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Abstract
Load balancing is a technique which allows efficient parallelization
of irregular workloads, and a key component of many applications
and parallelizing runtimes. Work-stealing is a popular technique for
implementing load balancing, where each parallel thread maintains
its own work set of items and occasionally steals items from the
sets of other threads.

The conventional semantics of work stealing guarantee that
each inserted task is eventually extracted exactly once. However,
correctness of a wide class of applications allows for relaxed se-
mantics, because either: i) the application already explicitly checks
that no work is repeated or ii) the application can tolerate repeated
work.

In this paper, we introduce idempotent work stealing, and
present several new algorithms that exploit the relaxed semantics
to deliver better performance. The semantics of the new algorithms
guarantee that each inserted task is eventually extracted at least
once–instead of exactly once.

On mainstream processors, algorithms for conventional work
stealing require special atomic instructions or store-load memory
ordering fence instructions in the owner’s critical path operations.
In general, these instructions are substantially slower than regular
memory access instructions. By exploiting the relaxed semantics,
our algorithms avoid these instructions in the owner’s operations.

We evaluated our algorithms using common graph problems and
micro-benchmarks and compared them to well-known conventional
work stealing algorithms, the THE Cilk and Chase-Lev algorithms.
We found that our best algorithm (with LIFO extraction) outper-
forms existing algorithms in nearly all cases, and often by signifi-
cant margins.
Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—concurrent program-
ming structures; D.4.1 [Operating Systems]: Process Management—
concurrency, scheduling, synchronization, threads.
General Terms: Algorithms, Management, Performance.

1. Introduction
Statically parallelizing applications with irregular workloads is a
very challenging task. The key problem in trying to come up with
a scalable static algorithmic solution is that the amount of available
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parallelism can change dramatically from one invocation of the al-
gorithm to another. One answer to this challenge is the well-known
dynamic technique of load balancing. Load balancing works by dy-
namically distributing the work to each process. It is a key tech-
nique used in many runtimes for parallel languages such as Cilk [4]
and X10 [5]. It is also a core component of parallel garbage col-
lectors [7], now a part of most modern virtual machines. Increased
proliferation of load balancing techniques and their central place
in most parallelizing systems dictate the need for high-performing
load balancing algorithms.

Work-stealing is a technique that implements load balancing.
Effectively, each thread maintains its own set of tasks. The owner
thread stores and takes items from that set. Typically, when there
are no more tasks in the set (the owner thread has nothing more
to do), to keep busy, the thread can steal work items from other
threads. Hence, in this scheme, only the owner thread can add tasks
to its set, but all threads (including the owner) can take items from
the owner’s set.

This working set of items (called a work stealing queue from
now on) supports three main operations: put and take which are
used only by the queue’s owner to insert and extract tasks, and
steal which is used by other threads to steal work.

Current algorithms for work stealing queues comply with the
following semantics: each inserted task is eventually extracted–by
the owner thread or other threads–exactly once. However, these se-
mantics are too restrictive for a wide range of applications deal-
ing with irregular computation patterns. Sample domains include:
parallel garbage collection, fixed point computations in program
analysis, constraint solvers (e.g. SAT solvers), state space search
exploration in model checking as well as integer and mixed pro-
gramming solvers.

The key observation is that the correctness invariants of these
applications allow for a relaxation of the traditional work stealing
semantics. The fundamental reason is that in these problems: i) the
application already ensures that no work is repeated, for example
by checking whether a task is completed, or ii) the application
tolerates repeatable work.

Informally, the relaxed semantics state that each inserted task
should be eventually extracted at least once–instead of exactly once
as it is with the conventional semantics. We exploit this invariant
relaxation and introduce idempotent work stealing. We present
several new algorithms that exploit the relaxed semantics to deliver
better performance. Note that even with these relaxed semantics,
subtle issues need to be handled in order to ensure correct and
efficient operation. For example, the algorithms must guarantee that
no tasks are lost and all extracted tasks contain valid and consistent
information while at the same time avoiding the use of expensive
synchronization instructions in the owner’s operations: put and
take.
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On mainstream processors, existing algorithms for conventional
work stealing queues require store-load memory ordering fence in-
structions in the critical path of the owner’s operations [1, 6, 8, 10,
11]. A store-load fence prevents loads from being executed before
the completion of stores to independent locations where the stores
appear earlier in program order. In general, special atomic instruc-
tions and store-load fence instructions are substantially slower than
regular instructions. Our new algorithms are designed to optimize
the owner’s operations by avoiding the high overheads of these
instruction in the owner’s operations. That is, in our algorithms,
unlike existing algorithms, owner operations avoid using special
atomic instructions and expensive store-load fence instructions.

We have evaluated ours and existing state-of-the-art algorithms
with both microbenchmarks and representative non-trivial graph
applications whose correctness invariants allow the usage of re-
laxed work stealing semantics. In particular, we performed experi-
mental evaluation on several fundamental graph problems such as
transitive closure and spanning tree computation for various graph
types and sizes. The results indicate performance gains of up to 5x
on microbenchmarks and up to 3x on graph applications. On graph
applications, gains of 40% are common.

The contributions of this paper are the following:

• Introducing the concept of idempotent work stealing, a useful
relaxation of the conventional semantics, applicable to a wide-
class of applications.

• New high-performance work-stealing algorithms that adhere to
these new relaxed semantics while avoiding expensive synchro-
nization in the critical path of the owner’s operations.

• Experimental evaluation of our new and existing state-of-the-
art algorithms. The results indicate that our algorithms often
significantly outperform existing state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section 2, we
discuss related work and atomic and fence instructions. Section 3
describes the new algorithms in detail. Section 4 presents our exper-
imental performance results. We conclude the paper with Section 5.

2. Background
2.1 Atomic and Fence Instructions

To build efficient and correct concurrent algorithms, implementa-
tions often rely on the use of special atomic and memory fence
instructions.

Atomic Instructions: Current mainstream processor architec-
tures support either Compare-and-Swap (CAS) or the pair Load-
Linked and Store-Conditional (LL/SC).

CAS was introduced on the IBM System 370 [12]. It is sup-
ported on Intel and Sun SPARC processor architectures. In its sim-
plest form, it takes three arguments: a memory location, an ex-
pected value, and a new value. If the memory location holds the
expected value, the new value is written to it, atomically. A Boolean
return value indicates whether the write occurred. If it returns true,
it is said to succeed. Otherwise, it is said to fail.

LL and SC are supported on the PowerPC architecture. LL
takes one argument: a memory location, and returns its contents.
SC takes two arguments: a memory location and a new value.
Only if the memory location has not been written since the current
thread last read it using LL, the new value is written to the memory
location, atomically. A Boolean return value indicates whether the
write occurred. Similar to CAS, SC is said to succeed or fail,
if it returns true or false, respectively. For architectural reasons,
implementations of LL/SC, do not allow the nesting or interleaving

of LL/SC pairs, and infrequently often allow SC to fail spuriously,
even if the target location was never written since the last LL. These
spurious failures happen, for example, if the thread was preempted
or a different location in the same cache line was written.

For generality, we present the algorithms in this paper using
CAS. As discussed in Section 3, if LL/SC is supported rather than
CAS, simpler implementations are possible.

Fence Instructions: Mainstream processor architectures allow
some independent memory accesses to be executed out of program
order, for the sake of hiding memory access latency and hence im-
proving performance in the general case where reordering memory
accesses has no effect on correctness. These architectures provide
fence instructions that allow programmers to enforce order among
memory accesses–that otherwise could be reordered–if such an or-
dering is required for correctness. This situation typically occurs in
the implementations of concurrent algorithms.

While processor architectures vary in their relaxation of mem-
ory access ordering, all mainstream processors require fence in-
structions for preventing loads being executed before the comple-
tion of stores to independent locations where the stores appear ear-
lier in program order (i.e., enforce store-load ordering). For archi-
tectural and historical reasons, fences that enforce store-load order
are typically quite expensive and take tens of processor cycles.

2.2 Related Work

There have been several published algorithms for work-stealing, all
adhering to the strong semantics. In a paper by Frigo et. al. [8], the
authors present the THE work stealing algorithm implemented in
the Cilk language runtime [4]. That algorithm is based on Dijk-
stra’s mutual exclusion protocol and uses locks in the steal oper-
ation and in the corner case when the queue is empty it uses locks
in take. Another algorithm presented by Arora et. al. [1] presents
a non-blocking double-ended work queue but in the worst-case re-
quires unbounded memory even if the number of waiting tasks at
any one time is bounded. The Chase-Lev algorithm [6] rectifies this
situation while preserving the performance of the Arora et. al. algo-
rithm.

The correctness of all of these algorithms depends on enforcing
the order of a write before a read in the critical path of the owner’s
take operation. For example, in the Chase-Lev algorithm [6, Fig-
ure 3], the write in line 23 must be ordered before the read in line
24; in the Cilk THE algorithm [8, Figure 4], the write in line 5 must
be ordered before the read in line 6. Similarly, for the algorithms by
Arora et. al. [1], Hendler and Shavit [11], and Hendler et. al. [10].

3. Algorithms
3.1 Overview

In this section we describe in detail our algorithms for idempotent
work stealing. The main motivation behind these algorithms is to
exploit the relaxed semantics to deliver better performance. In par-
ticular, the relaxed semantics enable us to build algorithms which
speed up the common path consisting of the owner’s operations:
put and take. We present three algorithms, each with a different
choice for how the items are extracted. In all of our algorithms, the
owner inserts new tasks at the tail of the queue. In the first algorithm
(idempotent LIFO) tasks are always extracted from the tail, while in
the second algorithm (idempotent FIFO) tasks are always extracted
from the head. In the third algorithm (idempotent double-ended),
the owner extracts from the tail while thieves extract from the head
of the queue. We use the term queue loosely to mean a structure
with items stored in the order in which they were inserted.

46



The key challenge we faced in designing our algorithms is
how to avoid the need for special atomic instructions (i.e. CAS or
LL/SC) and store-load ordering in our put and take operations
while guaranteeing the following:

• No lost tasks: That is, each inserted tasks will eventually be
extracted (one or more times).

• No garbage task information: That is, steal operations always
return valid task information (i.e., that is safe to execute). The
task information, which may span multiple words and hence
may be read and written non-atomically, must be complete and
consistent and represent an actual task that was inserted into the
work queue.

Ordering Requirements: In all three of our algorithms, the take
operation does not require any special ordering among memory
accesses beyond what is implied by data dependence. This is in
contrast to existing work stealing algorithms [1, 6, 8, 10, 11],
which all require a store-load fence in the critical path of the take
operation. Store-load ordering requires a fence instruction on all
mainstream architectures (e.g., sync on PowerPC and mfence or
lock prefix instructions on Intel X86). The avoidance of these
fence instructions in the common case is crucial to improving
performance.

In the put operation of each of the three new algorithms, the
writing of the task information into the queue structure must be
completed before updating the tail index, in order to guarantee
that interference with concurrent steal operations does not lead
to lost items (and hence a violation of the correctness criteria),
or the extraction by a steal operation of invalid task informa-
tion that may lead to unpredictable errors or failures. On architec-
tures such as Intel X86 and Sun Sparc (with total store order), no
special fence instructions are needed. On PowerPC, a light-weight
fence instruction (lwsync) is needed. Existing work stealing al-
gorithms [1, 6, 8, 10, 11] require the same store-store ordering in
their put operations for the same reasons why it is needed in ours.
Hence, this is not a new overhead added in our algorithms.

Ordering requirements for the steal operations are indicated
in each of the algorithm listings in Figures 1, 2, and 3.

ABA Problem and Prevention: The ABA problem is common
in non-blocking algorithms, mostly in relation to the use of CAS.
It was first encountered in a free list implementation listed in the
IBM System 370 documentation [12]. Typically, the ABA problem
occurs when a thread reads some value A from a shared variable,
and then other threads write to the variable some value B, and
then A again. Later, when the original thread checks if the variable
holds the value A, e.g., using CAS, the comparison succeeds, while
the intention of the algorithm designer is for such a comparison
to fail in this case, and to succeed only if the variable has not
been written after the initial read. However, the semantics of CAS
prevent it from distinguishing the two cases. The classic solution
for the ABA problem [12] is to pack a tag with the shared variable
and increment the tag when the associated variable is updated, so
that other threads can detect that the variable has been updated. This
solution assumes that the tag is large enough that it is unlikely to
wrap around and reach the same value while a thread is executing
the read-check scenario mentioned above. The packing of a tag
with index variables in one atomic word limits the size of the index.

Two of the algorithms (idempotent LIFO and idempotent
double-ended) need to guard against the ABA problem in the
steal operation as discussed below in more detail.

Our algorithms are presented using CAS and ABA prevention
tags. However, the tag is a specific implementation choice. At the

abstract level, the algorithms do not require the use of the tag mech-
anism but can use any ABA prevention mechanism. For example,
the PowerPC architectures supports the LL/SC instructions, which
are inherently immune to the ABA problem. In such a case, there
is no need for the tag, because we can replace the read and the
CAS of the index variable in the steal operations by LL and SC,
respectively. In the absence of hardware support for LL/SC, soft-
ware mechanisms can be used to simulate them without using tags
packed with values [14].

Expanding and shrinking: We present in detail for each algo-
rithm how to expand the queue size, where task arrays are replaced
by new larger ones. The shown algorithm code assumes support
for automatic garbage collection, where old arrays are freed auto-
matically. Without garbage collection, buffer pools as described by
Chase and Lev [6] can be used. The old array can be remembered
in the expand() operation and then freed to the buffer pools right
after the end of the put operation. As for the actual tasks, they are
not dynamic objects. They are written and read directly to and from
elements of the task array.

3.2 Algorithm with LIFO Extraction

In the idempotent LIFO algorithm (Figure 1), the queue is repre-
sented by an array of tasks, and an anchor variable that contains
two subfields: the index of the tail of the queue and an ABA pre-
vention tag. The capacity of the queue (i.e., the size of the tasks
array) can be changed only by the owner and hence only the owner
accesses the capacity variable. Initially, an empty array of some
size is allocated and the tail of the queue is set to 0, indicating that
the queue is empty.

Put: In the put operation, the owner starts by reading the anchor
variable in line 1. In line 2, the owner checks if there is enough
space to put the new task. If not it expands the array and restarts.
For brevity and simplicity, we assume that the owner will be able
to expand the array. In an actual implementation, there should
be a check if the expansion succeeded or not. If there is enough
space in the array, the thread proceeds to line 3 and writes the task
information into the task array. In general, this write need not be
atomic and thus the task information may span multiple words.

Finally, in line 4, the thread writes to the anchor variable the two
packed values read in line 1 with each of the values incremented by
one.

Take: In the take operation, the owner starts by reading the
anchor variable in line 1, then checking in line 2 if the queue is
empty (i.e., if t = 0). If so, the operation returns an indicator of an
empty queue. Otherwise, it proceeds to line 3 and reads the task
information from the array element with index t−1.

In line 4, the thread writes to the anchor variable the two packed
values read in line 1, with the tail index decremented by one.

Steal: A thread starts the steal operation by reading the anchor
variable in line 1. In line 2, the thread checks if the queue is empty
(i.e., if t = 0). If so, the operation returns an indicator of an empty
queue. Otherwise, it proceeds to line 3 and reads a pointer to the
tasks array. The read in line 3 must be ordered after the read in line
1. Otherwise, a thief may read a stale pointer to the tasks array and
then get a tail index from the anchor variable that is inconsistent
with the stale array, if in the meantime the owner expanded the size
of the queue.

In line 4, the thread reads the array element with index t−1.
Reading the task information need not be atomic as it is synchro-
nized by being ordered in between the read in line 1 and the CAS
in line 5, and thus the task information is allowed to span multiple
words.
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Structures:
Task: task information
LifoIwsq:

anchor: 〈integer,integer〉; // 〈tail,tag〉
capacity: integer
tasks: array of Task

constructor LifoIwsq(integer size) {
anchor := 〈0,0〉;
capacity := size;
tasks := new Task[size];

}

void put(Task task) {
Order write in 3 before write in 4

1: 〈t,g〉 := anchor;
2: if (t= capacity) {expand(); goto 1;}
3: tasks[t] := task;
4: anchor := 〈t+1,g+1〉;

}

TaskInfo take() {
1: 〈t,g〉 := anchor;
2: if (t= 0) return EMPTY;
3: task := tasks[t−1];
4: anchor := 〈t−1,g〉;
5: return task;

}

TaskInfo steal() {
Order read in 1 before read in 3
Order read in 4 before CAS in 5

1: 〈t,g〉 := anchor;
2: if (t= 0) return EMPTY;
3: a := tasks;
4: task := a[t−1];
5: if !CAS(anchor,〈t,g〉,〈t−1,g〉) goto 1;
6: return task;

}

void expand() {
Order writes in 2 before write in 3
Order write in 3 before write in put:4

1: a := new Tasks[2*capacity];
2: for i = 0:capacity−1, a[i] := tasks[i];
3: tasks := a;
4: capacity := 2*capacity;

}

Figure 1. Idempotent work stealing queue with LIFO ex-
traction.

Finally, after the task information is read in line 4, the CAS in
line 5 checks that since the execution of the read in line 1, the owner
has not overwritten the array element with index t−1. By using the
tag packed with the tail index in the anchor variable, we aim to
avoid the following scenario that may occur if the ABA problem
is not addressed. A thread X (thief) executing a steal operation
reads the tail index t from the anchor variable in line 1. Then it
reads the information of some task a from tasks[t−1] in line 4. In
the meantime another thread extracts task a from tasks[t−1] and
sets the tail index to t−1 and then the owner puts a new task b in
the now available space in tasks[t−1] and sets the tail index back
to t. Finally, in line 5 of the steal operation, thread X performs
CAS on the tail index that succeeds (since it now has value t) and
sets the tail index to t-1. The steal of thread X returns task a. The
problem is that task b is lost as it is never extracted and its entry in

the tasks array will be overwritten by the next put operation by the
owner.

The use of the tag and incrementing it on every put guarantees
that the CAS in line 5 will not succeed if the owner has written
items (in particular, with index less than t) in the tasks array be-
tween the execution of lines 1 and 5 of the steal operation. In the
otherwise problematic scenario above, but using the tag, thread X
would detect in line 5 that the tag has changed and restart the steal
operation, avoiding the incorrect outcome.

Another variation of the above problematic scenario is also
avoided by preventing the ABA problem. In this variation, thread
X reads the tail index t from the anchor variable in line 1 of
steal. Then the owner performs a take operation that extract
task a from tasks[t−1] and decrements tail to t−1. Then the owner
starts executing a put operation of a task b. While the owner is
in the process of overwriting the information of task a with the
information of task b in line 3 of put, thread X reads the task
information in tasks[t−1] in line 4 of steal. Then the owner
updates tail to t again in line 4 of put, and thread X’s CAS in
line 5 of steal succeeds, and thread X ends up with invalid task
information that may be an inconsistent mix of the information of
tasks a and b.

Expand: For the owner to expand a full queue, it allocates a
new larger array (e.g., with double the current capacity) in line
1. Then it copies the tasks from the current array to the newly
allocated one in line 2. After that, it sets the tasks pointer to the
new array in line 3. Note that the writes in line 2 (which need not
be atomic) must be ordered before the write in line 3. Otherwise,
a thief may read uninitialized task information. Finally, the owner
updates the capacity variable (recall that the capacity variable is
read and modified only by the owner).

The write in line 3, setting the tasks pointer to the new array,
must be ordered before the subsequent write in line 4 of put that
updates the anchor variable. Otherwise, a steal operation may
observe a new tail index value and uses it to access a stale task
array. This may result in an out of bound access to the task array or
returning incorrect task information.

3.3 Algorithm with FIFO Extraction

In the idempotent FIFO algorithm (Figure 2), the queue is repre-
sented by an array of tasks, and two anchor variables, head and tail,
that hold the indices of the head and the tail of the queue, respec-
tively. The task array is encapsulated in a structure that contains
both the array and its size. This structure simplifies expanding and
shrinking the queue size.

Initially an empty array of tasks of some size is allocated and
both the head and tail of the queue are set to the same value (e.g.,
0), indicating that the queue is empty.

Put: The algorithm for the put operation starts by reading the
head and tail variables in lines 1 and 2. In line 3, the owner checks
if the queue is full (the difference between tail and head is equal
to the size of the tasks array). If so, it expands it and restarts the
put operation. If not, it proceeds to line 4 to write the new task
information to the tasks array element with index t modulo the size
of the array. The writing of the task information which can span
multiple locations need not be atomic. Finally, in line 5, the owner
writes to the tail variable the value t+1.

Take: The owner starts a take operation by reading the head
and tail variables in lines 1 and 2. In line 3 if the values read from
head and tail are equal, then the queue is found to be empty and
an empty indicator is returned. If not, the owner proceeds to line 4
and reads the task information from the element of tasks array with
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Structures:
Task: task information
TaskArrayWithSize:

size: integer
array: array of Task

FifoIwsq:
head: integer;
tail: integer;
tasks: TaskArrayWithSize

constructor FifoIwsq(integer size) {
head := 0;
tail := 0;
tasks := new TaskArrayWithSize(size);

}

void put(Task task) {
Order write at 4 before write at 5

1: h := head;
2: t := tail;
3: if (t= h+tasks.size) {expand(); goto 1;}
4: tasks.array[t%tasks.size] := task;
5: tail := t+1;

}

TaskInfo take() {
1: h := head;
2: t := tail;
3: if (h= t) return EMPTY;
4: task := tasks.array[h%tasks.size];
5: head := h+1;
6: return task;

}

TaskInfo steal() {
Order read in 1 before read in 2
Order read in 1 before read in 4
Order read in 5 before CAS in 6

1: h := head;
2: t := tail;
3: if (h= t) return EMPTY;
4: a := tasks;
5: task := a.array[h%a.size];
6: if !CAS(head,h,h+1) goto 1;
7: return task;

}

void expand() {
Order writes in 2 and 4 before write in 5
Order write in 5 before write in put:5

1: size := tasks.size;
2: a := new TaskArrayWithSize(2*size);
3: for i = head:tail−1,
4: a.array[i%a.size] := tasks.array[i%tasks.size];
5: tasks := a;
}

Figure 2. FIFO idempotent work stealing queue.

index h modulo the array size. In line 5, the owner writes the value
h+1 to the head variable.

Steal: A thread starts the steal operation by reading the head
variable in line 1 and then the tail variable in line 2. In line 3,
it checks if the values read from head and tail are equal. If so,
then the queue is empty and an empty indicator is returned. Note
that the order of the reads is required only to avoid returning an
empty indicator for a queue that was never empty during the steal
operation. This could happen if tail were to be read first, then some
number of put and take operations are completed resulting in a

value of head that is equal to or larger than the value read earlier
from tail.

In line 4, the thread reads a pointer to the tasks array. The read of
head in line 1 must be ordered before the read in line 4. Otherwise, a
thief may read a stale pointer to the tasks array and then get a head
index from the anchor variable that is inconsistent with the stale
array, if the owner has expanded the array size in the meantime. In
line 5, the thread reads the array element with index h modulo the
array size. Reading the task information which may span multiple
words need not be atomic.

Finally, the CAS in line 6 checks that the value of head is
the same as that read in line 1. While it is possible for a steal

operation to observe the same value of head at lines 1 and 5, even
if the value of head has changed in the meantime, the algorithm’s
correctness does not require preventing this ABA situation (unlike
in the idempotent LIFO algorithm), for the following reasons: Only
a take operation by the owner can overwrite head with a smaller
value. However, this can happen only as long as the owner has not
observed higher values of head. Therefore, it is impossible that a
put by the owner has overwritten the task read in line 4 of the
steal operation. It follows that it is impossible that the thief has
extracted a stale task instead of a new task (which otherwise can
lead to a lost task situation), and that the task extracted by the
steal operation is not corrupt or inconsistent.

If successful, the CAS in line 6 updates the head variable with
value higher by one than that read in line 1 to indicate the extraction
of a task.

Expand: For the owner to expand a full queue, it allocates a new
larger array (e.g., with double the current capacity) in line 2. Then,
it copies the tasks from the current array to the newly allocated
one in lines 3 and 4. After that, it sets the tasks pointer to the new
array in line 5. The writes in lines 2 and 4 must be ordered before
the write in line 5. Otherwise, a thief may read uninitialized task
information.

The write in line 5 must be ordered before the subsequent write
in line 5 of put that updates the tail variable. Otherwise, a steal

operation may return an old task, while the new task is lost without
ever being executed.

3.4 Algorithm with Double-Ended Extraction

In the idempotent double-ended algorithm (Figure 3), the queue
is represented by an array of tasks, and an anchor variable that is
packed with three subfields indicating the index of the head of the
queue, the size of the queue, and an ABA-prevention tag. The task
array is encapsulated in a structure that contains both the array and
its size.

Put: The owner starts the put operation by reading the anchor
variable in line 1. In line 2, the owner checks if there is enough
space to put the new task by checking if the size subfield is less than
the size of the tasks array. If not, it expands the array and restarts.
Otherwise, it proceeds to line 3 and writes the task information into
the task array at the tail of the queue (i.e., h+s modulo the size
of the array). The writing of the task information which can span
multiple words need not be atomic.

Finally, in line 4, the owner writes to the anchor variable the
three packed values as read in line 1 with the size and tag subfields
each incremented by one, indicating the addition of a task and
to prevent the ABA problem in concurrent steal operations as
discussed below.

Take: The owner starts the take operation by reading the anchor
variable in line 1, then checking in line 2 if the queue is empty (i.e.,
if s = 0). If so, the operation returns an indicator of an empty queue.
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Structures:
Task: task information
TaskArrayWithSize:

size: integer
array: array of Task

DeIwsq:
anchor: 〈integer,integer,integer〉; // 〈head,size,tag〉
tasks: TaskArrayWithSize

constructor DeIwsq(integer size) {
anchor := 〈0,0,0〉;
tasks := new TaskArrayWithSize(size);

}

void put(Task task) {
Order write in 3 before write in 4

1: 〈h,s,g〉 := anchor;
2: if (s = tasks.size) {expand(); goto 1;}
3: tasks.array[(h+s)%tasks.size] := task;
4: anchor := 〈h,s+1,g+1〉;

}

TaskInfo take() {
1: 〈h,s,g〉 := anchor;
2: if (s = 0) return EMPTY;
3: task := tasks.array[(h+s−1)%tasks.size];
4: anchor := 〈h,s−1,g〉;
5: return task;

}

TaskInfo steal() {
Order read in 1 before read in 3
Order read in 4 before CAS in 6

1: 〈h,s,g〉 := anchor;
2: if (s = 0) return EMPTY;
3: a := tasks;
4: task := a.array[h%a.size];
5: h2 := h+1 % MaxSize;
6: if !CAS(anchor,〈h,s,g〉,〈h2,s−1,g〉) goto 1;
7: return task;

}

void expand() {
Order writes in 2 and 4 before write in 5
Order write in 5 before write in put:4

1: 〈h,s,g〉 := anchor;
2: a := new TaskCircularArray(2*s);
3: for i = 0 : s−1,
4: a.array[(h+i)%a.size] := tasks.array[(h+i)%tasks.size];
5: tasks := a;

}

Figure 3. Double-ended idempotent work stealing queue.

Otherwise, it proceeds to line 3 and reads the task information at
the tail of the queue, i.e., from the array element with index h+s−1
modulo the array size.

In line 4, the owner writes to the anchor variable the three
packed subfield values read in line 1 with the size subfield decre-
mented by one to indicate the extraction of a task.

Steal: A thread starts the steal operation by reading the anchor
variable in line 1. In line 2, the thread checks if the queue is empty
(i.e., if s = 0). If so, the operation returns an indicator of an empty
queue. Otherwise, it proceeds to step 3 and reads a pointer to the
tasks array. The read in line 3 must be ordered after the read in line
1. Otherwise, a thief may dereference a stale pointer to the tasks
array after it has been replaced by the owner in order to expand the
queue, which may lead to a lost task scenario.

In line 4, the thread reads the array element with index h.
Reading the task information which can span multiple words need
not be atomic, as the reading is synchronized by being ordered in
between the read in line 1 and the CAS in line 5.

Finally, the CAS in line 6 checks that values of three subfield of
anchor are the same as when read in line 1. The checking of the tag
subfield (or ABA prevention in general) guarantees that since the
read in line 1 the owner has not overwritten the array element with
index h modulo the array size. That is, the task information read
in line 4 was indeed consistent and that no task was lost. The CAS
in line 6, if successful, updates the anchor variable with the values
read in line 1 except with the head subfield incremented (modulo
some size bound) to indicate the stealing of a task.

Expand: Array expansion for this algorithm is similar to the
array expansion for the idempotent FIFO algorithm.

4. Performance Results
We have implemented all of our algorithms as well as Chase and
Lev’s [6] algorithm and the Cilk THE [8] work stealing algorithm
presented with the Cilk parallelizing runtime [4]. The Chase-Lev
algorithm is an improvement of the algorithm presented in Arora
et. al. [1] and is targeted at avoiding the limitation of using fixed-
sized arrays.

4.1 Benchmarks

We first studied the algorithmic upper limits that one can expect
from our algorithms over existing ones. In order to perform such a
limit study, we developed our own parametric framework where we
can control the cost of each task. This allowed us to easily experi-
ment with relative costs of tasks: from zero cost as studied in [6] to
more expensive computations. In particular, the measurements ob-
tained on tasks with zero cost allowed us to more accurately com-
pare the differences in the operations of the various work stealing
structures. As discussed later, the limit study indicated that some of
our algorithms often performed a factor of 10 better than any of the
existing ones.

Next, we evaluated our algorithms on challenging problems in
high performance computing. For this work, we selected two graph
problems of irregular nature: i) transitive closure computation and
ii) spanning tree computation, both for an undirected connected
graph. In both cases, the challenge is to speed up the computa-
tion via parallel traversal of the graph. Because the workload is
irregular, work stealing becomes of key importance in implement-
ing an efficient load balancing scheme. Both of these applications
fit naturally with our approach. In the case of transitive closure,
the application can tolerate some work to be repeated (and hence
does not use synchronization mechanisms to coordinate the parallel
threads during graph traversal). Conversely, in the case of spanning
trees, the application requires synchronization (either in the form
of compare-and-swap or memory barriers) in order to make sure it
operates correctly (e.g. the result at the end of the computation is
a spanning tree). Hence, the application already uses synchroniza-
tion to check for repeatability of work. Using a diverse set of graph
types and graph sizes, we have evaluated the work stealing algo-
rithms on these two applications. The results indicate performance
gains of up to 300% and gains of 20-40% are common.

4.2 Experimental Results

4.2.1 Microbenchmark Results

We use a microbenchmark to estimate the upper limits of the perfor-
mance gains of using our algorithms relative to existing algorithms.
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Figure 4. Execution times normalized to Chase-Lev.

The key objective of our algorithms is minimizing the overheads of
the common case, which is the owner’s put and take operations.
So, in the microbenchmark measurements we focus on the owner’s
operations, where the owner performs a number of puts (10 mil-
lions) followed by an equal number of takes without executing any
work.

We ran these experiments on three processor architectures: 3.8
GHz hyperthreaded Intel Xeon (Netburst), 2.4 GHz AMD Opteron,
and 1.5 GHz dual-threaded Power5. The store-load ordering in
the Chase-Lev [6] and THE [8] algorithms is enforced by using
the sync instruction on PowerPC. On x86 architectures (Intel and
AMD), either the mfence instruction or some types of lock prefix
instructions can be used [13]. We tried both and found that the
use of mfence resulted in substantially higher overheads than the
use of lock prefix (approximately double the overhead). As a
principle, we always report the more conservative results, i.e., less
favorable to our algorithms. That is, for a conservative comparison
of our algorithms with the THE and Chase-Lev algorithm, we
report results for the implementations with the lower overheads
(i.e., lock prefix) for the existing algorithms. We do so also for
the results of the graph applications described later. Results using
mfence amplified the gains of our algorithms by a factor of 1.5x-
2x.

We report results for executing both puts and takes and for
executing takes only. The latter case is relevant to applications
where work queues may be populated privately in earlier phases
of computation. Note that the experiments do not invoke takes on

empty and one item queues, as these cases are slow corner cases
for the THE and Chase-Lev algorithms, respectively. That is, our
result exercise common case execution paths for all the algorithms.

Figure 4 shows the execution times normalized to that of the
Chase-Lev algorithm. The benchmark results show significant
speedups of our idempotent LIFO, FIFO, and double-ended al-
gorithms over the THE and Chase-Lev algorithms in the ranges of
1.55x–4.92x, 1.66x–5.87x, 1.47x–3.69x, respectively.

4.2.2 Irregular Graph Applications

To specify and evaluate the transitive closure and spanning tree
algorithms, we used the SIMPLE framework, described in Bader
et. al. [3]. A detailed discussion of the spanning tree algorithm can
be found in Bader and Cong [2]. The algorithm already uses a
form of work-stealing to ensure load balancing. We adapted the
algorithm to run on architectures which do not provide sequential
consistency. The key point now is that repeatable work is detected
at the application level which allows us to use more relaxed seman-
tics (e.g. our algorithms) for the work-stealing operations.

We have evaluated all of the algorithms on a 8-core 2.4GHz
AMD Opteron on 3 different types of graphs used in the works of
[2, 9] and others:

• Geometric Graph (Kgraph): These are k-regular graphs where
each vertex is connected to its k neighbors.

• 2D Torus Graph: In this graph, the vertices are positioned on a
2D torus, with each vertex connected to its 4 neighbors.

• Random Graph: A random graph of n vertices together with m
randomly added unique edges.

All of the graph structures are implemented using the standard
adjacency matrix representation. The results of our experiments are
shown in Figures 5-10. The reported times (speedups) are the best
times computed from five separate runs with the same graph and
the same set of starting roots. Similar results were obtained when
we measured the median time (throwing out the best and worst
times and computing the median of the remaining 3). We ran each
experiment several times because some variation is expected due
to the way parallel threads interleave in processing the graph. The
figures represent the speedups with respect to the time it takes to
complete Chase-Lev with a single thread. We present results only
for the transitive closure application with two graph sizes for each
graph type. The results for other graph sizes as well as the spanning
tree application are similar and are omitted from the presentation.

In the case of Kgraph, where each neighbor has 3 vertices, the
system scales up to 5 or 6 threads (as shown in Figures 5 and 6). Re-
gardless of the number of threads, the idempotent LIFO algorithm
consistently outperforms Chase-Lev and Cilk THE by 15-20%, and
sometimes by 50% (with 2 million vertices and 7 threads). In the
very rare cases where idempotent LIFO is not the best perform-
ing algorithm, we have observed that it is usually within 2-3% of
the fastest one. Additionally, in almost all experiments idempotent
FIFO outperforms Chase-Lev and Cilk THE, but is slower than
idempotent LIFO. For Kgraph, these figures are representative of
the type of performance gains we observed when running the sys-
tem with a wide variety of graph sizes.

In the case of 2D Torus graphs (shown in Figures 7 and 8),
we observe that with more than two threads, the application does
not scale. However, idempotent LIFO significantly outperforms all
others, regardless of the number of threads, often by a factor of 3.
Before the point of scaling, idempotent FIFO is usually the worst
of all the algorithms, but after the point of scaling, in this case for
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Figure 5. Kgraph: 1,000,000 vertices, 3 neighbors
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Figure 6. Kgraph: 2,000,000 vertices, 3 neighbors
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Figure 7. 2D Torus: 1,000,000 vertices
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Figure 8. 2D Torus: 6,000,000 vertices
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Figure 9. Random: 1,000,000 vertices, 3,000,000 edges
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Figure 10. Random: 2,000,000 vertices, 6,000,000 edges

3 or more threads, idempotent FIFO may be better than Cilk THE
and Chase-Lev by up to 70%.

In the case of Random graphs (shown in Figures 9 and 10),
we have found that the various algorithms produce similar perfor-
mance results. Usually, idempotent LIFO is better than the rest of
the algorithms by 2-10%, but the speed up rarely surpasses 15%.

In our experiments, the double-ended task queue is frequently
outperformed by other algorithms. This may seem like a surpris-

ing result as one would expect that it should perform better due to
the reduced contention in the take operations. We offer two ex-
planations for this result. First, other algorithms may use simpler
structures which leads to faster operations. Second, the graph ap-
plications do not exhibit much locality. Traversal from a vertex to
its neighbors, mostly leads to unrelated cache lines. This results
in cache misses regardless of whether the task is executed by the
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owner or a thief which negates the potential locality benefits of
double-ended extraction.

Finally, the relaxed semantics of our algorithms introduce the
potential for executing speculative work that turns out to be re-
dundant. We measured redundant work and found that on aver-
age, 2% of tasks are redundant. Further, in all experiments, at most
6% of redundant tasks were observed.

4.2.3 Discussion

The results presented here are a representative sample of many
different experiments that we performed. For instance, among other
things, we tried different graph sizes and configurations as well
as different representations of the graph (using pointers instead of
indices).

For graph algorithms, the time for each individual task can be
relatively high, even though the task performs short code sequences
for each vertex (e.g. marking and recording its neighbors if not al-
ready visited). The time per task can be dominated by cache misses
proportional to the number of neighbors of a vertex. Because of
the high cost of cache misses, the overall execution can be dom-
inated by the tasks themselves and not by the work queue algo-
rithms. However, the presence of memory barriers can exacerbate
the cost of cache misses in the tasks as it hampers architectural
mechanisms for latency hiding of cache misses. So, even though
the cost of work queue manipulation is small relative to tasks, the
impact of avoiding fences has a global effect and goes beyond the
mere cost of work queue manipulation.

Optimizing the graph representation so that memory locations
of neighbors are close together (e.g. one can sort the children
indices of each vertex) may reduce cache misses to some degree.
This is likely to be even more advantageous in enhancing the gains
from our algorithm, since lower task costs amplify the impact
of the work stealing operations. For example, when comparing
the algorithms on smaller graphs (up to 250,000 vertices), we
observed substantial gains even for Random graphs, since smaller
graphs are more likely to fit completely in the cache and hence
the performance is dominated by the cost of the work stealing
operations and not by the cost of tasks. We only reported results
for large graph sizes as they are more relevant to real uses of work
stealing.

Regardless of the application in question, our experimental re-
sults strongly indicate that idempotent LIFO is the preferred work
stealing structure for problems whose correctness properties are not
violated by the relaxed semantics that our algorithms provide.

5. Conclusion
In this paper we introduced the concept of idempotent work steal-
ing, a useful relaxation of the conventional work stealing semantics.
The relaxation of the semantics, where tasks are extracted at least
once instead of exactly once, is applicable to a wide class of irregu-
lar applications relying on work stealing. We presented new concur-
rent algorithms that exploit the relaxed semantics to deliver lower
overheads than existing algorithms that support the conventional
work stealing semantics. Our algorithms do not require the use of
special atomic instructions or costly store-load fence instructions
in the common case, that is, the owner put and take operations on
the work stealing structure. The benefits are demonstrated by our
experimental evaluation in comparison to existing state-of-the-art
work stealing algorithms using graph applications and microbench-
marks. The performance gains of our algorithms are evident even
on graphs with millions of vertices. In particular, our idempotent

LIFO algorithm outperforms the existing algorithms in nearly all
cases, sometimes by a factor of 3 and gains of 40% are common.
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