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Abstract

It is proved that the Gromov–Hausdorff metric on the space of compact
metric spaces considered up to an isometry is strictly intrinsic, i.e., the
corresponding metric space is geodesic. In other words, each two points
of this space (each two compact metric spaces) can be connected by a
geodesic. For finite metric spaces a geodesic is constructed explicitly.

1 Introduction

By M we denote the space of all compact metric spaces (considered up to an
isometry) endowed with Gromov–Hausdorff distance. This space is intensively
investigated, and some of its properties are already known, for example, it is
proved that this space is arc-connected, complete, separable, but not boundedly
compact. Also, it is known that the Gromov–Hausdorff metric on this space
is intrinsic1. The aim of the present paper is to prove that this metric is also
strictly intrinsic, i.e., each two points of this space can be connected by a shortest
geodesic.

2 Preliminaries

All definitions and results from this Section can be found in [1].
Let X be an arbitrary metric space. By |xy| we denote the distance between

its two points x and y. For any x ∈ X and non-empty A ⊂ X define |xA| as
the infimum of the distances |xa| over all a ∈ A. For non-empty A, B ⊂ X
define d(B,A) as the supremum of the distances |bA| over all b ∈ B. At last,
put dH(A,B) = max{d(A,B), d(B,A)}. The value dH(A,B) is referred as the
Hausdorff distance. It is well-known that dH is a metric on the set of all closed
bounded subsets of the space X .

Let X and Y be metric spaces. A triplet (X ′, Y ′, Z) consisting of a metric
space Z and two its subspaces X ′ and Y ′ isometrical to X and Y , respec-
tively, is called a realization of the pair (X,Y ). TheGromov–Hausdorff distance

1We have not found an exact reference for this result. It is only mentioned in Russian
version of Wikipedia (but does not appear in the English or German ones).
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dGH(X,Y ) between X and Y is defined as the infimum of the values r such that
there exists a realization (X ′, Y ′, Z) of the pair (X,Y ) such that dH(X ′, Y ′) ≤ r.
It is well-known that the function dGH is a metric on the set M, and that this
metric is intrinsic.

Recall that a binary relation on the sets X and Y is an arbitrary subset of
the direct product X × Y . By P(X,Y ) we denote the set of all relations on X
and Y . Let πX : X×Y → X and πY : X×Y → Y be the canonical projections,
i.e., πX(x, y) = x and πY (x, y) = y. In the same way we denote the restrictions
of the canonical projections to each relation σ ⊂ P(X,Y ).

A relation R on X and Y is called a correspondence or left-right-total, if the
restrictions of the canonical projections πX and πY to R are surjective. In other
words, for any x ∈ X there exists y ∈ Y such that x and y are in relation R and,
conversely, for any y ∈ Y there exists x ∈ X such that x and y are in relation
R. By R(X,Y ) we denote the set of all correspondences on X and Y .

Let X and Y be metric spaces, then for each relation σ ∈ P(X,Y ) its
distortion dis σ is defined as follows:

dis σ = sup
{

∣

∣|xx′| − |yy′|
∣

∣ : (x, y) ∈ σ, (x′, y′) ∈ σ
}

.

If f : X → Y is a mapping, then its distorsion dis f is defined as the distortion

of its graph
{

(x, f(x)) | x ∈ X
}

⊂ X × Y .

The next result is well-known (Theorem 7.3.25 in [1]).

Proposition 2.1. For any metric spaces X and Y the equality

dGH(X,Y ) =
1

2
inf

{

disR | R ∈ R(X,Y )
}

is valid.

If X and Y are finite metric spaces, then the set R(X,Y ) is finite, and
hence, there exists R ∈ R(X,Y ) such that dGH(X,Y ) = 1

2
disR. Each such R

is referred as optimal.
We also need some other auxiliary results. Recall that a subset S of a metric

space X is called an ε-net in X , if for each x ∈ X there exists some s ∈ S with
|sx| < ε.

Proposition 2.2. Let X be an arbitrary metric space, Y be its non-empty

subset X, and S be some ε-net in X. Then there exists a (2ε)-net in Y , such

that its cardinality is less than or equal to the cardinality of the set S.

Let M ⊂ M be a family of compact metric spaces. It is said to be uniformly

totally bounded, if the following two conditions hold:

(1) there exists a number D ≥ 0 such that for any X ∈ M the inequality
diamX ≤ D is valid (i.e., the diameters of the spaces from M are uni-
formly bounded);
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(2) for any ε > 0 there exists N(ε) ∈ N such that each X ∈ M contains an
ε-net consisting of at most N(ε) points (i.e., the sizes of the ε-nets of the
spaces from M are uniformly bounded).

The following criterion is well-known (Theorem 7.4.15 in [1]).

Proposition 2.3. A family M ⊂ M is precompact, if and only if it is uniformly

totally bounded.

3 A Geodesic Connecting Finite Metric Spaces

Let X and Y be two finite metric spaces, and R be an optimal correspondence
on them. Then dGH(X,Y ) = 1

2
disR, due to definitions.

Fix an arbitrary 0 ≤ α ≤ 1, and let β = 1− α. We put
∣

∣(x, y)(x′, y′)
∣

∣

α
= α|xx′|+ β|yy′|.

Evidently, the resulting function is positively defined and symmetric. Also, the
triangle inequality is valid:

∣

∣(x, y)(x′, y′)
∣

∣

α
+
∣

∣(x′, y′)(x′′, y′′)
∣

∣

α
= α|xx′|+ β|yy′|+ α|x′x′′|+ β|y′y′′| ≥

≥ α|xx′′|+ β|yy′′| =
∣

∣(x, y)(x′′, y′′)
∣

∣

α
.

Thus, | · |α is a metric on R for each 0 < α < 1, and | · |α is a semi-metric
for α = 0, 1. Notice that identifying the points on zero distance for the cases
α = 0, 1 we obtain metric spaces isometric to X and Y , respectively.

By Rx ⊂ X ×R and Ry ⊂ R× Y we denote the correspondences defined as
follows:

Rx =
{

(

x, (x, y)
)

: x ∈ X, (x, y) ∈ R
}

, Rx =
{

(

(x, y), y
)

: (x, y) ∈ R, y ∈ Y
}

.

Calculate the distortions of those correspondences. We obtain:

disRx = max

{

∣

∣

∣
|xx′| − α|xx′| − β|yy′|

∣

∣

∣
: x, x′ ∈ X, (x, y), (x′, y′) ∈ R

}

=

= βmax
{

∣

∣|xx′| − |yy′|
∣

∣ : (x, y), (x′, y′) ∈ R
}

= β disR.

Similarly, disRy = α disR.
Therefore, dGH(X,R) ≤ β dGH(X,Y ) and dGH(R, Y ) ≤ αdGH(X,Y ), and

hence, dGH(X,R) = β dGH(X,Y ), and dGH(R, Y ) = αdGH(X,Y ), i.e.,
(

R, |·|α
)

lies between X and Y for any α ∈ [0, 1]. In particular, the space
(

R, | · |1/2
)

is
a midpoint between X and Y .

Thus, the following result is proved.

Assertion 1. For any two finite metric spaces X and Y there exists a mid-

point between X and Y in M. Moreover, if d = dGH(X,Y ), then the mapping

g : [0, d] → M defined as g(t) =
(

R, | · |t/d
)

is a geodesic connecting X and Y .
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The midpoint between finite metric spaces constructed above by an opti-
mal correspondence R is referred as the canonical midpoint constructed by the

optimal correspondence R and is denoted by the same symbol R.

4 Proof of the Main Theorem

Now let X and Y be arbitrary compact metric spaces. For each n ∈ N by Xn

and Yn we denote some finite 1/n-nets in X and Y , respectively, and let Rn be
a canonical midpoint between Xn and Yn. Show that the set {Rn}n∈N ⊂ M is
precompact. Since Xn → X and Yn → Y , then, due to Proposition 2.3, there
exists a number D such that diamXn ≤ D and diamYn ≤ D for all n ∈ N, and
also for each ε > 0 there exists N(ε) > 0 such that each Xn and Yn contain
ε-nets X ′

n and Y ′

n consisting of at most N(ε) points.
Define a distance function on Xn × Yn using the same idea as in the case of

the correspondences Rn, namely, put

∣

∣(x, y), (x′, y′)
∣

∣ =
1

2

(

|xx′|+ |yy′|
)

.

It is clear that the restriction of this distance function onto Rn coincides with the
distance defined on Rn above as on the canonical midpoint. Besides, diamRn ≤
diam(Xn×Yn) ≤ D, hence the set {Rn} is uniformly bounded. At last, X ′

n×Y ′

n

is an ε-net in Xn×Yn consisting of at most N(ε)2 points. Therefore Rn contains
a (2ε)-net consisting of at most N(ε)2 points, due to Proposition 2.2. Thus,
the conditions of the Gromov precompact criterion (Proposition 2.3) are valid,
hence, the set {Rn} is precompact.

Without loss of generality, assume that the sequence Rn converges in M to
some compact metric space R. Continuity of the distance function implies that
R is a midpoint between X and Y . Thus, the following result is proved.

Assertion 2. For any two compact metric spaces, there exists a midpoint be-

tween them in M.

The following result is well-known (see Theorem 2.4.16 in [1]).

Proposition 4.1. Let X be a complete metric space. If for any two points a
and b from X there exists a midpoint between a and b, then X is a geodesic

metric space.

The completeness of M together with Proposition 4.1 implies the Main The-
orem.

Theorem 1. The Gromov–Hausdorff metric on the space M of compact metric

spaces considered up to an isometry is stricly intrinsic, i.e., the space M is

geodesic.
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