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1 Large scale correlation mining for
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Alfred Hero∗ and Bala Rajaratnam†

∗ University of Michigan, Ann Arbor MI

† Stanford University, Stanford CA

Abstract

Continuing advances in high-throughput mRNA probing, gene sequencing and

microscopic imaging technology is producing a wealth of biomarker data on many

different living organisms and conditions. Scientists hope that increasing amounts

of relevant data will eventually lead to better understanding of the network of

interactions between the thousands of molecules that regulate these organisms.

Thus progress in understanding the biological science has become increasingly

dependent on progress in understanding the data science. Data mining tools have

been of particular relevance since they can sometimes be used to effectively sepa-

rate the “wheat” from the “chaff”, winnowing the massive amount of data down

to a few important data dimensions. Correlation mining is a data mining tool

that is particularly useful for probing statistical correlations between biomarkers

and recovering properties of their correlation networks. However, since the num-

ber of correlations between biomarkers is quadratically larger than the number

biomarkers, the scalability of correlation mining in the big data setting becomes

an issue. Furthermore, there are phase transitions that govern the correlation

mining discoveries that must be understood in order for these discoveries to be

reliable and of high confidence. This is especially important to understand at big

data scales where the number of samples is fixed and the number of biomarkers

becomes unbounded, a sampling regime referred to as the ”purely-high dimen-

sional setting.” In this chapter, we will discuss some of the main advances and

challenges in correlation mining in the context of large scale biomolecular net-

works with a focus on medicine. A new correlation mining application will be

introduced: discovery of correlation sign flips between edges in a pair of corre-

lation or partial correlation networks. The pair of networks could respectively

correspond to a disease (or treatment) group and a control group.

This paper is to appear as a chapter in the book Big Data over Networks from Cambridge University Press (ISBN: 9781107099005).
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1.1 Introduction

Data mining at a large scale has matured over the past 50 years to a point where

every hour millions of searches over billions of data dimensions are routinely

handled by search engines at Google, Yahoo, LinkedIn, Facebook, Twitter, and

other media. Similarly, large ontological databases like GO [3] and DAVID [4]

have enabled large scale text data mining for researchers in the life sciences [3].

Curated repositories in the NCBI databases [5], such as the NCI pathway inter-

action database [6], or aggregated repository search engines, such as Pathway

Commons [7], can be used to search over the network of interactions between

genes and proteins as reported in scientific publications. These reported interac-

tions are sometimes based on causal analysis, e.g., the result of gene-knockout

studies that identify causal interactions between a knocked-out gene and some

other set of downstream genes. However, with increasing frequency life-science

researchers have been reporting networks of associations between thousands of

variables measured in a high-throughput assay like gene chip, RNAseq, or chro-

mosomal conformal capture (3C, 4C, HiC). These networks can yield information

on direct and indirect interactions in very large dimensions. Indeed there exist

many algorithms for reconstructing gene interaction networks over several thou-

sand gene microarray probes. Several of these algorithms have been in compared

[8].

Data mining is based on computing a set of scores, indexed over the variables in

the database, which are ranked in decreasing order of magnitude to yield a rank

ordered list. Variables at the top of the list are considered to be the best match to

the data mining criterion. The matching criterion will depend on the objective of

the experimenter and the nature of the data. For “big data” applications there are

two major issues: computational challenges and false positives, where the latter

are defined as the occurrence of spurious scores near the top of the list that

should be lower down on the list. Correlation mining∗ is a kind of data mining

that searches for patterns of statistical correlation, or partial correlation, in an

interaction network or across several interaction networks. These correlations

can usually only be empirically estimated from multiple samples of the variables,

as in gene microarray or RNAseq data collected over a population of subjects.

From the estimated correlations one obtains an empirical correlation network,

or partial correlation network, that can be mined for interconnectivity patterns

such as edges, connected nodes, hub nodes, or sub-graphs. Correlation mining

was introduced by the authors in [1] for mining connected nodes from correlation

networks and in [2] for mining hub nodes from correlation or partial correlation

networks.

In this chapter we focus on the related problem of mining edges from correla-

tion or partial correlation networks. In particular, we will emphasize significance

∗Our definition of correlation mining is not to be confused with ”correlated graph pattern

mining” that seeks to find co-occurring subgraphs in graph databases [9].
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testing for network edges and hubs in the emerging “big data” setting where

there are an exceedingly large number of variables. We will provide theory for

reliable recovery of edges that applies to arbitrarily large numbers of variables

and we will illustrate this theory by implementing correlation mining on gene-

gene correlation network of over 12, 000 variables (gene probes), which can in

principle have on the order of 7 million edges. We will also provide perspectives

on future challenges in correlation mining biological data with a special focus on

health and medical applications.

Accurate estimation of correlation requires acquiring multiple samples, e.g.,

technical replication of a gene chip assay n times or biological replication of the

assay on n different members of the population. With the emergence of increas-

ingly low cost and higher throughput technology, e.g., oligonucleotide gene mi-

crochips and RNAseq assays, the expression of increasing numbers of biomarkers

can be determined from a single biological sample at increasingly lower cost. On

the other hand, the cost of acquiring additional reliable samples does not appear

to be decreasing at the same rate as the cost of including additional biomarkers

in the assay. For example, running a controlled experiment or challenge study

with animals or human volunteers is labor-intensive and very costly, and will

likely remain so for the foreseeable future.

Therefore, at least for experimental biology applications, correlation mining

practitioners face a deluge of biomarkers (variables) with a relative paucity of

biological replicates (samples). This situation poses great difficulty in correlation

mining due to the multiple comparisons problem: with so few samples one is

bound to find spurrious correlations between some pairs of the many variables.

Controlling, or at least predicting, the number of spurious correlations must be

the principal scientific objective in such situations. Achieving this objective lies in

the realm of high dimensional statistical inference in the “large p small n regime.”

Statisticians have studied several sub-regimes, e.g., those characterized as “high

dimensional,” “very-high dimensional” or “ultra-high dimensional” settings [10].

These settings, however, still require that both the dimension p and the sample

size n go to infinity. Consequently they may not be very useful for biological

experimentalists who lack the budget to collect an increasing number of samples,

especially given how large p is. A more useful and relevant regime, which will

be the focus of this chapter, is the “purely-high dimensional” setting where the

number of samples n remains fixed while the number of variables p is allowed to

grow without bound. This high dimensional regime is in fact the highest possible

dimensional regime, short of having no samples at all. Thus it is appropriate

to call this purely-high dimensional regime the “ultimately-high dimensional

regime,” and we shall use these two terms interchangeably in the rest of this

chapter. A table illustrating our asymptotic framework is given below (Table 1.1),

and also serves to compare and contrast our framework to previously proposed

asymptotic regimes.
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Figure 1.1 The cost in US dollars per Megabase (blue curve)and the number of
Kilobases (red curve) of DNA sequenced per day over the past 14 years. The cost of
determining one megabase of DNA has fallen at a very rapid rate since the transition
in early 2008 from the Sanger-based technology to second-generation technology. At
the same time the total volume of DNA sequenced has risen at an even more rapid
rate as the price has fallen, demand for sequencing has grown, and sequencing centers
have proliferated (Note: volume is a product of sequencing depth and number of DNA
samples sequenced). Source: NCBI.

The purely-high dimensional regime of large p and fixed n poses several chal-

lenges to those seeking to perform correlation mining on biological data. These

include both computational challenges and the challenge of error control and

performance prediction. Yet this regime also holds some rather pleasant sur-

prises. Remarkably there are modest benefits to having few samples in terms

of computation and scaling laws. There is a scalable computational complexity

advantage relative to other high dimensional regimes where both n and p are

large. In particular, correlation mining algorithms can take advantage of nu-

merical linear algebra shortcuts and approximate k nearest neighbor search to

compute large sparse correlation or partial correlation networks. Another benefit

of purely-high dimensionality is an advantageous scaling law of the false positive

rates as a function of n and p. Even small increases in sample size can provide

significant gains in this regime. For example, when the dimension is p = 10, 000

and the number of samples is n = 100, the experimenter only needs to double

the number of samples in order to accommodate an increase in dimension by six

orders of magnitude (p = 10, 000, 000, 000) without increasing the false positive

rate [2].

The relevance of the purely-high dimensional regime in biology can be un-

derstood more concretely in the context of developments in the technology of

DNA sequencing and gene microarrays. The cost of sequencing has dropped very

rapidly to the point where, as of this writing, the sequencing of a individual’s full
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Figure 1.2 The price in US dollars of an Agilent array as a function of the number of
gene probes per array. The price increases sublinearly in the number of probes in the
array. Data is from the Agilent Custom Gene Expression Micorarrays G2309F,
G2513F, G4503A, G4502A (Feb 2013). Source: BMC RNA Profiling Core .

genome (3000 megabases) is approaching $1000 US. Recent RNAseq technology

allows DNA sequencing to be used to measure levels of gene expression. Figure

1.1 shows how the cost of sequencing (in dollars per megabase) vs. the volume

of DNA sequenced (in kilobases per day) as a function of time (Source: [39],

[40]). While there has been a flattening of the cost curve over the past two years,

the cost is still decreasing, albeit more slowly than before. Despite the recent

flattening out of cost, the volume sequenced has been increasing at a rapid rate.

This suggests that the usage of high throughput sequencing technology will ex-

pand, creating a demand for efficient correlation mining methods like the ones

discussed in this chapter.

The trends are similar in gene microarray technology, a competitor to sequenc-

ing based gene expression technologies such as RNAseq. One such technology is

the 60mer oligonucleotide gene expression technology by Agilent, which is sim-

ilar to the shorter 25mer oligonucleotide technology sold by Affymetrix as the

”genechip.” In Fig. 1.2 is shown the price per slide of the Agilent Custom Mi-

croarray as a function of the number of biomarkers (probes) included on the

slide. The price increases sublinearly in the number of probes. As the probe den-

sity increases the price will come down further at the high density end of the

scale. Thus it is becoming far less costly to collect more biomarker probes (p

variables) than it is to collect more biological replicates (n samples). One can
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therefore expect an accelerated demand for high dimensional analysis techniques

such as the correlation mining methods discussed in this chapter.

The outline of the chapter is as follows. In Sec. 1.2 we give an illustrative

example to motivate the utility of correlation measures for mining biological

data. In Sec. 1.2.2 we formally introduce correlation and partial correlation in

the context of recovering networks of biomarker interactions. In Sec. 1.3, we

briefly describe rules of thumb for setting correlation screening thresholds to

protect against these errors. In Sec. 1.4 we describe some future challenges in

correlation mining of biological data, In Sec. 1.5 we provide some concluding

remarks.

1.2 Illustrative example

We illustrate the utility of our correlation mining framework in the context

of gene chip data collected from an acute respiratory infection (ARI) flu study

[41],[42]. In this ARI flu study 17 human male and female volunteers were infected

with a virus and their peripheral blood gene expression was assayed at 16 time

points pre- and post-infection. The study resulted in a matrix of 12, 023 gene

probes by 267 samples was formed from the 267 available Affymetrix HU133

chips.

Roughly half of the volunteers became symptomatically ill (Sx) while the rest

(Asx) did not become ill despite exposure to the virus. Each volunteer had two

reference samples collected before viral exposure. The samples of the Sx volun-

teers were subdivided into early and late stages of infection using an unsupervised

Bayesian factor analysis method [42]. Figure 1.3 shows the 12, 023× 267 matrix

with columns arranged over the 4 categories: reference, Asx post-challenge, Sx

early, Sx late. From this raw data one can see some patterns but they do not

clearly differentiate the classes of individuals. This lack of definition is due to

the fact that these classes are not homogeneous. The immune response of the

volunteers evolves over time, the temporal evolution is not synchonronous across

the population, and some genes exhibit different responses between the men and

women in the study.

To better discriminate the genes that differentiate between the classes, a score

function can be designed to rank and select the genes with highest scores. Since

the number of samples is limited, the score function and the cutoff threshold

should be carefully selected according to statistical principles to avoid false posi-

tives. Two classes of score functions will be discussed here: first order and second

order.

Let’s say that an experimenter wishes to find genes that have very different

mean expression values µ when averaged over two sub-populations A and B. Let

{XA
k (g)}nA

k=1 be the measured expression levels of gene g over a population of nA
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Figure 1.3 A heatmap of the 12, 023 × 267 matrix (6.5 mega pixels) of gene expression
from a viral flu challenge study involving samples taken before viral exposure
(reference), subjects that did not become ill after exposure (Asx post-challnge),
subjects that became symptomatic (Sx early and Sx late). These are 4 different
sub-population classes, called phenotypes, that can be mined for genes whose
expression patterns change between pairs of classes. There is no easily discernible
discriminating gene pattern that one can see just by looking at the raw data
heatmap. The objective of correlation mining is to extract genes whose pattern of
correlation changes over different sub-populations.

samples in population A. The sample mean µA(g) is

µA(g) = n−1
A

nA∑
k=1

XA
k (g).

Similarly define the sample mean µB over sub-population B. The difference µB−
µA between the sample means over the sub-populations is an example of a first

order score function. Thresholding this score function will produce a list of genes

that have the highest contrast in their means. More generally, a first order score

function is any function of the data that is designed to constrast the sample

means across sub-populations. The student-t test statistic and the Welch test

statistic [43] are also first order score functions that are variance normalized

sample mean differences between two populations.

1.2.1 Pairwise correlation

A different objective for the experimenter, and the motivation for this chapter,

is to find pairs of genes that have very different correlation coefficients ρ over

two sub-populations. Let {XA
k (g), XA

k (γ)}nA

k=1 and {XB
k (g), XB

k (γ)}nB

k=1 be the

measured expression levels of two genes g and γ over two sub-populations A and

B. The standard Pearson product moment correlation coefficient between these
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two genes for sub-population A is

ρA(g, γ) =

∑nA

k=1(XA
k (g)− µA(g))(XA

k (γ)− µA(γ))√∑nA

k=1(XA
k (g)− µA(g))2

√∑nA

k=1(XA
k (γ)− µA(γ))2

∈ [−1.1],

and similarly for ρB(g, γ). The difference between sample correlations ∆ρA,B =

ρA(g, γ)− ρB(g, γ) is a contrast that is an example of a higher order score func-

tion. The magnitude of ∆ρA,B takes a maximum value of 2, which it approaches

when the correlation is high but of opposite sign in both sub-populations. Genes

that have high contrast ∆ρA,B in their correlations may not have high contrast

in their means. Furthermore, unlike the mean, the correlation is directly related

to the predictability of one gene from another gene, since the mean squared er-

ror of the optimal linear predictor is proportional to (1− ρ2): a variable that is

highly correlated to another variable is easy to predict from that other variable.

Finally, it has been observed by many researchers that, while the mean often

fluctuates over sub-population, the correlation between biomarkers is preserved.

Thus the sample correlation can be more stable than the sample mean, especially

when used to compare multiple populations or multiple species [44], [45], [46],

[47] which often makes it a better discovery tool.

For an illustration of the differences between mining with the mean vs. mining

with the correlation the reader is referred to Fig. 1.4. In this figure, two pairs of

genes are shown from the ARI challenge study whose sample correlation coeffi-

cients flip from a highly positive coefficient in the Asx sub-population to a highly

negative coefficient in the Sx sub-population. The HMBOX1 and NRLP2 genes

shown in the left panel are known transcription factors that are involved in im-

mune response. HMBOX1, a homeobox transcription factor, negatively regulates

natural killer cells (NK) in the immune system defense mechanism [48]. NRLP2,

an intracellular nod-like receptor, regulates the level of immune response to the

level of threat [49]. The flip from positive correlation (Asx) to negative corre-

lation (Sx) between NRLP2 and HMBOX1 is an interesting and discriminating

biomarker pattern between Sx and Asx phenotypes. Note that neither of these

genes exhibit a significant change in mean over these sub-populations. Hence,

while a second order contrast function assigns these genes very high scores, re-

vealing them as highly differentiated over Sx and Asx, a first order contrast

function would miss them entirely.

The right panel of Fig. 1.4 shows a correlation flip between JARID1D and

SNX19 that is capturing differences between the immune response of women

(solid circles) and men (hollow circles). These differences would not be revealed

by a first order analysis without stratifying the population into male and female

volunteers. Without such stratification, the first order analysis would detect no

significant change in mean over the Sx and Asx sub-populations.
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(a) HMBOX1 vs NRLP2 (b) JARID1D vs SNX19

Figure 1.4 Two pairs of genes (rows of matrix in Fig. 1.3) discovered by a second
order analysis (polarity-flip correlation screening) between Asx and Sx
sub-populations in a acute respiratory infection (ARI) dataset (expression levels of
12, 023 genes measured over 267 samples). Solid circles denote women, hollow circles
denote men. Green symbols denotes Asx subjects and blue symbols denotes Sx
subjects. Size of symbol encodes time index of sample (smaller size and larger size
symbols encode early and late post-exposure times, respectively). In both left and
right panels there is a flip from high positive correlation to high negative correlation
(indicated by the diagonal and antidiagonal lines in each scatterplot). The sample
mean would not reveal these genes as differentiating the Sx and Asx subjects.

1.2.2 From pairwise correlation to networks of correlations

Assume that there are p genes that are assayed in a population and let ρ(g, γ) be

the sample correlation between the pair g, γ. Define the p× p matrix of sample

correlation coefficients R = [[ρ(g, γ)]]pg,γ=1. By thresholding the magnitude of R

one obtains an adjacency matrix whose non-zero entries specify the edges be-

tween pairs of genes in a correlation graph. The higher the correlation threshold

the sparser will be the adjacency matrix and the fewer edges will be contained in

the graph. The correlation graph, also called a correlation network, has p nodes

and up to
(
p
2

)
edges. To avoid confusion between the correlation network and

the partial correlation network, discussed below, the former is often called the

marginal correlation network.

Another network associated with the interactions between genes is the partial

correlation network. The partial correlation network is computed by threshold-

ing the diagonally normalized Moore-Penrose generalized inverse of the sample

correlation, which we denote P, where

P = diag(R†)−1/2R†diag(R†)−1/2 (1.1)

and R† is the Moore-Penrose generalized inverse and diag(R†) is the matrix
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obtained by zeroing out the off diagonal entries of R†. Thus edges in the partial

correlation graph depend on the correlation matrix only through its inverse.

Correlation graphs and partial correlation graphs have different properties,

a fact that is perhaps easily understood in the context of sparse Gaussian

graphical models [50], also known as Gauss-Markov random fields. For a cen-

tered Gaussian graphical model, the joint distribution f(X) of the variables

X = [X(1), . . . , X(p)]T is multivariate Gaussian with mean zero mean and co-

variance parameter Σ. Consider samples {Xk}nk=1 which are assumed to be inde-

pendent and identically distributed (i.i.d.). For this Gaussian model the sparsity

of (i, j)th element of the inverse correlation matrix, and hence sparsity of the par-

tial correlation network, implies that components i and j are independent given

the remaining variables. This conditional independence property is referred to

as the “pairwise” Markov property. Another kind of Markov property, the so-

called local Markov property, states that a specified variable given its nearest

neighboring variables (in the partial correlation network) is conditionally inde-

pendent of all the remaining variables. Yet another Markov property is the global

Markov property which states that two blocks of variables A and B in a graph

are conditionally independent given another set of variables C when the third

block C separates in the graph the original two blocks of variables (see [50] for

more details). Here “separate” means than every path between a pair of nodes,

one in block A and another in block B, has to traverse C. It can be shown that

the pairwise, local and global Markov properties are equivalent under very mild

conditions [50]. In other words, a Markov network constructed from the pairwise

Markov property allows one to read off complex multivariate relationships at the

level of groups of variables by simply using the partial correlation graph. Thus

the sparsity of the inverse correlation captures Markov properties between vari-

ables in the dataset. Since the marginal correlation graph encodes pairwise or

bivariate relationships, the partial correlation network is often at least as sparse,

and usually much sparser, than the marginal correlation network. This key prop-

erty makes partial correlation networks more useful for obtaining a parsimonious

description of high dimensional data.

One of the principal challenges faced by practitioners of data mining is the

problem of phase transitions. We illustrate this problem in the context of cor-

relation mining as a prequel to the theory presented in Sec. 1.3. As explained

in Sec. 1.3, as one reduces the threshold used to recover a correlation or par-

tial correlation network, one eventually encounters an abrupt phase transition

point where we start to see an increasingly large number of false positive edges

or false positive nodes connected in the recovered graph. This phase transition

threshold can be mathematically approximated and, using the theory below, a

threshold can be selected that guarantees a prescribed false positive rate under

an assumption of sparsity.

We illustrate the behavior of partial correlation and marginal correlation net-

works on the reference samples of the ARI challenge study dataset. In this data

set there were 34 reference samples taken at two time points before viral-exposure
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from the 17 volunteers enrolled in the study. Using theory discussed in Sec. 1.3 we

selected and applied a threshold (0.92) to the correlation and partial correlation

matrices. This threshold was determined using Thm 1 to approximate the false

positive rate Pe with the expression (1.2) and using this expression to select the

threshold ρ that gives Pe = 10−6 when there are p = 12, 023 variables and n = 34

samples. This false positive rate constraint is equivalent to a constraint that on

the average there are fewer than 0.22 nodes that are mistakenly connected in the

graph.

The application of the threshold ρ = 0.92 to the sample correlation resulted in

a correlation network having 8718 edges connecting 1658 nodes (genes). On the

other hand, using the same threshold on the sample partial correlation, which

according to Thm 1 also guarantees 10−6 false positive rate, the recovered partial

correlation network had only 111 edges connecting 39 genes. This later network

is shown in Fig. 1.5. The fact that the partial correlation network is significantly

sparser strongly suggests that the genes behave in a Markovian manner with

Markov structure specified by the graph shown in Fig. 1.5. This graph reveals

four connected components that are conditionally independent of each other

since there are no edges between them.

By investigating the genes in the partial correlation network’s connected com-

ponents in Fig. 1.5, the four modules can be putatively associated with different

biological functions. In particular, the connected component colored in green at

top right corresponds to sentinel genes like HERC5, MX1, RSAD2, and OAS3

in the immune system. The purple colored component in the top middle is com-

posed of genes like UTY and and PRKY that are involved in protein-protein

interactions and kinase production. The large connected component in purple at

bottom center is a module of housekeeping biomarkers, e.g., AFFX-BioDn-T at,

that are used by the gene chip manufacturer (Affymetrix) for calibration pur-

poses. While all of these genes are also present in the connected components of

the much less sparse marginal correlation network, the picture is not nearly as

simple and clear.

1.3 Principles of correlation mining for big data

In big data collection regimes one is often stuck with an exceedingly large number

of variables (large p) and a relatively small and fixed number of samples (small

n). This regime is especially relevant for bio-molecular applications where size

p of the genome, proteome or interactome can range from tens of thousands to

millions of variables, while the number n of samples in a given sub-population

is fixed and only on the order of tens or hundreds. Recently an asymptotic

theory has been developed expressly for correlation mining in this purely-high

dimensional regime [1], [2]. Unlike other high dimensional regimes where both p

and n go to infinity, the theory of [1], [2] only requires p to go to infinity while

n remains fixed. This property makes this purely-high dimensional regime more
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Figure 1.5 Recovered partial correlation gene network over the 12, 023 genes and 34
reference samples assayed in the ARI challenge study data. The applied partial
correlation threshold used to obtain this network was determined using the theory in
Sec. 1.3 in order to guarantee a 10−6 false positive rate or less. There are only 39
nodes (genes) connected by 111 edges in the displayed partial correlation network as
compared to over 1658 nodes and 8718 edges recovered in the (marginal) correlation
network (not shown).

relevant to limited sampling applications, which characterize big data. Before

discussing the theory of correlation mining we contrast it to other correlation

recovery methods.

We define correlation mining in a very specific manner in order to differentiate

it from the many other methods that have been proposed to recover properties

of correlation matrices. Most of these methods are concerned with the so called

covariance selection problem [51]. The objective of covariance selection is to find

non-zero entries in the inverse covariance matrix for which many different ap-

proaches have been proposed [31], [52], [53],[54], [55], [56], [34], [57], [58], [59],

[60], [61], [37], [62], [63],[64], [65] and some have been applied to bioinformatics

applications [66], [67],[68]. Covariance selection adopts an estimation framework

where one attempts to fit a sparse covariance (or inverse covariance) model to

the data using a goodness of fit criterion. For example, one can minimize residual
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fitting error, such as penalized Frobenius norm squared, or maximize likelihood.

The resulting optimization problem is usually solved by iterative algorithms with

a stopping criterion. These methods are not immediately scalable to large num-

bers of variables except in very sparse situations [58].

As contrasted to covariance selection methods, which seek to recover the en-

tire covariance or inverse covariance including the zero values, correlation mining

methods use thresholding to identify variables and edges connected in the cor-

relation or partial correlation network that have the the strongest correlations.

Thus correlation mining does not penalize for estimation error nor does it recover

zero correlations. Correlation mining is fundamentally a testing problem as con-

trasted to an approximation problem - a characteristic that clearly differentiates

correlation mining from covariance selection. Correlation mining can be looked

at as complementary to covariance selection and has several advantages in terms

of computation and error control. Since it only involves simple thresholding op-

erations correlation mining is highly scalable. Since correlation mining filters out

all but the highest correlations, a certain kind of extreme value theory applies.

This theory specifies the asymptotic distribution of the false positive rate in the

large p small n big data regime. This can then be used to accurately predict

the onset of phase transitions and to select the applied threshold to ensure a

prescribed level of error control. Inverse covariance estimation problems do not

in general admit this property.

In [1], [2] three different categories of correlation mining problems were defined.

These correlation mining problems aimed to identify variables having various

degrees of connectivity in the correlation or partial correlation network. These

were: correlation screening over a single population, correlation screening over

multiple populations, and hub screening over a single population. In each of these

problems theory was developed for the purely-high dimensional regime of large

p and fixed n under the assumption of block sparse covariance. A block sparse

p×p covariance matrix is a positive definite symmetric matrix Σ for which there

exists a row-column permutation matrix Π such that ΠΣΠT is block diagonal

with a single block of size m × m with m = o(p). For more details the reader

is referred to the original papers [1], [2]. While not specifically emphasized in

these papers, the asymptotic theory also directly applies to screening edges in

the network. Indeed the proofs of the asymptotic limits in [1], [2] use an obvious

equivalence between the incidence of false edges and false connected nodes in the

recovered network. In particular, we have the following theorem that is proved

as an immediate corollary to [2, Prop. 2].

theorem 1.1 Assume that the n samples {Xk}nk=1 are i.i.d. random vectors in

Rp with bounded elliptically contoured density and block sparse p× p covariance

matrix. Let ρ be the threshold applied to either the sample correlation matrix or

the sample partial correlation matrix. Assume that p goes to infinity and ρ = ρp
goes to one according to the relation limp→∞ p(p− 1)(1− ρ2

p)
(n−2)/2 = en. Then

the probability Pe that there exists at least one false edge in the correlation or
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partial correlation network satisfies

lim
p→∞

Pe = 1− exp(−κn/2), (1.2)

where

κn = enan(n− 2)−1

where an is the volume of the n−2 dimensional unit sphere in Rn−1 and is given

by an = Γ((n−1)/2)√
πΓ((n−2)/2)

= 2B((n− 2)/2, 1/2).

We now provide an intuitive way to understand the flavor of our results. Con-

sider a null model where the covariance matrix is diagonal, i.e., when there are no

true non-zero correlations, and so any edge that is detected as non-zero will be

a false edge. Under this setting one can generate the distribution of the sample

correlation coefficients for various dimensions. Fig. 1.6 illustrates these distribu-

tions in the setting when p = 100 for various values of n. It is clear that when the

sample size n is low relative to the dimension p, the probability of obtaining false

edges are higher, and consequently a higher threshold level ρp is required in order

to avoid detecting false edges. In such situations consider once more the quantity

Pe, the probability of obtaining at least one false edge. It is clear that for a fixed

sample size n and fixed threshold ρ, as the dimension p −→ ∞ the probability

of detecting a false edge Pe tends to 1. So it makes sense to let the threshold

ρ tend to 1 in such settings so that the probability of detecting a false edge is

small. However, for a fixed sample size n and fixed dimension p, if the threshold

ρ tends to 1, then the probability of detecting a false edge goes to zero. This

is because as ρ gets larger and tends to 1, it will eventually surpass the largest

sample correlation. Thus increasing ρ to 1 will eventually threshold all sample

correlations to zero, and will result in the probability of detecting a false edge

tending to 0. The two scenarios described above therefore lead to degenerate or

trivial limits. The theory above resolves this degeneracy by letting the threshold

ρp tend to 1 at the correct rate as p −→ ∞ to obtain a non-degenerate limit.

This in turn leads to a very useful expression for the probability of detecting a

false edge Pe in the “purely high dimensional” setting, when only the dimension

p −→∞, while the sample size n is fixed.

Theorem 1.1 gives a limit for the probability Pe that is universal in the follow-

ing senses: 1) it applies equally to correlation and partial correlation networks;

2) the limit does not depend on the true covariance.

The quantity en in Theorem 1.2 does not depend on p. However, we can remove

the limit from the definition of en and substitute it into the expression for κ to

obtain a useful large p approximation to Pe

Pe = 1− exp(−λ(ρ, n)/2), (1.3)

with

λρ,n = p(p− 1)P0(ρ, n),



18 Large scale correlation mining for biomolecular network discovery

and, P0 is the normalized incomplete Beta function

P0(ρ, n) = 2B((n− 2)/2, 1/2)

∫ 1

ρ

(1− u2)
n−4

2 du, (1.4)

with B(a, b) the Beta function. A bound on the fidelity of the approximation

1− exp(−λρ,n/2) to Pe was obtained in [2, Sec. 3.2] for hub screening and it also

applies to the case of edge screening treated here.

The large p approximation (1.3) to Pe resembles the probability that a Poisson

random variable with rate function λρ,n/2 exceeds zero. It can be shown that

λρ,n/2 is asymptotically equal to the expected number of false edges. Hence, in

plain words, Theorem 1 says that the incidence of false edges in the thresholded

sample correlation or sample partial correlation network asymptotically behave

as if the edges were Poisson distributed.

Remarkably, the Poisson rate λρ,n/2 in the large p approximation (1.3) does

not depend on the true covariance matrix. This is a consequence of the block

sparse assumption on the covariance. When the covariance is only row sparse, i.e.,

the number of non-zeros in each row increases only as order o(p), then the same

theorem holds except that now λρ,n will generally depend on the true covariance

matrix.

The behavior of λρ,n as a function of ρ, n, and p specifies the behavior of the

approximation (1.3) to Pe. In particular for fixed n and p there is an abrupt

phase transition in Pe as the applied correlation threshold ρ decreases from 1 to

0 (see Fig. 1.6). An asymptotic analysis of the incomplete Beta function yields

a sharp approximation to the phase transition threshold ρc [1]. This threshold,

defined as the knee in the curve λ(ρ, n) defining the asymptotic mean number of

edges surviving the threshold ρ, has the form [2, Eq. (10)]:

ρc =
√

1− (cn(p− 1))−2/(n−4), (1.5)

where cn = 2B((n− 2)/2, 1/2).

In Fig. 1.7 the large p approximation (1.3) to the false discovery probability

Pe is rendered as a heatmap over n and ρ for the cases p = 10 and p = 10, 000.

The phase transition clearly delineates the region of low Pe from the region of

high Pe and becomes more abrupt for the larger value of p. The critical phase

transition point increases much less slowly in n than it does in p. For example,

from the heatmap we can see that if the biologist wanted to reliably detect edges

of magnitude greater then 0.5 with p = 10 variables she would need more than

n = 60 samples. However, if the number of variables were to increase by a factor

of 1000 to p = 10, 000 she would only need increase the number of samples

by a factor of 2 to n = 120 samples. This represents a very high return on

investment into additional samples. However, as can be seen from the heatmaps,

there are rapidly diminishing returns as the number of samples increase for fixed

p. Though we do not undertake a detailed demonstration of Theorem 1.1 and

further development thereof for use in graphical model selection, we note that

this topic is the subject of ongoing and future work.
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Figure 1.6 Histograms of the number of edge discoveries in a sample correlation graph
over p = 100 biomarkers as a function of the threshold ρ applied to the magnitude of
each entry of the correlation matrix. In this simulation the true covariance matrix is
diagonal so every edge discovery is a false discovery. In the three panels from left to
right the number of samples is reduced from n = 101 to n = 10. The theoretically
determined critical phase transition threshold ρc, given by expression (1.5), closely
tracks the observed phase transition threshold in all cases (Figure adapted from [1,
Fig. 1]).

Figure 1.7 Heatmap of the large p approximation to the false edge discovery
probability Pe in (1.2) as a function of the number of samples n and the applied
threshold ρ for p = 10 (left) and for p = 10, 000 (right). The phase transition clearly
delineates the region of low Pe (blue) from the region of high Pe (red) and becomes
increasingly abrupt as p increases to p = 10, 000.

1.3.1 Correlation mining for correlation flips between two populations

In Fig. 1.4 of Sec. 1.2.1 was shown a pair of genes whose correlation flipped

from a positive value in one population to a negative value in another popula-

tion. The correlation mining theory of the previous subsection is easily extended

to this case using the results of [1, Prop 3] in persistency correlation screening

of multiple independent populations. For two populations of samples {Xk}nA

k=1

and {Yk}nB

k=1 on the same domain Rp let ρA and ρB be two thresholds in [0, 1].
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When each of these thresholds is applied to the respective correlation matrices

one obtains correlation networks GA and GB , respectively. We define the p node

correlation flip network as the p node network obtained by placing an edge be-

tween two nodes if there exists a corresponding edge in GA and GB and the

correlations associated with these two edges are of opposite sign. The number of

false positive edges will depend on the two thresholds and the number of samples

in each population. Specifically, we have the following theorem that formalizes

this statement.

theorem 1.2 Assume that the samples {Xk}nA

k=1 and {Yk}nB

k=1 are both i.i.d.

and mutually independent random vectors in Rp with bounded elliptically con-

toured densities and block sparse p × p covariance matrices. Let ρA and ρB be

the associated correlation thresholds. Assume that p goes to ∞ and ρA and ρB go

to one according to the relations limp→∞ p1/2(p− 1)(1− ρ2
A)(nA−2)/2 = enA

and

limp→∞ p1/2(p − 1)(1 − ρ2
B)(nB−2)/2 = enB

. Then the probability Pe that there

exists at least one false edge in the correlation flip network satisfies

lim
p→∞

Pe = 1− exp(−κnA,nB
), (1.6)

where

κnA,nB
= enA

enB
anA

anB
(nA − 2)−1(nB − 2)−1/2

As in Thm. 1, Thm. 2 can be used to obtain a large p approximation to Pe

Pe = 1− exp(−λρA,ρB ,nA,nB
), (1.7)

with

λρA,ρB ,nA,nB
= enA

enB
p(p− 1)2P0(ρA, nA)P0(ρB , nB)/2,

and P0(·, ·) as given in (1.4).

Again the form of the limit (1.7) is the probability that Poisson random

variable is not equal to zero, where the rate of the Poisson random variable

is λρA,ρB ,nA,nB
. This expression for the Poisson rate differs by a factor of 1/2

from the expression for the Poisson rate in the persistency-screening case consid-

ered in [1, Prop 3]. This is simply due to the fact that the version of persistency

screening in [1, Prop 3] does not carry the restriction that the correlations be

of opposite sign in the two populations. It can be shown, using the results of

[2], that the theorem equally applies to mining edges in a partial correlation flip

network.

To apply the theorem to correlation flip mining, the two thresholds ρA and ρB
will not be chosen independently. Rather, as in persistency screening [1], they

should be selected in a coupled manner according to the relation [1, Sec. 3.3] so

as to equalize the mean number of false positive edges in the marginal networks

GA and GB .

For illustration, we apply the large p approximation (1.7) to the ARI challenge

study example shown in 1.4. There were nA = 170 Sx samples and nB = 152 Asx
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samples collected in the study and the number of genes is p = 12023. The large

p approximation to Pe specifies the two (coupled) thresholds that guarantee at

most 10−6 false edges in the correlation flip network:

ρA = 0.44, ρB = 0.47.

This can be compared to the thresholds that guarantee the same error rate on

false edges if the individual correlation networks were screening independently:

ρA = 0.54, ρB = 0.57,

which simply reflects the fact that we can reliably detect lower value correlations

in the correlation flip network since, for equal thresholds, false edges are rarer

than in the individual correlation networks.

In the correlation flip example above we have deliberately not compared the re-

sults of our proposed threshold-based approach to other more complex optimization-

based methods in the literature such as glasso, elastic net, or SPACE. These

methods are simply not scalable to the dimension (p = 12023) that is consid-

ered in the above example, at least not without making additional restrictive

assumptions.

1.3.2 Large scale implementation of correlation mining

Only a subset of the correlations are required to construct a correlation network

whose edges correspond to correlations exceeding the applied correlation thresh-

old ρ. This fact makes large scale implementation of correlation mining scalable

to large dimension p. In particular, it is not necessary to either store or compute

the full correlation matrix R in order to find the correlation graph. This is due

to the following two reasons:

1. Z-score representation of R and P: The sample correlation matrix R

and the partial correlation matrix P, as defined in (1.1), have Gram product

representations [2, Sec. 2.3]

R = TTT, P = YTY

where T = [T1, . . . ,Tp] is an n×pmatrix and Y = [Y1, . . . ,Yp] is an (n−1)×p
matrix. The columns of these matrices are Z-scores that are defined in [2, Eq.

(4)] and [2, Eq. (9)]. Therefore, all that needs to be stored are the smaller

matrices T and Y (recall that n � p). Furthermore, computation of the Z-

score matrix Y only requires a single (n− 1)× (n− 1) matrix inversion. This

property is especially useful in typical cases where n� p.

2. Ball graph representation of correlation network: Due to the Z-score

representations above, the correlation and partial correlation networks are

equivalent to ball graphs, also called a Euclidean proximity graphs, for which

fast and scalable algorithms exist [69]. We explain this equivalence for the
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correlation graph that thresholds R; the partial correlation graph equivalence

is similarly explained.

A Euclidean proximity graph with ball radius r places an edge between

vectors Ti and Tj in Rn iff the Euclidean distance ‖Ti−Tj‖ does not exceed

r. The ball graph is easily converted to a correlation network since two vectors

Ti,Tj in Rn with sample correlation ρij are at mutual Euclidean distance

‖Ti−Tj‖ =
√

2(1− ρij). Hence if a ball graph with ball radius r =
√

2(1− ρ)

is constructed on the Z-score sample {Ti}pi=1 the resulting graph will be a

one-sided positive correlation network, i.e. a network whose edges represent

postive correlations exceeding ρ. A one-sided negative correlation network is

obtained by applying the same ball graph construction with pairwise distances

‖(−Ti) − Tj‖ = ‖Ti + Tj‖, resulting in a network whose edges represent

negative correlations less than −ρ. Merging the two one sided correlation

networks yields the correlation network.

By exploiting the Z-score and ball graph representations of the sample cor-

relation and sample partial correlation, correlation mining algorithms can be

implemented on very high dimensional biomarker spaces as long as the number

of samples is small. Matlab and R code for implementing correlation mining

algorithms for edge recovery and hub recovery is currently being developed for

online access.

1.4 Perspectives and future challenges

As discussed above, one of the basic challenges in gleaning information from big

data is the large p small n problem: a deluge of variables and a paucity of samples

of these variables to adequately represent the population. This is of critical im-

portance when one searches for correlations among the variables as correlations

requires multiple samples. That this challenge is especially relevant to molecular

biology applications is due to advances in high throughput sequencing technol-

ogy: the cost of collecting additional variables (p) is dropping much faster than

the cost of obtaining additional independent samples (n). Thus the theory and

practice of correlation mining is well poised to tackle big data problems in the

medical and biological sciences. However, not surprisingly, there exist challenges

that will require future work. Before discussing these challenges, we summarize

the current state of the art of knowledge in correlation mining.

1.4.1 State-of-the-art in correlation mining

As discussed in Sec. 1.1 the objective and formulation of correlation mining are

different from those of covariance selection. Correlation mining seeks to locate

a few nodes, edges or hubs associated with high (partial) correlation correla-

tion while covariance selection seeks to estimate a sparse (inverse) covariance
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matrix, thereby localizing the zero valued (partial) correlations. Put more suc-

cinctly, correlation mining is founded on testing a few high (partial) correlations

while covariance selection is focused on minimization of approximation error for

the entire sample (inverse) covariance. This difference leads to sharp finite sam-

ple theory and simplified implementation of correlation mining as compared to

covariance selection.

To illustrate we consider covariance selection for recovering the inverse covari-

ance matrix. As mentioned above, partial correlation networks arise naturally

when the experimenter assumes a Gaussian graphical model for the data [10].

Under a sparse inverse covariance hypothesis, maximum likelihood and other

parametric estimation methods can then be used to recover an approximation

to the true network. There are many methods for partial correlation network

recovery that are based on the GGM. These include among others 1) GeneNet

[70] which uses a regularized generalized-inverse of the covariance and uses the

bootstrap to estimate the most suitable regularization parameter, 2) the work

of [57] which proposes two algorithms: a block coordinate descent method and

another based on Nesterov’s first order method to maximize the `1-regularized

Gaussian log-likelihood, and 3) the block coordinatewise method g-lasso of [52].

In recent years, a fast proximal Newton-like method (QUIC) was proposed by

[58]. This work was followed up by even faster proximal gradients methods, G-

ISTA and G-AMA, in [59] and [60] respectively. Currently, the state-of-the-art

method in the field, G-AMA, is able to handle problem sizes as high as 5,000,

though handling problem sizes of 10,000 or 20,000 is more challenging. Some of

these methods are compared in [8].

There have also been efforts to go beyond the `1-regularized Gaussian like-

lihood approach to `1-regularized pseudo-likelihood and regression based ap-

proaches. These include methods such as “neighborhood selection” (NS) [31],

SPACE [34], SPLICE [61] and SYMLASSO [71] (see also [72]). In a recent major

contribution to this area, a convex pseudo-likelihood framework for high dimen-

sional partial correlation estimation with convergence guarantees was recently

proposed in [37]. This method, CONCORD, overcomes the many hurdles faced

by existing pseudo-likelihood based methods but at the same time retains all

their attractive properties. In particular, it yields an approach which is prov-

ably convergent, respects symmetry, enjoys asymptotic statistical guarantees,

is computationally tractable, and has excellent finite sample performance. The

CONCORD pseudo-likelihood in [37] is solved by coordinatewise minimization.

In even more recent work, ISTA and FISTA type proximal gradient methods

have been proposed in [62] to scale up the implementation of CONCORD. In

particular, the authors in [62] demonstrate convincingly that pseudo-likelihood

methods can be also benefit from leveraging recent advances in convex optimiza-

tion theory.

Despite the tremendous advances described above, `1-regularized and other

proposed methods are not currently as easily scalable due to the iterative nature

of the corresponding algorithms. Unlike correlation mining methods described in
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this manuscript, the methods above also do not have the tight theory provided

by Theorem 1 to control false positive, and neither do they have the results

obtained in [2].

The following summarizes some of the main features of the proposed correla-

tion mining framework for biology applications.

• Correlation mining has its niche in the purely-high dimensional regime char-

acterizing big biological datasets where n is fixed while p is large and in-

creasing. This is where the asymptotic theory provides tight bounds on

edge, node and hub recovery performance.

• In this purely-high dimensional regime correlation mining algorithms are scal-

able to very large p. This is because they are non-iterative, only involve

inversion of n × n matrices, and can be implemented using approximate

nearest neighbor search algorithms.

• Correlation mining algorithms and theory apply equally to correlation mining

in both (marginal) correlation networks and partial correlation networks.

• The theory provides a mathematical expression for the critical phase transition

ρc in the mean number of false positive edges in the recovered correlation

network as a function of the applied threshold ρ.

• In the purely-high dimensional regime, the theory indicates that the curse of

high dimensionality in the variables can be counterbalanced by a certain

benefit of high dimensionality in the samples: to maintain a given phase

transition value only a small sample size increase is necessary to accommo-

date a big increase in biomarker dimension. This benefit diminishes as the

sample size approaches the biomarker dimension.

• The theory can be used to determine the right sample size for the experimen-

talist to be able to reliably detect correlations that are above the phase

transition threshold and are therefore both biologically significant and sta-

tistically significant.

• This sample sizing can be performed without knowledge of the underlying

distribution or true covariance matrix in cases where the distribution is

elliptically contoured, the covariance is block sparse, and the collected data

are i.i.d.

• If the true data covariance cannot be assumed to be block sparse, this assump-

tion can be replaced by the weaker assumption of row sparse covariance

to obtain the same type of asymptotic limit as in Thm. 1.2 (see [1], [2]).

However, without block sparsity the Poisson-type rate constant κn in the

theorem may now be a function of the true covariance and the expression

(1.7) for the false positive rate may no longer be accurate. An empirical es-

timate of the true rate constant may be constructed by estimating a certain

“J functional” of the density (see [73]), which may be used to determine

proper sample size. This would be practical when sufficient amounts of

baseline data exist on which to train, e.g. obtained by pooling publicly

available data from prior studies, or when a model for baseline is known.
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• If the collected data cannot be assumed to be i.i.d. and has either some tempo-

ral or spatial dependency, our correlation mining framework is still flexible

enough to deal with such settings. First, correlation screening thresholds

from the i.i.d. setup can still be used as lower bounds for the correct thresh-

old when dependency is present. This follows from the fact that screening

thresholds are a decreasing function of sample size. Second, if the depen-

dency structure is known such as in an AR(1) model, the effective sample

size can be used to adjust the screening threshold appropriately. Third, if

the data is a Gaussian temporally stationary multivariate time series then

the spectral correlation screening framework of [74] can be applied.

1.4.2 Future challenges in correlation mining biomolecular networks

There remain several challenges and open problems in large scale correlation

mining of molecular networks in biology and biomedicine. Many of these align

with currently recognized grand challenges in engineering and the life sciences

[75]. We discuss several opportunities and challenges below, with a focus on

health and medicine applications.

Correlation mining can play an important role in emerging translational medicine

applications such as: personalized medicine [76]; genomic medicine [77]; and net-

work medicine [78]. In personalized medicine, correlation mining might be used

to identify personalized molecular signatures and their nominal variations in or-

der to specify a baseline of health for an individual. A principal objective of

genomic medicine is early detection of disease by testing for activation of the

gene expression pathways in the host immune system that presage inflamma-

tory response and acute symptoms. Network medicine recognizes the dynamic

nature of molecular networks regulating pathogenesis and immune response and

proposes precisely timed drug treatments that target certain transitions in the

network. Due to the potentially large number of biomarker variables and lim-

ited samples, correlation mining can be a key player in determining the complex

molecular interactions for these translational areas.

There has been much recent interest in biochronicity and other time varying

phenomena underlying gene regulation occurring in healthy hosts. Biomarkers

that manifest as periodically changing over time are plentiful, e.g., clock genes

that regulate 24 hour circadian and 12 hour hemicircadian rhythms of monocyte

cell-cycles [79]. Quantifying and understanding the role of biochronicity in gene

regulation is of independent interest but could also lead to periodic detrending

of other biomarkers. For example, this could result in greatly improving sensi-

tivity to subtle pathogen induced changes and lead to improved early detection

performance. Fourier-based correlation mining extensions, such as developed in

[80], [74], could possibly be applied to detecting the biochronicity genes as they

manifest their periodic components over time. In this extension, correlation min-

ing is performed independently on each complex-valued DFT coefficient of the
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time varying variables. A challenge that would need to be overcome is the non-

sinusoidal nature of many biochronicity signals. The

There are continuing efforts to establish a biomarker-based baseline of health

for preventative medicine. Molecular biomarker signatures are highly variable

across time for a single healthy individual and across individuals for individu-

als in a healthy population. Some of this variability can be explained by fixed

factors such as age and gender or deterministic factors. e.g., trait-related gene

expression variation [81], [82], or biochronicity, discussed above. Such determin-

istic factors might be removed using simple detrending or regression approaches.

However, much of the variability of a healthy persons molecular patterns remains

unexplained and might be better modeled as random over time but correlated

over different biomarkers. Under this model, correlation mining could be used

to identify the principal hubs and edges in the correlation network that char-

acterize a persons healthy baseline. If some non-healthy samples were available,

these correlations could be incorporated into a logistic regression to detect abnor-

mal deviations from baseline. Alternatively, the predictive correlation screening

framework of [83] could be used to tune correlation mining specifically to the

task of prediction.

Multiplatform assays probe complementary manifestations of biological sys-

tem states and behaviors. For example, challenge study protocols may simulta-

neously assay a tissue sample for gene expression, biased and unbiased protein

expression, metabolite levels, and antibodies. Correlation mining and other sta-

tistical methods of correlation analysis have been principally developed for a

single platform. Development of a theory and practice of multiplatform correla-

tion mining would be worthwhile. Principal hurdles would be the need to account

for cross-platform calibration, multiplatform normalization, and different levels

of technical noise inherent to each platform. Several approaches to correlation

networks for multiplatform assays include: multiattribute networks [84], which

create separate nodes for each platform; multivariate normal networks [85] and

Kronecker network [65], which accommodate networks with vector valued nodes.

While the models used in these approaches are worth considering, the methods

are not immediately extendible to correlation mining as they all focus on covari-

ance estimation. Exploring extensions of these models to the testing framework

of correlation mining would be worthwhile pursuing further.

Integration of ontological information relevant to biological function is com-

monly used to place an investigator’s empirical findings in the context of the

global knowledge base. For example, a gene list consisting of a discovered hub

gene and its neighboring genes might be analyzed in the context of previously

reported molecular interactions and pathways using PID [6]. More generally,

ontologies can reveal transcription, methylation and phosphorylation correspon-

dences; gene-protein intra-actions and inter-actions; molecular-disease associa-

tions; epigenetics; and other types of phenotype specific data. Such data is often

in the form of text, trees and graphs that can be integrated into the correlation

network discovered via correlation mining. However, a major challenge is deter-
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mining provenance and reliability of the ontological data. Another challenge is

the direct use of ontological data as side information that can directly affect

the correlation mining outcomes. Possible approaches to integration of such in-

formation into correlation mining include: correlation weighting to de-emphasize

connections not supported by ontology [86], non-uniform thresholding of the cor-

relation entries, and direct incorporation of ontologically determined interactions

and non-interactions as topological contraints [87],[88].

1.5 Conclusion

The biomedical sciences are one of the major generators of big data of our era.

An aspect of such data is that with the emergence of next-generation sequenc-

ing technology, it is becoming far less costly to collect more biomarker probes

(p variables) than it is to collect more biological replicates (n samples). This

high dimensional regime will be much better characterized by the “purely-high

dimensional” setting (large p and fixed finite n) than the standard “ultra-high

dimensional setting” (large p and large n) common in current high dimensional

statistics. It is in this purely-high dimensional regime that our scalable correla-

tion mining frameworks will play a significant role in extracting information and

making sense of the next generation of biological data.
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