2 – Graph the following spacetime events  given by the (x,t) 
coordinates: A(2,5), B(4,2), C(5,4), D(6,7), E(4,-3) and F(8,5). 
 
 
 
Problem 3 – Which events are located in the future of event C? 
 
Answer: Event C is located at (5,4). We are looking for all events that have time 
coordinates, t for which t > 4. These are the events A, D and F. 
 
 
Problem 4 – Which events are located to the right of event C? 
 
Answer: We are looking for all events that have space coordinates, x for which x 
> 5. These are the events D and F. 
 
 
Problem 5 – For the following spacetime segments, determine which ones have 
a spacetime interval S2 that is space-like, time-like or null:  AC, BD, EA, and DF. 
A(2,5), B(4,2), C(5,4), D(6,7), E(4,-3) and F(8,5) 
 
Answer:    AC:     S2 = (5-2)2 – (4-5)2,     S2 =  9 – 1         space-like 
  BD:    S2 = (6-4)2 – (7-2)2,      S2 = 4 – 25        time-like 
  EA:     S2 = (2-4)2 – (6-(-3))2   S2 = 4 – 81        time-like 
  DF:    S2 = (8-6)2 – (5-7)2       S2 = 4 – 4            null. 
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36 The Light Cone 

 The four-dimensional distance 
between two events tells you if they 
can be connected by the ends of a 
meter stick, (S2 > 0), a beam of light 
(S2=0) or the ticks of a clock (S2 <0) by 
some other observer. The interval this 
given a specific name depending on 
the magnitude of S2: 
  
S2 > 0   then it is a space-like interval 
S2 < 0   then it is a time-like interval 
S2 = 0   then it is a null interval. 
 
where the spacetime interval is given 
by 
 
 S2 = (x2 - x1)2 – (t2 – t1)2

 Suppose you are located at event A in the diagram above. In order to travel to 
Event C you will have to move faster than the speed of light because the spacetime 
interval S2 is space-like.  If you sent a beam of light out into space from Event A, it would 
reach all the events exactly on the surface of the 45-degree cone, because for those 
events the value of S2 is exactly 1.0.  
 All of the points inside this cone on the top-half of the figure are events you could 
actually reach if you traveled fast enough. These events are located inside the future light 
cone of Event A.  
 Similarly, the sides of the cone in the lower half-plane represent light rays from 
Events that were emitted in the past and are just now arriving at Event A. The Events 
inside this cone are events that you could have started from, and traveled at various 
speeds to arrive at Event A. We say that these Events are located in the past light cone 
of Event A. 
 
 
Problem 1 – In this diagram, the slope of the lines connecting Event A with events in the 
future light cone are given by R = (t2-t1)/(x2-x1). Prove that 1/R is the same as the average 
speed, v, of the traveler from Event (t1,x1) to (t2,x2). 
 
Problem 2 – On the scale of this spacetime diagram, all light rays arriving at, or emitted 
from Event A have S2 = 0.0. Prove that light rays traveling at the speed of light (300,000 
km/s) are represented by 45-degrees lines. 
 
Problem 3 – From Event A, draw the locations of the following three events: 

A) The Traveler at Event A standing still. 
B)  The Traveler at Event A moving at  10% the speed of light.  
C)  The Traveler at Event A moving at  50% the speed of light. 
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  Problem 1 – In this diagram, the slope of the lines connecting Event A with events in 

the future light cone are given by R = (t2-t1)/(x2-x1). Prove that 1/R is the same as the 
average speed, v, of the traveler from Event (t1,x1) to (t2,x2). 
 
Answer: The average speed is just the change in distance divided by the change in 
time, so v = (x2-x1)/(t2-t1). So  R = 1/v and then v = 1/R. 
 
 
Problem 2 – On the scale of this spacetime diagram, all light rays arriving at, or emitted 
from Event A have S2 = 0.0. Prove that light rays traveling at the speed of light (300,000 
km/s) are represented by 45-degrees lines. 
 
 
Answer: Because S2 = 0.0 for light rays, we have that  0  = (x2-x1)2 – (t2-t1)2

And so (x2-x1) = (t2-t1) and so R = 1.0 and v = 1.0. The slope of the line is 1.0, so using 
this as the hypotenuse of a right triangle, the sides (x2-x1) and (t2-t1) are equal and so 
the triangle is a 45-45-90 right triangle.  
 
 
Problem 3 – From Event A, draw the locations of the following three events: 
A) The Traveler at Event A standing still. 
B)  The Traveler at Event A moving at  10% the speed of light.  
C)  The Traveler at Event A moving at  50% the speed of light. 
 
Answer:  A)  A vertical line along the time axis from Event A. 
 
B)  s = 0.10 so R = 10 and so  1 unit along the x axis equals 10 units along the time 
axis. 
 
C) s = 0.50 so R = 2 and so 1 unit along the x axis equals 2 units along the time axis. 
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37 Spacetime Diagrams  - I 

 
 Spacetime Basics: The coordinate grid above represents time (vertical) 
extending from -12 units to +12 units, and 1-dimension of space (horizontal) 
extending from -12 units to +12 units. The Origin (0,0) represents ‘Now’, and the 
horizontal axis shows all of the space points existing at Now, and represented by 
the coordinates (0,+1), (0,+2), (0,+3) etc.  The Invariant distance between any two 
Events (t1,x1) and (t2,x2) is given by S2 = (x2-x1)2 – (t2-t1)2

 
  
Problem 1 – Draw the past lightcone and the future lightcone for the event A 
located at (0,0). 
 
 
Problem 2 – For events at B (-2, -6) and C (+9,+8) draw the past and future light 
cones for these two events. 
 
 
Problem 3 – Can B be on the worldline of A? 
 
 
Problem 4 – Can A be on the worldline of C? 
 
 
Problem 5 – Draw the line representing a light beam sent from B to  A. When 
does the light signal arrive along the vertical worldline of A? 
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  Problem 1 – Draw the past lightcone and the future lightcone for the event A 

located at (0,0). 

 
 
Problem 2 – For events at B (-2, -6) and C (+9,+8) draw the past and future light 
cones for these two events. 

 
 
Problem 3 – Can B be on the worldline of A? Answer: No, because  Event A is 
outside the future light cone of B so A and B are not connected by a time-like 
distance. 
S2 = (-6-0)2 – (-2-0)2   so S2 is space-like. 
 
Problem 4 – Can A be on the worldline of C? Answer: A is inside the past light 
cone of C, so A and C can be connected by an interval of time along a worldline. 
 
Problem 5 – Draw the line representing a light beam sent from B to  A. When 
does the light signal arrive along the vertical worldline of A? 
 

   
Answer: Light rays travel on worldliness for which S2=0, which are 45-degree 
lines on the grid. A light ray sent from B will travel future-ward of B, and directed 
to the right in the direction of A. The light signal will arrive at event (+4,0) on the 
future worldline of A as shown.
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38 Light Cones 

 
 Every Event in spacetime is located at the vertex of a pair of cones, shown 
in the diagram above. When the spacetime interval is given by 
 
     S2 = (x2 - x1)2 – (t2 – t1)2 

 
the cones have sides tilted at exactly 45o in a spacetime diagram for flat space.  
 
 If an Event is on the worldline of a matter particle, all of the past Events for 
that particle, and all the future Events for that particle will be inside the Past or 
Future Lightcones of the Events along the worldline.  
 
 
 
Problem 1 – A Traveler has arrived on her worldline at the Event (3,2,5,5). Can 
the Traveler move in a slow rocket ship so that her worldline also includes the 
Event (3,2,6,10)? 
 
 
 
Problem 2 – The Traveler uses a faster rocket ship starting from the same 
worldline Event (3,2,5,5) and wants her worldline to include Event (3,2,6,7). Is this 
possible? 
 
 
 
Problem 3 – The Traveler’s worldline now includes Event (3,2,6,7) and she wants 
to let an Observer on another worldline know about her arrival at this Event. If the 
Observer is located at space coordinates (3,2,9) at what time coordinate, T, 
would the Observer receive a light signal from the Traveler? 
 
 
 
 

 Imagine two  Events in spacetime, 
(x1,y1,z1,t1) and (x2,y2,z2,t2) so that the 
interval S2 =0. This means that the two 
events could be part of a worldline 
representing a ray of light.  
 If S2 < 0, the interval between the 
two events is time-like, which means that 
the two Events could be on the worldline 
of the same object, which was traveling 
through space slower than the speed of 
light.  
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Answer Key 38 
  Problem 1 – A Traveler has arrived on her worldline at the Event (3,2,5,5). Can 

the Traveler move in a slow rocket ship so that her worldline also includes the 
Event (3,2,6,10)? 
 
Answer:  S2 = (3-3)2 + (2-2)2 + (6-5)2 – (10-5)2   so S2 = 1-25 so S2 is timelike. 
Event (3,2,6,10) could be on the worldline of the Traveler. 
 
 
 
Problem 2 – The Traveler uses a faster rocket ship starting from the same 
worldline Event (3,2,5,5) and wants her worldline to include Event (3,2,6,7). Is 
this possible? 
 
Answer:  S2 = (3-3)2 + (2-2)2 + (6-5)2 – (7-5)2  so S2= 1 – 4 and so S2 is timelike. 
Note that the Traveler arrives at the same location in space (3,2,6) but requires 
less time (2 units of time rather than 5 units) because the rocket is faster. 
 
 
 
 
Problem 3 – The Traveler’s worldline now includes Event (3,2,6,7) and she 
wants to let an Observer on another worldline know about her arrival at this 
Event. If the Observer is located at space coordinates (3,2,9) at what time 
coordinate, T, would the Observer receive a light signal from the Traveler? 
 
Answer:  We know that for light signals, S2 = 0.  The calculation of the interval 
connecting the Traveler and the Observer is just 
 
0 = (3-3)2 + (2-2)2 + (9-6)2 – (T-7)2

 
So  (9-6)2 = (T-7)2

       3 = T-7 
 
And so T = 10.      
 
The Observer will receive the light signal at his worldline coordinate (3,2,9,10) 
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39 Worldlines and History 

 

 As a person or other material 
object moves forward in time, all of the 
spacetime events in her history, called a 
worldline, must be separated by a 
timelike interval. This is true even if the 
person or particle are in motion.  
 If, for any time interval the value of 
S2 =0, and the interval is null,  that means 
that the object traveled at the speed of 
light. If S2 > 0, and the interval is space-
like, that means that the object traveled 
faster than the speed of light between the 
two time intervals.  

where as usual, the spacetime interval is given by 
 
                      S2 = (x2 - x1)2 – (t2 – t1)2

 
 
 
Problem 1 – Draw a spacetime diagram for the following events along a possible 
worldline, where the coordinates are given as (x,t):  A(0,0), B(1,2), C(4,3), D(6,6), 
and E(7,9). Connect the points by a line in the sequence given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 2 – Using the segment test for S2, is this a possible worldline for a material 
object? 
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  Problem 1 – Draw a spacetime diagram for the following events along a 

possible worldline, where the coordinates are given as (x,t):  A(0,0), B(1,2), 
C(4,3), D(6,6), and E(7,9). Connect the points by a line in the sequence given. 
 

                                  
 
Problem 2 – Using the segment test for S2, is this a possible worldline for a 
material object? 
 
Answer:   AB:   S2 = 1 – 4       time-like 
  BC:   S2 = 9 – 1       space-like 
  CD:   S2 = 4 – 9        time-like 
  DE:   S2 = 1 – 9         time-like. 
 
Not all of the intervals are time-like, so this cannot be the worldline for a material 
object. Between events B and C the interval is space-like which means these 
events, B and C, can only be connected by a body that moves faster than light. 
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40 Spacetime Diagrams  - II 

  Spacetime Basics: The coordinate grid above represents time (vertical) 
extending from -12 units to +12 units, and 1-dimension of space (horizontal) extending 
from -12 units to +12 units. The Origin (0,0) represents ‘Now’, and the horizontal axis 
shows all of the space points existing at t = Now, and represented by the coordinates 
(0,+1), (0,+2), (0,+3) etc.  The Invariant distance between any two Events (t1,x1) and 
(t2,x2) is given by S2 = (x2-x1)2 – (t2-t1)2

 
 Draw the worldline diagram that represents the following story: 
 
Eric and Erica are in their spacecraft, and there is an asteroid wall located between them. 
Since a time of -12 units, Eric has been located at x=-4 and Erica has been located at x = 
+6, with the asteroid wall located at x=0. After some detailed collaborations and 
measurements, they agree that the most spectacular thing to do is to vaporize the 
asteroid by using their photon cannons. They agree to synchronize the firing of their two 
cannons at Events A and so that the energy from both photon streams arrives precisely 
at the Event C (-4,0) so that the asteroid is obliterated. As soon as the flash of light from 
the explosion arrives at Eric’s spacecraft, Event D, he sends a light signal to Erica which 
arrives at Event F, and immediately fires up his rocket engines and travels at high speed 
to visit Erica. He arrives at the Event G (+12,+6).  
 
 
Problem 1 – How soon after the obliteration of the asteroid does Eric begin his journey? 
 
Problem 2 – How soon after the arrival of the signal at Event F does Eric arrive at Event 
G? 
 
Problem 3 – How soon after Erica sees the detonation at Event E does she get the 
message from Eric that he has started his journey? 
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Answer Key 40 
  

 
 
Problem 1 – How soon after the obliteration of the asteroid does Eric begin his 
journey? Answer: Event C occurred at t= -4, and Event D occurred at t = 0, so 
Eric left 4 time units later. 
 
 
Problem 2 – How soon after the arrival of the signal at Event F does Eric arrive 
at Event G? Answer:  Event F occurred at t=+11, and Event G at t = +12, so Eric 
arrived +1 time units later. 
 
 
 
Problem 3 – How soon after Erica sees the detonation at Event E does she get 
the message from Eric that he has started his journey?  Answer:  Event E 
happened at t = +2, and Eric’s message arrives at Event F at t= +11, so he 
arrives +9 time units after Erica sees the asteroid destroyed. 
 
 
Note: If Eric were certain that the asteroid was evaporated without getting a 
confirmation light flash at Event D, he could have left at Event B. Students can 
figure out how soon after Event E he would have arrived in this case. 
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41 A Tale of Two Travelers in Normal Spacetime 

 One of the most important 
ideas in relativity, which makes all of 
the calculations possible, is that 
certain quantities will have identical 
values no matter which observers 
observe them. These quantities are 
called invariants. One if these is the 
speed of light, the other of these 
invariants is the 4-dimensional 
distance, S2, between two Events.  
 

 Recall that the 4-dimensional distance between two events with 
spacetime coordinates (t1,x1,y1,z1) and (t2, x2,y2,z2) is given by 
 
   S2 = (x2-x1)2 + (y2-y1)2 + (z2-z1)2 – (t2-t1)2. 
 
By using the invariant called the speed of light, c, we can actually re-write the 
time part of S2 so that it has the units of a distance by multiplying it by c2. Then 
we have, in standard form, the invariant spacetime distance S2 defind by: 
 
   S2 = (x2-x1)2 + (y2-y1)2 + (z2-z1)2 – c2(t2-t1)2. 
 
For convenience we can write this in 2-dimensions as 
   S2 = (x2-x1)2  – c2(t2-t1)2. 
 
Problem 1 -  Observer A using coordinate system (t,x) is holding a clock that 
measures the time interval t2-t1=t. It is located at the origin of its coordinate 
system so that x2-x1=0. What is the formula for S2?     
 
 
Problem 2 – Observer B using his own coordinate system (T,X) and watches 
Observer A moving at a speed of V, so that X = VT. What is the S2 he 
measures?   
 
 
Problem 3 – Both Observers will measure the same value for S2. From 
Problems 1 and 2, solve for the time T observed by Observer B in terms of the 
time t measured by Observer A.  
 
 
Problem 4 – Observer A measures the time interval on his clock as t = 10 
seconds. If V = 90% the speed of light, what time interval, T, does Observer B 
see passing on Observer As clock? 
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Answer Key 41 
  Problem 1 -  Observer A using coordinate system (t,x) is holding a clock that measures 

the time interval t2-t1=t. It is located at the origin of its coordinate system so that x2-
x1=0. What is the formula for S2?     
 
Answer:    S2 = -c2t2

 
 
Problem 2 – Observer B using his own coordinate system (T,X) and watches Observer 
A moving at a speed of V, so that X = VT. What is the S2 he measures?   
 
Answer:       S2 = (VT)2 – c2T2  
 
 
Problem 3 – Both Observers will measure the same value for S2. From Problems 1 and 
2, solve for the time T observed by Observer B in terms of the time t measured by 
Observer A.  
 
Answer:      -c2t2 = V2T2 – c2T2

 
  t2 = T2 – (V2/c2)T2

 
  t2 = T2 ( 1 – (V2/c2))  
 
      t 
  T =  ----------------- 
          [1 – (V2/c2)]1/2

 
 
Problem 4 – Observer A measures the time interval on his clock as t = 10 seconds. If V 
= 90% the speed of light, what time interval, T, does Observer B see passing on 
Observer As clock? 
 
                                        10 
Answer:      T =  -----------------     so T =  2.29 x 10 minutes   or   22.9 minutes. 
                      [1 – (0.92)]1/2 

 

 

 

Note: The time measured on the clock carried by Observer A is called the Proper Time . 
This clock is not in the same reference frame as Observer B, so Observer B will 
measure a different time on his clock.  By using the property of the invariance of S2, we 
can relate the ‘Proper’ coordinates of Observer A to what Observer B will measure on 
his clock. 
 
Compare this derivation with the one in Problem 33.  
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42 Time Distortion Near a Black Hole 
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 Near a black hole, it isn’t just 
space that is distorted, but time also 
behaves differently!  It is hard for us 
to imagine that time-itself can be 
altered, or even what that can mean.  
 Although we can never travel 
backwards in time from the present 
moment, what we experience as the 
present moment depends on the 
frame of reference you are in, and 
the particular clocks you are using. 
This is what physicists mean by 
‘relativity’, and the major discovery 
made by Albert Einstein in 1905. 

 In relativity theory, the meter sticks and clocks carried by one Observer do 
not measure the same things as the meter sticks and clocks carried by another 
Observer, if they are moving relative to each other, or if they are in different 
gravitational fields.  
 Suppose that we chose the variables (T,X) to represent the coordinates 
centered on Observer A, and (t,x) the time and space variables for Observer B.  
If the two observers are sitting in the same room and not moving, T=t and X=x, 
and they will not disagree about what they are measuring. But if Observer B is 
standing on Earth’s surface, and Observer A is far away in space, the difference 
in gravity causes their measurements to disagree. Observer A looking at the clock 
carried by Observer B on Earth, will see Observer B’s clock running slow. 
 According to Einstein’s Theory of General Relativity, gravity causes time to 
be distorted near a black hole in a simple way that is determined by the formula 
 

                
2

2

1 s

tT       where rs is the black hole’s Schwarschild radius. 
r
r

=
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 
Problem 1 – What happens to T and t when both observers are very far away 
from the black hole? 
 
Problem 2 – Suppose Observer B carrying the clock that measures time t, is 
located at a distance of 5.6 km from a 1 solar mass the black hole (rs = 2.8 km). 
What will Observer A, who is far away from the black hole, see as the passage of 
time on his clock T, if t=10 seconds pass on Observer Bs clock? 
 
Problem 3 – How close to the surface of the black hole does Observer B have to 
be so that Observer A sees 10 minutes pass for every 10 seconds on Observer 
Bs clock if rs = 2.8 km. Give your answer in meters.  
 



Answer Key 42 
  Problem 1 – What happens to T and t when both observers are very far away from the 

black hole? 
 
Answer:  In the limit as R becomes very large compared to the radius of the black hole, 
rs, T becomes more and more similar to t until ‘at R=infinity’ both clocks always read the 
same times. 
 
 
Problem 2 – Suppose Observer B carrying the clock that measures time t, is located at 
a distance of 5.6 km from a 1 solar mass the black hole (rs = 2.8 km). What will 
Observer A, who is far away from the black hole, see as the passage of time on his 
clock T, if t=10 seconds pass on Observer Bs clock? 
 
Answer: From the formula      T2 = t2 / (1-rs/R) we have    
 
    T2 =  t2 / (1-2.8/5.6)  so   
  
    T2 = t2 / (1/2) 
 
    T = 1.41  t 
 
Then for t = 10 seconds on Observer Bs clock, the distant observer will see T = 14.1 
seconds pass on his clock!    Note: The event is happening in Observer Bs frame of 
reference, which we would call the Proper Time. It is being observed at a great distance 
by Observer A on another clock.  
 
 
Problem 3 – How close to the surface of the black hole does Observer B have to be so 
that Observer A sees 10 minutes pass for every 10 seconds on Observer Bs clock if rs = 
2.8 km. Give your answer in meters. 
 
Answer:    10 minutes = 600 seconds, so we need to solve: 
 
(600)2 = (10)2 / (1-rs/R) 
 
1 – rs/R =  102/6002 
 
1-rs/R = 0.000277 
 
rs/R =  0.999723 
 
R = 1.000277 rs. 
 
The horizon is located at R = 1.000000 rs, so we have to subtract this from Observer Bs 
distance. 
 
Since rs = 2.8 km,     R = (1.000277 – 1.000000)(280000) meters = 77 meters. 
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43 Exploring Gravity Near a Black Hole  

 We have seen how two 
different Observers will measure 
different distance and time intervals if 
they are either in motion relative to 
each other (Special relativity) or if 
they are in different gravitational 
fields (General Relativity).  We have 
to allow for these differences in any 
experiment, but luckily there is a 
precise mathematical relationship 
between the different Observers, so 
we can always figure out exactly 
what is happening to them. 

 When, from a great distance, we watch events happening near a black 
hole we expect to see the time recorded on a clock near a black hole ‘slow down’. 
We have also learned that at the Event Horizon distance of a black hole, rs, 
something very weird happens to time and space. As viewed from a great 
distance by Observer B, the clock near the black hole carried by Observer A will 
slow to a stop as it seems to arrive at the Event Horizon. But what is Observer A 
near the black hole really experiencing? 
 
 In terms of Observer A’s coordinates, (r,t), the force of gravity near a black 
hole is given by the familiar Newtonian equation: 
 

  2

GMmF
r

=          where   G = 6.67 x 10-11  Newton meter2/kg2

 
 Suppose an Observer A has a mass m = 70 kilograms, and the black hole 
has a mass M = 1 billion solar masses = 1.9 x 1039 kg. As you complete the 
problems below, consider that on the surface of Earth, a 70 kg human feels a 
gravitational force equal to  686 Newtons. 
 
Problem 1 -  What is the force of gravity acting on Observer A at a distance just 
outside the Event Horizon at R = 5 billion kilometers?  
 
Problem 2 - What is the force of gravity acting on Observer A at the event 
horizon at R = 2.8 billion km?  
 
Problem 3 - What is the force of gravity acting on Observer A just inside the 
event horizon at R = 1.5 billion km? 
 
Problem 4 -  What is the force of gravity acting on Observer A at the center of the 
black hole called the Singularity at R=0? 
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Answer Key 43 
   Suppose an Observer A has a mass m = 70 kilograms, and the black hole has a mass 

M = 1 billion solar mass = 1.9 x 1039 kg 
 
Problem 1 -  What is the force of gravity acting on Observer A at a distance just outside 
the Event Horizon at R = 5 billion kilometers?  
 
 
Answer: F = (6.67x10-11)(1.9x1039)(70)/(5x1014)2   =  35.5  Newtons 
 
 
 
 
Problem 2 - What is the force of gravity acting on Observer A at the event horizon at R 
= 2.8 km?  
 
Answer: F = (6.67x10-11)(1.9x1039)(70)/(2.8x109)2   =  113  Newtons 
 
 
 
 
Problem 3 - What is the force of gravity acting on Observer A just inside the event 
horizon at R = 1.5 km? 
 
Answer: F = (6.67x10-11)(1.9x1039)(70)/(1.5x109)2   =  394 Newtons 
 
 
 
 
Problem 4 -  What is the force of gravity acting on Observer A at the center of the black 
hole called the Singularity at R=0? 
 
Answer:   As R goes to zero, F becomes infinite. 
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44 Falling Into a Black Hole and Travel Time 

 We have seen how two 
different Observers will measure 
different distance and time intervals if 
they are either in motion relative to 
each other (Special relativity) or if 
they are in different gravitational 
fields (General Relativity).  We have 
to allow for these differences in any 
experiment, but luckily there is a 
precise mathematical relationship 
between the different Observers, so 
we can always figure out exactly 
what is happening to them. 

 When, from a great distance, we watch events happening near a black 
hole we expect to see the time recorded on a clock near a black hole ‘slow down’. 
As we have seen from a few examples, this is not because gravity is making the 
clock mechanically or electrically run slower. It is because the nature of time itself 
has altered and become more complex.  
 We have also learned that at the Event Horizon distance of a black hole, 
rs, something very weird happens to time and space. As viewed from a great 
distance by Observer B, the clock near the black hole will slow to a stop as it 
seems to arrive at the Event Horizon. But what is Observer A near the black hole 
really experiencing? 
  
 Although Observer B will see that it takes Observer A an infinite amount of 
time to reach the event horizon, the time, t, recorded on Observer As clock to fall 
to a distance of R from a black hole is given by the formula 
 

                                             

3
24

3 s

M rT       
c r
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where c is the speed of light (3x105 km/s), and rs is the event horizon radius in 
km.   
 
 
Problem 1 -  For a black hole with a mass of M = 1 sun, how long does it take 
Observer A to fall from a distance of 1000 km to the event horizon if rs = 2.8  km?  
 
 
 
Problem 2 -  For a supermassive black hole with a mass of M = 1 billion suns, 
how many hours does it take Observer A to fall  from a distance of 5 billion km to 
the event horizon if rs = 2.8 billion km?  



Answer Key 44 
  Problem 1 - For a black hole with a mass of M = 1 sun, how long does it take Observer 

A to fall from a distance of 1000 km to the event horizon if rs = 2.8  km?   
 
Answer:   (2/3) (2.8 km/300000)(1000/2.8)3/4   =   0.0005 seconds 
 
 
 
 
 
Problem 2 -  For a supermassive black hole with a mass of M = 1 billion suns, how 
many hours does it take Observer A to fall  from a distance of 5 billion km to the event 
horizon if rs = 2.8 billion km?  
 
Answer:   (2/3) (2.8 billion km/300000)(5/2.8)3/4   =   9611 seconds or 2.7 hours! 
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45 What Happens inside a Black Hole? 

 As you approach a black hole, you will 
notice many strange optical illusions as you get 
close to the event horizon, and assuming you can 
survive the intense gravitational ‘tidal’ forces that 
are trying to rip you apart. 
   
 A simple formula lets you calculate how 
long your trip will take to get from the event horizon 
to the Singularity at the center.  
 
         T = 0.000015 M  seconds  
 
where M is the mass of the black hole in units of 
our sun’s mass. 

 Once you reach the event horizon, there is no longer any hope for you. 
You cannot slam-on your rockets and try to break free. You can’t even go into an 
orbit and just hang-around until someone can rescue you. There is no amount of 
rocket energy or force that will let you leave, because to do so you will have to 
travel faster than the speed of light!  All you can do is watch your clock, which will 
tell you about the next most important event in your life; Your death! Your next 
destination is the Singularity.  
 
Problem 1 – You just passed across the event horizon of a 1 billion solar mass 
black hole. How long do you have to live? 
 
 
 
Problem 2 – This happens to be a Schwarschild black hole defined by the 4-
dimensional distance formula shown below.  What happens to this formula when r 
< rs? 
 
 

                                  ( ) ( )2
2 2 12

2 11
1

t trsS r r rsr
r
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⎝ ⎠ −

 

 
Problem 3 – Outside the black hole, you calculate that the interval between two 
Events gives S2 > 0 and is space-like. Inside the black hole, using your same 
clock and meter stick, you find two Events that are separated by the same 
amount of time and space. What happens to this interval, S2, inside the black hole 
when r < rs? 
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Answer Key 45 
  Problem 1 – You just passed across the event horizon of a 1 billion solar mass 

black hole. How long do you have to live? 
 
Answer:   T = 0.000015 (1 billion) =  15,000 seconds or  4.2 hours. 
 
 
 
 
Problem 2 –What happens to this formula when r < rs? 
 
Answer:   The first term contributed by spacial differences becomes negative and 
the second term, which come from time differences, becomes positive. 
 
 
 
 
Problem 3 – Outside the black hole, you calculate that the interval between two 
Events gives S2 > 0 and is space-like. Inside the black hole, using your same 
clock and meter stick, you find two Events that are separated by the same 
amount of time and space. What happens to this interval, S2, inside the black 
hole when r < rs? 
 
Answer:  Because the signs of the two terms that contribute to S2 have reversed 
,what you originally measured as a space-like distance outside the event horizon 
at r=rs, now becomes a time-like distance inside the black hole! 
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46 A Star Collapsing into a Black Hole 

 When a massive star explodes as a supernova, its core region implodes and 
collapses to higher and higher densities. Eventually the entire core mass falls inside its 
own Event Horizon, and a black hole is formed.  
 The above grid represents a spacetime grid where time increases vertically, and 
the radial distance to the center of the star increases along the horizontal axis. Draw the 
spacetime diagram for the collapsing star, and the formation of its black hole, by following 
the directions below. All coordinates are given as (t,r) below. 
 
Step 1 – Draw the worldline for the geometric center of the star between events (-12,0) 
and (+12,0). 
 
Step 2 – Draw the events representing two diametrically opposite points on the surface 
of the star at  A (-12,-10) and B(-12,+10).  
 
Step 3 - Draw the events representing  the surface of the star at  C(-6,-5) and D(-6,+5). 
 
Step 4 - Draw the events representing the surface of the star arriving at its black hole 
radius at  E(-2,-2) and F(-2,+2). 
 
Step 5 – Draw the creation of the Singularity at event G(0,0) 
 
Step 6 – Draw the future location of the event horizon and Singularity at events H (+12,-
2) I (+12,0) and J(+12,+2). 
 
Step 7 – Connect the events with the appropriate worldliness that pass through them.
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  Step 1 – Draw the worldline for the geometric center of the star between events (-12,0) 

and (+12,0). 
 
Step 2 – Draw the events representing two diametrically opposite points on the surface 
of the star at  A (-12,-10) and B(-12,+10).  
 
Step 3 - Draw the events representing  the surface of the star at  C(-6,-5) and D(-6,+5). 
 
Step 4 - Draw the events representing the surface of the star arriving at its black hole 
radius at  E(-2,-2) and F(-2,+2). 
 
Step 5 – Draw the creation of the Singularity at event G(0,0) 
 
Step 6 – Draw the future location of the event horizon and Singularity at events (+12,-2) 
(+12,0) and (+12,+2). 
 
Step 7 – Connect the events with the appropriate worldliness that pass through them. 
 

Note: During the collapse of the star, the speed of the surface outside the horizon 
approaches the speed of light but does not exceed it. This diagram is not meant 
to be a perfect representation of the collapse due to the curvature of spcetime, 
however students can verify that the intervals between AC, CE and BD, DF are 
all time-like, so they lead to consistent worldlines of material particles (surface of 
star). Also, the event horizon does not exist until t=-2 when the stars mass has 
actually fallen inside this radius. 
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47 Light Cones Inside and Outside a Black Hole 

 The path of particles and light rays is determined by the geometry of spacetime 
near the black hole, and this leads to several ‘strange’ things. The strangest of these is 
the rotation of the light cone. 
 
 The above grid represents a spacetime grid where time increases vertically from 
0 to +24, and the radial distance to the center of the star increases to the right along the 
horizontal axis from 0 to +24.  The Singularity is on the far-left edge at r=0, and the event 
horizon is located along the worldline at r=+8. The light cones for four events, A, B, C and 
D are also shown. The letter ‘p’ indicates the past light cone and ‘f’ is the future light cone 
for each event.  
 
Problem 1 – If Event A is on the worldline of an astronaut who is far, far, far away from 
the black hole. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Problem 2 – If Event B is on the worldline of an astronaut very close to the black hole. 
What can you say about  the future worldline of this astronaut and whether she can avoid 
falling into the black hole? 
 
Problem 3 - If Event C is on the worldline of an astronaut who has just arrived at the 
event horizon. What can you say about  the future worldline of this astronaut and whether 
she can avoid falling into the black hole? 
 
Problem 4 - If Event D is on the worldline of an astronaut inside the black hole. What can 
you say about  the future worldline of this astronaut and whether she can avoid falling 
into the Singularity? 
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Answer Key 47 
  Problem 1 – If Event A is on the worldline of an astronaut who is far, far, far away from 

the black hole. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Answer: At a great distance from the black hole, the astronaut can completely 
avoid falling into the black hole because there are vastly more worldliness 
available to him, and directions in space to travel. 
 
Problem 2 – If Event B is on the worldline of an astronaut very close to the black hole. 
What can you say about  the future worldline of this astronaut and whether she can 
avoid falling into the black hole? 
 
Answer: The astronaut still has many choices but now more than half of all 
possible worldlines that go through this event will intersect with the black hole. 
 
Problem 3 - If Event C is on the worldline of an astronaut who has just arrived at the 
event horizon. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Answer:  At the event horizon, there are no worldliness available to him in his 
future light cone that do not end inside the black hole. At this distance, the 
astronaut cannot even go into orbit because he is well inside the Last Stable Orbit 
for matter. At the horizon, not even photons have a stable orbit. 
 
 
Problem 4 - If Event D is on the worldline of an astronaut inside the black hole. What 
can you say about  the future worldline of this astronaut and whether she can avoid 
falling into the Singularity? 
 
Answer:  Every worldline that is future ward of this event ends on the Singularity. 
His past light cone faces the horizon, but without time travel as an option, he 
cannot retrace events in his past light cone in order to exit the black hole once 
inside. 
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48 Black Holes that Rotate 

 From planets to stars to 
galaxies,  most objects in the 
universe rotate, so it is not surprising 
that rotating black holes will, be 
common in the universe.  The 
mathematics that describes rotating 
‘Kerr’ black holes was first worked 
out by the New-Zealand 
mathematician Roy Kerr in 1963 
using Einstein’s Theory of General 
Relativity. This was the same theory 
that Karl Schwarschild used in 1916 
to work out the mathematics of non-
rotating ‘Schwarschild’ black holes. 

 Like all things that spin, Kerr black holes will have a rotation axis, and will be 
slightly flattened along this axis, and bulge out in the equatorial plane. This is different 
from Schwarschild black holes which do not rotate and are perfect spheres. 
 
 The inside of a Kerr black hole is more complicated because, instead of having 
one event horizon, it has two. Also, instead of the Singularity being a mathematical point 
at r=0, it is deformed through rotation into a 1-dimensional ring in the equatorial plane! 
 
 For a Schwarschild black hole, there was a Last Stable Particle Orbit, called the 
Static Limit, and the Kerr black hole also has this, but with a difference. Because the Kerr 
black hole rotates, if a particle travels between the static limit and the outer event 
horizon, although it cannot enter into a stable orbit, it will pick up energy. It can then 
escape from the black hole carrying off some of the rotational energy from the Kerr black 
hole.  
 
 Between the outer horizon and the inner horizon, unlike for a Schwarschild black 
hole, a traveler can enter this region, but can also travel on worldliness that avoid the 
Singularity, so that you can exit this black hole! 
 
 Between the inner event horizon and the Singularity is another region of 
spacetime that you can safely traverse. Unless you approach the ring singularity in the 
equatorial plane, you can still avoid it, and even continue your journey back outside the 
black hole! 
 
 In the problems below, it is convenient to use c =  1 and G = 1 so that instead of r 
= 2GM/c2 for the horizon radius of a Schwarschild black hole we just have r = 2M. 
 
Problem 1 – The equation for the static limit is given by r = M + (M2 – a2cos2θ)1/2  Graph 
the shape of the static limit for a 1 solar mass black hole (M=1) with the maximum 
possible amount of spin (a=M). How big is a Kerr black hole compared to a Schwarschild 
black hole of the same mass. 
 
Problem 2 -  The outer and inner horizons are given by ro = M + (M2 – a2)1/2 and  
ri = M – (M2-a2)1/2. Graph these horizons for the same black hole as in Problem 1. 
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Answer Key 48 
  Problem 1 – If Event A is on the worldline of an astronaut who is far, far, far away from 

the black hole. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Answer: At a great distance from the black hole, the astronaut can completely 
avoid falling into the black hole because there are vastly more worldliness 
available to him, and directions in space to travel. 
 
Problem 2 – If Event B is on the worldline of an astronaut very close to the black hole. 
What can you say about  the future worldline of this astronaut and whether she can 
avoid falling into the black hole? 
 
Answer: The astronaut still has many choices but now more than half of all 
possible worldlines that go through this event will intersect with the black hole. 
 
Problem 3 - If Event C is on the worldline of an astronaut who has just arrived at the 
event horizon. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Answer:  At the event horizon, there are no worldliness available to him in his 
future light cone that do not end inside the black hole. At this distance, the 
astronaut cannot even go into orbit because he is well inside the Last Stable Orbit 
for matter. At the horizon, not even photons have a stable orbit. 
 
 
Problem 4 - If Event D is on the worldline of an astronaut inside the black hole. What 
can you say about  the future worldline of this astronaut and whether she can avoid 
falling into the Singularity? 
 
Answer:  Every worldline that is future ward of this event ends on the Singularity. 
His past light cone faces the horizon, but without time travel as an option, he 
cannot retrace events in his past light cone in order to exit the black hole once 
inside. 
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49Exploring Penrose Diagrams 

  
 When we drew our 2-
dimensional spacetime diagrams, we 
could only draw a small portion of 
the true extent of spacetime, which 
is infinite in space and infinite in 
time.  This is a problem for drawing 
black holes because black hole 
event horizons only form after a very 
long time as viewed by someone far 
outside the horizon.  
 
 Physicist Roger Penrose 
developed a new kind of diagram for 
spacetime that lets you see all 
locations and times, even the ones 
at infinity! 

 A Penrose diagram is a particular way to draw spacetime that lets you include a 
number of important features such as time and space are infinite, and the light cones for 
all events are represented by 45-degree lines on the diagram. This is called a conformal 
mapping because, although it may geometrically distort some features off the geometry, 
it leaves other desirable features intact. In this case, we want to keep all light cones as 
45-degree cones across the entire diagram. 
 
  If the center point of the hyperbolic grid is ‘Now’ at the origin X=0, note how the 
space and time intervals become smaller and smaller as you move to the corners of this 
diagram.  These corners represent ‘asymptotic infinity’ plotted as  single point. If you 
move left or right you encounter the two points that represent the negative (-x) and 
positive (+x) space-like infinities. If you move vertically along the time axis, you  
encounter the past (-t), time-like infinity and the future (+t) time-like infinity. 
 
 
Problem 1 – Suppose you were located at the positive, space-like infinity, and you sent a 
light signal into the future. What feature on the Penrose diagram represents this light 
signal, and where does it arrive? 
 
 
Problem 2 – Suppose that at the past, time-like infinity you sent a light signal into the 
future. What feature in the Penrose diagram represents this light signal, and where does 
it end up? 
 
 
Problem 3 – Suppose that you selected any point within the Penrose diagram and drew 
a future light-cone. Are there any locations on the Penrose diagram where the future light 
cone would not include the future time-like infinity? What does this mean, physically? 
 
Problem 4 - Suppose that you selected any point within the Penrose diagram and drew a 
future light-cone. Are there any locations on the Penrose diagram where the future light 

f f ?

Space Math                                http://spacemath.gsfc.nasa.gov 
 



Answer Key 49 
  Problem 1 – Suppose you were located at the positive, space-like infinity, and you sent 

a light signal into the future. What feature on the Penrose diagram represents this light 
signal, and where does it arrive? 
 
 
Problem 2 – Suppose that at the past, time-like infinity you sent a light signal into the 
future. What feature in the Penrose diagram represents this light signal, and where does 
it end up? 
 
 
Problem 3 – Suppose that you selected any point within the Penrose diagram and drew 
a future light-cone. Are there any locations on the Penrose diagram where the future 
light cone would not include the future time-like infinity? What does this mean, 
physically? 
 
Problem 4 - Suppose that you selected any point within the Penrose diagram and drew 
a future light-cone. Are there any locations on the Penrose diagram where the future 
light cone would not include at least one of the space-like infinities? What does this 
mean, physically? 
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50 Penrose Diagram of a Schwarschild Black Hole 

 Unlike ordinary spacetime, 
which we can draw with an ordinary 
Penrose diagram, the spacetime 
near and inside a black hole is more 
complicated, and includes new 
regions of space and time, which 
behave differently than the ones 
outside the black hole. 
 For a Schwarschild black 
hole, we have the outside universe 
far from the event horizon, then we 
have the spacetime inside the event 
horizon, which includes the 
Singularity at r=0. 
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 When we drew the previous spacetime diagram for a Schwarschild black hole, it 
included the fact that, upon entering the event horizon, the light cones rotate by 90 
degrees.  As a result, the Singularity would be encountered for every worldline in the 
future light cone of the traveler.  The Penrose diagram shows this in a simple way, and 
lets us keep the orientation of the future light cone of the traveler, always pointed upward 
in the diagram!  
 
 Note that, because the sawtooth line representing the Singularity is drawn parallel 
to the space-like (horizontal) axis, it is called a space-like singularity.  These have the 
unpleasant property that all worldliness entering the event horizon will terminate on the 
singularity so they cannot be avoided. There is no ‘corner’ of space that you could go to 
to escape your Destiny. The Penrose diagram shows this because the future light cone of 
the Traveler, drawn at any point on his worldline inside the event horizon  faces the 
Singularity. All of his possible worldliness within his future light cone, traveling at speeds 
slower than light, all terminate on the Singularity. 
 
 Because of mathematical symmetry, the complete Penrose spacetime diagram 
uncovers a mysterious ‘parallel universe’, and also predicts a space-like white hole 
Singularity. The white hole event horizon (antihorizon) is one where particles inside the 
white hole may only exit, which mirrors the ‘one way entry’ event horizon of the black 
hole.  
 
Problem 1 – Given that Travelers may only move within their future light cones, is there 
any way for a Traveler in the right-hand universe to visit the left-hand universe? 
 
 
Problem 2 – Can you come up with worldliness for a Traveler from each universe, to 
enter the same black hole and shake hands just before they die at the Singularity? 
 
 
Problem 3 – What must happen in order for the two travelers to meet at exactly the right 
moment inside the black hole? 
 
 
Problem 4 – Is there any way that you could prove the existence of the Other Universe, 
and relay this information to your colleagues? 



Answer Key 50 
  Problem 1 – If Event A is on the worldline of an astronaut who is far, far, far away from 

the black hole. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Answer: At a great distance from the black hole, the astronaut can completely 
avoid falling into the black hole because there are vastly more worldliness 
available to him, and directions in space to travel. 
 
Problem 2 – If Event B is on the worldline of an astronaut very close to the black hole. 
What can you say about  the future worldline of this astronaut and whether she can 
avoid falling into the black hole? 
 
Answer: The astronaut still has many choices but now more than half of all 
possible worldlines that go through this event will intersect with the black hole. 
 
Problem 3 - If Event C is on the worldline of an astronaut who has just arrived at the 
event horizon. What can you say about  the future worldline of this astronaut and 
whether she can avoid falling into the black hole? 
 
Answer:  At the event horizon, there are no worldliness available to him in his 
future light cone that do not end inside the black hole. At this distance, the 
astronaut cannot even go into orbit because he is well inside the Last Stable Orbit 
for matter. At the horizon, not even photons have a stable orbit. 
 
 
Problem 4 - If Event D is on the worldline of an astronaut inside the black hole. What 
can you say about  the future worldline of this astronaut and whether she can avoid 
falling into the Singularity? 
 
Answer:  Every worldline that is future ward of this event ends on the Singularity. 
His past light cone faces the horizon, but without time travel as an option, he 
cannot retrace events in his past light cone in order to exit the black hole once 
inside. 
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51 Penrose Diagram of a Kerr Black Hole 

 Because a rotating, Kerr-type black hole 
has four different spacetime regions and a ring 
Singularity, the Penrose diagram for this 
spacetime is more complicated: 
 
 1 - External spacetime far from black hole, and 
outside the Outer Event Horizon (r+) colored green and 
blue. 
 
 2 - Spacetime region between the Outer Event 
Horizon (r+) and the Inner Event Horizon (r-) colored 
purple. 
 
 3 - Spacetime inside the Inner Event Horizon (r-) 
containing the ring Singularity colored red 
 
 4 - Anti-gravity universe on the other side of the 
ring singularity colored yellow. 

 As for all Penrose diagrams, light rays travel on 45-degree lines and light 
cones point up (future) or down (past) and have an opening angle of 90 degrees.  
Unlike a Schwarschild black hole, a Traveler can completely avoid the ring 
singularity if he enters the rotating black hole along its rotation axis. In front of him 
would be the circular Ring of Death, and he can even head directly for the center 
of this ring, but will exit the black hole in a bizarre ‘anti-gravity’ universe very 
different from his own. In this universe, the mathematics of General Relativity 
predict that gravity will be repulsive not attractive! 
 
 
Problem 1 -  There are four universes connected by this Kerr black hole: A, B, C 
and D. By drawing the proper worldliness and light cones, what path might take 
you from Universe A to Universe D? 
 
 
 
Problem 2 - What possible world line might take you from Universe A to Universe 
B? 
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Answer Key 51 
  Diagram  Credit  (http://jila.colorado.edu/~ajsh/insidebh/index.html)  

 
 
Problem 1 -  There are four universes connected by this Kerr black hole: A, B, C 
and D. By drawing the proper worldliness and light cones, what path might take 
you from Universe A to Universe D? 
 

                                 
 
Draw a line so that it always lies inside its light cone. No segments along the 
world line can have a slope that exceeds 1.0 (45 degrees), which is the speed of 
light.  
 
 
Problem 2 - What possible world line might take you from Universe A to 
Universe B? 
 
Answer:  There is no worldline connecting these universes because the traveler 
would have to  leave his future light cone and move backwards in time. 
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Evaporating Black Holes 52 
 In 1973, Stephen Hawking 
deduced that rotating black hole can 
evaporate and lose mass, thanks to 
the quantum mechanical properties 
of ‘empty’ space. 
 
 Pairs of electrons and anti-
electrons are constantly appearing 
and disappearing in space. If this 
happens near the event horizon, one 
particle escapes, while the other 
carries ‘negative mass’ into the black 
hole. This causes the black hole to 
lose mass.  

 

 The formula for the evaporation time of a black hole with a mass of M in kilograms 
is given by 
 

    
10256π 2 2G M 3

t =
hc4      

 
The formula for the temperature of a black hole with a mass of M in kilograms is given by 
 

    
hc3

T =
16 2  

π GMk
 
where  π = 3.141, and Boltzman Constant k = 1.3806503 × 10-23 m2 kg s-2 K-1. Planck's 
Constant     h = 6.628x10-34 Joules sec, and the Newtonian Constant of Gravity   G = 
6.67x10-11  Newton Meter2/kg2 . 
 
 
 
Problem 1 – By substituting the values for the physical constants into the two formulae 
above, show that t(seconds) =  8.39 x 10-17 M3 and T (Kelvins) =  1.23x1023 / M where M  
is the mass of the black hole in kilograms. 
 
 
 
 
 
Problem 2 -  The universe has an age of 13.7 billion years. What is the mass of a black 
hole that, by now, should have completely evaporated if it had formed at the Big Bang? 
(Assume  3.1 x 107 seconds = 1 year) 
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Answer Key 52 
  Problem 1 – By substituting the values for the physical constants into the two formulae 

above, show that t =  8.39 x 10-17 M3 and T =  1.23x1023 / M where M  is the mass of the 
black hole in kilograms. 
 
Answer: 
 

10256π 2 2G M 3

t =
hc4   =  

10256(3.141)2 1(6.67x10− 1)2 M 3

(6.626x x10−34 )(3.0 108 )4  =   8.39 x 10-17 M3  

 
 

hc3

T =
16π 2  =

GMk
(6.626x x10−34 )(3.0 108 )3

 = 1.23x1023 / M 
16(3.141)2 1(6.67x10− −1)(1.38x M10 23)

 
 
 
Problem 2 -  The universe has an age of 13.7 billion years. What is the mass of a black 
hole that, by now, should have completely evaporated if it had formed at the Big Bang? 
(Assume  3.1 x 107 seconds = 1 year) 
 
 
Answer:   t(universe) = 13.7 billion years x (3.1 x 107 sec/year) = 4.25 x 1017 seconds, 
then  4.25 x 1017 seconds =  8.39 x 10-17 M3  and solving for M we get  
M = 1.7 x 1011 kilograms.   This is 170 million tons, or about the mass of a very small 
asteroid! 
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53 Working with Spacetime Near a Black Hole 
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 Near a black hole, Einstein’s 
Theory of General Relativity predicts that 
space will be come greatly distorted. 
Some people like to call this the ‘warping’ 
of space! 
 
 Einstein’s theory was studied by 
Martin Schwarschild in 1916 and he found 
a precise mathematical formula that 
describes this space warpage in the case 
of a black hole that is not rotating. 
 

 Remember that we discussed how the Pythagorean Distance Formula has 
to be changed when the space between two points is dilated along one of more 
directions. We obtained the formula 
 
where g1, g2 and g3 were constants. This is only a special case of a more 
general kind of distortion where the amount of dilation changes from point to 
point! This this case, instead of g1, g2 and g3 being constants like 1.4, 25.213 or 
1045623.18952, they could each be functions of the location of each point like 
g1(x,y,z), g2(x,y,z) and g3(x,y,z). Imagine how complicated life would be if you 
tried to figure out your car’s travel distance in the city if the distances between 
houses and stores changed in this way!!  Sadly, this is exactly the case when you 
are exploring the neighborhood of a black hole. Luckily the functions g1, g2 and 
g3 are very simple, because the distortion in space near a ‘Schwarschild’ black 
hole only depends on your 1-dimensional’ distance from the center of the black 
hole, symbolized by the variable R! For two points located at R = R1 and R = R2 
we have the distance formulas: 
 
Ordinary ‘Flat’  Space:      D2 = a (R2-R1)2    where a = 1.000 
Black Hole space:             D2 =  (R2-R1)2 / (1-Rs/R)   where Rs = Event Horizon 
 
Problem 1 – For a black hole with a mass of 1 sun, Rs = 2.8 kilometers. What is 
the distance formula for the space outside the event horizon of this black hole? 
 
 
Problem 2 – Suppose that R is given in multiples of the horizon radius so that R 
= 3 means R = 3 x 2.8 = 8.4 kilometers.  Compare the distance formula 
predictions for Ordinary and Black Hole space. For a black hole with Rs = 10 km, 
and R = (R1 + R2)/2, what is the distance, D, between two points located at  A) 
R1=100000, R2=200000  B) R2=25 and R1=15, and C) R2=11 and R1 = 10? 
 



Answer Key 53 
   Problem 1 – For a black hole with a mass of 1 sun, Rs = 2.8 kilometers. What is 

the distance formula for the space outside the event horizon of this black hole? 
 
Answer:    D2 =  (R2-R1)2 / (1-10/R)     
 
 
Problem 2 – Suppose that R is given in multiples of the horizon radius so that R 
= 3 means R = 3 x 2.8 = 8.4 kilometers.  Compare the distance formula 
predictions for Ordinary and Black Hole space. For a black hole with Rs = 10 km, 
and R = (R1 + R2)/2, what is the distance, D, between two points located at  A) 
R1=100000, R2=200000  B) R2=25 and R1=15, and C) R2=11 and R1 = 10? 
 
 
Answer: A)  Ordinary:  D = 100000 
 
Black Hole:  R = (2000+1000)/2 = 150000,  (or 1,500,000 kilometers) then 
                       D2 =  (200000-100000)2 / (1-10/150000)   
                        D2 =  (100000)2 / (1)    
    D = 100000 
 
B)   Ordinary:   D = (25-15) = 10.0 
 
 Black hole:      R = (25+15)/2 = 20,  (which equals 200 kilometers) then 
                        D2 =  (25-15)2 / (1-10/200)   
                        D2 =  (10)2 / (19/20)    
    D2 = 20 (100)/19 
                        D2 = 105.  
                        D = 10.26 
 
C)  Ordinary:   D = (11 – 10) = 1.0. 
 
Black Hole:  R = (11+10)/2 = 10.5,  (which equals 105 kilometers) then 
                        D2 =  (11-10)2 / (1-10/10.5)   
                        D2 =  (1)2 / (0.047)    
    D2 = 21.0 
                        D = 4.6  
 
So, comparing 1.0 to 4.6, we see that when you are just outside the event 
horizon (R close to Rs=10 kilometers), the separation between nearby points 
becomes much larger than what you would have predicted using the 
Pythagorean Theorem in ‘flat’ space! 
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Additional Mathematical Resources About Black Holes 

It is a challenge to find mathematical resources about black holes that are not too 
advanced, but that still give the student and teacher some idea of how to think about 
them more quantitatively.  Ironically, if you GOOGLE 'black hole math' you will 
quickly discover that this very math guide is among the Top-7 options! Clearly there 
is a big need for this kind of resource that can be used by the K-12 community. Here 
are just a few others that might be helpful: 
 
Death Spiral Around a Black Hole - Hubble Discovery 
       http://hubblesite.org/newscenter/archive/releases/2001/03 
 
 
Chandra Observatory Detects Event Horizon - 
                    http://chandra.harvard.edu/photo/2001/blackholes/ 
 
 
Ask the Astronomer: 87 FAQs About Black Holes: 
                      http://www.astronomycafe.net/qadir/abholes.html 
 
 
Imagine the Universe: Black Hole FAQs 
          http://imagine.gsfc.nasa.gov/docs/ask_astro/black_holes.html 
 
 
New Evidence for Black Holes from NASA 
           http://science.nasa.gov/headlines/y2001/ast12jan_1.htm 
 
 
A trip into a black hole 
                      http://antwrp.gsfc.nasa.gov/htmltest/rjn_bht.html 
 



A note from the Author, 
 
 Since they first came into public view in the early 1970s, black holes 
have been a constant source of curiosity and mystery for millions of adults 
and children. No astronomer has had the experience of visiting a classroom, 
and NOT being asked questions about these weird objects with which we 
share our universe. 
 
 Beyond answering that they are objects with such intense gravity that 
even light cannot escape them, we tend to be at a loss for what to say next. 
The mathematics of Einstein's  General Theory of Relativity are extremely 
complex even for advanced undergraduates in mathematics, so we tend to 
resort to colorful phrases and actual hand-waving to describe them to eager 
students. 
 
 Actually, there are many important aspects of black holes that can be 
readily understood by using pre-algebra (scientific notation), Geometry 
(concepts of space and coordinates, Pythagorean Theorem), Algebra I 
(working with simple formulae), and Algebra II (working with asymptotic 
behavior). 
 
 This book is a compilation of some of my favorite elementary problems 
in black hole physics. They will introduce the student to the important 
concept of the event horizon, time dilation, and how energy is extracted 
from a black hole to create many kinds of astronomical phenomena. Some of 
these problems may even inspire a student to tackle a Science Fair or Math 
Fair problem! 
 
 Black holes are indeed something of a mystery, but many of their most 
well-kept secrets can be understood with just a little mathematics. I hope 
the problems in this book will inspire students to learn more about them! 
  
 
 
                    Sten Odenwald 



Frequently Asked Questions about Black Holes 
 
 
 The FAQs below have been assembled by Dr. Odenwald at his award-
winning Ask the Astronomer website resource at ‘The Astronomy Café’ 
(http://www.astronomycafe.net), which has been in operation since 1995. Visitors 
submitted hundreds of questions about black holes to Dr. Odenwald. The 
answers were posted at his Ask the Astronomer website, and selected popular 
questions were re-printed in his two books The Astronomy Café (W.H. Freeman, 
1998) and Back to the Astronomy Café (Westview Publishing, 2003), which are 
available at Amazon.com.  Here are a few of the most popular questions asked 
by visitors: 
 
 
Is there really a black hole at the center of the Milky Way? 

 Astronomers have suspected this for over a decade, and there have been many reports 
in the news media of 'proof' that such a thing existed. Now we have the most direct proof 
imaginable. The motion of the stars and gas near a region called SgrA* (pronounced 'sadge A 
star') in the constellation Sagittarius is faster than what you can account for if you just added up 
the mass of the gas and stars you see and worked out their 'gravitational speed'. This kind of 
motion has now been directly detected in a star called 'S2' located in orbit around the black hole. 
An international team of astronomers led by Rainer Schodel at the Max Planck Institute for 
Extraterrestrial Physics observed this star over the course of 10 years as it completed 2/3 of an 
orbit around a region centered on SgrA*. The star S2 approaches the central black hole to within 
three times the distance between the Sun and Pluto - while traveling at no less than 11 million 
miles per hour. The fast-moving star takes about 15 years to complete a single orbit. They used 
the Adaptive Optics Instrument on the 8.2-meter Very Large Telescope in Chile and captured a 
sequence of high-resolution images of this star as it orbited the black hole. The black hole, 
however, was not visible. Star velocities and variable X-ray emissions from the center of the Milky 
Way had indicated a compact source of radio waves, SgrA* can only be a black hole. SgrA* is the 
closest object to the actual Galactic Center. From the parameters of the elliptical orbit of S2 
around the black hole, the investigators derived an enclosed mass between 2 to 5 million solar 
masses. This small volume of space, and large mass, completely excludes the possibility of a 
massive star cluster. Only a black hole fits the data, and at last settles this issue once and for all.  

If you stuck your hand into a black hole, what would happen? 

You can't just park outside a black hole and do this experiment because there are no stable orbits 
possible for objects within an 'arms length' of the black hole's event horizon. Your only option to 
get close enough is to plot a course that lets you fall into the black hole. General relativity says 
that as you approach the event horizon, nothing unusual is going on at all. All you would be 
feeling are the tremendous tidal forces of the black hole, and these could be very substantial 
across a distance equal to your arm's length. In fact for a black hole produced by a star, by the 
time you are 40 miles from its horizon, the difference in the gravitational pull between your chest 
and hand is a thousand Earth gravities. Your hand would be torn from your body. But by then that 
will be the least of your problems. For the gargantuan black holes that lurk in the cores of many 
galaxies, the tidal forces near their event horizons are so minor that you might not even realize 
you had reached the event horizon at all, provided of course that the black hole was not 
surrounded by a lethal accretion disk spewing out x rays and gamma rays. You would gently pass 
across the horizon with your body intact, but with a very dismal future awaiting you as you 
continue to fall into the Singularity  located a few billion miles away. In either case because of 



relativity, distant observers would see your hand 'wink out' followed moments later by the rest of 
you! 

Do black holes ever get full? 

No, black holes never get full. The size of a black hole is fixed by the amount of mass it contains. 
For each increment of mass the size of the Sun, its radius grows by 1.7 miles, so if a black hole 
has a mass of 10 times the Sun, its radius is 17 miles. The more matter that falls into it, the bigger 
it gets, so in fact it never fills up inside. If a black hole consumes matter at too ferocious a rate, 
the radiation pressure generated by the infalling matter provides tremendous resistance to the 
flow of matter. The rate at which matter can fall into a black hole is regulated to what is called the 
Eddington Accretion Rate. For a solar-mass black hole, this rate equals the mass of our Sun 
consumed every 100 million years. 

What happens to matter that falls into a black hole? 

Outside the black hole, it depends on what form the matter takes. If it happens to be in the form of 
gas that has been orbiting the black hole in a so-called accretion disk, the matter gets heated to 
very high temperatures as the individual atoms collide with higher and higher speed producing 
friction and heat. The closer the gas is to the black hole and its Event Horizon, the more of the 
gravitational energy of the gas gets converted to kinetic energy and heat. Eventually the atoms 
collide so violently that they get stripped of their electrons and you then have a plasma. All along, 
the gas emits light at higher and higher energies, first as optical radiation, then ultraviolet, then X-
rays and finally, just before it passes across the Event Horizon, gamma rays.  

If the matter is inside a star that has been gravitationally captured by the black hole, the orbit of 
the star may decrease due to the emission of gravitational radiation over the course of billions of 
years. Eventually, the star will pass so close to the black hole that its fate is decided by the mass 
of the black hole. If it is a stellar-mass black hole, the tidal gravitational forces of the black hole 
will deform the star from a spherical ball, into a football-shaped object, and then eventually the 
difference in the gravitational force between the side nearest the black hole, and the back side of 
the star, will be so large that the star can no longer hold itself together. It will be gravitationally 
shredded by the black hole, with the bulk of the star's mass going into an accretion disk around 
the black hole. If the black hole has a mass of more than a billion times that of the sun, the tidal 
gravitational forces of the black hole are weak enough that the star may pass across the Event 
Horizon without being shredded. The star is, essentially, eaten whole and the matter in the star 
does not produce a dramatic increase in radiation before it enters the black hole.  

Once inside a black hole, beyond the Event Horizon, we can only speculate what the fate of 
captured matter is. General relativity tells us that there are two kinds of black holes; the kind that 
do not rotate, and the kind that do. Each of these kinds has a different anatomy inside the Event 
Horizon. For the non-rotating 'Schwarzschild black hole', there is no way for matter to avoid 
colliding with the Singularity. In terms of the time registered by a clock moving with this matter, it 
reaches the Singularity within a few micro seconds for a solar-massed black hole, and a few 
hours for a supermassive black hole. We can't predict what happens at the Singularity because 
the theory says we reach a condition of infinite gravitational force. For the rotating ' Kerr Black 
holes', the internal structure is more complex, and for some ingoing trajectories for matter, you 
could in principle avoid colliding with the Singularity and possibly reemerge from the black hole 
somewhere else, or at some very different future time thousands or billions of years after you 
entered. 

 

 



Where does matter go after it is squeezed through a Singularity? 

That's something that everyone would like to know, but for now we don't have a verifiable theory 
of gravity (called by some people quantum gravity theory) that can take us beyond the Singularity 
state predicted by general relativity. The Singularity, a state of infinite gravitation, is a wall that we 
can't penetrate right now because general relativity which is painting our description of it cannot 
be tested under these conditions to confirm that it is really giving us correct answers. Physicists 
are convinced that this state is not real, but only a sign that general relativity has broken down. 
Some physicists including Stephen Hawking believe that matter entering a black hole in our 
universe, will emerge as matter spewed forth from a so-called white hole in another universe. The 
mathematics seem to suggest this, but there are many difficulties in interpreting such theories 
without knowing whether they are accurate representations of our physical world or not. Our 
ability to experimentally test a theory has proven itself to be our only sure way of separating truth 
from mathematical fiction and keeping us on the right course in an astonishingly complex 
universe. So far, testing these new theories seems almost as hard as creating the theories in the 
first place. 

What happens near the Event Horizon of a black hole? 

The region of space very close to a black hole can be a very messy environment. Mathematically 
it is a very simple region dominated by the black holes' outer boundary called the event horizon. 
Matter is trying to flow into the black hole at the equator, and through friction, is being heated to 
thousands and perhaps even millions of degrees. Magnetic fields dragged in by the flow get 
amplified and concentrated. They eventually pop out of the gas disk like solar prominences and 
flares, releasing bursts of x-ray, and perhaps even gamma ray, energy. Clumps of clouds and 
asteroids orbit the black hole in seconds and are shredded by gravity, to produce flickering 
'Quasi-Periodic' bursts of x-ray light as they slide into the horizon zone and are finally lost from 
our universe. Does fusion happen just outside a black hole? Not very easily. To produce 
thermonuclear reactions you need temperatures in excess of about one million degrees to cause 
protons to collide with deuterium and produce tritium. Deuterium fusion is the lowest energy 
fusion reaction we know about. To get to one million degrees, protons have to collide with 
deuterium nuclei at speeds of about 290,000 miles per hour. Near stellar-mass black holes, 
gravitational tidal forces are substantially higher and it might be possible for some of the gas to 
reach these kinds of conditions, at least in a limited volume of space near the horizon, perhaps 
even in 'solar' flares that pop out of the magnetized accreting matter. A signature of this would be 
a black hole emitting bursts of gamma rays. 

If nothing can escape a black hole, why do they still emit X-rays? 

It is true that once matter or energy passes within the so-called Event Horizon of a black hole, 
that it can never turn around and get back out. However, in the real world, a lot can happen to 
matter as it approaches the Event Horizon. Commonly, matter falls into what is called an 
accretion disk which orbits the black hole. Material orbits the black hole within this disk, but if it 
happens to be gas and dust, this matter experiences friction and the disk heats up as some of the 
orbital energy of the gas is converted into heat. The closer the disk material is to the black hole, 
the more rapidly it orbits so that the greater is the heating effect. Just before it reaches the Event 
Horizon, this disk matter can be heated by friction to thousands of degrees which is enough to 
produce X-rays. Even higher temperatures approaching a million degrees can occur which can 
produce gamma rays. This disk radiation, being outside the black hole, is what we detect as we 
look at black holes. 

 

 



What exists between the Event Horizon and the Singularity of a black hole? 

For black holes formed by collapsing stars, the body of the star itself exists in this zone so far as 
outside observers are concerned. In fact, as seen from a distance, the surface of the star is 
'frozen' just outside the event horizon a few million million millionths of a centimeter from the 
horizon where the relativistic Doppler factor is enormous.  

Mathematically, for black holes old enough that the stellar material has collapsed all the way into 
the singularity, the region between the horizon and the singularity is occupied by a spacetime 
where the time and space coordinates are reversed from those of the outside world. What this 
means in terms of what you experience is unknown. Other more complex conditions can occur of 
the black hole is rotating. In that case the singularity becomes a ring around the center of the 
black hole. You can pass through the center, but the tidal gravitational field would be lethal in all 
likelihood. In nearly all cases there would be gravitational radiation rattling about, and this would 
cause distortions in spacetime that would probably lead to spectacular optical distortions.  

 

Is the edge of a black hole a sharp, smooth boundary? 

As seen from the vantage point of an outside observer, the edge is extremely sharp. It is a 
mathematically perfect, spherical surface where light gets infinitely redshifted.  

To an observer falling into the black hole, the boundary may be much more complicated than our 
'axi-symmetric' mathematics would suggest. The horizon could be a turbulent surface rippling with 
gravitational radiation, or it might dissolve into a fuzzy quantum state at even finer scales of 
scrutiny. Someone falling into the horizon would experience NOTHING PECULIAR, except that 
once they cross this mathematical surface by even one millimeter, they can never turn back to 
escape the black hole. The 'Event Horizon' is a most peculiar concept in physics. Still, it is a 
theoretical idea which needs to be studied with real data before we can feel confident that we 
understand it. Getting the data, however, would be fatal! So, what's a physicist to do?  

What is space ‘doing’ near the Event Horizon? 

So far as local physics is concerned, that is what a freely-falling observer it depends on what kind 
of black hole it is...whether it is rotating or not.  

The details are very complicated, but the common feature is that nothing peculiar really happens. 
You do not feel a 'lurch' or 'space discontinuity' or something. The gravitational tidal force will 
continue to grow as you near the horizon and pass through it. Your clocks and meter sticks will 
still look normal if they are not too big compared to the tidal field. Just outside the horizon, 
photons will be able to go into orbit at a 'last-stable' orbit radius. Don't worry about what the 
distant observers see. That's completely irrelevant to what you will be experiencing locally.  

Another thing you will discover as you approach the event horizon is that you are no longer able 
to go into a stable orbit. Because of a relativistic phenomenon known as the Lenz-Thirring Effect 
or 'frame dragging', space-time is no longer a static thing, but becomes very obviously dynamic in 
character. It's a bizarre process that basically causes space-time to be dragged along with the 
rotation of the black hole so that you can never go into an orbit that is close to the horizon. All you 
can do is be 'dragged' across the event horizon. This exotic process has been detected in careful 
X-ray studies of nearby black holes as we witness the spiraling-in of matter. 

 



What happens to time as you fall into a black hole? 

We are guided in our understanding of the interior of black holes by the theory of general relativity 
developed by Albert Einstein in 1915, and in particular, the mathematics of the complete, 
relativistic equation for gravity and space-time. This theory describes in considerable 
mathematical detail, both those regions of space-time that are accessible to humans, and those 
that are accessible only by individual observers but not distant observers. For black holes, distant 
observers will see only the outside of the event horizon, while individual observers falling into the 
black hole will experience quite another 'reality'. General relativity predicts that for distant 
observers outside the horizon, they will experience the 3 space-like coordinates and 1 time-like 
coordinate as they always have.  

For someone falling into a black hole and crossing the horizon, this crossing is mathematically 
predicted to involve the transformation of your single time-like coordinate into a space-like 
coordinate, and your three space-like coordinates into 3 time-like coordinates. Along any of these 
3 former space-like coordinates, they now all terminate on the singularity, and your experiencing 
them as time-like now means that you have no control over your destiny because all choices 
always terminate on the singularity...at least in the case of a non-rotating black hole. The 
coordinate which used to measure external time, now has a space-like character which affords 
you some wiggle room, but dynamically, in terms of these new reversed space and time 
coordinates, you find that no stable orbits about the singularity are possible no matter what you 
try to do. Without any stable orbits, and the inexorable free fall into the singularity, relativists often 
refer to this as the collapse of space-time geometry.  
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