
ROBOMOTE: ENABLING MOBILITY IN SENSOR NETWORKS

Karthik Dantu, Mohammad Rahimi, Hardik Shah, Sandeep Babel, Amit Dhariwal, Gaurav S. Sukhatme

Dept of Computer Science,
University of Southern California,

941 W 37th Place,
Los Angeles, CA 90089.

Email: (dantu|mhr|babel|dhariwal|gaurav)@usc.edu, hardik@gmail.com

ABSTRACT

Severe energy limitations, and a paucity of computation pose a set
of difficult design challenges for sensor networks. Recent progress
in two seemingly disparate research areas namely, distributed robotics
and low power embedded systems has led to the creation of mobile
(or robotic) sensor networks. Autonomous node mobility brings
with it its own challenges, but also alleviates some of the tradi-
tional problems associated with static sensor networks. We illus-
trate this by presenting the design of the robomote, a robot plat-
form that functions as a single mobile node in a mobile sensor
network. We briefly describe two case studies where the robomote
has been used for table top experiments with a mobile sensor net-
work.

1. INTRODUCTION

Sensor networks hold the promise of revolutionizing our daily life
by ubiquitously monitoring our environment and/or adjusting it to
suit our needs. The benefits of this technology have been elabo-
rated at length in the literature [1, 2, 3, 4]. The realization of such
networks poses many challenges which are the subject of active
research in the field. These include challenges stemming directly
from the paucity of computation, storage and energy, systems chal-
lenges such as unattended long term function, routing and dis-
tributed computation (e.g., for localization, calibration, time syn-
chronization), and finally, challenges associated with the dynamics
and spatio-temporal irregularity of the environments within which
these networks are expected to function.

As an illustration of the utility of autonomous node mobility
within sensor networks we present the hardware and software de-
sign of the robomote, a robot platform that functions as a single
mobile node in a mobile sensor network. We describe two case
studies where the robomote has been used for table top experi-
ments with a mobile sensor network. For design and usage details
beyond those described in this paper, the reader is directed to the
robomote website http://robotics.usc.edu/∼robomote.

2. APPLICATIONS OF MOBILITY

Controlled mobility enables a whole new set of possibilities in sen-
sor networks. The ability to actively change location can be used to
mitigate/solve many of the design challenges outlined above. Be-
fore we look at some of the advantages, we would like to clarify
that controlled or robotic mobility is different from mobility in the

context of Mobile Adhoc Networks (MANETs). MANET studies
consider mobility as a given (e.g., as experienced by portable de-
vices such as cell phones or laptops). They study the effects of
mobility and assume no control over it. However, controlled or
robotic mobility is the ability of a network to move intentionally,
and without human assistance. We outline some of advantages of
controlled mobility below.

Deployment: Controlled mobility can be used to deploy sen-
sors at optimal locations for monitoring. As an example see [5]
wherein an algorithm for deploying a fully mobile sensor network
has been proposed. We could conceive of a family of algorithms
for deployments that have varying ratios of static to mobile sensor
nodes that optimize various metrics like maximum coverage, re-
quired connectivity [6] etc.

Adaptive Sampling: One of the fundamental requirements
from a sensor network is to sample its environment. It is possible
to think of adaptive sampling strategies where spatial adaptation is
by the use of mobility [7] since it is not possible to deploy sensors
at all possible sampling locations a priori.

Network Repair: One of the main problems of adhoc de-
ployment is the lack of guaranteed connectivity (or a certain level
of connectivity) in the network. Such situations can be corrected
by having a few mobile nodes which can actively move to desired
locations and repair broken networks.

Energy Harvesting: Methods have been suggested [8] to use
mobile sensor nodes to physically transport energy in the network
from areas where it is available in plenty to other regions where en-
ergy availability is scarce. Using such techniques self-sustaining
networks which rely on sources like solar energy could be built,
thereby mitigating the energy constraint which is fundamental to
sensor network design.

Event Detection: Detecting spatially and temporally spread
environmental events is a fundamental function of a sensor net-
work. An initial network deployment might not be the optimal
deployment of nodes to detect events in time. We can correct
this problem by having mobile nodes that move to regions of high
probability of event detection over time. This arrangement could
also be dynamic with mobile nodes repositioning themselves [5]
as and when required.

Fig. 1. The robomote

3. ROBOMOTE: HARDWARE AND SOFTWARE DESIGN

3.1. Introduction

The robomote was designed to be a tabletop platform for experi-
ments in mobile sensor networks. An initial design was presented
in [9]. This paper describes the second incarnation of the robo-
mote. The primary design goals for the robomote are ease of de-
ployment, and cost.

Keeping these in mind, the robomote is designed to be com-
patible with the popular mote platform ([10]). The robomote (Fig-
ure 1) consists of an Atmel 8535 microcontroller. This is a 8-
bit AVR RISC MCU with 8k bytes of In-system programmable
flash along with 512 bytes of EEPROM and 512 bytes of Inter-
nal SRAM. The microcontroller also incorporates various desir-
able features like programmable sleep modes and reprogramming
capability. It has two motors, compass for heading and IR sensors.
Each of these is described in further detail below. The robomote
is complete with the addition of a mote. The mote is used as the
master. All basic functionality of the robomote is exported to the
mote via modular interfaces. We have also written TinyOS com-
ponents for the mote to incorporate control of the robomote into
TinyOS application. Just as the mote has a radio component and
can send out packets, it now has an actuation component and can
command motions as needed.

3.2. Hardware Architecture

3.2.1. Internal Communication

Communication between the robomote and the mote is via a se-
rial interface and can achieve speeds of upto 19.2 kbps. There is
a byte-to-byte reliability established via acknowledgements from
the robomote for every byte received. This helps detect loss of
commands and/or data. Each command consists of two bytes - a
command and corresponding data. Some commands do not have
any data to be passed and are padded (eg: get compass heading).

3.2.2. Motion Control

The wheels are driven using DC motors from Micromo at 6V and
output power 1.41W. The efficiency of the motors is 71% with a
no-load speed of 16,300 rpm and a no-load current of 30 mA. The
motors are controlled using an H-bridge, made from discrete com-
ponents, which utilizes Pulse Width Modulation (PWM) for its
operation. The four signals which control the motors are PWM1,
PWM2, Direction1 and Direction2. By changing the direction bits,
the direction of the motors can be reversed. Motion control is trig-
gered by velocity and distance commands from the mote. These
commands are converted to the corresponding PWM and direction
values. The gear ratio is 25:1. The robomote relies on odometry
for movement from one location to another. The feedback uses IR
TX/RX mechanism for sensing the number of ticks on the wheel.
For one complete revolution of the wheel, 150 ticks are available
for feedback control at a least count of 6 ticks (approximately 14
degrees). This is then fed back to the counters of the Atmel Mi-
crocontroller. A PI controller that compensates for odometry error
has been constructed. It runs at a frequency of 2 Hz and uses the
difference in ticks between the left and right wheels as an error
signal. The controller outputs are sent as corrections to the PWM
signals that are applied to the motors. This controller is bypassed
for turn commands and calibration to avoid additional complexity.

3.2.3. Compass

The compass on the robomote is a 2-axis Honeywell HMC1022
IC. It is configured as a 4-element Wheatstone bridge. Each ele-
ment is a magneto-resistive sensor which converts a sensed mag-
netic field to a differential output voltage. From this two analog
readings are obtained, one that senses the Earth’s North-South field
and the other at 90 degrees to the first (i.e. West-East readings).
The sensors are not absolute and must be calibrated at robot ini-
tialization and periodically throughout usage. This is done by pe-
riodically entering a calibration phase where the robomote makes
a full turn to detect the maximum and minimum readings and sets
them as reference. The compass can be run in two modes: free-
running, and single conversion. We use it in a single conversion
mode to conserve energy by avoiding usage when not required.
When a request for a compass reading is obtained from the mote,

current is passed through the compass. This causes the compass to
activate and the azimuth reading is obtained which is passed back
to the mote.

mote

IR

Atmel

8535

Robomote

Atmega

52-pin connector

Compass

Motors

Fig. 2. Hardware architecture of the robomote

3.2.4. IR Proximity Sensors

The robomote has two infrared transmitters and one receiver on
either end. Transmitters produce IR signals of 940nm wavelength
which are modulated at 40 KHz over 1.5 KHz in order to reject the
maximum amount of ambient light. The receiver has a viewing
angle of 40 degrees with 80% sensitivity. The receivers can be
selected by using a multiplexer and an interrupt is generated on
the controller’s external interrupt channel. These sensors are used
to detect obstacles in the path of motion of the robomote. Obstacle
avoidance runs in the free-running mode. If the received IR signal
is above a threshold value, an obstacle is detected and the mote is
signalled.

3.2.5. Rechargeable Battery

The robomote is provided with a rechargeable Lithium Ion bat-
tery and can be charged either by solar energy or by a DC wall
charger. The wall charger uses LTC1734 chip from Linear Tech-
nologies. The solar charger uses the LTC1734L from Linear tech-
nology. For the solar charger, the minimum current supplied to
the battery is 50mA, which can be increased by a NV trimmer
potentiometer(DS1804). The battery itself is a Li-Ion prismatic
rechargeable battery from RENATA. The typical capacity of the
battery is 345mAh and it has a nominal voltage range of 3.7V. The
mass of the battery is 10.1g. It is interesting to compare robomote

Fig. 3. A group of robomotes

Table 1. Power consumption of peripherals
COMPONENT POWER CONSUMPTION

(in mW)
Both Motors On 720

Compass 60
Both LEDs 44

All external services
off (MCU + MOTE VDD 36

+ Leakage)
Mica2 Processor 33

Mica2 Radio Reveive 29
Mica2 Radio Transmit 42

power consumption with the Mica2 mote as described in [11].
Note that actuation (physical movement) draws much more energy
than computation or communication(Table 1). Hence, the energy
consumption in increasing order is attributable to Computation
< Sensing < Communication < Actuation. This is an important
design consideration to keep in mind while designing algorithms
for mobile sensor networks.

3.3. Software Architecture

The mote is used as the master. Hence, the system software on the
robomote has been designed to provide the basic functionality as
modules on the mote. We have designed modules in TinyOS to
allow easy access to robomote’s functionality for sensor network
experimenters. The TinyOS modules consists of two layers. There

mote

Robomote

Robomote Communication routine

Hardware Abstraction Layer

IR.enableObstacleAvoidance()
Robomote.Move()

Robomote.ATurn()

Robomote.Turn()

Compass.getReading()

Compass.calibrate()

Compass
 Motors
 IR

Fig. 4. Block diagram of software components

is a Hardware Abstraction Layer that handles the communication
with the robomote. The second layer exposes the functionality of
each individual feature (e.g., compass) of the robomote to applica-
tions in TinyOS. It is possible to include just the required compo-
nents into existing TinyOS applications for ease of understanding
and clear design. This is illustrated in Figure 4. Actuation is
supported on the mote via three simple commands as shown in
Fig. 5. Each command results in an event to notify the completion
of the command. Similarly, functionality of the compass and IR
are exposed to the mote via simple two-way interfaces as shown in
Fig. 6.

command Robomote.Move(uint8 t distance)
− Move straight for distance cm.

command Robomote.Turn(uint8 t angle, uint8 t direction)
− Turn relative to current position in
anti−clockwise(direction=1)/clockwise(direction=0)
by angle degrees.

command Robomote.ATurn(uint8 t angle)
− Turn to absolute position angle degrees.

event result t Robomote.MoveDone()
− Signify completion of the move command.

event result t Robomote.TurnDone()
− Signify completion of the turn command.

event result t Robomote.ATurnDone()
− Signify completion of the absolute turn command.

Fig. 5. Actuation Interface provided by robomote

command result t Compass.calibrate()
− Calibrate the compass.

event result t Compass.calibrateDone()
− Signal end of calibration of compass.

command result t Compass.getData()
− Get the compass reading.

event result t Compass.dataDone(uint8 t az)
− Signal end of compass reading.

command result t IR.enableObstacleAvoidance()
− Enable signalling of obstacles.

event result t IR.obstacle()
− Signal presence of obstacle.

Fig. 6. IR sensors and Compass Interface

4. CASE STUDIES - EXPERIMENTS USING THE
ROBOMOTE AS A MOBILE SENSOR NODE

4.1. Detecting Level Sets of Scalar Fields using a Mobile Sen-
sor Network

4.1.1. Problem

A static sensor network is deployed in a bounded area. The prob-
lem is to detect level sets(contours) of the sensed scalar field (e.g.,
isobars for pressure, isotherms for temperature). A single mobile
sensor node is available in addition to the ensemble of static nodes.

4.1.2. Algorithm

We use a control law proposed in the context of sensor-based path
planning [12] for this purpose. The control law has been adapted
for the sensor network case. The mobile nodes queries static nodes
in its neighborhood and computes the optimal location velocity
using field gradient information from each neighbor. Simulation

results show that the percentage of success in detecting the desired
level set is above 80% for node degrees greater than 7-8 of the
static sensor network. A simulation trace of the mobile node’s path
as it navigates towards the contour of interest is shown in Figure 7.

Fig. 7. Path of mobile node in a contour detection simulation

4.1.3. Experiments

We performed experiments on a testbed composed of static nodes
(motes), a robomote, and an overhead vision system [13]. These
experiments are performed to validate the algorithm in the pres-
ence of odometry error. The experiments consisted of a Matlab
setup on a PC that simulated node deployment. The robomote
would query the PC to read the sensor readings of its immediate
neighbors. Based on it, motion control commands were gener-
ated in Matlab. These were executed by the robomote on the ex-
perimental testbed. This process was iterated until the robomote
reached the desired contour (within a margin of error).

Twenty nodes were deployed in a 4ft by 8 ft area and radio
range was set to 2.8 feet. The average node degree was approxi-
mately 8. Each experiment was repeated five times and the aver-
age result is shown in table below. The ratio of traveled distance
to optimal is about 1.5. Success percentage for these trials were
between 75% and 80%.

Optimal Distance Traveled Distance Ratio
5.5 8.3 1.509
5 6.1 1.22
5 7.6 1.52
3 5.5 1.83
5 7.8 1.56

Table 2. Experimental results on the robomote (averaged over five
runs each)

4.2. Bacteria inspired robots for environmental monitoring

4.2.1. Overview/Experiment Motivation

The second case study we describe addresses the problem of lo-
cating and tracking a light source using the photo gradient gen-
erated by it using mobile sensor nodes (robomote) on a tabletop
testbed. We implemented an algorithm based on biased random
walk (details in [14]), modeled on taxis in bacteria, for tracking

gradient sources. Using gradient information and a rudimentary
motion strategy, the mobile sensor nodes are able to track gradient
sources analogous to the manner in which bacteria detect and track
potential food sources using locally sensed gradients.

4.2.2. Experiments with robomote

We carried out experiments on the robomote to validate our sim-
ulation results with actual mobile sensor nodes executing a biased
random walk. We used a MICA mote to provide the control com-
mands to the robomote using TinyOS. We used the two basic com-
ponents move and rotate for controlling the robomote to carry
out the biased random walk. We used a basic sensor board with
a photo detector that could sense the light gradient generated by
the light source. The position of the robomote on the testbed was
tracked using an overhead vision system which captured image
frames and passed these to a tracker for data analysis and storage.

Figure 8 shows the magnitude of the distance between the
robomote and the light source as a function of time. The figure
compares data from the robomote and simulation. The data from
experiments agree with the results obtained from the simulation
work presented in [14]. We carried out another set of experiments
with two equal intensity sources present at the same time at op-
posite corners of the testbed and started the robomote at distances
d (d = 25%,50% and 75% positions on the test bed). We started
with only one source switched on initially at t = 0s. At t = 180s.
we switched on the second source located at the other end of the
testbed. This was followed by switching off the first source com-
pletely at t=435s. We repeated the experiment for different values
of d (d = 25%,50% and 75% positions on the testbed)). The results
(Figure 9) obtained using the robomote were in agreement with
our simulation results. Benefits of Mobility Having briefly de-

Fig. 8. Mobile sensor node moving towards a single source

scribed two case studies, its worthwhile revisiting the advantages
of using controlled mobility.

4.2.3. Enables new capabilities

Controlled mobility enables new capabilities. It is evident that both
of the above applications would not have been possible without the
use of mobility.

4.2.4. Distibuted Nature

One of the perceived design constraints of sensor networks is their
distributed nature. In our first case study, the mobile node queries

Fig. 9. Mobile sensor node trajectory with multiple sources

only its neighbors. This scheme reduces the communication over-
head among static sensor nodes. Querying neighbors depends only
on the density of the deployed network and not on the total nodes
deployed. Thus such algorithms are scalable in comparison to
techniques where all or some fraction of the data from the network
needs to be pulled out. Note however that actuation has an energy
cost. The tradeoffs between energy saving by reducing communi-
cation to energy expense due to actuation make for more detailed
study on a per case basis.

4.2.5. Deployment and Coverage

Another design constraint of sensor networks is the problem of
deployment and coverage. Most sensor networks are deployed
to monitor events in their environment. Due to a variety of fac-
tors, the pattern of occurances of these events might vary in time
and space. This requires the sensors to redeploy themselves suit-
ably. Consider the first case study. Assume that the level set being
sought was the event of interest. Upon execution of the algorithm,
the mobile nodes would redeploy themselves around the event of
interest. This is an example of dynamic redeployment of the sensor
network adapting to changes in the environment.

4.2.6. Limited Resources

One other constraint of sensor networks is limited resources. The
algorithms used in both the case studies above retain minimal state.
Their operation works in two steps - query sensors, and actuate. In
this we draw inspiration from a legacy of reactive robotics liter-
ature where thin connections between sensing and actuation have
been shown to be surprisingly robust and powerful [15].

In the two case studies presented here, there is no retention of
state. Hence, memory utilization is minimal, and computation is
simple enough to run easily on the mote hardware. Thus these two
case studies illustrate that it is possible to use mobility with limited
resources to implement useful applications.

As can be seen, there are numerous benefits of using controlled
mobility in sensor networks. However, there are many challenges
also. These are elaborated in the next section.

5. CHALLENGES IN ENABLING MOBILE SENSOR
NETWORKS

Adaptive Localization: There has been a lot of research in the
area of probabilistic localization in robotics off late [16]. Incorpo-

rating mobility into sensor networks would need distributed lightweight
implementations of such algorithms to implement localization in
sensor networks.

Coverage: Maximizing coverage [17] in sensor networks us-
ing static and mobile nodes has received some attention. However,
there has not been much work on mobile sensor networks and how
they could be used to adapt networks by varying coverage dynam-
ically.

Massive Reprogramming: Massive reprogramming of sen-
sor networks is one of the envisioned problems [18]. It is possible
to consider solutions using mobile nodes that travel across the ge-
ography of the sensor network, reprogramming parts of it.

Distributed Calibration: Another hard problem in sensor
networks is calibrating the sensors, particularly when the sensors
used are cheap and erroneous. We can think of having a calibrated
sensor on a mobile node and the mobile node covering the area of
sensor node deployment calibrating the nodes in its neighborhood.

Network Repair: An interesting area of work is that of net-
work repair. As mentioned earlier, it can be imagined that a few
mobile nodes can be used to repair static networks by positioning
themselves at hotspots or points of disconnection. However, mov-
ing the mobile nodes expends energy and there is scope for study
of the tradeoff. This also makes for interesting theoretical study
for optimal algorithms to move the mobile nodes.

6. CONCLUSIONS

We presented the robomote, a mobile robotic testbed for mobile
sensor network experiments. We also presented two case stud-
ies where the robomote was used to experimentally validate algo-
rithms designed for next generation mobile sensor networks. Fi-
nally, we enumerated some of the potential issues that need to be
resolved in order to enable mobility in sensor networks.

7. REFERENCES

[1] Joseph Kahn, Randy Katz, and Kris Pister, “Next century
challenges: Mobile networking for smart dust,” in Proceed-
ings of Mobile Computing and Networking. ACM.

[2] Deborah Estrin, Ramesh Govindan, and John Heidemann,
“Embedding the Internet,” Communications of the ACM, vol.
43, no. 5, pp. 39–41, May 2000, (special issue guest editors).

[3] Greg Pottie and William J. Kaiser, “Wireless integrated net-
work sensors,” Communications of the ACM, vol. 43, no. 5,
pp. 551–8, May 2000.

[4] National Research Council Staff, Embedded Everywhere: A
Research Agenda for Networked Systems of Embedded Com-
puters, National Academy Press, 2001.

[5] Andrew Howard, Maja Mataric, and Gaurav S. Sukhatme,
“Self-deployment algorithm for mobile sensor networks,”
Autonomous Robots - Special Issue on Intelligent Embedded
Systems, vol. 13, no. 2, pp. 113–126, 2002.

[6] Sameera Poduri and Gaurav Sukhatme, “Constrained cover-
age for mobile sensor networks,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Apr.
2004.

[7] Maxim Batalin, Mohammad Rahimi, Yan Yu, Duo Liu,
Aman Kansal, Gaurav Sukhatme, William Kaiser, Mark
Hansen, Gregory J Pottie, Mani Srivastava, and Deborah Es-
trin, “Call and response: Experiments in sampling the en-
vironment,” in Proceedings of 2nd Annual Conference on
Sensors and Systems (Sensys 2004), Baltimore, MD, USA.,
November 2004, ACM.

[8] Mohammad H. Rahimi, Hardik Shah, Gaurav S. Sukhatme,
John Heidemann, and Deborah Estrin, “Energy harvesting
in mobile sensor networks,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, Taipei,
Taiwan, September 2003.

[9] Gabriel T. Sibley, Mohammad H. Rahimi, and Gaurav S.
Sukhatme, “A tiny mobile robot platform for large-scale
sensor networks,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Washington DC,
USA, May 2002.

[10] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kris Pister, “System architecture directions for
networked sensors,” in Proceedings of Architectural Sup-
port for Programming Languages and Operating Systems-IX,
Cambridge, MA, USA., Nov. 2000, ACM.

[11] Joseph Polastre, Robert Szewczyk, Cory Sharp, and David
Culler, “The mote revolution: Low power wireless sensor
network devices,” in In Proceedings of Hot Chips 16: A
Symposium on High Performance Chips, August 2004.

[12] Howie Choset, Ilhan Konukseven, and Alfred Rizzi, “Sensor
based planing: A control law for generating the generalized
voronoi graph,” in IEEE International Conference in Ad-
vanced Robotics, 1997.

[13] Mohammad Rahimi, Rohit Mediratta, Karthik Dantu, and
Gaurav Sukhatme, “A testbed for experiments with sen-
sor/actuator networks,” Tech. Rep. IRIS-02-417, Institute for
Robotics and Intelligent Systems, 2002.

[14] Amit Dhariwal, Gaurav S. Sukhatme, and Aristides A. Re-
quicha, “Bacterium-inspired robots for environmental mon-
itoring,” in IEEE International Conference on Robotics and
Automation, April 2004.

[15] Rodney Brooks, “A robust layered control system for a mo-
bile robot,” International Journal of Robotics and Automa-
tion, vol. 2, pp. 14–23, 1986.

[16] Sebastian Thrun, Dieter Fox Wolfram Burgard, and Frank
Dellaert, “Robust monte carlo localization for mobile
robots,” Artificial Intelligence (AIJ), 2001.

[17] Maxim Batalin and G. S. Sukhatme, “Coverage, exploration
and deployment by a mobile robot and communication net-
work,” in Proceedings of the 2nd International Workshop on
Information Processing in Sensor Networks, Palo Alto Re-
search Center (PARC) Palo Alto, CA, USA, April 2003, pp.
376–391.

[18] Jonathan Hui and David Culler, “The dynamic behaviour
of data dissemination protocol of network programming at
scale,” in Proceedings of second annual conference in Sen-
sors and Systems (Sensys).

