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Abstract

On modern computers� the performance of programs is of�
ten limited by memory latency rather than by processor
cycle time� To reduce the impact of memory latency� the
restructuring compiler community has developed locality�
enhancing program transformations� the most well�known of
which is loop tiling� Tiling is restricted to perfectly nested
loops� but many imperfectly nested loops can be trans�
formed into perfectly nested loops that can then be tiled�
Recently� we proposed an alternative approach to locality
enhancement called data shackling� Data shackling reasons
about data traversals rather than iteration space traversals�
and can be applied directly to imperfectly nested loops� We
have implemented shackling in the SGI MIPSPro compiler
which already has a sophisticated implementation of tiling�
Our experiments on the SGI Octane workstation with dense
numerical linear algebra programs show that shackled code
obtains double the performance of tiled code for most of
these programs� and obtains �ve times the performance of
tiled code for some versions of Cholesky factorization� Data
shackling has been integrated into the SGI MIPSPro com�
piler product�line�

� Introduction

The performance of programs that touch large amounts of
data is often limited by the cost of memory accesses� To
reduce the impact of memory latency on program perfor�
mance� the compiler community has developed an arsenal
of locality�enhancement techniques that attempt to trans�
form high�level programs into programs that exhibit good
locality� A well�developed theory exists for perfectly nested
loops �loop nests in which all assignment statements are con�
tained in the innermost loop�� and this theory recommends
the use of linear loop transformations like permutation� fol�
lowed by tiling ��� �� 	� 
� ��� ���� Locality�enhancement for
imperfectly nested loops is less well�understood� Faced with
imperfectly nested loops� compilers like the SGI MIPSPro
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try to apply other transformations like jamming� distribu�
tion and statement sinking ��� ��� ��� to convert these loops
into perfectly nested loops if possible� However� there is no
systematic theory for guiding this conversion� and the qual�
ity of the �nal tiled code may depend critically on how the
conversion is done �
��

This approach to locality enhancement can be called
control�centric program transformation because it reasons
about the control structure �loop structure� of the program
and modi�es this control structure directly to enhance lo�
cality� A di�erent approach to locality enhancement called
data�shackling was proposed recently to address some of the
limitations of control�centric approaches ���� Instead of rea�
soning about control structures of programs� data shackling
takes a data�centric approach by �xing an order of traversal
through the data structures of the program� and determining
which computations should be performed when a data item
is touched� Intuitively� the compiler determines a schedule
for the arrival of data at the highest level of the memory hi�
erarchy� determines what computations should be performed
when that data arrives� and generates the appropriate code�

While the data�centric compilation approach is intu�
itively appealing� it is not obvious that it must produce code
with better locality than a conventional control�centric ap�
proach� A practical implementation has to automate key
decisions �like the choice of block sizes� that were made
manually in the experimental implementation of shackling
described earlier ���� Furthermore� locality enhancement is
just one of many phases in a modern compiler which typ�
ically contains phases for inner�loop parallelization� soft�
ware pipelining� instruction scheduling� register allocation
etc� Since the bene�ts of increased locality are illusory if
the transformed code is not felicitous for later phases of the
compiler� it remains to be shown that data�centric transfor�
mations are useful in the context of a production compiler�
Finally� it is interesting to compare the quality of compiler�
generated code with that of handwritten code for memory
hierarchies�

To address these concerns� we implemented data�
shackling in the SGI MIPSPro compiler for the Octane work�
station line� Existing modules in the SGI compiler were
used for down�stream phases like register�tiling and instruc�
tion scheduling� The MIPSPro compiler already had a very
sophisticated implementation of control�centric loop trans�
formations for locality enhancement including linear loop
transformations� tiling� loop jamming� statement sinking
and loop distribution ����� These two implementations were
used to generate optimized code for the SGI Octane work�



station for dense numerical linear algebra codes� and the
performance of these two sets of compiler�generated pro�
grams was compared with that of hand�optimized LAPACK
codes for these applications� To make robust comparisons�
these experiments were performed with matrices of many
sizes� also� several versions of Cholesky and LU factoriza�
tions were used�

� Experimental setup

The experiments were conducted on an unloaded Octane
workstation with an R����� processor running at �
� MHz�
The R����� can perform one load�store operation and two
�oating point operations per cycle� giving it a theoretical
peak performance of �
� MFlops� The processor has ��
logical registers and 	� physical registers� The workstation
was equipped with separate �rst�level �L�� instruction and
data caches of size ��Kb each� and a second�level �L�� uni�
�ed cache of size �MB� The L� cache is non�blocking with a
miss penalty of �� cycles� and it is organized as a ��way set
associative cache with a line size of �� bytes� The L� cache
is also non�blocking with a miss penalty of 
� cycles� and it
is organized as a ��way set associative cache with a line size
of ��� bytes� Therefore� the four highest levels of memory
hierarchy are the registers� the L� and L� caches and main
memory�

��� Implementation of control�centric transformations

The performance numbers reported in this paper for the
control�centric approach were obtained by using the unmod�
i�ed MIPSPro compiler� and therefore re�ect performance
improvements from tiling for both levels of cache and from
register optimizations� Code was compiled with the �ags
�O� �n�� �mips��

In the MIPSPro compiler� tiling is applied to one Singly
Nested Loops �SNLs� at a time� A singly nested loop is a
generalization of a perfectly nested loop in which atomic
statements can appear at any nesting level� however� each
loop still contains at most one other loop� The MIPSPro
compiler tiles for both levels of cache� and also optimizes
register use by unroll�and�jam� and then performing scalar
replacement ����� An important factor in the performance
of tiled code is the size of the tile� The MIPSPro compiler
uses heuristics for determining a good tile size for each loop
nest �����

��� Implementation of Shackling

Experiments done at SGI have shown that tiling for both
levels of cache is usually not much better than tiling for the
L� cache alone for large problem sizes� This is because the
miss penalty for the L� cache is relatively small ��� cycles�
and can usually be masked by ALU operations executed
concurrently with servicing the miss� It is well�known that
optimizing register usage is critical for performance� There�
fore� shackling was implemented for the L� cache only� and
existing compiler modules were used for optimizing register
usage�

The intuitive idea behind data�shackling is to make the
compiler orchestrate the movement of data directly rather
than indirectly as a result of loop transformations�

A data shackle is a three�part speci�cation�

do I � � �� N
do J � � �� N
do K � � �� N

C�I�J� � C�I�J� � A�I�K� � B�K�J�

�a� Matrix multiplication

do b� � � �� d�N����e
do b� � � �� d�N����e
do I � � �� N
do J � � �� N
do K � � �� N
if 		b�
����� 
 I 
� b����� ��

		b�
����� 
 J 
� b�����
C�I�J� � C�I�J� � A�I�K� � B�K�J�

�b� Naive code produced by shackling C

do t� � � �� d�N����e
do t� � � �� d�N����e
do It � 	t�
����� �� �� min	t�����N�
do Jt � 	t�
����� �� �� min	t�����N�
do K � � �� N
C�It�Jt� � C�It�Jt� � A�It�K� � B�K�Jt�

�c� Simpli�ed code produced by IP tool

A

B
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K

K

Figure �� Code produced by shackling C in matrix�multiply

� One of the arrays in the program is divided into blocks
using sets of parallel� equally spaced cutting planes�

� An order for visiting the blocks of data is determined�
� One reference to the array is selected for each statement
in the program� This reference is called the data�centric
reference for that statement�

Intuitively� the data shackle speci�es an order in which
blocks of the array are touched� and the data�centric refer�
ence is used to determine which instances of each statement
are performed when a block of the array is touched � code
is generated to perform all instances of that statement for
which the data�centric reference touches data within the cur�
rent block�

We illustrate this with matrix multiplication� assumed
to be written in the usual I�J�K order of loops� One
data shackle is obtained by dividing C into ��dimensional
blocks using horizontal and vertical sets of cutting planes�
These blocks are visited in left�to�right� top�to�bottom or�
der� C�I�J� is the only reference to this array in the as�
signment statement� and it is chosen to be the data�centric
reference for that statement�

Figure ��a� shows naive code generated by using this
data shackle� There are two outermost loops which enu�
merate over the blocks of C� For each block� the entire input



program is examined �looking for work to do�� For the spec�
i�ed data shackle� this means that statement instances that
write into the current block of C must be executed� This can
be accomplished by inserting a suitable guard in front of the
assignment statement� as shown in Figure ��a�� This code is
shown only to illustrate the high�level idea of a data�shackle�
Standard integer linear programming tools can be used to
produce the optimized code shown in Figure ��b��

Within the context of a single block� iterations are done
in the same order as in the original code �these are called
intra�block iterations�� but in the program as a whole� the or�
der in which iterations are performed is di�erent from their
order in the source program� Therefore� shackling is not
always legal� It is straight�forward to reduce the question
of legality of a given shackle to the problem of determin�
ing whether an integer point is contained within a union of
certain convex polyhedra ���� a problem which can be solved
using standard technology already implemented in the MIP�
SPro compiler�

This shackle by itself does not produce the standard
blocked matrix multiply in the literature� Shackling the
C�I�J� reference causes the I and J loop indices to be con�
strained� for a given block of C� but the K index is not
constrained in any way� This results in poor locality for
the A�I�K� and B�K�J� references� This problem can be ad�
dressed by composing shackles� Intuitively� composition of
shackles is the data�centric equivalent of nested loops� A
single shackle speci�es how the initial set of iterations is
partitioned into groups� and speci�es an order in which the
groups of iterations are performed� However� there is no
speci�cation of how the iterations within a given group are
to be performed� A second shackle can be used to re�ne
each of these groups of iterations into �ner ordered parti�
tions� The second shackle is a re�nement of the initial par�
tition � if two iterations have already been ordered by the
�rst ��outer�� shackle� they are not reordered by the second
��inner�� shackle� However� iterations assigned to the same
group by the �rst shackle may be put into di�erent ordered
partitions� At the �nest level of re�nement� iterations as�
signed to a given composite block are performed in source
program order� For matrix multiplication� we could block
the A array� and choose the reference to A in the code as
the data�centric reference� Composing these shackles gives
us the same code as the standard blocked code for matrix
multiplication�

For this example� the code produced by shackling is the
same as the code produced by tiling� The appealing feature
of the data�centric approach is that it makes no distinc�
tion between programs that are perfectly nested and pro�
gram that are imperfectly nested� which is advantageous for
programs like Cholesky factorization that have imperfectly
nested loops that are not SNL�s� as we show later in this
paper�

����� Design decisions in implementing shackling

Implementing shackling in a production compiler raises the
following questions�

�� Which is the scope of a data shackle�
�� What is the orientation of the cutting planes�
�� How are data�centric references chosen�
�� What is the separation of cutting planes �block sizes��
�� What is the order of traversal of blocks�
	� What is the intra�block iteration order�

One approach to answering these questions is to treat
them as classical optimization problems� and try to �nd
optimal solutions given an accurate memory model� This
approach is unlikely to be practical for use in a production
compiler where speed of compilation is an important con�
sideration� Therefore� the following simple heuristics have
been developed to solve these problems�

�� In principle� shackling can be applied across multi�
ple imperfectly nested loops and even across proce�
dure boundaries by �nding inter�procedural �program
slices� ���� for the array blocks� To avoid complicat�
ing the implementation� the scope of transformation
is restricted to a single imperfectly nested loop at a
time� This is adequate for dense numerical linear alge�
bra codes�

�� Cutting plane orientations are always parallel to the
array co�ordinate axes� The use of skewed blocks often
leads to inner loops with variable trip counts which is
harmful for software pipelining�

�� Preference is given to data�centric references for which
the access matrix ���� has the highest rank among
all the references in that statement� In the presence
of multiple references with highest rank� preference is
given to a reference on the left hand side of the assign�
ment statement� but otherwise the choice is arbitrary�
Shackles are composed until no further bene�t results
from shackling ���� For instance� in the matrix multiply
example� it is recognized that after shackling C�I�J�
and one of the other two references �say A�I�K��� fur�
ther shackling does not have any bene�t�

�� A key parameter for performance is block size� The
model we use is based on the assumption that a cache
has an e�ective size� such that if the amount of data in
a cache is smaller than its e�ective size� con�ict misses
are relatively unimportant� The number of cache lines
touched by the shackled code �called its footprint� is
estimated as follows�
�i� Statements that are most deeply nested in the im�
perfectly nested loop are determined� and in each such
statement� references whose data access matrix has
highest row�rank are identi�ed� For matrix multipli�
cation� we would select the references C�i�j�� A�i�k�
and B�k�j�� In Cholesky factorization� we would select
A�i�j�� A�i�k� and A�j�k� from the update step �see
Figure ��� If A�k�k� appeared in the update step� it
would not be chosen because the row rank of the data
access matrix of this reference is just ��
�ii� For each statement considered in the previous
step� selected references are partitioned into equiva�
lence classes � two references are in the same equiv�
alence class if they refer to the same array and their
data access matrices have the same linear part �but
possibly di�erent a�ne parts�� For example� A�i���j�
and A�i�j� would be assigned to the same equivalence
class� but B�i�j� would be placed in a di�erent class�
The assumption is that references in the same equiva�
lence class will enjoy perfect group reuse�
�iii� Equivalence classes from two di�erent statements
are then merged if �a� they refer to the same array�
�b� the linear parts of the data access matrices are the
same� and �c� the same data�centric reference is chosen
for both the statements� The assumption is that under
data�centric scheduling� instances of these statements
that reference the same data will be scheduled close



together so that they enjoy perfect group reuse�
�iv� The last step computes a footprint for each equiva�
lence class for a single instance of a composite shackle�
The current implementation uses square blocks and
uses the same block size for all arrays� The number of
distinct cache lines touched by a single equivalence class
of references can be reduced using standard techniques
to the problem of counting the number of integer solu�
tions within a parameterized convex polyhedron� This
number is estimated currently using the bounding box
for the polyhedron� but more sophisticated solutions
using Erhart polynomials are also possible ���� The
contributions from each equivalence class are added to�
gether and the maximum value of the block size for
which the sum is less than the e�ective cache size of
the L� cache is computed�

�� The blocks of an array are visited in lexicographic or�
der of the block co�ordinates� For example� for a two�
dimensional array� the blocks are visited from left to
right� and within a given block column� from top to
bottom� If this order is not legal� reversals of the hor�
izontal and vertical orders of traversal are tried� The
analog of this reversal in the control�centric framework
is loop reversal� If no legal traversal order is found� the
loop nest is not shackled�
The legality test is performed after block sizes have
been determined� so nonlinear equations do not arise
in this implementation� A potential drawback is that
a shackle that is illegal for one choice of block size may
be legal if a di�erent block size is used� However� this
appears to be unimportant in practice�

	� Statement instances that are not explicitly ordered by
the shackles are performed in program order�

� Basic Linear Algebra Subroutines

The core routines in dense numerical linear algebra are the
Basic Linear Algebra Subroutines �BLAS�� They can be clas�
si�ed as follows�

�� BLAS��� routines for computing matrix multiplications
�DGEMM�

�� BLAS��� routines for computing matrix vector product
�DGEMV��

�� BLAS��� routines for computing the inner�product of
two vectors �DDOT�� and for scaling a vector and
adding it to another vector �DAXPY��

Figure � shows the performance of hand�coded BLAS
routines that are provided by SGI for Octane workstations��
For comparison� the performance of restructured codes gen�
erated by the SGI MIPSPro compiler from standard high�
level FORTRAN programs for the BLAS is shown in the
same �gure �all loops are perfectly nested in these programs�
and there is no di�erence between the shackled and tiled
codes��

In matrix�multiplication� O�n�� operations are per�
formed on O�n�� data� so there is excellent reuse of
data� The hand�coded DGEMM routine obtains ���MFlops�
Tiling does well as expected since the loop nest is per�
fectly nested� and obtains ��� MFlops� The small perfor�
mance di�erence is due to di�erences in block size choices
and unrolling factors� For matrix�vector product� only vec�
tor elements are reused� but spatial locality can be ex�

�They were implemented by Mimi Celes at SGI
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Figure �� Performance of hand�coded and compiled BLAS
routines

ploited in accessing matrix elements� Both the hand�written
and compiler�generated BLAS�� codes obtain roughly ���
MFlops for large problem sizes� Finally� inner�product and
scaling of vectors has no reuse and the programs exhibit poor
spatial locality if the vectors are not contiguous in memory�
Both versions of DDOT and DAXPY perform at roughly ��
M�ops�

We conclude that compiler restructuring produces code
competitive with handwritten code for the BLAS routines�

� Cholesky factorization

Cholesky factorization is used to solve systems of equations
of the form Ax � b� where A is a symmetric positive�de�nite
matrix� by factorizing A into the product LLT where L is
lower�triangular� and solving the two resulting triangular
systems� On the Octane� the LAPACK code runs at �	�
MFlops for matrix sizes between ��� to �����

Like matrix multiplication� Cholesky factorization has
three nested loops� but these loops are imperfectly nested�
All six permutations of these three loops are legal and one of
these permutations comes into two versions� giving a total of
seven versions of the Cholesky program� Figures �� � show
pseudo�code for these versions� Figures ��c�� ��c� compare
the performance of shackled and tiled codes for these ver�
sions of Cholesky factorization �in each of these �gures� the
bar on the left for each matrix size shows the performance
of shackled code� while the bar on the right show the per�
formance of tiled code�� Ideally� a restructuring compiler
would be able to generate the best code for Cholesky factor�
ization from any of these versions of Cholesky factorization�
just as many state�of�the�art restructuring compilers do not
care which one of the six permutations of matrix multipli�
cation is given as input� However� the theory of imperfectly
nested loop transformations is not as well developed as the
theory for perfectly nested loops� As we show below� the per�
formance of code generated by the control�centric approach
depends quite critically on which version of Cholesky is given
as input� In principle� the data�centric approach does not
care which version of Cholesky is given to it� However� since
our implementation of the data�centric approach performs
intra�block computations in the same order as in the in�



put program� the performance of the shackled code does
depend on which version is given as input although as we
show below� the variation is less than it is for control�centric
transformations�

The shackled code produced by the compiler was gener�
ated by composing two shackles� In both shackles� the array
was divided into rectangular blocks �the compiler heuris�
tic chose 
�x
� blocks�� and these blocks were visited in
left�to�right� top�to�bottom order� In the outer shackle� the
compiler chose the left�hand side reference from each assign�
ment statement for shackling� while in the inner shackle�
the compiler selected a reference from the right�hand side
of each statement� a�k�k� for the square root statement�
and a�i�k� for the scale and update statements� The same
shackle was used for all other versions of Cholesky factor�
ization as well�

Figures � and � show the performance of the kij versions
of Cholesky factorization� The lower triangular portion of
matrix a does not �t into the L� cache when the matrix
size exceeds ���� so the tiled code exhibits increasing miss
ratios after this point� The fused version is an SNL� the loop
structure for which the SGI compiler�s locality enhancement
techniques are targeted� Figures ��b� and ��b� show the
e�ect of varying the block size in the shackled code� It can
be seen the optimal block size is roughly �� x �� rather
than the 
� x 
� chosen by the heuristic� With this block
size� the performance of the shackled code is boosted to ���
M�ops which is very close to LAPACK performance� For the
SNL in Figure �� the SGI compiler�s techniques are actually
more e�ective than shackling in reducing L� cache misses�
although the miss ratios are very small in either case �the y�
axis scales in Figures ��d� and ��d� are di�erent�� However�
register tiling appears to interact better with the shackled
code� permitting the shackled version to obtain much better
overall performance� This shows the importance of register
tiling for obtaining good performance� a point made by Carr
and Kennedy earlier ����

The kij versions update the right lower�triangular portion
of the matrix row�by�row� Permuting the two update loops
gives the kji version shown in Figure � that performs this
update column�by�column� This version is not an SNL� so
tiling is not e�ective� Fusing the scale loop with the outer
update loop is illegal� The only way to get an SNL is to
interchange the two update loops and then fuse the new
outer update loop with the scale loop� generating the code
of Figure �� but this is too complicated for the MIPSPro
compiler�s imperfectly nested loop transformation heuristics
to reason about� The performance of the baseline code �no
cache or register tiling� is modestly better than that of the
baseline kij versions because of better spatial locality in the
update loops� This also explains why the shackled code
performs a little better than the shackled code from the kij
version�

Right�looking Cholesky factorization performs updates
eagerly in the sense that the columns to the right of the
current column are updated as soon as that column is com�
puted� An alternative is to perform the updates lazily� which
means that a column is updated only when it becomes cur�
rent� This leads to the left�looking column Cholesky factor�
ization code �also called the jik version� shown in Figure 	�
This loop nest is not an SNL� but the computational work
in the update loops is essentially a matrix�vector product
which is performed by the MIPSPro compiler by accumulat�
ing the updates to a�i�j� in a register� The performance of
the shackled version drops dramatically because of con�ict

misses when the array size is around 
	�� Since shackling
reduces capacity misses only� it is of little bene�t at this
point as can be seen in Figure 	�c�� Figure 	�b� shows that
choosing the block size adaptively to reduce con�ict misses
is one solution� but our current implementation does not do
that�

In the jik version� all the updates to an element of the
current column are performed before succeeding elements
are updated� Permuting the i and k loops gives the jki ver�
sion� The MIPSPro compiler interchanges the update loops
back to the jik version� so the performance of the baseline
and tiled versions is identical to the performance of the jik
versions� There is no di�erence in the performance of the
shackled code either� so we do not show the graphs for this
version of Cholesky�

Finally� there are two versions of Cholesky factorization
called the ijk and ikj versions that process the matrix by row
rather than by column� The ijk version performs inner�
products� so it is also known as ddot Cholesky while the
ikj version is rich in daxpy operations� Figure 
�c� shows
that while the shackled code outperforms the tiled code�
it is unable to exploit register tiling� so it performs poorly
compared to the LAPACK code� The shackled code for
the ikj version performs better� but it too exploits register
tiling to a limited extent� Improving the performance of
the ikj and ijk versions requires closer examination of the
interaction of shackling with register tiling�

� LU factorization

LU factorization is used to solve general systems of equations
of the form Ax � b by factoring A into the product LU where
L is a lower�triangular matrix and U is upper�triangular� Par�
tial pivoting is used to increase the numerical stability of the
procedure�

Figure 
 compares the performance of shackling and
tiling for LU factorization with pivoting� The entire loop
nest is not an SNL� and therefore cannot be tiled� However�
the update loop nest can be tiled� and this has a small bene�t
because it permits spatial locality to be exploited�

Shackling the entire factorization code raises several in�
teresting issues� Note the usage of scalar variables in the
program � any shackling must ensure that dependences be�
tween scalar variables are preserved as well� In addition� the
LU factorization code also involves conditionals with non�
a�ne tests� so shackling must handle these as well�

Due to space constraints� only the highlights of how these
issues are addressed �details can be found in �
��� If a state�
ment de�nes a scalar variable that is used by another state�
ment� the implementation tries to assign the same data�
centric reference for both statements� If this is not legal�
scalar expansion is performed to ensure that the �ow de�
pendence is respected� Scalar expansion is also necessary
if di�erent statements nested inside a non�a�ne conditional
have di�erent shackling references� In our implementation�
scalar expansion was performed by using existing modules
in the SGI MIPSPro compiler�

Using simple data��ow analysis� it can be determined au�
tomatically for the LU factorization code in Figure 
 that
the scalar m needs to be expanded� The data shackle chosen
by the compiler divides array A into block columns with
block sizes ranging from �� to �� depending on the size
of the problem� For the scale and update statements� the
shackling references are chosen to be a�i�k� and a�j�l� re�



spectively� For the three statements implementing the row
permutations� the shackling references are a�k�j�� a�k�j�
and a�ipvt�k��j� respectively� and for all the other state�
ments� the shackling reference is a�i�k�� In this particular
example� the expansion of m can be completely free� since
ipvt�k� represents precisely a scalar expanded m� however
this analysis is not currently implemented�

While the performance of the shackled code beats the
performance of the tiled code� it is still slower than the
LAPACK version which obtains about ��� MFlops on the
Octane� This is because the LAPACK code uses domain�
speci�c information about the commutativity of permuta�
tions and row�updates� this permits it in essence to use two�
dimensional blocks rather than block columns� which results
in better code� An interesting open question is how to write
LU factorization with partial pivoting so that a compiler can
determine this information automatically�

� QR factorization

QR factorization performs orthogonal factorization of a ma�
trix A into the product QR where Q is an orthonormal matrix
and R is upper triangular� It is a key kernel in eigenvalue
calculations� Figure �� compares the performance of shack�
ling and tiling on QR factorization using Householder re�
�ections� As in the case of LU factorization with partial
pivoting� the array A is partitioned into block columns be�
cause a two�dimensional blocking is not legal� QR is similar
to LU factorization except that in this case� array expansion
of the vector x is required for legality� The necessary array
expansion has not yet been implemented� so we modi�ed the
standard code for QR factorization to perform array expan�
sion� Figure �� shows this program� The need to expand x
raises an important pro�tability question � scalar expansion
is usually quite cheap� however expanding x creates an ar�
ray as large as A in this case� Although shackling once again
outperforms tiling� the performance of the shackled code is
a factor of � worse than that of the LAPACK code which
obtains roughly ��� MFlops on this code� The LAPACK
code uses domain�speci�c information about the associativ�
ity of matrix products to improve e�ciency� It is conceivable
that a compiler could exploit this information too if the in�
put program were written in a language like MATLAB or
FORTRAN�
� in which array operations are primitives�

� Conclusions and Future Work

The experiments reported in this paper have demonstrated
the e�ectiveness of shackling for improving locality of nu�
merical codes� and have shown the utility of data�centric
transformations in a production compiler� Shackled code ob�
tains double the performance of tiled code for most of these
programs� and obtains �ve times the performance of tiled
code for some versions of Cholesky factorization� Shack�
ling has been incorporated into the SGI MIPSPro compiler
product�line as of January �


�

There are a number of areas where more work is needed�
First� the block size heuristic we have implemented clearly
over�estimates block sizes� and must be improved� Second�
con�ict misses cause dramatic drops in performance for some
matrix sizes� Choosing block sizes adaptively may be one
solution� Coleman and McKinley have studied this prob�
lem in the context of tiling ���� and their techniques may
be applicable here� Third� the interactions between cache

locality�enhancement and register tiling need to be under�
stood better� Miss ratios alone do not give a complete pic�
ture of performance since the e�ectiveness of register tiling
is often an equally important determinant of performance
�see Figure ��� Finally� for LU and QR factorizations� the
lack of domain�speci�c information prevents the compiler
from restructuring code along the lines of the LAPACK li�
brary� Coding in an array language might address some of
these problems but this remains to be investigated� User
directives are another option� but it is unclear what these
directives should be or how they might be exploited by the
compiler�
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do k � �� n
temp � ���d�
m � k
��find pivot row
do i � k� n
d � a	i�k�
if 	ABS 	d� �gt� temp�

temp � abs	d�
m � i

if 	m �ne� k�
ipvt	k� � m
��row permutation

do j � k� n
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��scale loop
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do i � �� n
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