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Abstract

On modern computers, the performance of programs is of-
ten limited by memory latency rather than by processor
cycle time. To reduce the impact of memory latency, the
restructuring compiler community has developed locality-
enhancing program transformations, the most well-known of
which is loop tiling. Tiling is restricted to perfectly nested
loops, but many imperfectly nested loops can be trans-
formed into perfectly nested loops that can then be tiled.
Recently, we proposed an alternative approach to locality
enhancement called data shackling. Data shackling reasons
about data traversals rather than iteration space traversals,
and can be applied directly to imperfectly nested loops. We
have implemented shackling in the SGI MIPSPro compiler
which already has a sophisticated implementation of tiling.
Our experiments on the SGI Octane workstation with dense
numerical linear algebra programs show that shackled code
obtains double the performance of tiled code for most of
these programs, and obtains five times the performance of
tiled code for some versions of Cholesky factorization. Data
shackling has been integrated into the SGI MIPSPro com-
piler product-line.

1 Introduction

The performance of programs that touch large amounts of
data is often limited by the cost of memory accesses. To
reduce the impact of memory latency on program perfor-
mance, the compiler community has developed an arsenal
of locality-enhancement techniques that attempt to trans-
form high-level programs into programs that exhibit good
locality. A well-developed theory exists for perfectly nested
loops (loop nests in which all assignment statements are con-
tained in the innermost loop), and this theory recommends
the use of linear loop transformations like permutation, fol-
lowed by tiling [1,3,6,9,11,13]. Locality-enhancement for
imperfectly nested loops is less well-understood. Faced with
imperfectly nested loops, compilers like the SGI MIPSPro
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try to apply other transformations like jamming, distribu-
tion and statement sinking [2,12,13] to convert these loops
into perfectly nested loops if possible. However, there is no
systematic theory for guiding this conversion, and the qual-
ity of the final tiled code may depend critically on how the
conversion is done [7].

This approach to locality enhancement can be called
control-centric program transformation because it reasons
about the control structure (loop structure) of the program
and modifies this control structure directly to enhance lo-
cality. A different approach to locality enhancement called
data-shackling was proposed recently to address some of the
limitations of control-centric approaches [8]. Instead of rea-
soning about control structures of programs, data shackling
takes a data-centric approach by fixing an order of traversal
through the data structures of the program, and determining
which computations should be performed when a data item
is touched. Intuitively, the compiler determines a schedule
for the arrival of data at the highest level of the memory hi-
erarchy, determines what computations should be performed
when that data arrives, and generates the appropriate code.

While the data-centric compilation approach is intu-
itively appealing, it is not obvious that it must produce code
with better locality than a conventional control-centric ap-
proach. A practical implementation has to automate key
decisions (like the choice of block sizes) that were made
manually in the experimental implementation of shackling
described earlier [8]. Furthermore, locality enhancement is
just one of many phases in a modern compiler which typ-
ically contains phases for inner-loop parallelization, soft-
ware pipelining, instruction scheduling, register allocation
etc. Since the benefits of increased locality are illusory if
the transformed code is not felicitous for later phases of the
compiler, it remains to be shown that data-centric transfor-
mations are useful in the context of a production compiler.
Finally, it is interesting to compare the quality of compiler-
generated code with that of handwritten code for memory
hierarchies.

To address these concerns, we implemented data-
shackling in the SGI MIPSPro compiler for the Octane work-
station line. Existing modules in the SGI compiler were
used for down-stream phases like register-tiling and instruc-
tion scheduling. The MIPSPro compiler already had a very
sophisticated implementation of control-centric loop trans-
formations for locality enhancement including linear loop
transformations, tiling, loop jamming, statement sinking
and loop distribution [12]. These two implementations were
used to generate optimized code for the SGI Octane work-



station for dense numerical linear algebra codes, and the
performance of these two sets of compiler-generated pro-
grams was compared with that of hand-optimized LAPACK
codes for these applications. To make robust comparisons,
these experiments were performed with matrices of many
sizes; also, several versions of Cholesky and LU factoriza-
tions were used.

2 Experimental setup

The experiments were conducted on an unloaded Octane
workstation with an R10000 processor running at 195 MHz.
The R10000 can perform one load/store operation and two
floating point operations per cycle, giving it a theoretical
peak performance of 390 MFlops. The processor has 32
logical registers and 64 physical registers. The workstation
was equipped with separate first-level (L1) instruction and
data caches of size 32Kb each, and a second-level (L2) uni-
fied cache of size IMB. The L1 cache is non-blocking with a
miss penalty of 10 cycles, and it is organized as a 2-way set
associative cache with a line size of 32 bytes. The L2 cache
is also non-blocking with a miss penalty of 70 cycles, and it
is organized as a 2-way set associative cache with a line size
of 128 bytes. Therefore, the four highest levels of memory
hierarchy are the registers, the L1 and L2 caches and main
memory.

2.1 Implementation of control-centric transformations

The performance numbers reported in this paper for the
control-centric approach were obtained by using the unmod-
ified MIPSPro compiler, and therefore reflect performance
improvements from tiling for both levels of cache and from
register optimizations. Code was compiled with the flags
-03 -n32 -mips4.

In the MIPSPro compiler, tiling is applied to one Singly
Nested Loops (SNLs) at a time. A singly nested loop is a
generalization of a perfectly nested loop in which atomic
statements can appear at any nesting level; however, each
loop still contains at most one other loop. The MIPSPro
compiler tiles for both levels of cache, and also optimizes
register use by unroll-and-jam, and then performing scalar
replacement [12]. An important factor in the performance
of tiled code is the size of the tile. The MIPSPro compiler
uses heuristics for determining a good tile size for each loop
nest [12].

2.2 Implementation of Shackling

Experiments done at SGI have shown that tiling for both
levels of cache is usually not much better than tiling for the
L2 cache alone for large problem sizes. This is because the
miss penalty for the L1 cache is relatively small (10 cycles)
and can usually be masked by ALU operations executed
concurrently with servicing the miss. It is well-known that
optimizing register usage is critical for performance. There-
fore, shackling was implemented for the L2 cache only, and
existing compiler modules were used for optimizing register
usage.

The intuitive idea behind data-shackling is to make the
compiler orchestrate the movement of data directly rather
than indirectly as a result of loop transformations.

A data shackle is a three-part specification.

doI=1..0N
doJ=1..0N
doK=1..N
C[1,J] = C[I,J] + A[I,K] * B[K,J]

(a) Matriz multiplication

do bl =1 .. [(N/25)]
do b2 =1 .. [(N/25)]
doI=1..0N
doJ=1..0N
doXK=1..0N
if ((b1-1)*25 < I <= b1%25) &&
((b2-1)*25 < J <= b2%25)
c[1,J] = Cc[I,J] + A[I,K] * B[K,J]

(b) Naive code produced by shackling C

dot1 =1 .. [(N/25)]
do t2 = 1 .. [(N/25)]
do It = (t1-1)*25 +1 .. min(t1*25,N)
do Jt = (t2-1)*25 +1 .. min(t2*25,N)
do K=1..0N
C[It,Jt] = C[It,Jt] + A[It,K] * B[K,Jt]

(c) Simplified code produced by IP tool
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Figure 1: Code produced by shackling C in matrix-multiply

e One of the arrays in the program is divided into blocks
using sets of parallel, equally spaced cutting planes.

e An order for visiting the blocks of data is determined.

e One reference to the array is selected for each statement
in the program. This reference is called the data-centric
reference for that statement.

Intuitively, the data shackle specifies an order in which
blocks of the array are touched, and the data-centric refer-
ence is used to determine which instances of each statement
are performed when a block of the array is touched — code
is generated to perform all instances of that statement for
which the data-centric reference touches data within the cur-
rent block.

We illustrate this with matrix multiplication, assumed
to be written in the usual I,J,K order of loops. One
data shackle is obtained by dividing C into 2-dimensional
blocks using horizontal and vertical sets of cutting planes.
These blocks are visited in left-to-right, top-to-bottom or-
der. C(I,J) is the only reference to this array in the as-
signment statement, and it is chosen to be the data-centric
reference for that statement.

Figure 1(a) shows naive code generated by using this
data shackle. There are two outermost loops which enu-
merate over the blocks of C. For each block, the entire input



program is examined “looking for work to do”. For the spec-
ified data shackle, this means that statement instances that
write into the current block of C must be executed. This can
be accomplished by inserting a suitable guard in front of the
assignment statement, as shown in Figure 1(a). This code is
shown only to illustrate the high-level idea of a data-shackle.
Standard integer linear programming tools can be used to
produce the optimized code shown in Figure 1(b).

Within the context of a single block, iterations are done
in the same order as in the original code (these are called
intra-block iterations), but in the program as a whole, the or-
der in which iterations are performed is different from their
order in the source program. Therefore, shackling is not
always legal. It is straight-forward to reduce the question
of legality of a given shackle to the problem of determin-
ing whether an integer point is contained within a union of
certain convex polyhedra [8], a problem which can be solved
using standard technology already implemented in the MIP-
SPro compiler.

This shackle by itself does not produce the standard
blocked matrix multiply in the literature. Shackling the
C(I,J) reference causes the I and J loop indices to be con-
strained, for a given block of C, but the K index is not
constrained in any way. This results in poor locality for
the A(I,K) and B(X,J) references. This problem can be ad-
dressed by composing shackles. Intuitively, composition of
shackles is the data-centric equivalent of nested loops. A
single shackle specifies how the initial set of iterations is
partitioned into groups, and specifies an order in which the
groups of iterations are performed. However, there is no
specification of how the iterations within a given group are
to be performed. A second shackle can be used to refine
each of these groups of iterations into finer ordered parti-
tions. The second shackle is a refinement of the initial par-
tition - if two iterations have already been ordered by the
first (“outer”) shackle, they are not reordered by the second
(“inner”) shackle. However, iterations assigned to the same
group by the first shackle may be put into different ordered
partitions. At the finest level of refinement, iterations as-
signed to a given composite block are performed in source
program order. For matrix multiplication, we could block
the A array, and choose the reference to A in the code as
the data-centric reference. Composing these shackles gives
us the same code as the standard blocked code for matrix
multiplication.

For this example, the code produced by shackling is the
same as the code produced by tiling. The appealing feature
of the data-centric approach is that it makes no distinc-
tion between programs that are perfectly nested and pro-
gram that are imperfectly nested, which is advantageous for
programs like Cholesky factorization that have imperfectly
nested loops that are not SNL’s, as we show later in this
paper.

2.2.1 Design decisions in implementing shackling

Implementing shackling in a production compiler raises the
following questions.

1. Which is the scope of a data shackle?

What is the orientation of the cutting planes?

How are data-centric references chosen?

What is the separation of cutting planes (block sizes)?
What is the order of traversal of blocks?

What is the intra-block iteration order?
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One approach to answering these questions is to treat
them as classical optimization problems, and try to find
optimal solutions given an accurate memory model. This
approach is unlikely to be practical for use in a production
compiler where speed of compilation is an important con-
sideration. Therefore, the following simple heuristics have
been developed to solve these problems.

1. In principle, shackling can be applied across multi-
ple imperfectly nested loops and even across proce-
dure boundaries by finding inter-procedural “program
slices” [10] for the array blocks. To avoid complicat-
ing the implementation, the scope of transformation
is restricted to a single imperfectly nested loop at a
time. This is adequate for dense numerical linear alge-
bra codes.

2. Cutting plane orientations are always parallel to the
array co-ordinate axes. The use of skewed blocks often
leads to inner loops with variable trip counts which is
harmful for software pipelining.

3. Preference is given to data-centric references for which
the access matrix [14] has the highest rank among
all the references in that statement. In the presence
of multiple references with highest rank, preference is
given to a reference on the left hand side of the assign-
ment statement, but otherwise the choice is arbitrary.
Shackles are composed until no further benefit results
from shackling [8]. For instance, in the matrix multiply
example, it is recognized that after shackling C[I,J]
and one of the other two references (say ALI,K]), fur-
ther shackling does not have any benefit.

4. A key parameter for performance is block size. The
model we use is based on the assumption that a cache
has an effective size, such that if the amount of data in
a cache is smaller than its effective size, conflict misses
are relatively unimportant. The number of cache lines
touched by the shackled code (called its footprint) is
estimated as follows.

(i) Statements that are most deeply nested in the im-
perfectly nested loop are determined, and in each such
statement, references whose data access matrix has
highest row-rank are identified. For matrix multipli-
cation, we would select the references C(i,j), A(i,k)
and B(k,j). In Cholesky factorization, we would select
A(i,j), A(i,k) and A(j,k) from the update step (see
Figure 3). If A(k,k) appeared in the update step, it
would not be chosen because the row rank of the data
access matrix of this reference is just 1.

(i) For each statement considered in the previous
step, selected references are partitioned into equiva-
lence classes — two references are in the same equiv-
alence class if they refer to the same array and their
data access matrices have the same linear part (but
possibly different affine parts). For example, A(i+1,3)
and A(i,j) would be assigned to the same equivalence
class, but B(i,j) would be placed in a different class.
The assumption is that references in the same equiva-
lence class will enjoy perfect group reuse.

(iii) Equivalence classes from two different statements
are then merged if (a) they refer to the same array,
(b) the linear parts of the data access matrices are the
same, and (c) the same data-centric reference is chosen
for both the statements. The assumption is that under
data-centric scheduling, instances of these statements
that reference the same data will be scheduled close



together so that they enjoy perfect group reuse.

(iv) The last step computes a footprint for each equiva-
lence class for a single instance of a composite shackle.
The current implementation uses square blocks and
uses the same block size for all arrays. The number of
distinct cache lines touched by a single equivalence class
of references can be reduced using standard techniques
to the problem of counting the number of integer solu-
tions within a parameterized convex polyhedron. This
number is estimated currently using the bounding box
for the polyhedron, but more sophisticated solutions
using Erhart polynomials are also possible [4]. The
contributions from each equivalence class are added to-
gether and the maximum value of the block size for
which the sum is less than the effective cache size of
the L2 cache is computed.

5. The blocks of an array are visited in lexicographic or-

der of the block co-ordinates. For example, for a two-
dimensional array, the blocks are visited from left to
right, and within a given block column, from top to
bottom. If this order is not legal, reversals of the hor-
izontal and vertical orders of traversal are tried. The
analog of this reversal in the control-centric framework
is loop reversal. If no legal traversal order is found, the
loop nest is not shackled.
The legality test is performed after block sizes have
been determined, so nonlinear equations do not arise
in this implementation. A potential drawback is that
a shackle that is illegal for one choice of block size may
be legal if a different block size is used. However, this
appears to be unimportant in practice.

6. Statement instances that are not explicitly ordered by
the shackles are performed in program order.

3 Basic Linear Algebra Subroutines

The core routines in dense numerical linear algebra are the
Basic Linear Algebra Subroutines (BLAS). They can be clas-
sified as follows:

1. BLAS-3: routines for computing matrix multiplications
(DGEMM)

2. BLAS-2: routines for computing matrix vector product
(DGEMV).

3. BLAS-1: routines for computing the inner-product of
two vectors (DDOT), and for scaling a vector and
adding it to another vector (DAXPY).

Figure 2 shows the performance of hand-coded BLAS
routines that are provided by SGI for Octane workstations'.
For comparison, the performance of restructured codes gen-
erated by the SGI MIPSPro compiler from standard high-
level FORTRAN programs for the BLAS is shown in the
same figure (all loops are perfectly nested in these programs,
and there is no difference between the shackled and tiled
codes).

In matrix-multiplication, O(n3) operations are per-
formed on O(n?) data, so there is excellent reuse of
data. The hand-coded DGEMM routine obtains 300MFlops.
Tiling does well as expected since the loop nest is per-
fectly nested, and obtains 240 MFlops. The small perfor-
mance difference is due to differences in block size choices
and unrolling factors. For matrix-vector product, only vec-
tor elements are reused, but spatial locality can be ex-

1 They were implemented by Mimi Celes at SGI.
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Figure 2: Performance of hand-coded and compiled BLAS
routines

ploited in accessing matrix elements. Both the hand-written
and compiler-generated BLAS-2 codes obtain roughly 100
MFlops for large problem sizes. Finally, inner-product and
scaling of vectors has no reuse and the programs exhibit poor
spatial locality if the vectors are not contiguous in memory.
Both versions of DDOT and DAXPY perform at roughly 10
Mflops.

We conclude that compiler restructuring produces code
competitive with handwritten code for the BLAS routines.

4 Cholesky factorization

Cholesky factorization is used to solve systems of equations
of the form Ax = b, where A is a symmetric positive-definite
matrix, by factorizing A into the product LLT where L is
lower-triangular, and solving the two resulting triangular
systems. On the Octane, the LAPACK code runs at 260
MFlops for matrix sizes between 400 to 1200.

Like matrix multiplication, Cholesky factorization has
three nested loops, but these loops are imperfectly nested.
All six permutations of these three loops are legal and one of
these permutations comes into two versions, giving a total of
seven versions of the Cholesky program. Figures 3— 8 show
pseudo-code for these versions. Figures 3(c)— 8(c) compare
the performance of shackled and tiled codes for these ver-
sions of Cholesky factorization (in each of these figures, the
bar on the left for each matrix size shows the performance
of shackled code, while the bar on the right show the per-
formance of tiled code). Ideally, a restructuring compiler
would be able to generate the best code for Cholesky factor-
ization from any of these versions of Cholesky factorization,
just as many state-of-the-art restructuring compilers do not
care which one of the six permutations of matrix multipli-
cation is given as input. However, the theory of imperfectly
nested loop transformations is not as well developed as the
theory for perfectly nested loops. As we show below, the per-
formance of code generated by the control-centric approach
depends quite critically on which version of Cholesky is given
as input. In principle, the data-centric approach does not
care which version of Cholesky is given to it. However, since
our implementation of the data-centric approach performs
intra-block computations in the same order as in the in-



put program, the performance of the shackled code does
depend on which version is given as input although as we
show below, the variation is less than it is for control-centric
transformations.

The shackled code produced by the compiler was gener-
ated by composing two shackles. In both shackles, the array
was divided into rectangular blocks (the compiler heuris-
tic chose 70x70 blocks), and these blocks were visited in
left-to-right, top-to-bottom order. In the outer shackle, the
compiler chose the left-hand side reference from each assign-
ment statement for shackling, while in the inner shackle,
the compiler selected a reference from the right-hand side
of each statement: a(k,k) for the square root statement,
and a(i,k) for the scale and update statements. The same
shackle was used for all other versions of Cholesky factor-
ization as well.

Figures 3 and 4 show the performance of the kij versions
of Cholesky factorization. The lower triangular portion of
matrix a does not fit into the L2 cache when the matrix
size exceeds 500, so the tiled code exhibits increasing miss
ratios after this point. The fused version is an SNL, the loop
structure for which the SGI compiler’s locality enhancement
techniques are targeted. Figures 3(b) and 4(b) show the
effect of varying the block size in the shackled code. It can
be seen the optimal block size is roughly 30 x 30 rather
than the 70 x 70 chosen by the heuristic. With this block
size, the performance of the shackled code is boosted to 240
Mflops which is very close to LAPACK performance. For the
SNL in Figure 4, the SGI compiler’s techniques are actually
more effective than shackling in reducing L2 cache misses,
although the miss ratios are very small in either case (the y-
axis scales in Figures 3(d) and 4(d) are different). However,
register tiling appears to interact better with the shackled
code, permitting the shackled version to obtain much better
overall performance. This shows the importance of register
tiling for obtaining good performance, a point made by Carr
and Kennedy earlier [2].

The kij versions update the right lower-triangular portion
of the matrix row-by-row. Permuting the two update loops
gives the kji version shown in Figure 5 that performs this
update column-by-column. This version is not an SNL, so
tiling is not effective. Fusing the scale loop with the outer
update loop is illegal. The only way to get an SNL is to
interchange the two update loops and then fuse the new
outer update loop with the scale loop, generating the code
of Figure 4, but this is too complicated for the MIPSPro
compiler’s imperfectly nested loop transformation heuristics
to reason about. The performance of the baseline code (no
cache or register tiling) is modestly better than that of the
baseline kij versions because of better spatial locality in the
update loops. This also explains why the shackled code
performs a little better than the shackled code from the kij
version.

Right-looking Cholesky factorization performs updates
eagerly in the sense that the columns to the right of the
current column are updated as soon as that column is com-
puted. An alternative is to perform the updates lazily, which
means that a column is updated only when it becomes cur-
rent. This leads to the left-looking column Cholesky factor-
ization code (also called the jik version) shown in Figure 6.
This loop nest is not an SNL, but the computational work
in the update loops is essentially a matrix-vector product
which is performed by the MIPSPro compiler by accumulat-
ing the updates to a(i, j) in a register. The performance of
the shackled version drops dramatically because of conflict

misses when the array size is around 960. Since shackling
reduces capacity misses only, it is of little benefit at this
point as can be seen in Figure 6(c). Figure 6(b) shows that
choosing the block size adaptively to reduce conflict misses
is one solution, but our current implementation does not do
that.

In the jik version, all the updates to an element of the
current column are performed before succeeding elements
are updated. Permuting the i and k loops gives the jki ver-
sion. The MIPSPro compiler interchanges the update loops
back to the jik version, so the performance of the baseline
and tiled versions is identical to the performance of the jik
versions. There is no difference in the performance of the
shackled code either, so we do not show the graphs for this
version of Cholesky.

Finally, there are two versions of Cholesky factorization
called the 45k and 4kj versions that process the matrix by row
rather than by column. The ijk version performs inner-
products, so it is also known as ddot Cholesky while the
ikj version is rich in daxpy operations. Figure 7(c) shows
that while the shackled code outperforms the tiled code,
it is unable to exploit register tiling, so it performs poorly
compared to the LAPACK code. The shackled code for
the ikj version performs better, but it too exploits register
tiling to a limited extent. Improving the performance of
the ikj and ijk versions requires closer examination of the
interaction of shackling with register tiling.

5 LU factorization

LU factorization is used to solve general systems of equations
of the form Ax = b by factoring A into the product LU where
L is a lower-triangular matrix and U is upper-triangular. Par-
tial pivoting is used to increase the numerical stability of the
procedure.

Figure 9 compares the performance of shackling and
tiling for LU factorization with pivoting. The entire loop
nest is not an SNL, and therefore cannot be tiled. However,
the update loop nest can be tiled, and this has a small benefit
because it permits spatial locality to be exploited.

Shackling the entire factorization code raises several in-
teresting issues. Note the usage of scalar variables in the
program - any shackling must ensure that dependences be-
tween scalar variables are preserved as well. In addition, the
LU factorization code also involves conditionals with non-
affine tests, so shackling must handle these as well.

Due to space constraints, only the highlights of how these
issues are addressed (details can be found in [7]). If a state-
ment defines a scalar variable that is used by another state-
ment, the implementation tries to assign the same data-
centric reference for both statements. If this is not legal,
scalar erpansion is performed to ensure that the flow de-
pendence is respected. Scalar expansion is also necessary
if different statements nested inside a non-affine conditional
have different shackling references. In our implementation,
scalar expansion was performed by using existing modules
in the SGI MIPSPro compiler.

Using simple data-flow analysis, it can be determined au-
tomatically for the LU factorization code in Figure 9 that
the scalar m needs to be expanded. The data shackle chosen
by the compiler divides array A into block columns with
block sizes ranging from 10 to 25 depending on the size
of the problem. For the scale and update statements, the
shackling references are chosen to be a(i,k) and a(j,1) re-



spectively. For the three statements implementing the row
permutations, the shackling references are a(k,j), a(k,j)
and a(ipvt(k),j) respectively, and for all the other state-
ments, the shackling reference is a(i,k). In this particular
example, the expansion of m can be completely free, since
ipvt (k) represents precisely a scalar expanded m; however
this analysis is not currently implemented.

While the performance of the shackled code beats the
performance of the tiled code, it is still slower than the
LAPACK version which obtains about 200 MFlops on the
Octane. This is because the LAPACK code uses domain-
specific information about the commutativity of permuta-
tions and row-updates; this permits it in essence to use two-
dimensional blocks rather than block columns, which results
in better code. An interesting open question is how to write
LU factorization with partial pivoting so that a compiler can
determine this information automatically.

6 QR factorization

QR factorization performs orthogonal factorization of a ma-
trix A into the product QR where Q is an orthonormal matrix
and R is upper triangular. It is a key kernel in eigenvalue
calculations. Figure 10 compares the performance of shack-
ling and tiling on QR factorization using Householder re-
flections. As in the case of LU factorization with partial
pivoting, the array A is partitioned into block columns be-
cause a two-dimensional blocking is not legal. QR is similar
to LU factorization except that in this case, array ezpansion
of the vector x is required for legality. The necessary array
expansion has not yet been implemented, so we modified the
standard code for QR factorization to perform array expan-
sion. Figure 10 shows this program. The need to expand x
raises an important profitability question - scalar expansion
is usually quite cheap, however expanding x creates an ar-
ray as large as A in this case. Although shackling once again
outperforms tiling, the performance of the shackled code is
a factor of 2 worse than that of the LAPACK code which
obtains roughly 225 MFlops on this code. The LAPACK
code uses domain-specific information about the associativ-
ity of matrix products to improve efficiency. It is conceivable
that a compiler could exploit this information too if the in-
put program were written in a language like MATLAB or
FORTRAN-90 in which array operations are primitives.

7 Conclusions and Future Work

The experiments reported in this paper have demonstrated
the effectiveness of shackling for improving locality of nu-
merical codes, and have shown the utility of data-centric
transformations in a production compiler. Shackled code ob-
tains double the performance of tiled code for most of these
programs, and obtains five times the performance of tiled
code for some versions of Cholesky factorization. Shack-
ling has been incorporated into the SGI MIPSPro compiler
product-line as of January 1999.

There are a number of areas where more work is needed.
First, the block size heuristic we have implemented clearly
over-estimates block sizes, and must be improved. Second,
conflict misses cause dramatic drops in performance for some
matrix sizes. Choosing block sizes adaptively may be one
solution. Coleman and McKinley have studied this prob-
lem in the context of tiling [5], and their techniques may
be applicable here. Third, the interactions between cache

locality-enhancement and register tiling need to be under-
stood better. Miss ratios alone do not give a complete pic-
ture of performance since the effectiveness of register tiling
is often an equally important determinant of performance
(see Figure 4). Finally, for LU and QR factorizations, the
lack of domain-specific information prevents the compiler
from restructuring code along the lines of the LAPACK li-
brary. Coding in an array language might address some of
these problems but this remains to be investigated. User
directives are another option, but it is unclear what these
directives should be or how they might be exploited by the
compiler.
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Figure 3: Cholesky Factorization: kij version (distributed)



do k = 1, NMAX
a(k,k) = dsqrt (a(k,k))
do i = k+1, NMAX
a(i,k) = a(i,k) / a(k,k)
do j = k+1, i
a(i,j) -= a(i,k) * a(j,k)
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Figure 4: Cholesky Factorization: kij version (fused)

do k = 1, NMAX
a(k,k) = dsqrt (a(k,k))
do i = k+1, NMAX
a(i,k) = a(i,k) / a(k,k)
do j = k+1, NMAX
do i = j, NMAX
a(i,j) -= a(i,k) * a(j,k)
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do i =1, NMAX
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1, NMAX
=1, i-1
a(i,k) = a(i,k) / a(k,k)
do j = k+1, i

a(i,j) -= a(i,k) * a(j,k)
a(i,i) = dsqrt (a(i,i))
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doi=1,n
norm = 0
do j=1i, n

norm = norm + A(j,i) * A(j,1i)
norm2 = dsqrt (norm)
asqr = A(i,i) * A(i,i)
A(i,i) =
dsqrt (norm-asqr+((A(i,i)-norm2)?))
do j = i+l, n
A(j,1) = A(,1) / AGE,D)
do j = i+l, n
x(j,i) =0
do k=i, n
x(j,i) += A(k,i) * A(k,j)
do j = i+l, n
do k = i+l, n
A(k,j) = A(k,j) - A(k,i) * x(j,1)
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Figure 10: QR Factorization using Householder reflections



