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Abstract—Security concerns are widely seen as an obstacle
to the adoption of cloud computing solutions and although
a wealth of law and regulation has emerged, the technical
basis for enforcing and demonstrating compliance lags behind.
Our CloudSafetyNet project aims to show that Information
Flow Control (IFC) can augment existing security mechanisms
and provide continuous enforcement of extended. finer-grained
application-level security policy in the cloud.

We present FlowK, a loadable kernel module for Linux,
as part of a proof of concept that IFC can be provided for
cloud computing. Following the principle of policy-mechanism
separation, IFC policy is assumed to be expressed at application
level and FlowK provides mechanisms to enforce IFC policy
at runtime. FlowK’s design minimises the changes required to
existing software when IFC is provided. To show how FlowK can
be integrated with cloud software we have designed and evaluated
a framework for deploying IFC-aware web applications, suitable
for use in a PaaS cloud.

Index Terms—IFC, Kernel Module, Security, Integrity

I. INTRODUCTION

A great deal of law and regulation relating to cloud com-
puting has emerged [1], but the technical basis for enforcing
and demonstrating compliance lags behind. Security concerns
are seen as an obstacle to more widespread adoption of cloud
computing. Traditional security practices such as authentica-
tion and access control are, of course, used by cloud-deployed
applications. The CloudSafetyNet project is exploring the
potential of Information Flow Control (IFC) to enhance these
traditional approaches by providing continuous enforcement
of policy at runtime. Moreover, policy can be finer-grained,
capturing data properties as well as principal-based concerns.
Here, we present the Operating System (OS) component of the
proof-of-concept IFC system we are creating. Note that we use
the term IFC to subsume Decentralised/Distributed DIFC (see
§III).

Fig. 1 gives an overview of cloud service provision as
Infrastructure/Platform/Software as a Service (IaaS, PaaS,
SaaS). IFC could be provided independently of cloud-provider
software, either as a language feature [2], [3] or through a
library [4]–[6]. But this level of deployment assumes the cloud
service is trustworthy throughout all the deployed cloud soft-
ware (see Fig. 1). Even if the cloud provider is not malicious,
data leakage could occur within the cloud implementation
due to bugs, over-permissive data access policies or attacks
of various kinds. We therefore investigated IFC enforcement
within the OS (§V). To increase the likelihood of acceptance,
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our design requires minimum modification to higher software
layers (§VI).

Here, we present FlowK (Information Flow Control Kernel
Module), a kernel module for enforcing IFC within a standard
Linux OS, as used by most cloud service providers. FlowK
intercepts all system calls that create information flows and
enforces IFC rules on those flows as described in §IV. Our
design is based on “policy-mechanism separation”, in that the
enforcement of IFC in FlowK is separated from any knowledge
of principals, users and the management of privileges. This
separation ensures maximum flexibility for higher levels of
software; we show how FlowK supports application manage-
ment in IV-E. Any application that does not use IFC can run
unmodified and is only affected by a small performance hit
on system calls, (see §VII).

This work contributes: (1) providing IFC within a widely
used standard OS without requiring monitored processes to
be modified, unlike other IFC systems (§III). (2) Support for
conflict of interest in the IFC model to meet requirements
for isolated processing (§IV-D). (3) As proof of concept, a
minimally modified web server architecture for Ruby web
applications, to take advantage of IFC (§VI).

We state our threat model in §II and related work in §III.
§IV presents the FlowK IFC model. Implementation details
are given in §V and §VI demonstrates how applications can
be integrated with FlowK by describing our deployment of
a webserver workers architecture, enhanced to support IFC
policy expression and implementation via IFC. §VII discusses
performance measurements. §VIII summarises this work in the
context of CloudSafetyNet.



II. THREAT AND TRUST MODEL

A. Trust Assumptions

We assume the cloud provider to be non-malicious and
bound through legal requirements to do its best to protect its
tenants’ data. Indeed, it is in the best interest of large cloud
providers (such as Google, Amazon, Microsoft) or govern-
mental organisations (NHS UK) to guarantee high security
standards. We believe a reasonable assumption is to rely on
the cloud platform implementation to protect applications from
unintentional data disclosure by isolating users or groups of
users. For this purpose we propose IFC security contexts, see
IV. We assume that tenants running applications in the cloud
do not actively try to leak their users’ data.

Even so, an application provided by a tenant may contain
bugs that could leak data. In current infrastructure, a bug
in the tenant’s application could put all the data associated
with this application at risk, i.e., via intra-tenant leakage. A
misconfiguration in some provider’s cloud services could allow
applications to access data from other applications, i.e. inter-
tenant leakage. IFC security context compartmentalisation
allows the sharing of common resources and data, while
reducing the risk surface of sensitive data.

B. Mitigated Threats

The 2014 Cost of Data Breach: Global Analysis [7] reports
a cost of $145 per record lost, and up to $349 for medical
records. The cost to companies depends on national legislation
e.g., $3.6M per company p.a. in the UK, $4.2M in France,
$5.9M in the US. The study shows that European nations are
willing to support preventative cost, while the US is heavily
weighted towards post-leak litigation and reputation loss cost.

We cannot prevent all types of data leakage but we can
mitigate many. The Web Hacking Incident Database [8] reports
that in 2009, data leakage represented 28% of attacks. We
cannot prevent bad application design (which accounts for
the majority of vulnerabilities), but we restrict the scope of
such attacks to a limited number of security contexts; e.g.
common attacks such as SQL injection and OS command
injection would be limited to a specific IFC context and would
not allow leakage of all users’ data. Furthermore, our general
approach encourages strong authentication (11% of attacks are
due to insufficient authentication) and our use of the Principle
of Least Privilege (PoLP) means that individual application
instances do not have access to the full application’s dataset.

Therefore, depending on the security context defined by
the application developer, the amount of data involuntarily
disclosed through an application’s bugs or vulnerabilities can
be greatly reduced. A developer creating a separate security
context per user would limit leakage to a single user. Our
medical portal [9] would limit disclosure per user and per
usage. In such circumstances, it becomes more complicated
for an attacker to gain access to significant amounts of data.
This reduces the risk of data being incorrectly disclosed, and
would reduce the post-leakage cost.

In the web server architecture in §VI, we do not address
insider attacks. However, we believe this risk could be ad-
dressed with a combination of encryption techniques and IFC,
but this is beyond the scope of the work presented here. We
also do not protect individuals or end-users’ machines. These
are the target of social engineering, cross site scripting, cross
site request forgery and exploitation of browser vulnerability.
Existing techniques can help prevent such attacks.

Our aim is that applications with a relatively high re-
quirement for data confidentiality and integrity, such as those
handling medical records [9] could be safely cloud-hosted.

III. RELATED WORK

A. IFC Models

It has long been argued that standard security techniques,
such as firewalls and access control mechanisms, are not
enough to prevent information leakage [10]. Indeed, it is be-
yond the scope of such mechanisms to determine whether, af-
ter the controls they impose, the information is used correctly.
For example it is difficult to determine if the confidentiality
of decrypted data is respected [11]. We therefore need to
protect information flow end-to-end, i.e., when information is
transmitted within and between applications.

In 1976, Denning [10] proposed a Mandatory Access Con-
trol (MAC) model to track and enforce rules on information
flow in computer systems. In this model, entities are associated
with security classes. The flow of information from an entity
a to an entity b is allowed only if the security class of b
(denoted b) is equal to or higher than a. This allows the
no-read up, no-write down principle of Bell and LaPadula
[12] to be implemented to enforce secrecy. By this means a
traditional military classification public, secret, top secret can
be implemented. A second security class can be associated
with each entity to track and enforce integrity (quality of data)
during the permitted reading down and writing up, as proposed
by Biba [13]. Using this model we are able to control and
monitor information flow to ensure data secrecy and integrity.

In 1997 Myers [14] introduced a Decentralised IFC model
(DIFC) that has inspired most later work, including FlowK.
This model was designed to meet the changing needs of
systems from global, static, hierarchical security levels to a
more fluid system, able to capture the needs of different
applications. Each entity is associated with two labels: a
secrecy and an integrity label, to capture respectively the
privacy/confidentiality of the data and the reliability of a
source of data. These labels are composed of tags which
represent some security concern. Data are allowed to flow if
the security label of the sender is a subset of the label of
the receiver and conversely for integrity. The FlowK model
follows this general idea, see §IV.

B. IFC for Operating Systems

Some research projects have implemented IFC at the OS
level, most notably Flume [15]. Here, a model similar to
Myers’ [14] is used and the entities are files, pipes, sockets
and processes. In Flume, monitored (labelled) processes have



Description Notation Rule
Data Flow A→ B (1)
Creation Flow A⇒ B (2)
Security Context Change A A′ (3)

Privilege Delegation A
t
±
X
↪→B (4) and (5)

TABLE I: Types of flow

access to a restricted set of system calls, and some (such
as fork or pipe) are completely replaced by IFC-specific
ones. This means that Flume applications running under IFC
constraints need to be rewritten, even when they do not need
to manipulate IFC labels during their lifecycles.

Asbestos [16]is a rewritten OS rather than an imported
module, requiring substantial changes in software that uses
it. In Aeolus [17] and Laminar [18], an IFC aware operating
system is used to enforce inter-process IFC constraints and a
modified Java Virtual Machine ensures intra-process isolation
via programming language objects. Again, it is necessary for
application developers to be IFC-aware and to rewrite their
Java programs.

C. IFC for Distributed and Cloud Systems

DStar [19] enables IFC in distributed systems by leveraging
the labelling mechanisms of IFC-compliant OS such as Flume,
Asbestos and HiStar [20]. DStar defines globally meaning-
ful labels and each OS provides an exporter that maintains
the correspondence between local representations and global
labels, supporting inter-process communication as message-
passing. CloudSafetyNet has made a general middleware IFC-
compliant (SBUS-IFC) [21] and we are in the process of
integrating it with FlowK. Current cloud platforms do not
support IFC, although [22] discusses how IFC techniques
could be provided as part of cloud services. The OS-level
projects on providing distributed IFC, such as HiStar [20] or
DStar [19] (which are based on Asbestos [16]) are closest to
potential cloud deployment. The DStar system appears to be
a suitable base on which to build an IFC-aware PaaS cloud,
but we are not aware of such efforts.

IV. FLOWK IFC MODEL

IFC augments authentication and authorisation by enforcing
dynamically, that only permitted flows of information can take
place. Flows are enforced by means of labels. We assume that
labels are associated with entities after successful authorisation
and here define how labels are used to control information
flow. We introduce a notation for the different IFC operations,
to describe succinctly the behaviour of an IFC-aware system.
Table I summarises the rules controlling the flows that are
defined in this section.

A. Enforcing Information Flow via Labels

A label is a set of tags. A tag represents a security concern
for a category of data, e.g. encrypted, anonymised, clinical,
personal, etc. The FlowK IFC model associates two labels
with an entity: a secrecy label and an integrity label; S(A)

and I(A) respectively for an entity A. The current state of
these two labels (their sets of tags) is the security context of
an entity. In the IFC world, read is equivalent to an incoming
flow and write to an outgoing flow.

A flow of information from an entity A to an entity B,
denoted A → B, is allowed if the following rules are
respected:

A→ B, iff S(A) ⊆ S(B) ∧ I(B) ⊆ I(A) (1)

The subrule of rule (1) concerning secrecy labels ensures
that an entity only passes information to an entity that is
allowed to receive it. The subrule concerning integrity labels
further constrains the permitted flow to enforce data quality.
Traditional security requirements can thus be enforced.

B. Creation of an Entity

We define A ⇒ B as the operation of the entity A creating
the entity B. An example is creating a process in a Unix-style
OS by fork. We have the following rules for creation:

if A⇒ B, then S(B) := S(A) and I(B) := I(A) (2)

That is, the created entity inherits the labels of its creator.

C. Privileges for Managing Tags and Labels

In our model certain entities (processes) have privileges as
well as labels. These privileges represent the right for an entity
to modify its labels. An entity has two sets of privileges for
removing tags from its secrecy and integrity labels (P−S for S
and P−I for I), and two sets for adding tags to these labels (P+

S

for S and P+
I for I). That is, for an entity A to remove the tag

ts ∈ S(A), it is necessary that ts ∈ P−S (A), similarly to add
the tag ti to the label I(A) it is necessary that ti ∈ P+

I (A).
For an entity A, a label X (S or I) and a tag t, a change

of the label is authorised if the following rule is respected:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A) or

X(A) := X(A) \ {t} if t ∈ P−X (A)
(3)

In order to receive information from an entity B, an entity
A will need to set its labels (if it has the privilege) so that
the flow constraints expressed by the tags associated with B
are respected, that is such that the flow B → A respects
rule (1). We do not allow implicit/automatic label change, to
prevent a certain type of covert channel [18], [20] and to help
programmers reason about their programs’ behaviour.

A process changes its security context by changing its S
and I labels. This may be done prior to creating an entity that
will inherit that context (rule (2)). We denote (A,S, I) as a
process and its labels, and on label change denote the flow
(A,S, I) (A,S′, I ′) or in short A A′.

Declassification: An example of changing security context
is declassification; e.g. plain-text data may have a secret
tag whereas the same data when encrypted may flow more
freely. A process that encrypts data must be trusted to have
the privilege to declassify the derived encrypted data, that is,
to create encrypted data without the secret tag in its S label.



In outline: the encrypting process starts off with the secret tag
in S, reads the file with tag secret in S, encrypts the data,
changes its security context by removing the secret tag from
S (for which it has the privilege) then writes the encrypted
data, e.g. as public data.
Creation: Note that on creation, labels are automatically
inherited by a created entity from its creator, but privileges
are not. If the child is to be given privileges over its labels,
these must be passed separately. We denote the flow generated
by an entity A giving selected privileges t±X to an entity B as

A
t
±
X
↪→B (for example allowing t to be removed from S, would be

denoted A
t
−
S
↪→B). In order for a process to delegate a privilege

to another process it must own this privilege itself. That is,

A
t±
X
↪→ B only if t ∈ P±X (A) (4)

As for other IFC systems, once an entity has been given a
privilege, i.e., is trusted to perform some label manipulation,
that privilege cannot be taken back. This is important for
enforcing the separation of duties constraint described below.

D. Separation of Duty and Conflict-of-Interest Groups

A policy maker may need to specify a Separation of Duty
(SoD) or Conflict of Interest (CoI) between principals [23],
[24]. An example of SoD is that an auditor may not audit
their own actions. A CoI may arise when a principal gives
professional advice to a number of competing companies.

We define a set C of tags that represents some conflicting
interests. For the configuration of an entity A to be valid with
respect to C, rule (5) must be respected:∣∣∣(S(A)∪I(A)∪P+

S (A)∪P+
I (A)∪P−

S (A)∪P−
I (A)

)
∩C

∣∣∣≤1 (5)

That is, an entity is non-conflicting in this context if the
set of its potential tags contains at most one element from the
set of tags within the related CoI group. By potential tags we
mean the tags in its current S and I labels and those tags
that it has the privilege to add to S(A) (i.e. P+

S (A)) and to
I(A) (i.e. P+

I (A)) or that it may have removed from S(A)
(i.e. P−S (A)) and from I(A) (i.e. P−I (A)).

Suppose a conflict C = {Fiat ,Ford ,Audi , ...} and some
data (e.g. files) are labelled FiatData[S = {Fiat}, I = ∅]
and FordData[S = {Ford}, I = ∅]. The CoI C ensures that
it is not possible for a single entity (e.g. a process) to have
access to both FordData and FiatData either simultaneously
or sequentially, i.e. enforcing that Ford-owned data and Fiat-
owned data are processed in isolation.

This rule is enforced on every A
t
±
X
↪→B flow. Correctness

depends on CoI groups being configured correctly before
process labelling occurs. To our knowledge, CoI has not
previously been enforced in IFC systems; e.g. while drawing
on OS work for its design, [25] is purely language-based. We
believe we can solve the problem posed in work on Chinese
Wall policy [24] for the cloud [26], providing similar CoI
isolation policy.

E. Application Startup—Trusted Entities

So far we have seen how active entities exchange infor-
mation, create new entities, change their security context and
delegate their privileges. We have not yet seen how tags and
privileges are set up for the application instances.

We define a trusted entity to manage an application, denoted
A∗ for a trusted entity A. At startup, A∗ has access to all
the tags required for the application and all the privileges
to manage them. It spawns all application instances, with
appropriate security contexts, and sets up any CoI groups
needed by the application; A∗ is the only entity entitled to
create CoI groups for the tags it manages.

In our current implementation such trusted processes are
configured at startup with the tags for the application’s naming
domain, see §VI for an example. Work is in progress on
integrating FlowK with an IFC-aware middleware [21], a
function of which is to transfer tags as well as data.

In the example in §IV-D, the application manager
CarManager∗ is set up with the privileges to add and subtract
all the tags in the naming domains for S and I labels
for the application. For simplicity, consider I = ∅ for this
application. Suppose the naming domain for S comprises the
tags {Fiat ,Ford ,Audi , ...}. CarManager∗ creates a conflict
of interest C = {Fiat ,Ford ,Audi , ...} and then creates the
processes to manipulate information for each car type in
isolation.

F. Applying the Model in FlowK

In a Linux-like OS, the entities defined in the model are
processes, files, pipes and sockets. Information flows A → B
are usually generated through system calls. If we assume that
there is no shared memory between processes, for the four
types of entity (process, pipe, socket and file) the only possible
information flow is through system calls.

Process, pipe and socket labels are stored in kernel memory
in FlowK and follow the lifecycle of their associated entities.
File labels are made persistent and stored on disk alongside
the file as part of its metadata (using extended attributes in a
fashion similar to SELinux).

Privileges (as in §IV-C) are only associated with active enti-
ties, i.e. processes. Certain processes have privileges, allowing
them to change their labels; that is, those processes are able to
change their security context A  A′. The labels of passive
entities (files, pipes and sockets) are immutable.

All labelled entities are allocated their labels when they are
created. For a process A creating some entity E the subrules
associated with the flow A ⇒ E in rule (2) are respected, that
is, E inherits A’s labels. See §VI for how this could be used
in a PaaS-hosted web-based service.

V. IMPLEMENTATION

FlowK is a minimal trusted code base running in kernel
space and enforcing IFC constraints. FlowK is agnostic to
label definition and the management of roles and principals.
Trusted processes (§IV-E) running in user space manage labels
on behalf of applications, i.e., managing policy and assigning
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the appropriate privileges to processes. FlowK is therefore only
tasked with enforcing the IFC constraints described in §IV. See
§VI for an integrating example.

As described in our model (§IV), an entity cannot alter
the labels of another. Any change of security context occurs
through the explicit action of the process itself. This prevents
a number of covert channels [10], [20] and allows the pro-
grammer to reason more easily about program behaviour.

A. Architecture

Fig. 2 shows the overall system architecture. We associate
each entity with two sets of tags (for their S and I labels), each
represented as a 64 bit integer. Processes are further associated
with privileges over their tags. System calls creating flows
are intercepted and IFC constraints are applied, enforcing
IFC according to the labelling; other system calls are left
unintercepted. Label manipulation through the FlowK API is
done through a static FlowK library connecting to an interface
equivalent to a standard device driver, i.e. communication with
user space is as for any other kernel module.

To achieve system call interposition, the system call table
is patched and IFC system calls replace standard system calls
[27], while relying on the underlying standard implementation.
Our kernel module maintains a map between entity identifiers
(processes, pipes etc.) and their respective labels and priv-
ileges. On system calls such as write or send, the security
context of the process and of the entity associated with the
provided file descriptor (i.e. socket, pipe or file) are retrieved,
evaluated and compared to decide whether the operation is
authorised (and respectively for read and recv).

B. Files

Files are the only entities with persistent labels. Labels are
made persistent through extended attributes i.e. only files in
a file system supporting extended attributes can carry labels;
otherwise, files are considered unlabelled and information flow
restricted accordingly.

Unlike other systems [15], we enforce IFC not only on
file opening (therefore including creation), but also on other
file operations such as read and write. Recall that files have
immutable labels (see §IV-F); the labels are assigned to a file
when it is created, following rule (2). When a process modifies
its security context during its lifetime it may no longer be able
to read from or write to a file it created, or could previously
access, and should therefore be returned an access error. A
process that does not change its security context should never
lose access to a file it could previously access. In practice,
processes that need to change their security context are rare

and have a specific role, such as declassifiers (anonymising,
encrypting) and certifiers (validating/verifying input).

C. Inter-Process Communication (IPC)

In this work we are not addressing shared-memory IPC,
supported at OS level, and have disabled shared memory for
monitored processes in our evaluation. We therefore consider
two kinds of IPC: pipes and sockets.

A pipe is created by a process, and therefore the pipe
inherits the labels of that process according to rule (2). Pipes
have immutable labels; no external factor can change a pipe’s
labels once they have been created. Suppose a second process
is forked, inheriting the pipe’s descriptors and labels. The two
processes use the pipe to transfer bytes, one writing and the
other reading. Rule (1) applies for the flows process → pipe
and pipe → process .

Only UNIX (local) sockets support labels since otherwise
the other end of the socket might be over a network link, where
the remote system does not enforce IFC constraints. Therefore,
all other sockets are considered unlabelled and information
flow constraints applied accordingly. Communication across
systems can be achieved via IFC-enabled middleware, work-
in-progress in CloudSafetyNet.

As for pipes and files, UNIX sockets carry immutable labels
and the labels of the processes using the UNIX sockets are
checked against those immutable labels. When a process
interacts with a socket, information flow policy is applied
according to the direction of the flow (i.e. from the process to
the socket or from the socket to the process).

For practical reasons, trusted process can mark certain
passive entities as trusted. When a passive entity is marked as
trusted, information flows between the trusted process and the
passive entity are unmonitored. This facilitates e.g. building
the security context router described in §VI.

D. Creating New Processes

FlowK is not concerned with enforcing IFC constraints in
shared memory, so all threads of a process share the same
labels. If one thread changes its (shared) security context, this
will change the security context of all threads.

When calling fork or clone to create a new process or thread,
the labels of the caller are copied to the newly created entity.
The mapping between processes and their labels is guaranteed
by the uniqueness of their pid (in the POSIX sense). When a
process is closed, the associated labels are dereferenced and
freed.

The execve system call allows execution of a program
passed by its filename. Suppose the process P calls execve
and F is the file to be executed. The labels of the process
after a successful execve are such that S(P ) := S(P )∪S(F )
and I(P ) := I(P ) ∪ I(F ). We fail the execve system call
if the resulting label would violate any of the existing CoI
groups (see rule (5)). We consider this flow to be a F ⇒ P
flow.

From a higher level perspective a process P would generally
start a new executable by forking a new process Q using vfork,



then the child would execute a file F using execve. Using the
notation from §IV, we have the following flows: P ⇒ Q when
the child is vforked by the parent process, and F ⇒ Q when
the executable is loaded into memory at the time that the child
process calls execve. This is the only case in which a process
is considered to be created by two parents, and such creation
is necessarily restricted by CoI rules. We denote the creation
as: (P, F ) ⇒ Q.

VI. SECURING WEBSERVER WORKER PROCESSES

In this section we show how FlowK can be integrated with
applications by creating a framework for possible PaaS-cloud
deployed web services. For example, the framework could be
used to implement a medical web portal [9] or to provide user
isolation as described in [28].

The intent of the proposed architecture is to allow the
dynamic creation of Webserver Worker instances (WWs) to
perform particular tasks. A WW is subject to IFC constraints
reflecting the privileges of the principal on whose behalf it
is running, and on the nature of its tasks. We believe this
approach can greatly reduce the risks of data leakage.

Fig. 3b shows a simple architecture for IFC-constrained
WWs. We aim to minimise the engineering work required
to implement applications using this system. The Security
Context Router (SCR) is an Apache server running a module
we developed; the WWs are standard Ruby-on-Rails servers,
enhanced by a library to communicate with the Worker Man-
ager (WM). The Data Store Interface and the WM are bespoke
components, but consist of only a few hundred lines of Ruby
code. We kept the SCR and WM separate in order to avoid
information being unintentionally exchanged between security
contexts.

We first describe a single tenant service. In outline, when a
user connects to the server for the first time, the SCR routes
the request to the Public WW which holds the application’s
authentication and authorisation policy. Once the user is au-
thorised by the Public WW, it asks the WM to create a new
WW for this user’s request and specifies the security context
in terms of IFC labels/tags (note that several users can share
the same WW, if their security context is identical). The user’s
WW then runs within this specified security context. Once the
WW is created, the WM returns a token to the Public WW
which requested the creation of this new security context. The
Public WW then stores this token within an HTTP cookie for
that user. Further requests from this user will be routed to
the correct WW depending on the parameters specified in the
token. If the token is invalid or has expired, the SCR routes
the request to the Public WW.

The lifecycle is managed as follows: the WM sets an
expiry time for the security context based on the application’s
parameters, terminating the WW when the time is reached.
Alternatively, an application may know that a context for files
was generated to serve some request (or set of requests);
once the task they were created for is finished, the WW can
terminate itself.

Importantly, security contexts do not need to be pre-defined,
and new tags can be generated as needed by any application.
For example, user-specific tags can be created as new users
register with the application. Tag combinations may exist
provided they do not violate CoI constraints (new CoI rules can
be defined during the system lifecycle, but obviously cannot
be enforced before being declared).

1) Webserver Worker Processes (WWs): In our implemen-
tation, WWs are implemented in Ruby and can use any Rack-
compatible framework, such as Ruby-on-Rails and Sinatra.
The Rack App is augmented to allow applications to com-
municate with the WM so that they can create new security
contexts.

2) Worker Manager (WM): The WM is a trusted process,
see §IV-E, responsible for creating new WWs on request.
When requesting a new WW, the Public WW specifies the
required tags as a string. The WM maintains a local persistent
store mapping this string representation of the tags to their
local kernel integer representation, see Fig. 3b and §V. All
WMs running on a single machine share the same persistent
label store. When setting up new WWs, WMs also transmit
parameters specified by the application. These can be used to
control the WW behaviour, e.g. by specifying the user the new
WW is expected to serve.

3) Security Context Router (SCR): The SCR is a reverse
proxy that routes requests according to a security token. The
SCR receives all requests from end-users. These requests
contain a cookie representing a token which is verified by
the SCR, and the request routed to the corresponding WW.
This is transparent to the end-user and the WW. It is possible,
but not mandatory, for the WW to verify the token’s validity
for further security.

4) Data Store Interface: We connect to a key-value store
service through a pseudo file interface. The kernel module
enforces the same constraints for key/value pairs as it would
for a file. We do the same for a memcache instance. Note
that in a more mature IFC implementation we might interface
with an IFC-compliant database [29] or use an IFC-aware
messaging layer based on middleware such as SBUS [21].

5) Multi-Tenancy: In a multi-tenant environment, the WM
will hold the security policies of the tenants to authenticate
and authorise their users. The WM also knows the tags that
can be allocated to authorised users of each tenant and can
check any user request before setting up a WW for the user.

Allowing multiple tenants to share tags would allow them to
share data more safely, using the IFC constraints described in
§IV. Taking the UK cancer registry (see §II) as an example [9],
certain information might be available to all users of the reg-
istry, e.g., clinicians may have access to their current patients’
medical histories; medical researchers may have access to
anonymised data sets, perhaps for geographical regions. Other
information may be restricted e.g., to the Brain Cancer Portal
service.

The aim of this work is to support protected sharing of data,
with isolation when needed and cross-tenant sharing when
appropriate, all under strict control and with audit.



Cloud Storage

Worker Worker

Load
Balancer

Worker

(a) Standard webserver worker architecture

Cloud Storage

Worker Worker

Security Context
Router

Worker
Manager

Tags

Worker

Data Store Interface

IFC Constrained IFC Constrained IFC Constrained

Context A Context B Public Context

(b) IFC-aware webserver worker architecture

Fig. 3: A scalable webserver worker process design running multiple identical instances of an application in different security contexts.

0 20 40 60 80 100

1
1.2
1.4

Fig. 4: Pipe performance multiplier (for unmonitored and 0–100 tags,
normalised over native (y=1.0) performance)

6) Discussion: Importantly, we do not require large-scale
code changes in order to provide IFC within a cloud en-
vironment, e.g., our architecture could relatively easily be
added to CloudFoundry, by: (1) replacing App by our pro-
posed architecture; (2) modifying the router to understand
the security context (SCR) and routing to machines where
this security context exists; (3) making the messaging layer
IFC-aware; (4) allowing, through the cloud controller, certain
service instances to run within a specified security context.

From an economic viewpoint, the pricing approach could be
the same as for elastic scaling, i.e., paying on a worker/time
basis. An application relying on a large number of different
security contexts will cost more than one relying on fewer,
while paying only when those instances are needed.

VII. EVALUATION

In this section we present evaluations of the FlowK ker-
nel module and our webserver worker process architecture.
Although we present performance measurements this work is
for proof of concept and has not been optimised.

A. Kernel Module

To measure performance we used a quad-core 2.2Ghz Intel
i7 with 6GiB of RAM running Fedora 20 (kernel version 3.14).
In order to provide reproducible results and to ease comparison
with other projects, we used elements of a standard bench-
mark, David Nieimi’s UnixBench 5.1.3, that we run under
IFC constraints.

In Fig. 4, we display the results of a set of tests. Two
processes read from and write to a pipe respectively using a
512 byte buffer. The processes’ secrecy labels contain between
0 and 100 tags. The results of the test are then used to
calculate the multiplier of our system compared to native
performance (1.0). At first, the interception cost is an overhead
of around 10%, growing with the number of tags. For a
complex policy of 100 tags, the overhead is around 35%. Since

System Calls Native FlowK Difference FlowK Flume
Linux Multiplier Multiplier

open (r/w)
–create 1.9µs 15.8µs 13.9µs 8.3 16
–exists 1.4µs 15.4µs 14µs 11 34.5
–does not exist 5.1µs 18.9µs 13.8µs 3.7 23.6
close 0.8µs 0.9µs 0.1µs 1.1 1.3
write (file) 1.2µs 7.2µs 6µs 6 NA
read (file) 0.3µs 6.4µs 6.1µs 21.3 NA
fork 28.7µs 225.4µs 196.7µs 7.9 NA
pipe latency 4.4µs 7.8µs 3.4µs 1.8 8.2

TABLE II: Some system call overheads compared with Flume [15]

the test application mostly performs system calls, these results
represent a worst case scenario.

We also evaluated our system using local/Unix sockets and
file reading. Since the results were effectively identical to
those for pipes we do not present them here. Indeed, the
interposition cost is almost identical between system calls
and the flow constraints being verified are the same. The
performance overhead of interposition itself can be estimated
at around 10% (the performance difference between the native
system and an unmonitored process running on FlowK). The
performance hit when using labels is due to the verification of
IFC rule (1), see §IV-A. The worst case complexity is O(n),
with a complexity of O(1) when information flows from a
public entity to a labelled one.

Table II gives the results of a micro-benchmark for some
system calls in order to compare our performance relative to
native Linux with that reported for Flume in [15]. System calls
were repeated 1,000,000 times (with the exception of the fork
system call, repeated 1,000 times). The process tested under
FlowK was labelled with twenty secrecy tags; the number
of tags used in the Flume evaluation is not reported. The
performance measured relative to native Linux appears to be
better than that reported for Flume.

B. Webserver Worker Processes

We created a similar scenario to [9]. A server retrieves
patients’ medical records from a database, on request, and
places them in a temporary datastore. We have 50 records
of around 9kB within a key-value store from which records
are selected randomly. We measure the latency in ms as a
function of the number of concurrent requests, see Fig. 5. A
single security context is used for all requests in order to allow
a comparison against a system with FlowK switched off. Our
aim is to highlight the interposition cost of FlowK.
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Fig. 5: Performance of our WW process architecture (§VI) with
(red/square) and without (blue/circle) FlowK running. Y-axis: latency
in ms for 90th percentile, X-axis: number of concurrent requests.
Results are averaged over 10,000 requests.

The overhead measured from 1 to 50 concurrent requests
varies from 5% to 23%, of the order of magnitude expected
for similar OS level IFC implementations [15], [16].

VIII. CONCLUSIONS AND FUTURE WORK

We have described part of the CloudSafetyNet project,
to demonstrate the feasibility of providing IFC for cloud
computing. If significant reengineering by cloud providers
and/or tenants were to be necessary for IFC to be incorporated
into cloud services, it would be unlikely to be adopted. Our
design choices have therefore aimed to minimise any required
changes to existing systems when IFC is deployed. FlowK
does not require any changes to system calls so unmonitored
processes are not affected by the existence of FlowK as an
OS module, apart from a small performance overhead. The
security context manipulation is done through a small, well
defined set of API calls.

The FlowK kernel module is concerned only with enforce-
ment of IFC, following policy-mechanism separation. The
management of end-users and policies, leading to principals,
privileges and labels is the concern of higher-levels. Our model
includes privileged, trusted processes (§IV-E) for this purpose.
We envisage such a process per cloud tenant, privileged to set
up entities in security contexts to represent the end-users of
the tenant’s cloud-hosted service. The challenge is to provide
both protection (isolation) and information sharing as needed
between the users.

To demonstrate this we have designed, implemented and
evaluated a simple IFC-aware WW architecture, requiring
minimal re-engineering of applications and suitable for cloud
deployment. A trusted process manages tenant applications’
policies and sets up IFC contexts for the WWs that service
users’ requests. This is a step towards showing how application
policy can be integrated with IFC. Both FlowK and our WW
architecture could be deployed in a PaaS cloud with minimal
re-engineering.

In FlowK we have a straightforward and efficient starting
point for IFC enforcement in cloud computing. Future work
will explore application policies in more detail and their
enforcement via IFC. We are integrating FlowK with an IFC-
enabled messaging middleware (SBUS-IFC) [21] to create
more general application structures for distributed and cloud
computing. We believe that IFC provides an important means
to assist cloud service providers to demonstrate compliance

with regulations on cloud computing, thereby increasing the
trust of potential cloud users.
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