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Abstract

With the availability of technologies that allow us to obtain stimulus-response time series data for modeling and system
identification, there is going to be an increasing need for conceptual frameworks in which to formulate and test hypotheses about
intra- and inter-cellular dynamics, in general and not just dependent on a particular cell line, cell type, organism, or technology.
While the semantics can be quite different, biologists and systems scientists use in many cases a similar language (notion of
feedback, regulation, etc.). A more abstract system-theoretic framework for signals, systems, and control could provide the
biologist with an interface between the domains. Apart from recent examples to identify functional elements and describing
them in engineering terms, there have been various more abstract developments to describe dynamics at the cell level in the
past. This includes Rosen’s (M,R)-systems. This paper presents an abstract and general compact mathematical framework of
intracellular dynamics, regulation and regime switching inspired by (M,R)-theory and based on hybrid automata.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

The renewed interests in systems biology reflects the
atural shift of focus occurring in modern life sciences:
way from the discovery of new components and their
olecular characterization, towards an understanding
f functional activity, interactions and the organization
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of components in higher structural levels (Wolkenhaue
et al., 2003). As more stimulus-response, time se
data become available, a need for a system-theo
framework of cellular processes, emerges. There
been considerable progress in mathematical mod
of intracellular dynamics, employing either stocha
simulation (Paulsson, 2004; Rao et al., 2002) or non-
linear differential equations to model aspects of cell
naling (Kholodenko et al., 2002; Brightman and F
2000; Schoeberl et al., 2002; Asthagiri and Lauf
burger, 2001; Cho and Wolkenhauer, 2003; Cho et al.
2003a,b,c; Tyson et al., 2003; Heinrich et al., 200),
gene expression or transcriptional control amongst
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ers (seeDe Jong, 2002; Smolen et al., 2000; Rao et
al., 2002for survey articles). As alternatives to the dy-
namic systems approach there have been also various
other techniques to model dynamics, rooted in formal
languages, state machines, graph theory, artificial in-
telligence, etc. (Shmulevich et al., 2002; Friedman et
al., 2000; Maki et al., 2001; Rzhetsky et al., 2004;
Jordan, 1996). While in some cases parameters for
models are directly identified from experimental data
(Cho et al., 2003a; Swameye et al., 2003; Tegner et al.,
2003) more often a model is tuned for its simulation
to match the experience of the biologist. The valida-
tion with experimental data is then somewhat indirect.
In any case, mathematical modeling and simulation
is gaining acceptance as a complementary tool to test
or generate hypotheses in molecular and cell biology.
While the semantics can be quite different, biologists
and control engineers use a similar language. A more
abstract system-theoretic framework for signals, sys-
tems, and control could provide an interface between
both conceptual domains. This would help translat-
ing common terminology, including “feedback”, “con-
trol”, “regulation”, “amplification”, “filtering”, etc.
Apart from recent examples to identify functional ele-
ments and describing them in engineering terms (Wolf
and Arkin, 2003; Iglesias and Levchenko, 2002) there
have been various more abstract formalisms to describe
dynamics at the cell level in the past. These include
Rosen’s (M,R)-systems (Rosen, 1971; Casti, 1988;
Wolkenhauer, 2001), which are revisited in the present
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recognized that many of these highly specific and
complex functions can be characterized by two generic
aspects: a transformation process, which he called
‘metabolism’ and a regulatory component, whose
function he described as ‘repair’. These two abstract
components form the basis for the theory of (M,R)-
systems.

Inspired by (M,R)-theory, this paper aims at devel-
oping an extended framework of intracellular dynam-
ics, regulation and regime switching, based on hybrid
automata (Lygeros et al., 2003; Alur and Dill, 1994;
Alur et al., 2000). The theory of hybrid systems al-
lows us to complement continuous dynamics, which
form the basis for many pathway models, with other
regulatory or response levels that include changes to
the elementary structure of dynamics (regime change,
switching, non-deterministic transitions, and so forth).
The proposed framework also allows for sudden struc-
tural changes which, following Rosen’s and Casti’s
terminology, we call ‘mutation’. Mutation is a struc-
tural change within a gene, chromosome and protein
resulting in changes to the dynamics at gene-, protein-,
metabolite-, or the physiological level.

2. (M,R)-theory for biological cellular processes

Considering the functionality of a cell, Rosen and
Casti identified ametaboliccomponent, representing
basic biochemical processes and a maintenance orre-
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While at the molecular level many processes ap

o be of random nature, at higher levels of structura
anization, i.e., cells, tissue, and organs, well-defi
rinciples of functional relationships emerge. The b
hysical building block is the cell, which through n
orks of biochemical reactions realizes many fun
ental processes relevant to development and dis
iochemical reaction networks are also referred t

pathways’, which are the biologist’s conceptual fram
orks to organize system variables, i.e., to identify
vant genes, proteins, metabolites, and to charac
heir interactions in relation to cellular functions,
luding cell division, cell death, cell cycle, different
ion, proliferation, etc. More specifically, these inclu
rom gene to cell level upwards: gene expression,
cription, translation, metabolism, physiological,
mmunological response and control processes. R
.

air component, which ensures the cell’s regular fu
ioning in response to disturbances. Historically,
riginal formulation of (M,R)-theory was first give
y Rosen (1971)and it was further developed byCasti
1988). Following Casti’s presentation (Casti, 1988),
e consider first metabolic activity, represented by
apping

: Ω → Γ

hereΩ is the set of environmental stimuli andΓ is
he set of cellular responses. We denote byH(Ω,Γ ) the
amily of all these mappings, i.e., the set of all phy
ally realizablemetabolicprocesses. We consider th
he following basal metabolism for normal operatio
∗ = h∗(ω∗)

hereω* , h* , γ* denote the environmental input, t
etabolic map, and the cellular output, respectiv
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Fig. 1. Conceptual modeling of cellular processes. Each transition to a different phase or an alternative dynamic regime can be modeled as a
discrete transition, which further invokes a hybrid system framework.

when everything is working according to plan under
a normal condition. For deviations to the normal func-
tion, including external and internal disturbances to the
cell’s chemical activity, we introduce arepair map:

αh∗ : Γ → H(Ω,Γ )

with the boundary conditionαh∗ (γ∗) = h∗. Since the
repair component itself can be subject to disturbances,
we require a further regulatory element, referred to as
a replication map:

βh∗ : H(Ω,Γ ) → G(Γ,H(Ω,Γ ))

with the boundary conditionβh∗ (h∗) = αh∗ , where
G(Γ , H(Ω, Γ )) denotes the family of all repair maps.
We can summarize the abstract model structure for cel-
lular processes in terms of the following morphisms:

Ω
h∗

−→Γ
αh∗−→H(Ω,Γ )

βh∗−→G(Γ,H(Ω,Γ ))

with boundary conditions

αh∗ (γ∗) = h∗ and βh∗ (h∗) = αh∗ .

If the dynamics encoded byh, and its regulatory
or supervisory componentsαh∗ (·), βh∗ (·), are not suffi-
cient to cope with external disturbances or fluctuations,
the next level of response is a transition to an alterna-
tive dynamic regime, for which we here introduce the
d rk
d

3. Dynamical models and (M,R)-systems

Before we proceed to develop a concrete structure
of a cellular system, we first consider an extension of
the (M,R)-description in terms of mappings, into a dy-
namical model familiar to control engineers. This can
be done by shifting our focus from the relationship
between conceptual mappings to the actual processes
occurring in the cell. We now regard cellular processes
as a dynamical system and focus on the inputsω(t):
R+ → Ω ⊂ R

m andλ(t): R+ → Λ ⊂ R
r, the outputs

γ(t): R+ → Γ ⊂ R
p, and statesx(t): R+ → X ⊂ R

n.

Note the abuse of notation in thatΩ andΓ are now
subsets of Euclidean spaces, while in the (M,R)-model
Ω andΓ denote signal spaces. The dynamics of the
cellular system is governed by:

ẋ = f (x, ω, σ)

γ = ζ(x)

where theenvironment variableσ =σ(λ(t), e) ∈ ∑

is a function of a time-varying external disturbance
λ(t) ∈Λ and a constant internal controle∈E. Here,∑

is the set of possible environment variables, which
are depending on the cellular status andE is the set
of admissible internal controls. This dynamical model
describes the cellular system in the normal operational
phase. As indicated by the repair map of the (M,R)-
model, the cell may transit into other phases, which
r d by
a f
iscrete transition mapδ. The conceptual framewo
eveloped here is outlined inFig. 1.
equire repair and replication. This can be covere
state-space model, introducing the partitioning oX.
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Fig. 2. A dynamical model of the cellular processes. The external
disturbanceλ affects the environment variableσ and it is further con-
trolled by an internal controle. Transitions into different operating
phases due to the external disturbances are accounted for partitioning
the state-space into the corresponding disjoint subspaces.

into two disjoint subsets,Xd andXud which represent
‘desirable’ and ‘undesirable’ operating modes, respec-
tively. Similarly, we define the corresponding output
partitions:Γ d = ζ(Xd) andΓ ud = ζ(Xud). The deviation
from basal metabolism in normal operating phase is as-
sumed to occur due to external disturbances and which
affect the environment variableσ. The proposed dy-
namical model of the cellular processes is illustrated in
Fig. 2.

4. Hybrid automaton model of the cellular
processes

For the previous dynamical model to describe the
possible state transitions taking place, we employ the
semantics of hybrid automata (Lygeros et al., 2003;
Alur and Dill, 1994; Alur et al., 2000). A hybrid au-
tomaton can capture thenon-determinismof a state
transition, which is convenient in modeling and anal-
ysis of highly uncertain cellular processes. In cellular
processes, those state transitions corresponding respec
tively to repair, replication, and mutation are of course
all triggered by the failure of a proper metabolism, but
it is also non-deterministic whether a specific transition
can occur for a given failure situation.

A hybrid automaton Z is a collection
Z� (Q,X, f, Init,D,A,C,R),whereQ is the discrete
state space,X the continuous state space,f:Q×X→X

the vector field, Init⊂Q×X the set of initial states,D:
Q→P(X) the domain,A⊂Q×Q the set of arcs,C:
A→P(X) the guard condition, andR: A×X→P(X) is
the reset map. We refer to (q, x) ∈Q×X as thestateof
Z. Roughly speaking, hybrid automata define possible
evolutions for the state. Starting from an initial value
(q0, x0) ∈ Init, the continuous statexflows as described
by the vector fieldf(q0,·), while the discrete stateq
remains constant. Continuous evolution can go on as
long asx remains inD(q0). If at some pointx reaches a
guardC(q0,q1), for some (q0,q1) ∈A, the discrete state
may change toq1. At the same time the continuous
state is reset to some value inR(q0, q1, x). After this
discrete transition, continuous evolution resumes and
the whole process is repeated. It is convenient to
visualize hybrid automata as directed graphs (Q, A)
with verticesQ and arcA. With each vertexq∈Q,
we associate a set of initial states Initq={x∈X|(q,
x) ∈ Init}, a vector fieldf(q, ·) and domainD(q). With
each arca∈A, we associate a guardC(a) and a reset
mapR(a, ·) For a non-autonomous system, we need to
further include an external inputu∈U in Z, denoted
by Zu, and extend the above synopsis accordingly. A
trajectory or solution of a hybrid automaton is called
an executionor run. The definition of an execution
involves conditions on the initial state, the continuous
and discrete evolution. We say that a hybrid automaton
accepts an execution or not (seeLygeros et al., 2003,
for more formal definitions). It is important to note that
a hybrid automaton may accept many executions or
n ton
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one from a single initial state, i.e., a hybrid automa
an be non-deterministic or blocking. Conditions
xistence and uniqueness of executions are give
ygeros et al. (2003).

There are numerous biological processes in wh
ultitude of dynamic regimes are employed to en

he functioning of the cell. These are not necess
regulatory’ elements but also decision processes
ermanent consequences. For example, during
evelopment of an organism, organs, or tissue,
ifferentiate, i.e., they adopt a specialized bioch

cal and/or physiological role. There are theref
wo kinds of change in genome activity (Alberts et
l., 2002; Brown, 1999): transient or switch-like
eversible responses to external stimuli of the
ia signaling compounds that either enter the ce
ct through binding to surface receptors; seco

rreversible changes of genome activity underly
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differentiation, and which can be brought about by
DNA rearrangements, changes in chromatin structure,
and positive feedback loops. Immunoglobulins are
proteins that help protect an organism against invasion
by bacteria, viruses, and other unwanted substances
by binding to these antigens. This binding is very
specific so that every antigen is recognized by only
one immunoglobulin and T-cell receptor protein. DNA
rearrangement is a means for the human body to
produce more immunoglobulins and T-cell receptor
proteins than there are genes. Changes to the chromatin
structure can have an effect on gene expression by
modulation of transcription or silencing larger parts of
the DNA. In general, for all processes, which happen
in the context of higher levels of organization where
collections of cells function as a whole,intra-cellular
dynamics are linked tointer-cellular coordination of
the activity of genomes in different cells. This coordi-
nation involves both transient and permanent changes,
and must persist over a longer period of time during
development.

In the context of intracellular signaling, an exam-
ple for hybrid modeling is given by the switching
phenomena of ERK activities associated with the
Raf-1/MEK/ERK pathway (O’Neill and Kolch,

2004; Murphy et al., 2002). Intra-cellular signaling
pathways enable cells to perceive changes from their
extra-cellular environments and produce appropriate
responses (Cho and Wolkenhauer, 2003). Pathways are
networks of biochemical reactions but they are also an
abstraction biologists use to organize the functioning of
the cell; they are the biologist’s equivalent of the con-
trol engineer’s block diagram. The Raf-1/MEK/ERK
signaling pathway is a mitogen-activated protein
kinase (MAPK) pathway, which exists ubiquitously
in most of the eukaryotic cells and is involved in
various biological responses (Kolch, 2000). Fig. 3,
adapted fromO’Neill and Kolch (2004), illustrates
the hybrid system dynamics of the Raf-1/MEK/ERK
pathway of PC12 cells. The different ERK dynamics
are achieved through the combinatorial integration
and activation of different Raf isoforms and crosstalk
with the cAMP signaling system, which results in
discrete state transitions to different cellular dynamics.
PC12 cells differentiate in response to nerve growth
factor (NGF), but proliferate in response to epidermal
growth factor (EGF). Both growth factors utilize
the Raf-1/MEK/ERK pathway. The sustained ERK
activity caused by the B-raf isoform results in neuronal
differentiation while the transient ERK activity caused

F r signal y of ERK
c dynam
ig. 3. Hybrid system dynamics of the Raf-1/MEK/ERK cellula
oncentrations determine discrete state transitions to different
ing pathway in PC12 cells, where both, the quantity and histor
ics that decide upon the cell’s fate.
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by the activation of cAMP signaling and the inhibition
of Raf-1 results in cell proliferation.

For more detailed illustration and to provide a com-
prehensive idea on the hybrid system modeling, we
consider a non-autonomous hybrid system model of a
xanthophyll cycle reaction system in plant science. Un-
derstanding the manner in which excess solar energy is
dissipated by photosynthetic membranes under condi-
tions of high light stress has been a major problem fac-
ing researchers studying photosynthesis (Demming-
Adams, 1990). It has long been known that higher
plants possess several defense mechanisms against ex-
cess light. Those include the xanthophyll cycle that dis-
sipates excess light energy as heat (Demming-Adams et
al., 1996). The xanthophyll cycle is an inter-conversion
process between violaxanthin (Vio) and zeaxanthin
(Zea). In excessive light, the build up of a trans-
thylakoid proton gradient activates the de-epoxidase,
which converts Vio into Zea via an intermediate an-
theraxanthin (Anth). The back reaction, epoxidation of
Zea, is light-independent and catalyzed by an epoxi-
dase thought to be located in the stromal side of the thy-
lakoid membrane (Siefermann and Yamamoto, 1975).

The xanthophyll cycle reaction system is illustrated
in Fig. 4, wherex1 denotes the level of Vio [%],x2
the level of Anth [%],x3 the level of Zea [%],k1, k2
the de-epoxidation rate constants, andk3, k4 denote
the epoxidation rate constants. The dynamics of the
xanthophyll cycle reaction system can be modeled as
follows:

ating
t tory
s the
l licy-
l

m.

1999). Hence, the rate constants of the above equa-
tions can vary according to the external environmental
conditions and the xanthophyll cycle reaction system
can be therefore regarded as a hybrid system. We con-
sider a hybrid system model of the xanthophyll cycle
reaction system as follows (note that an exposition of
the barley leaves is considered but detailed experimen-
tal conditions are not described here since those are out
of scope of this paper):

Zu = (Q,X, f, u, Init,D,A,C,R),

where

• Q = {q1, q2, q3, q4};
• X = {x1, x2, x3} andX = R

3;
• f (qi, x) = (−ki1x1 + ki4x2, ki1x1 − ki4x2 +

ki3x3 − ki2x2, ki2x2 − ki3x3), for i = 1, 2, 3, 4;
• u∈U={(u1, u2)} with u1 ∈ {LL, HL} and
u2 ∈ {+SA, −SA}, where LL denotes the low light
stress, HL the high light stress, +SA the inhibitor
treatment of SA, and−SA denotes the condition
without the treatment of SA;

• Init = Q × {x∈ R
3|12.2 ≤ x1 ≤ 96.0 ∧ 4.0 ≤

x2 ≤ 25.8 ∧ 0.0 ≤ x3 ≤ 80.9};

•

D(q1) = {x∈ R
3|33.3 ≤ x1 ≤ 96.0 ∧ 4.0 ≤ x2 ≤

6.7 ∧ 0.0 ≤ x3 ≤ 59.9},
D(q2) = {x∈ R

3|33.3 ≤ x1 ≤ 47.7 ∧ 6.7 ≤ x2
≤ 25.8 ∧ 31.1 ≤ x3 ≤ 59.9},

•

•

•

fer-
e s:
ẋ1 = −k1x1 + k4x2
ẋ2 = k1x1 − k4x2 + k3x3 − k2x2
ẋ3 = k2x2 − k3x3

There have been accumulated studies investig
he dynamics of xanthophyll cycle and the labora
tudies show that the dynamics largely depend on
ight stress and the inhibitor treatment such as sa
aldoxime (SA) as an epoxidase inhibitor (Xu et al.,

Fig. 4. State diagram of the xanthophyll cycle reaction syste
D(q3) = {x∈ R
3|12.2 ≤ x1 ≤ 47.7 ∧ 6.5 ≤ x2

≤ 21.2 ∧ 31.1 ≤ x3 ≤ 80.6},
D(q4) = {x∈ R

3|12.2 ≤ x1 ≤ 19.7 ∧ 5.1 ≤ x2
≤ 7.2 ∧ 75.0 ≤ x3 ≤ 80.9};
A = {(qi, qj) |1 ≤ i, j ≤ 4, i �= j };
C : A → U with C(q1, q2) = (LL ,−SA),
C(q1, q3) = (LL ,+SA), C(q1, q4) = (HL,+SA),
C(q2, q3) = (LL ,+SA), C(q2, q1) = (HL,−SA),
C(q2, q4) = (HL,+SA),
C(q3, q4) = (HL,+SA), C(q3, q1) = (HL,−SA),
C(q3, q2) = (LL ,−SA),
C(q4, q1) = (HL,−SA), C(q4, q2) = (LL ,−SA),
C(q4, q3) = (LL ,+SA);
R : A × X → P(X) with R(qi, qj, x) =
{x}, 1 ≤ i, j ≤ 4.

The respective rate constants set of dif
nt environmental conditions is as follow
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i = 1 (q1) i = 2 (q2) i = 3 (q3) i = 4 (q4)

ki1 11.4 14.1 17.0 19.8
ki2 218.7 430.6 330.1 141.9
ki3 19.2 293.2 27.9 10.4
ki4 7.2 33.2 10.1 9.0

A sample trajectory with the initial statex(0) = (96.0,
4.0, 0.0) [%] is shown inFig. 5 according to the exe-
cution of the model, where it is assumed that the dark
adapted barley leaves are exposed to high light during
[0, 0.1] (hours), exposed to low light during [0.1, 0.2]
(hours), SA is added during [0.2, 0.3] (hours), and ex-
posed again to high light during [0.3, 0.4] (hours). It
is therefore implied thatC(q1, q2) = (LL, −SA),C(q2,
q3) = (LL, +SA), and C(q3, q4) = (HL, +SA). From
Fig. 5, we realize that inq1(D1), x3, increases rapidly
due to the photoprotection mechanism under the high
light stress while it decreases for the low light stress
in q2(D2); x3 increases inq3(D3) due to inhibition of
the epoxidation reaction by SA treatment while it be-
comes saturated under the further high light stress in
q4(D4).

Other interesting hybrid system modeling examples
of biological systems include the full reactive modeling
of a multi-cellular animal inHarel (2003)where the

F stem
a

C. elegansnematode worm is exemplified, the Delta-
Notch biological cell signaling networks inGhosh et al.
(2003), and the genetic regulatory network underlying
the initiation of sporulation inB. subtilisin De Jong et
al. (2003).

5. Extended hybrid automaton model

Inspired by Rosen’s and Casti’s model, and based on
the aforementioned dynamical model, we can build an
extended hybrid automaton of the hybrid dynamics de-
notedM. It is a minor extension of the model presented
in the previous section and defined by:

M = (Q,X,Ω,Γ, f, Init,D,A,C,R),

where

• Q = {qnormal, qrepaired, qreplicated};
• X = R

n is an open connected set withX=Xd ∪Xud
andXd ∩Xud =∅;

• Ω ⊂ R
m;

• Γ ⊂ R
p;

• f= fh(x, ω, σ l) with x(t) ∈X, ω(t) ∈Ω, and
σ l =σ l(λ(t), e) in which λ(t) ∈Λ is a time-varying
external disturbance ande∈Ek is a constant internal
control. Here,∪k ∈K Ek is a family of controls pa-
rameterized inK ⊂ N and

∑
={σ l}l∈L is a family

of environment map parameterized inL ⊂ N.More-

•

•
•

•
• .

ma-

d
to
ig. 5. Sample trajectories of the xanthophyll cycle reaction sy
ccording to executions of the hybrid system model.
over,γ = ζ(x) is an output map;
Init = {(qnormal, x)|x∈X0

d} in whichX0
d is the inte-

rior of Xd;
D(q) = Xd, for q∈Q;
A = {(qnormal, qrepaired), (qrepaired, qrepaired),
(qrepaired, qreplicated), (qreplicated, qreplicated),
(qreplicated, qnormal)};
C(a) = Xud, for a∈A;
R: A×X×K×L→P(X) ×K×L is a reset map
Here, we extend the reset map of the hybrid auto
ton by including two index setsK,L ⊂ N. The cor-
responding variables,k∈K, l ∈L are simply update
according toRat each discrete transition, similar
the update of the continuous statex. So, we have
◦ R(qnormal, qrepaired, x, k, l) = {(x′, k, l)|x′ ∈X}

(repair),
◦ R(qrepaired, qrepaired, x, k, l) = {(x′, k, l)|x′ ∈X}

(repair),
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Fig. 6. A hybrid automaton of cellular processes.

◦ R(qrepaired, qreplicated, x, k, l) =
{(x′, k′, l)|x′ ∈X, k′ ∈K} (replication),

◦ R(qreplicated, qreplicated, x, k, l) =
{(x′, k′, l)|x′ ∈X, k′ ∈K} (repair or replica-
tion), and

◦ R(qreplicated, qnormal, x, k, l) =
{(x′, k′, l′)|x′ ∈X, k′ ∈K, l′ ∈L} (mutation).

Fig. 6 illustrates the hybrid automaton model and
Fig. 7 shows three executions accepted by the hy-
brid automaton of the cellular processes. The execution
marked (1) illustrates repair: a discrete transition occurs
due to that the continuous state entersXud. The reset
map sets the new continuous state tox∈Xd and a new
internal controle∈Ek. The execution marked (2) illus-

trates replication: again a discrete transition occurs due
to that the continuous state entersXud. Now, however,
the reset map sets the new continuous state tox∈Xud,
which triggers a second transition. This time the reset
map setsx∈Xd but also updatesk∈K. The latter leads
to a newEk ande∈Ek. The execution marked (3) illus-
trates mutation: here, also the second transition leads to
x∈Xud. Therefore, a third transition takes place. Then,
the reset map setsx∈Xd and updatesl ∈L, which leads
to a new environment variableσ l ∈

∑
. Note that the

reset map assigns a new continuous statex′ ∈X, in-
dependent of the past statex∈Xud. Hence, the hybrid
automaton accepts several executions and thus repre-
sents the uncertainty of the cellular dynamics. Proper-
ties such as reachable set computations, liveness, and

ons ac
Fig. 7. Examples of executi
 cepted by the hybrid automaton.
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stability can be analyzed for non-deterministic hybrid
automata.

6. Concluding remarks

With the availability of technologies that allow us
to obtain stimulus-response time series data for mod-
eling and system identification there is going to be an
increasing need for conceptual frameworks in which
to formulate and test hypotheses about intra- and inter-
cellular dynamics, in general and not just dependent
on a particular cell line, cell type, organism, or tech-
nology. To this day, experimental data in molecular and
cell biology are highly context-dependent but this ap-
pears to change and is going to provide control engi-
neers with opportunities and challenges. We here pre-
sented an abstract but general, compact mathematical
framework that extends (M,R)-theory to take into con-
sideration dynamic aspects of cell signaling and gene
expression and to allow for models of reversible,
switching and permanent changes occurring. The hy-
brid automata model illustrated how highly non-linear
dynamics and non-determinism can be captured in a
formal setting. There exist several tools for the reach-
ability calculations, stability analysis, and computer
simulations of hybrid automata, which have been de-
veloped over the last decade (Lygeros et al., 2003) and
might be useful in the study of cellular processes. The
proposed mathematical model of cellular processes
c ten-
s clu-
s u-
n on-
c gic,
c text
o nge
o etic
c ty of
t t we
h ces.
A tive
s lica-
t de-
s tra-
c that
e eful
p elp-

ing the experimentalist to decide what to measure and
why.
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