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Abstract— Considerable attention has been focused on the
properties of graphs derived from Internet measurements.
Router-level topologies collected via traceroute-like methods have
led some to conclude that the router graph of the Internet is
well modeled as a power-law random graph. In such a graph,
the degree distribution of nodes follows a distribution with a
power-law tail.

We argue that the evidence to date for this conclusion is at
best insufficient. We show that when graphs are sampled using
traceroute-like methods, the resulting degree distribution can
differ sharply from that of the underlying graph. For example,
given a sparse Erdös-Rényi random graph, the subgraph formed
by a collection of shortest paths from a small set of random
sources to a larger set of random destinations can exhibit a
degree distribution remarkably like a power-law.

We explore the reasons for how this effect arises, and show that
in such a setting, edges are sampled in a highly biased manner.
This insight allows us to formulate tests for determining when
sampling bias is present. When we apply these tests to a number
of well-known datasets, we find strong evidence for sampling
bias.

I. INTRODUCTION

A significant challenge in formulating, testing and validating
hypotheses about the Internet topology is a lack of highly
accurate maps. This problem is especially acute when studying
the router-level topology, the graph formed by taking the set
of routers as vertices and adding an edge between any pair
of routers which are one IP hop apart. In lieu of accurate
maps, researchers currently rely on a variety of clever probing
methods and heuristics to assemble an overall picture of the
router-level topology. One such strategy is to use traceroute,
a probing tool which reports the interfaces along the IP path
from a source to a destination. Intuitively, traceroute has the
capability to sample an end-to-end path through the network.
If one assimilates the results of a large number of traceroutes,
each of which sheds a small amount of light on the underlying
connectivity of the router-level topology, the resulting sampled
subgraph is a reflection of the entire topology. But how
accurate a reflection does this procedure produce? It is well
known that the process is not perfect [1]. For instance, it
is only possible to run traceroute from a cooperating source
machine, thus the choice of sources in such an experiment is
highly constrained. Furthermore, some routers ignore trace-
route probes, and others respond incorrectly. Nevertheless,
these methods, or closely related methods, are widely used
in mapping studies such as [2]–[6] and provide the basis for
drawing deeper conclusions about the Internet topology as a
whole [7]–[10].

One such conclusion, and indeed, one of the most sur-
prising findings reported in [7], is evidence for a power-
law relationship between frequency and degree in the router-
level topology. Using their formalism, consider the router-
level topology G = (V,E) where vertices in V correspond
to routers and undirected edges in E correspond to one hop
IP connectivity between routers. Then, let d be a given degree,
and define fd to be the frequency of degree d vertices in G,
i.e. fd = #{v ∈ V s.t. #{(v, x) ∈ E} = d}. The power-law
relationship they then provide evidence for is fd ∝ dc, for a
constant power-law exponent c. At the time their study was
conducted, maps of the router-level topology were scarce; one
of the very few available was a dataset collected by Pansiot
and Grad in 1995 [2]. The evidence for the frequency vs.
degree power-law (reproduced directly from the dataset in [2])
is presented in Figure 1(a) as a plot on log-log scale. The upper
graph is a plot of the pdf as it originally appeared in [7]; the
lower graph is a plot of the log-log complementary distribution
(ccdf).

As noted earlier, and as with other maps collected from
traceroute-based methods, the Pansiot and Grad inventory of
routers and links was undoubtedly incomplete. However, there
is a more serious problem with drawing conclusions about
characteristics of the router-level topology from this dataset
(or any similar traceroute-driven study) than that of incomplete
data, namely sampling bias.

In a typical traceroute-driven study [9], traceroute destina-
tions are passive and plentiful, while active traceroute sources
require deployment of dedicated measurement infrastructure,
and are therefore scarce. As such, when traces are run from
a relatively small set of sources to a much larger set of
destinations, those nodes and links closest to the sources are
sampled much more frequently than those that are distant from
the sources and destinations. To demonstrate the significant
impact this sampling bias can cause, we show the following
experiment (more details and variations are in Section II).

We are interested in the subgraph induced by taking a
sample of nodes and edges traversed by paths from k sources
to m destinations, and focus on whether the measured degree
distribution in the subgraph is representative of the entire
graph. We choose G = (V,E) to be a GN,p graph using
the classical Erdös-Rényi graph model, i.e. where |V | = N
and where each edge (u, v) is chosen to be present in E
independently with probability p. Modeling the intricacies
of IP routing is beyond the scope of this experiment; we
simply assign edges random weights 1 + ε, where ε is chosen
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(a) Pansiot-Grad (b) Subgraph sampled from GN,p

Fig. 1. Evidence for a Frequency Vs Degree Power Law in (a) the Pansiot-Grad dataset and (b) a sampled subgraph of a random graph.

uniformly at random from [− 1
N ,

1
N ] and use shortest-path

routing (the random weights are chosen solely to break ties
between shortest-path routes).

In Figure 1(b), we present a frequency vs. degree plot on
log-log scale of the induced subgraph when k = 1, m = 1000,
N = 100,000, and Np = 15 (where Np is the average degree
of a vertex). These parameters were chosen specifically to
provide visual similarity to the plot from the dataset in [2]; we
report on similar results for many other parameter settings later
in the paper. While the induced subgraph demonstrates a sim-
ilar frequency vs. degree power-law fit, this is a measurement
artifact and is not representative of the underlying random
graph. The degree distribution of the underlying random graph
is far from a power-law; it is well-known to be Poisson. The
degree distribution of the sampled graph is contrasted with the
degree distribution of the underlying graph in the lower plot
of Figure 1(b), which shows how different they are.

Clearly, this sort of misidentification is more likely when
the data values only span a narrow range, as is the case here.
In fact, the data used to argue for a power-law distribution
in [7] spans a range of values that is too small for conclusive
judgements. However, even over this narrow range, the differ-
ence between the two distributions in Figure 1(b) is so great
as to be important for modeling purposes.

These observations form the motivation for our work and
lead us to the following questions which we will study in this
paper. What are the root causes of sampling bias in traceroute

mapping studies? Are observed power-laws in router degree
distributions a fact or a measurement artifact? Can we detect
sampling bias in well known traceroute datasets?

We explore the sources and effects of sampling bias in
several stages. First, in Section II, we investigate sampled
subgraphs on generated topologies, namely classical random
graphs and power-law random graphs (PLRGs), and expand
upon and develop the arguments presented earlier in the
introduction. We then explore possible sources of sampling
bias. Next, we analytically examine the causes for sampling
biases in Section III and formulate tests to detect the presence
of sampling bias. Then, in Section IV, we consider a number
of traceroute-based datasets, and conclude that they show
evidence of sampling bias.

II. EXAMINING NODE DEGREE DISTRIBUTION OF

SAMPLED SUBGRAPHS

The previous section showed an example of a sampled
subgraph whose degree distribution deviates substantially from
the degree distribution of the underlying topology. In this
section, we present further evidence of a prevalent sampling
bias across a broad spectrum of sampled subgraphs on both
classical random graphs [11] and power-law random graphs
derived from the PLRG model [12]. We then examine possible
sources of the bias responsible for the disparity between the
degree distribution of the underlying graph and the degree
distribution of the sampled graph.
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(a) 1 source, 1000 destinations (b) 5 sources, 1000 destinations (c) 10 sources, 1000 destinations

Fig. 2. Degree Distribution of subgraph sampled from Erdös-Rényi random graph (N = 100, 000, p = 0.00015)
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(a) 1 source, 1000 destinations (b) 5 sources, 1000 destinations (c) 10 sources, 1000 destinations

Fig. 3. Degree Distribution of subgraph sampled from power-law random graph (N = 112, 959, η = 2.1)

We begin by introducing our experimental setup, relevant
terminology and assumptions.

A. Definitions and Assumptions

Let G = (V,E) be a given sparse undirected graph with
|V | = N . Our experimental methodology assigns random
real-valued weights to the edges as follows: for all edges e
in E, let the link weight w(e) = 1 + ε where ε is chosen
uniformly and independently for each edge from the interval
[− 1

N ,
1
N ]. Then assume that we have k distinct source vertices

selected at random from V , and m distinct destination vertices
also selected at random. For each source-destination pair, we
compute the shortest path between them. We let Ĝ denote the
graph (edges and vertices) induced by taking the union of the
set of shortest paths between the k sources andm destinations.
We will often refer to G as the underlying graph and Ĝ as
the sampled graph. We will call such an experiment a (k,m)-
traceroute study.

This experimental setup aims to model the prevalent
methodology employed to discover the Internet topology. In
a typical traceroute-driven study, point-to-point measurements
conducted from a set of distributed vantage points to a large
set of destinations are used to shed light on the underlying
topology. Of course, our simple model does not attempt to
capture all of the intricacies that such a live study encounters,
i.e., the complexities of IP routing, BGP policies, and topo-
logical location of end-points. But it is sufficient to explose
potential sources of bias.

We begin by presenting experimental evidence of measure-
ment bias in two choices of underlying graphs: graphs gen-
erated by the classical Erdös-Rényi random graph model [11]
and graphs generated by the power-law random graph (PLRG)
model [12]. These two graph models can be thought of as
lying at two extremes of the degree spectrum: the degree
distribution of classical random graphs is Poisson, while the
degree distribution of PLRG graphs follows a power-law.

B. Sampling Random Graphs

Our first set of experiments employ the classical Erdös-
Rényi random graph model described in the introduction.
In all the random graphs we consider the average degree,
Np, is sufficiently large so that the graph is connected with
high probability. For our experiments, we ensured that each
generated graph was connected.

Figure 2 shows the degree distribution of Ĝ induced by k =
1, 5, 10 sources and m = 1000 destinations. Our underlying
graph in this case has 100,000 nodes and 749,678 edges (p =
0.00015) with average degree 15. Each plot shows the 90%
confidence intervals of 100 trials.

The results presented in these plots are important for two
reasons. First, the degree distribution of Ĝ, while not a strict
power-law, is clearly long-tailed in each instance and can be
potentially mistaken for (or approximated by) a power-law.
Second, the degree distribution of Ĝ is vastly different from
the true Poisson degree distribution of GN,p, implying that
Ĝ is not a representative sample of our underlying G. As
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(a) 1 source, 1000 destinations (b) 5 sources, 1000 destinations (c) 10 sources, 1000 destinations

Fig. 4. Conjecture 1: Are the nodes of GN,p sampled disproportionately? These graphs show the true degree distribution for nodes in Ĝ along with the
complete degree distribution of the underlying GN,p (as CCDF on log-log axes). Since both degree distributions are similar, we discard this conjecture.
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Fig. 5. Conjecture 2: Are the edges of GN,p sampled disproportionately? These graphs show that the number of edges discovered incident to a node in Ĝ
is not proportional to the node’s true degree.

such, conclusions that are made about Ĝ (e.g., explanations
put forward to explain the measured degree distribution ( [13],
[14]) may not necessarily apply to the underlying G.

C. Sampling Power-Law Graphs

Since sampled subgraphs of random graphs yield highly
variable degree distributions, it is natural to wonder what
sampled subgraphs of power-law graphs yield.

Our second set of experiments repeat similar shortest path
simulations on the power law random graph model of [12]
(PLRG). Briefly, given N nodes and exponent η, the PLRG
model initially assigns degrees drawn from a power-law distri-
bution with exponent η and then proceeds to interconnect the
nodes as follows. First, each node v with target degree dv is
replaced with dv nodes; then the resulting set of nodes in the
graph are connected by a random matching. The copied nodes
and their incident edges are then collapsed. After removing
self-loops and multi-edges, the largest connected component
is then extracted. We used this procedure to construct a power-
law graph with 112, 959 nodes, 186, 629 edges, and power-law
exponent of about 2.1 (to match the exponent found by [7] in
their router dataset).

Figure 3 shows the degree distribution of Ĝ induced by
1, 5, and 10 sources to 1000 destinations. Here, the sampled
graph Ĝ exhibits a degree distribution visually similar to the
underlying G. Further, a handful of sources are sufficient to
produce a degree distribution similar to that of the underlying

PLRG graph. This is in contrast to our earlier experiments on
GN,p, where we found that the sampled Ĝ exhibited a clearly
distinct distribution. To understand this difference better, we
now investigate possible sources of bias when sampling GN,p.

D. Sources of Sampling Bias

We have presented evidence demonstrating that the sampled
graph Ĝ can be vastly different from the underlying graph G.
We now attempt to identify where biases arise when sampling
GN,p graphs. Our explanations stem from observations of
extensive simulations; we subsequently present an analytical
justification.

An initial conjecture to explain this phenomena is that nodes
are sampled disproportionately. Certainly Ĝ has fewer nodes,
but are these nodes a uniform sample from the nodes in the
underlying graph? This posits that shortest path routing favors
the higher degree nodes of GN,p in the computed paths. In
such a scenario, high degree nodes of GN,p reduce the distance
to reach destination nodes and so become frequently explored
intermediate nodes. To explore this conjecture, we study the
true degree distribution of nodes in Ĝ, i.e., for each node n in
Ĝ, we examine how many neighbors n has in the underlying
GN,p graph.

Figure 4 plots the true degree distribution for nodes in
various instances of Ĝ along with the degree distribution of
nodes in GN,p. Contrary to our intuition, the true degree



distribution of Ĝ is similar to the degree distribution of nodes
in GN,p. Therefore, it is not the selection of nodes by shortest
path routing that is biased.

A natural second conjecture for the source of sampling
bias concerns edges. One consequence of taking measurements
using a small number of sources and relying on an end-to-end
strategy, is that edges are selected disproportionately. Clearly
Ĝ has fewer edges than the underlying GN,p. But are the
number of edges discovered incident to a node proportional
to its true degree? To explore this conjecture, we compare the
number of edges discovered for each node in Ĝ with its true
degree.

This comparison is shown in Figure 5, where each node’s
true degree is plotted against its observed degree in Ĝ. The
dotted line y = x corresponds to observing the true degree.
In each of these plots, lines corresponding to the median
and 75th percentile of observed degrees for a given (true)
degree are also shown. If edges are selected uniformly, then
the ratio of observed edges to true degree of a node should be
constant. Thus, if this were indeed the case, we should expect
to see points tightly clustered around a trend line y = cx
for some c < 1. Instead, Figure 5 shows no such trend. In
fact, the number of edges observed incident to a high degree
node is comparable to that of an average degree node. These
plots therefore support our second conjecture: bias arises when
edges incident to a node in the underlying graph are sampled
disproportionately. In the next section, we analytically explore
the reasons for this effect.

III. ANALYSIS AND INFERENCE

Now we seek to understand the nature of sampling bias via
analysis; using this understanding we then develop criteria for
detecting the presence of sampling bias in empirical data.

A. Analyzing Sampling Bias

The previous sections have shown that an important source
of sampling bias in the experiments described here is the
failure to observe edges which exist but are not part of the
shortest-path trees.

To explore the nature of this kind of sampling bias, we
turn to analysis. In this section we concern ourselves only
with the single-source shortest path tree (k = 1). We are
concerned with the visibility of edges provided by this tree,
so the particular question we ask is: Given some vertex in Ĝ
that is h hops from the source, what fraction of its true edges
(those in G) are contained in the subtree (Ĝ)? That is, how
does visibility of edges decline with distance from the source?

Our analysis assumes GN,p graphs like those defined in
Section II-A. Let the number of destinations be m, the number
of vertices in G be N , and the probability that two vertices in
G are connected be p. In this case we can state the following
result.

Theorem 1: Let ph(n) denote the probability that the short-
est path to n destinations (n ≤ m) passes through a given edge

of a given vertex at h hops from the source. Then:

ph(n) =
∞∑

j=0

P (Np, j)
m∑

k=0

ph−1(k)

k∑

i=0

B(k, |Γh|/N, i)B(k − i, 1/j, n)

for h > 0, n = 0, . . . ,m

and

p0(n) =
∞∑

j=0

P (Np, j)

m∑

i=0

B(m, 1/N, i)B(m− i, 1/j, n)

for n = 0, ...,m

where B(n, p, x) denotes the Binomial distribution, stating the
probability of x successes in n trials each having success
probability p; P (λ, j) is the Poisson distribution, used here
to describe the probability of a vertex having j edges in a
random graph with average degree λ; and Γh denotes the set
of vertices in G at distance h from the source.
For the proof of Theorem 1 see [15].

In order to evaluate this expression we need |Γh|. In [16],
a number of bounds are given for |Γh|, and similar results are
developed in [17]; however in general, tight bounds for this
expression over the entire range of h are not known. As a result
we use an approximation to |Γh| derived from simulation and
consistent with the bounds in [16], [17].

Using Theorem 1, we can study how visibility of edges
declines with distance from the source. The probability that
an edge in G that is connected to a vertex in Ĝ is actually
observed (i.e., is part of Ĝ) is 1 − ph(0). (This excludes the
edge connecting the vertex to its parent in the tree.) This
probability tells us how biased our node degree measurements
become as a function of distance from the source. When this
probability is small, we are missing most edges and so our
estimates of node degree will be very inaccurate.

In Figure 6 we plot this value as a function of h (the distance
from the source node). In each case, Np = 15 and we vary
the number of destinations m from 100 to 1000. We show two
cases to illustrate different experimental situations. On the left
the number of vertices in G is 10,000; this value is chosen so
that the number of destinations encompasses a non-negligible
fraction of G. On the right the number of vertices in G is
1,000,000; in this case, the number of destinations is very
small compared to the size of G.

The plots show that over the vast majority of nodes in Ĝ,
visibility of edges is quite poor. Only at hops 0 (the source)
and 1 are a majority of edges discovered; and for hop 1, a
large fraction of edges are not discovered unless the number
of destinations is large. Comparing Figures 6(a) and (b), we
can see that the number of nodes in the underlying graph does
not have a strong effect on visibility; regardless of the size of
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Fig. 6. Visibility of Edges with Varying Number of Destinations (average degree=15); (a) N = 10,000; (b) N = 1,000,000.
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Fig. 7. Visibility of Edges with Varying Vertex Degree in G (number of destinations=100); (a) N = 10,000; (b) N = 1,000,000.

G, visibility of edges is essentially restricted to one or two
hops from the source.

To further explore how the limits of visibility depend on
the properties of the underlying graph G, we consider the
effects of varying the average degree of a vertex (Np). The
results are shown in Figure 7, for 100 destinations. The figure
shows that when vertex degree is small, visibility is extended
slightly. However the sharp decline in visibility remains even
at relatively low vertex degree.

These results show that shortest-path trees only effectively
explore a very small neighborhood around the source in
a random graph. This helps explain the effect observed in
Figure 5. Furthermore, these results suggest that the degree
distribution observed close to the source may be quite different
from the distribution observed far from the source; in the next
subsection we develop this idea further and use it to examine
graphs derived from traceroute measurements.

B. Inferring the Presence of Bias

In the previous subsections, we provided evidence for and
identified sources of bias in (k,m)-traceroute studies. Given
these findings, a natural question to ask is if it is possible
to detect evidence of bias in similar measurements when the
underlying topology is unknown.
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We start from the observation made in the last subsection,
which showed that nodes close to the measurement source
were explored more completely than those further from the
source. This suggests that conditioning our measurements on
distance from the source may be fruitful. Our general idea
is that if measurements are unbiased, then their statistical
properties should not change with distance from the source.
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Fig. 9. Degree distribution by hop distance from source(s), Pr[D|H], for subgraphs sampled from GN,p
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Fig. 10. Degree distribution by hop distance from source(s), Pr[D|H], for subgraphs sampled from PLRG.

However, if measurements are biased, we should be able to
detect that by looking at statistics as a function of distance
from the source.

To explore this idea, we study the conditional probability
that a node has degree d given that it is at hop h from the
source. With k > 1 sources, we define h as the minimum
hop distance over all sources. We denote this conditional
probability by Pr[D|H].

Multiplying Pr[D|H] by Pr[H] yields the joint probability
Pr[D∩H], which is shown in Figure 8 for a subgraph sampled
from a GN,p graph by 1 source and 1000 destinations. This
figure shows how node degrees at each hop together produce
the illusion of an overall long-tailed degree distribution of
Ĝ. Figure 9 shows the hop conditioned degree distribution,
Pr[D|H], for sampled subgraphs of GN,p. We make two
observations from Figures 8 and 9. First, the highest degree
nodes are found at small h, that is, at hops nearest to the
source nodes. Second, the overall distributions Pr[D|H] vary
considerably with h. These two observations suggest criteria
for detecting bias in (k,m)-traceroute studies:

C1 Do the highest-degree nodes tend to be near the
source(s)? If so, this is consistent with bias, since in
an unbiased sample the highest-degree nodes should
be randomly scattered throughout Ĝ.

C2 Is the distributional shape near the source different
from that further from the source? Again, if so, this
is consistent with bias, since this property should not
vary within an unbiased sample.

If these criteria are to be useful they should hold for the case
of biased sampling of other random graphs as well. Figure 10
shows Pr[D|H] for graphs sampled from PLRG graphs. First,
we see that the highest degree nodes are generally at hop 2
— close to the source. Next, when Pr[D|H] is compared for
different values of h, we see that there are sharp differences
between cases for h=2 and h=3.

The consistent behavior of the criteria C1 and C2 on
samples from both GN,p and PLRG graphs suggests that they
can help identify cases in which measurements taken from
unknown underlying graphs may be subject to bias. This leads
us to a formalization of bias in this setting, which we can
define as a failure of a sampled graph to meet statistical tests
for randomness associated with these two criteria. A dataset
failing to show randomness under both criteria would seem to
be a poor choice for use in making generalizations about the
true nature of the underlying graph.

C. Formal Tests for Criteria

To quantitatively evaluate criteria C1 and C2, we now
develop formal tests.

Letm be the median hop distance of a node in the vertex set
from the source. We partition the vertex set into two subsets,
N and F (near and far), where N consists of those vertices
of hop distance strictly less than m from the source, and
F consists of those vertices of distance at least m from the
source. We then let pN denote the fraction of all vertices in
N (typically slightly less than 0.5).



To test criterion C1, we ask whether the 1% highest-degree
vertices tend to appear unusually often in N as oppposed to
F . More precisely, we take the |V | / 100 vertices with largest
rank (plus nodes whose degree ties that of the node with rank
|V | / 100) and determine the number of these vertices which
lie in N . Suppose the number of vertices thus considered
is ν, and out of those ν the number happening to lie in
N is κ. An outcome in which κ deviates substantially from
the expected value (pN ν) is improbable. More formally, by
Chernoff bounds [18, Ch. 4], we can bound the likelihood of
an outcome which exceeds the mean by at least a (1 + δ)
multiplicative factor1 by:

Pr[κ > (1 + δ) pN ν] <
[

eδ

(1 + δ)(1+δ)

]pN ν

We formulate the null hypothesis associated with C1 as:
(HC1

0 ) The 1% highest-degree nodes occur at random with
respect to distance from the source(s). We can then reject the
null hypothesis HC1

0 with confidence 1 − α when:

α ≥
[

eδ

(1 + δ)(1+δ)

]pN ν

To test criterion C2, we first note that that the set of vertices
V is the union of N and F . Therefore, to test whether the
degree distribution of the nodes in N differs from that in F ,
it is sufficient to determine whether the degree distribution of
nodes in N differs from those in V .2

The standard method for testing whether a observed dataset
is likely to have been drawn from a particular distribution is
the chi-square goodness-of-fit test [19, Ch. 27]. Given a set of
observed data and an expected distribution, a histogram with
% bins is prepared from the observed data. The test statistic is
then defined as:

χ2 =
�∑

i=1

(Oi − Ei)2/Ei

where Oi and Ei are the observed and expected frequencies
respectively. The null hypothesis (the data is drawn from the
given distribution) can be rejected with confidence level α if
the computed χ2 is greater than χ2

[1−α;�−1], obtained from the
χ2

1−α distribution. The validity of the chi-square test statistic
is sensitive to how the data is binned; to ensure validity we
chose bin sizes keeping Ei is sufficiently large. To use this
test, we form the following null hypothesis: (HC2

0 ) The degree
distributions of datasets N and F are consistent with having
been drawn randomly from V . When employing this test we
use α = 0.005 (corresponding to 99.5% confidence).

In summary, we define bias in (k,m)-traceroute studies as
the rejection of null hypotheses HC1

0 and HC2
0 at a high

1The reader may note that the ν trials are not fully independent. However,
the weak dependence between each of the trials is in our favor, i.e. the presence
of one node from the set of ν in N decreases the likelihood that a second
node is also in N , and thus the Chernoff bound is somewhat conservative.

2The complementary test (whether the degree distribution of F differs from
V ) will yield the same statistic because of the nature of the calculation.

confidence level (99.5% or higher). In the next section we
use these tests to explore three well-known datasets.

IV. EXAMINING NODE DEGREE DISTRIBUTION OF

TRACEROUTE DATASETS

Having defined tests to detect bias, we now turn to exam-
ining existing IP topology measurements.

A. From Models to Datasets

Before turning to empirical data, it is helpful to assess the
ways in which real data differs from the idealized (k,m)-
traceroute studies we have considered so far.

An example of the state-of-the art in topology measurement
is CAIDA’s Skitter project [4], which consists of roughly a
dozen measurement monitors sending traceroute-like probes to
a predetermined set of destinations. The differences between
our experiments and a system like Skitter are at least twofold.
First, we have assumed that sources and destinations are
randomly placed in the graph. In a real measurement system,
the location of sources in particular is constrained by the
mechanics of setting up active measurement sites. It is possible
that the neighborhoods around sources are unusual for this
reason; while this introduces a new and different form of bias
it would nevertheless be detected by our tests. Second, we
have assumed that routing follows shortest paths, rather than
paths dictated by a combination of IGP and EGP policies.
While such an assumption has been made elsewhere [20], [21],
it does not reflect the inflating effect that routing policy has
on paths in the Internet [22], [23]. However routing policy
is designed in general to find short paths, and the kinds of
sampling bias we consider here would seem to be present in
any system trying to keep paths short.

B. Datasets

We use three different snapshots of the router topology
collected at different time periods.3 Table I summarizes these
datasets. Our first dataset, Pansiot-Grad routers, dates from
1995 [2]. This dataset was first used as evidence for power-
law router degree distribution in the paper by Faloutsos et
al. [7]. The next dataset is Mercator, collected subsequently
to and much larger than the Pansiot-Grad set [3]. The authors
of [3] also found evidence for a power-law degree distribution
in this dataset.4 The third dataset was obtained subsequent to
Mercator, from 8 distinct sources of the Skitter project (after
resolving interfaces to routers). It too shows evidence of a
long-tailed degree distribution, as discussed in [8].

For the Mercator dataset, the hop distance from the source
we use is computed by a shortest paths algorithm. This is
not entirely accurate as it does not capture the measured path
that the Mercator probe packets took. However, better path

3Perhaps the largest IP topology snapshots are recent measurements ob-
tained by Skitter, e.g., [9]. Unfortunately these datasets do not resolve
interfaces to routers, and so introduce another complication in trying to assess
router degree distribution.

4To be precise, the authors of [3] concluded that while the degree distribu-
tion upto a degree of 30 displayed evidence for a power-law, the distribution
of higher degrees was more diffused.



information is not available for this dataset. For all other
datasets, we have IP path information and rely on it to compute
hop distance.

Dataset Name Date # of Nodes # of Links
Pansiot-Grad 1995 3,888 4,857
Mercator Routers 1999 228,263 320,149
Skitter Routers 2000 7,202 11,575

TABLE I

SUMMARY OF DATASETS EXAMINED

C. Detecting Bias

Chernoff
Dataset |V | pN ν κ Bound HC1

0
Pansiot-Grad 3,888 0.44 41 38 2 × 10−4 Reject
Mercator Routers 228,263 0.45 2,290 2,065 10−172 Reject
Skitter Routers 7,202 0.44 104 87 9 × 10−7 Reject

TABLE II

TESTS OF HYPOTHESIS HC1
0

Dataset � α χ2
[1−α;�−1] χ2 HC2

0
Pansiot-Grad 17 0.005 35.72 1082.0 Reject
Mercator Routers 123 0.005 167.4 59729 Reject
Skitter Routers 19 0.005 23.59 1965 Reject

TABLE III

TESTS OF HYPOTHESIS HC2
0

Table II summarizes the results of tests of the hypothesis
HC1

0 . The table shows that all three datasets appear to show
bias under criterion C1 with (much) greater than 99.5%
confidence. Similarly, Table III summarizes the results of tests
of the hypothesis HC2

0 . The table shows that all three datasets
appear to show bias under criterion C2 as well at the 99.5%
confidence level.

The difference between the distribution of nodes in N , in
F , and in V is shown for the three datasets in Figure 11.
These differences are the reason for the large χ2 statistics in
Table III. The figure agrees with the results of the statistical
tests, namely that all three distributions are visually distinct
for each dataset. Furthermore, the set of vertices in N tends
to show higher median and average degree than the set of
vertices in F , which is consistent with the results of the C1
tests as well.

In summary, all three datasets pass our statistical tests for
evidence of sampling bias; in each and every case we can
reject the null hypothesis. Thus we can reasonably assume
that the true degree distribution of Internet router-level graphs
is different than that of any of these datasets. In particular,
these tests suggest that the true router graph may have a
higher proportion of high-degree nodes than would appear
from simple extrapolation of these measurements.
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Fig. 11. Examining Pr[D|H] for empirical datasets.

V. CONCLUSIONS

Drawing conclusions about the Internet topology from a
set of distributed measurements, such as those collected in
a traceroute-driven study, has long been known to be an
imperfect process. The conventional wisdom is that collected
measurement data is typically incomplete, noisy, and may
not be representative. In this work, we have demonstrated
the effects of a potentially much more serious flaw than
that of noisy data: that of a pervasive bias in the topology
data gathered by a traceroute-driven approach. On generated
topologies, we demonstrate that the sampled subgraphs in-
duced by a collection of source-destination shortest paths can
have degree distributions which bear little resemblance to



those of the underlying graph. We present analytical support
for this finding, as well as methods to test whether the
properties of a measured subgraph show evidence of sampling
bias. Applying these methods to three empirically measured
router inventories shows strong evidence of sampling bias.

Our results suggest that since long-tailed degree distribu-
tions can arise simply through biased sampling of graphs,
node degree distribution alone may not be a sufficiently
robust metric for characterizing [7] or comparing router-level
topologies [24], [25]

An interesting, and seemingly very difficult open question
related to our work is that of conducting statistically unbiased
random samples of properties of nodes and links in the
Internet. Measurement methods targeted at a specific region
of the Internet, such as those used by Rocketfuel to map ISP
networks [5], have exploited the flexibility of selecting their
end-points in an informed manner. These methods avoid some
pitfalls of (k,m)-traceroute studies, and so are an attractive
limited-scale alternative in light of the sampling bias effects
demonstrated in our work. More generally, a technique with
the capability to accurately sample the degree of a randomly
chosen router in the Internet would be a useful tool in
ascertaining the true degree distribution of the underlying
network.
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