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Abstract

With the availability of technologies that allow us to obtain stimulus-response time series data for modeling and system
identification, there is going to be an increasing need for conceptual frameworks in which to formulate and test hypotheses about
intra- and inter-cellular dynamics, in general and not just dependent on a particular cell line, cell type, organism, or technology.
While the semantics can be quite different, biologists and systems scientists use in many cases a similar language (notion of
feedback, regulation, etc.). A more abstract system-theoretic framework for signals, systems, and control could provide the
biologist with an interface between the domains. Apart from recent examples to identify functional elements and describing
them in engineering terms, there have been various more abstract developments to describe dynamics at the cell level in the
past. This includes Rosen’s (M,R)-systems. This paper presents an abstract and general compact mathematical framework of
intracellular dynamics, regulation and regime switching inspired by (M,R)-theory and based on hybrid automata.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction of components in higher structural levelgglkenhauer
et al., 2003. As more stimulus-response, time series
The renewed interests in systems biology reflects the data become available, a need for a system-theoretic
natural shift of focus occurring in modern life sciences: framework of cellular processes, emerges. There has
away from the discovery of new components and their been considerable progress in mathematical modeling
molecular characterization, towards an understanding of intracellular dynamics, employing either stochastic
of functional activity, interactions and the organization simulation Paulsson, 2004; Rao et al., 20@# non-
linear differential equations to model aspects of cell sig-
- naling Kholodenko et al., 2002; Brightman and Fell,
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ers (seeDe Jong, 2002; Smolen et al., 2000; Rao et recognized that many of these highly specific and
al., 2002for survey articles). As alternatives to the dy- complex functions can be characterized by two generic
namic systems approach there have been also variousaspects: a transformation process, which he called
other techniques to model dynamics, rooted in formal ‘metabolism’ and a regulatory component, whose
languages, state machines, graph theory, artificial in- function he described as ‘repair’. These two abstract
telligence, etc. $hmulevich et al., 2002; Friedman et components form the basis for the theory of (M,R)-
al., 2000; Maki et al., 2001; Rzhetsky et al., 2004; systems.
Jordan, 1996 While in some cases parameters for Inspired by (M,R)-theory, this paper aims at devel-
models are directly identified from experimental data oping an extended framework of intracellular dynam-
(Cho et al., 2003a; Swameye et al., 2003; Tegner et al., ics, regulation and regime switching, based on hybrid
2003 more often a model is tuned for its simulation automata lfygeros et al., 2003; Alur and Dill, 1994;
to match the experience of the biologist. The valida- Alur et al., 2000Q. The theory of hybrid systems al-
tion with experimental data is then somewhat indirect. lows us to complement continuous dynamics, which
In any case, mathematical modeling and simulation form the basis for many pathway models, with other
is gaining acceptance as a complementary tool to testregulatory or response levels that include changes to
or generate hypotheses in molecular and cell biology. the elementary structure of dynamics (regime change,
While the semantics can be quite different, biologists switching, non-deterministic transitions, and so forth).
and control engineers use a similar language. A more The proposed framework also allows for sudden struc-
abstract system-theoretic framework for signals, sys- tural changes which, following Rosen’s and Casti's
tems, and control could provide an interface between terminology, we call ‘mutation’. Mutation is a struc-
both conceptual domains. This would help translat- tural change within a gene, chromosome and protein
ing common terminology, including “feedback”, “con-  resulting in changes to the dynamics at gene-, protein-,
trol”, “regulation”, “amplification”, “filtering”, etc. metabolite-, or the physiological level.
Apart from recent examples to identify functional ele-
ments and describing them in engineering terfislt
and Arkin, 2003; Iglesias and Levchenko, 2D@2re 2. (M,R)-theory for biological cellular processes
have been various more abstract formalisms to describe
dynamics at the cell level in the past. These include  Considering the functionality of a cell, Rosen and
Rosen’s (M,R)-systemsRpsen, 1971; Casti, 1988; Casti identified ametaboliccomponent, representing
Wolkenhauer, 2001 which are revisited in the present  basic biochemical processes and a maintenanoe or
paper. pair component, which ensures the cell’s regular func-
While at the molecular level many processes appear tioning in response to disturbances. Historically, the
to be of random nature, at higher levels of structural or- original formulation of (M,R)-theory was first given
ganization, i.e., cells, tissue, and organs, well-defined by Rosen (1971and it was further developed I3asti
principles of functional relationships emerge. The basic (1988) Following Casti’'s presentatiorCasti, 19883,
physical building block is the cell, which through net- we consider first metabolic activity, represented by the
works of biochemical reactions realizes many funda- mapping
mental processes relevant to development and disease, .
. . . h:Q2—>1T
Biochemical reaction networks are also referred to as
‘pathways’, which are the biologist’s conceptual frame- wheres? is the set of environmental stimuli and is
works to organize system variables, i.e., to identify rel- the set of cellular responses. We denoté&lfs2, I") the
evant genes, proteins, metabolites, and to characterizefamily of all these mappings, i.e., the set of all physi-
their interactions in relation to cellular functions, in- cally realizablanetabolicprocesses. We consider then
cluding cell division, cell death, cell cycle, differentia- the following basal metabolism for normal operation:
tion, proliferation, etc. More specifically, these include _, (")
from gene to cell level upwards: gene expression, tran- y=ale
scription, translation, metabolism, physiological, and whereo", h*, " denote the environmental input, the
immunological response and control processes. Rosenmetabolic map, and the cellular output, respectively,
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G(I",H(£,I))

Replication phase

Mutation phase

Fig. 1. Conceptual modeling of cellular processes. Each transition to a different phase or an alternative dynamic regime can be modeled as a
discrete transition, which further invokes a hybrid system framework.

when everything is working according to plan under 3. Dynamical models and (M,R)-systems
a normal condition. For deviations to the normal func-
tion, including external and internal disturbancestothe = Before we proceed to develop a concrete structure

cell’'s chemical activity, we introducerapair map of a cellular system, we first consider an extension of
the (M,R)-description in terms of mappings, into a dy-
ap= 1 ' — H($2,T) namical model familiar to control engineers. This can

be done by shifting our focus from the relationship

: . _ k between conceptual mappings to the actual processes
repair component itself can be subject to disturbances, qccyrring in the cell. We now regard cellular processes

we re_qui(e a further regulatory element, referred to as 4 4 dynamical system and focus on the inpu(:
areplication map R, — £ c R™andi(t): Ry — A C R’, the outputs

) y(t): Ry — I' C R?, and stateg(t): Ry — X Cc R".
Bue + H(2, I') — G(I H(82, 1) Note the abuse of notation in th& and I" are now
with the boundary conditiongy:(h*) = ay+, where subsets of Euclidean spaces, while in the (M,R)-model
G(I", H($2, I")) denotes the family of all repair maps. andr denot(_e signal space§. The dynamics of the
We can summarize the abstract model structure for cel- Cellular system is governed by:
lular processes in terms of the following morphisms: . _ 1w, 0)

with the boundary condition,«(y*) = h*. Since the

25 r me, n s o R, ) y = ()

where theenvironment variableoc =o(A(t), €) € >
is a function of a time-varying external disturbance
an(y*) = h* and B (h*) = . A(t) e A and a constant internal contrek E. Here,
> is the set of possible environment variables, which

If the dynamics encoded bly, and its regulatory  are depending on the cellular status dhdés the set
or supervisory componenig+(-), B+ (-), are not suffi- of admissible internal controls. This dynamical model
cientto cope with external disturbances or fluctuations, describes the cellular system in the normal operational
the next level of response is a transition to an alterna- phase. As indicated by the repair map of the (M,R)-
tive dynamic regime, for which we here introduce the model, the cell may transit into other phases, which
discrete transition map. The conceptual framework  require repair and replication. This can be covered by
developed here is outlined Fig. 1 a state-space model, introducing the partitioninglof

with boundary conditions
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o) o) - o) the vector field, Initt Q x Xthe set of initial state):
Q— P(X) the domainAc Q x Q the set of arcsC:
A— P(X) the guard condition, an@: A x X— P(X) is
the reset map. We refer tg,(X) € Q x X as thestateof
Z. Roughly speaking, hybrid automata define possible
evolutions for the state. Starting from an initial value
(do, Xo) € Init, the continuous stateflows as described
by the vector fieldf(qp,-), while the discrete statq
remains constant. Continuous evolution can go on as
long asx remains irD(qp). If at some poink reaches a
guardC(qp, 01), for some (o, q1) € A, the discrete state
may change tay;. At the same time the continuous
WO 1@ e 1,0 state is reset to some valueR(qo, 01, X). After this
discrete transition, continuous evolution resumes and
Fig. 2. A dynamical model of the cellular processes. The external the whole process is repeated. It is convenient to
disturbance. a_lffectsthe environment\_/ariai_:rieanq it isfurtherco_n- visualize hybrid automata as directed grap@s A)
trolled by an internal contrc}_t. Transitions into different operatl_n_g _with verticesQ and arcA. With each vertexge Q,
phases due to the external disturbances are accounted for partitioning . R .
the state-space into the corresponding disjoint subspaces. we associate a set of initial states Jlmt{xequ’
x) € Init}, a vector fieldf(q, -) and domairD(q). With
into two disjoint subsets{y andXyq which represent  each ar@e A, we associate a guaf{a) and a reset
‘desirable’ and ‘undesirable’ operating modes, respec- mapR(a, -) For a non-autonomous system, we need to
tively. Similarly, we define the corresponding output further include an external inpute U in Z, denoted
partitions:I"g = ¢(Xq) and I"yg=¢(Xuq). The deviation by Z,, and extend the above synopsis accordingly. A
from basal metabolism in normal operating phase is as- trajectory or solution of a hybrid automaton is called
sumed to occur due to external disturbances and whichan executionor run. The definition of an execution

affect the environment variable. The proposed dy- involves conditions on the initial state, the continuous
namical model of the cellular processes is illustrated in and discrete evolution. We say that a hybrid automaton
Fig. 2 accepts an execution or not (segeros et al., 2003

for more formal definitions). It is important to note that
a hybrid automaton may accept many executions or
4. Hybrid automaton model of the cellular none from a single initial state, i.e., a hybrid automaton
processes can be non-deterministic or blocking. Conditions for
existence and uniqueness of executions are given in
For the previous dynamical model to describe the Lygeros et al. (2003)
possible state transitions taking place, we employ the  There are numerous biological processes in which a
semantics of hybrid automataygeros et al., 2003;  multitude of dynamic regimes are employed to ensure
Alur and Dill, 1994; Alur et al., 2000 A hybrid au- the functioning of the cell. These are not necessarily
tomaton can capture theon-determinisnof a state ‘regulatory’ elements but also decision processes with
transition, which is convenient in modeling and anal- permanent consequences. For example, during the
ysis of highly uncertain cellular processes. In cellular development of an organism, organs, or tissue, cells
processes, those state transitions corresponding respeddifferentiate, i.e., they adopt a specialized biochem-
tively to repair, replication, and mutation are of course ical and/or physiological role. There are therefore
all triggered by the failure of a proper metabolism, but two kinds of change in genome activitplperts et
itis also non-deterministic whether a specific transition al., 2002; Brown, 1999 transient or switch-like,
can occur for a given failure situation. reversible responses to external stimuli of the cell
A hybrid automaton Z is a collection via signaling compounds that either enter the cell or
Z2(0, X, fInit, D, A, C, R), whereQisthe discrete  act through binding to surface receptors; secondly
state spaceX the continuous state spaéeQ) x X — X irreversible changes of genome activity underlying
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differentiation, and which can be brought about by 2004; Murphy et al., 2002 Intra-cellular signaling
DNA rearrangements, changes in chromatin structure, pathways enable cells to perceive changes from their
and positive feedback loops. Immunoglobulins are extra-cellular environments and produce appropriate
proteins that help protect an organism against invasion responsestho and Wolkenhauer, 20p®athways are
by bacteria, viruses, and other unwanted substancesnetworks of biochemical reactions but they are also an
by binding to these antigens. This binding is very abstraction biologists use to organize the functioning of
specific so that every antigen is recognized by only the cell; they are the biologist’'s equivalent of the con-
one immunoglobulin and T-cell receptor protein. DNA trol engineer’s block diagram. The Raf-1/MEK/ERK
rearrangement is a means for the human body to signaling pathway is a mitogen-activated protein
produce more immunoglobulins and T-cell receptor kinase (MAPK) pathway, which exists ubiquitously
proteins than there are genes. Changes to the chromatinn most of the eukaryotic cells and is involved in

structure can have an effect on gene expression byvarious biological response«dlch, 200Q. Fig. 3

modulation of transcription or silencing larger parts of
the DNA. In general, for all processes, which happen
in the context of higher levels of organization where
collections of cells function as a whol@tra-cellular
dynamics are linked tinter-cellular coordination of
the activity of genomes in different cells. This coordi-

adapted fromO’Neill and Kolch (2004) illustrates

the hybrid system dynamics of the Raf-1/MEK/ERK
pathway of PC12 cells. The different ERK dynamics
are achieved through the combinatorial integration
and activation of different Raf isoforms and crosstalk
with the cAMP signaling system, which results in

nation involves both transient and permanent changes,discrete state transitions to different cellular dynamics.

and must persist over a longer period of time during
development.

In the context of intracellular signaling, an exam-
ple for hybrid modeling is given by the switching
phenomena of ERK activities associated with the
Raf-1/MEK/ERK pathway ©’'Neill and Kolch,

Cell membrane

Cytosol

Nucleus

Raf-1/MEK/ERK signaling pathway

Fig. 3. Hybrid system dynamics of the Raf-1/MEK/ERK cellular signaling pathway in PC12 cells, where both, the quantity and history of ERK

PC12 cells differentiate in response to nerve growth
factor (NGF), but proliferate in response to epidermal
growth factor (EGF). Both growth factors utilize

the Raf-1/MEK/ERK pathway. The sustained ERK
activity caused by the B-raf isoform results in neuronal
differentiation while the transient ERK activity caused

Transient
ERK
activity

Cell proliferation

Cell differentiation
Sustained

ERK activity

Different biological responses

concentrations determine discrete state transitions to different dynamics that decide upon the cell’s fate.
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by the activation of CAMP signaling and the inhibition 1999. Hence, the rate constants of the above equa-
of Raf-1 results in cell proliferation. tions can vary according to the external environmental
For more detailed illustration and to provide a com- conditions and the xanthophyll cycle reaction system
prehensive idea on the hybrid system modeling, we can be therefore regarded as a hybrid system. We con-
consider a non-autonomous hybrid system model of a sider a hybrid system model of the xanthophyll cycle
xanthophyll cycle reaction system in plant science. Un- reaction system as follows (note that an exposition of
derstanding the manner in which excess solar energy isthe barley leaves is considered but detailed experimen-
dissipated by photosynthetic membranes under condi- tal conditions are not described here since those are out

tions of high light stress has been a major problem fac- of scope of this paper):

ing researchers studying photosyntheferfming-
Adams, 199D It has long been known that higher

cess light. Those include the xanthophyll cycle that dis-
sipates excess light energy as h&arfiming-Adams et
al., 199§. The xanthophyll cycle is an inter-conversion
process between violaxanthin (Vio) and zeaxanthin ®
(Zea). In excessive light, the build up of a trans- ®
thylakoid proton gradient activates the de-epoxidase, ®
which converts Vio into Zea via an intermediate an-
theraxanthin (Anth). The back reaction, epoxidation of ®
Zea, is light-independent and catalyzed by an epoxi-
dase thought to be located in the stromal side of the thy-
lakoid membraneSiefermann and Yamamoto, 1975

The xanthophyll cycle reaction system is illustrated
in Fig. 4, wherex; denotes the level of Vio [%]x2 o
the level of Anth [%],x3 the level of Zea [%]ki, ko
the de-epoxidation rate constants, dadks denote
the epoxidation rate constants. The dynamics of the
xanthophyll cycle reaction system can be modeled as

follows: °

X1 = —k1x1 + kaxo
X2 = kyx1 — kgxo + k3xz — koxo
x3 = koxp — kaxs

There have been accumulated studies investigating e
the dynamics of xanthophyll cycle and the laboratory
studies show that the dynamics largely depend on the
light stress and the inhibitor treatment such as salicy-
laldoxime (SA) as an epoxidase inhibitoXy( et al.,

. . ZMZ(Q9X5 .ﬁuvlnlta D7A7C7 R)7
plants possess several defense mechanisms against ex-

where

0 =1{q1. 92, 93, q4};

X = {x1, x2, x3} andX = R3:

f(gi, x) = (—kjzx1 + kiax, kizx1 — kiaxa +

kizx3 — kiox2, kioxo — k,‘3)€3), fori=1, 2, 3, 4;
ueU={(u, up)} with uze{lLL, HL} and
up € {+SA, —SA}, where LL denotes the low light
stress, HL the high light stress, +SA the inhibitor
treatment of SA, and-SA denotes the condition
without the treatment of SA;

Init = 0 x {xeR3122 < x; < 96.0A 4.0 <

x2 <2581 0.0 < x3 <809}

D(q1) = {xeR3333 <x1 <960A40<x; <
6.7 A 0.0 < x3 < 59.9},

D(q2) = {x€R3333<x1 <47.7A6.7<x

< 258311 < x3 <599},

D(q3) = {xeR3122 < x; <47.7A65<x
<212A311< x3 <806},

D(qs) = {x€R3122 < x1 <197A51 < x»
<7.2A750 < x3 <80.9};

A={(giq)Il=<i, j<4 i#j}

C:A— U with C(q1,q2) = (LL, —SA),

C(q1, g3) = (LL, +SA),
C(q2, q3) = (LL, +SA),
C(q2, q4) = (HL, +SA),

® Clg3. q4) = (HL, +SA),

C(q1, q4) = (HL, +SA),
C(q2, q1) = (HL, —SA),

De-epoxidation C(qg, qg) = (LL y —SA),
;(-------- k C(q4’ ql) = (HLs _SA)’ C(q4’ q2) = (LLv _SA)7
. . 2 C(qa, g3) = (LL, +SA);
Vio &= Anth G~ = Zea e R:AxX— P(X) with R(gi.qjx)=
) k@ k) ), 1<i j<4
apeccccccns
Epoxidation . .
The respective rate constants set of differ-
Fig. 4. State diagram of the xanthophyll cycle reaction system. ent environmental conditions is as follows:
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C. elegansnematode worm is exemplified, the Delta-
Notch biological cell signaling networks Bhosh et al.

=1 =20 1230 =40 (2003) and the genetic regulatory network underlying
ki1 114 141 170 198 the initiation of sporulation ifB. subtilisin De Jong et
kio 2187 4306 3301 1419 al. (2003)
kiz 19.2 2932 279 104
kia 7.2 332 101 9.0

5. Extended hybrid automaton model

Inspired by Rosen’s and Casti’s model, and based on
the aforementioned dynamical model, we can build an
extended hybrid automaton of the hybrid dynamics de-
notedM. Itis a minor extension of the model presented
in the previous section and defined by:

A sample trajectory with the initial stax€0) = (96.0,
4.0, 0.0) [%] is shown irFig. 5according to the exe-
cution of the model, where it is assumed that the dark
adapted barley leaves are exposed to high light during
[0, 0.1] (hours), exposed to low light during [0.1, 0.2]
(hours), SA is added during [0.2, 0.3] (hours), and ex- M=(0,X, 2 I £Init, D, A, C, R),
posed again to high light during [0.3, 0.4] (hours). It
is therefore implied that(qy, a2) = (LL, —SA), C(qgp,
gs) = (LL, +SA), and C(gs, g4)=(HL, +SA). From
Fig. 5 we realize that iy (D1), X3, increases rapidly e QO = {gnormab Grepaired Greplicated;
due to the photoprotection mechanism under the high ¢ X = R” is an open connected set WX+ Xq U Xyqg
light stress while it decreases for the low light stress  andXqnN X,q=¥;
in qz2(D2); X3 increases irgs(D3) due to inhibition of o 2 CR™:
the epoxidation reaction by SA treatment while it be- o 7 c R?;
comes saturated under the further high light stress in ¢ f=fy(x, o,

where

o1) with x(t)eX, o()ef, and

da(Da).

Other interesting hybrid system modeling examples
of biological systems include the full reactive modeling
of a multi-cellular animal ifHarel (2003)where the

\ — = Violaxanthin (x,)
90R =« Antheraxanthin (x,)
\ « -« Zeaxanthin (x,)
80 \
= - T
7o
o \
gso- ‘\ -
S50 i :
& N \
e 40 \ “ \
T b \
5 30f \\
S~ = ~
201 | \\ ————
- I 1 Wi
10} »
| i s a4 2 . R e
0 )

0 0.05 01 0.15 0.25 0.3 0.35 04

0.2
Time [hour]

Fig. 5. Sample trajectories of the xanthophyll cycle reaction system
according to executions of the hybrid system model.

e D(q) = Xa,
e A = {(gnormat ‘]repairec): (CIrepaired Qrepaire(),

o C(a) = Xud,
e R AxXxKxL—P(X)xKxL is a reset map.

o1=o1(r(t), € in which A(t) € A is a time-varying
external disturbance amk Ey is a constant internal
control. HereUy ¢ ¢ Ey is a family of controls pa-
rameterized ink C N and)_ ={o/}icL is a family
of environment map parameterizedin- N. More-
over,y =¢(X) is an output map;

Init = {(¢normas x)|x € X3} in which X§ is the inte-
rior of Xg;

for g€ Q;

(Qrepaired Qreplicatea, (Clreplicated CIreplicatetl

(C]replicated gnormal};
for ae A;

Here, we extend the reset map of the hybrid automa-

ton by including two index set&, L c N. The cor-

responding variableg K, | € L are simply updated

according taR at each discrete transition, similar to

the update of the continuous stateSo, we have

o R(gnormab Grepaired X, K, ) ={(x, k, DIx" e X}
(repair),

° R(CIrepaired Grepaired X, k, ) ={(x, k, DIx" e X}
(repair),
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Repair

Repair

qnorma[

xi=f(x,0,0,)
y=£(x)

ecE,

¥=C(x)

=1

qrepaired
X= f (xsmsof)

ecE,

Mutation

Repair

Replication

Replication

qrep!icared
x=f(x,0,0,)
7=

ecE,

Fig. 6. A hybrid automaton of cellular processes.

© R(Qrepaired greplicated X, k1) =
{(x', k', )X € X, k" € K} (replication),

© R(Qreplicated Greplicated X, k, l) =
{(X,K,D)|x e X,k e K} (repair or
tion), and

o R(Qreplicated Gnormah X, k, 1) =

replica-

trates replication: again a discrete transition occurs due
to that the continuous state ente{g. Now, however,

the reset map sets the new continuous statectq,
which triggers a second transition. This time the reset
map setx € Xq but also updatelse K. The latter leads

to a newEy ande € Ey. The execution marked (3) illus-

trates mutation: here, also the second transition leads to

X € Xyg- Therefore, a third transition takes place. Then,
Fig. 6 illustrates the hybrid automaton model and the reset map sexs= Xy and updatebe L, which leads

Fig. 7 shows three executions accepted by the hy- to a new environment variablg € > . Note that the

brid automaton of the cellular processes. The execution reset map assigns a new continuous stateX, in-

marked (1) illustrates repair: a discrete transition occurs dependent of the past state X,4. Hence, the hybrid

due to that the continuous state ent¥g. The reset automaton accepts several executions and thus repre-

map sets the new continuous state toXq and a new sents the uncertainty of the cellular dynamics. Proper-

internal controk € Ex. The execution marked (2) illus-  ties such as reachable set computations, liveness, and

{(X', k', I)|x" € X,k e K, I e L} (mutation).

Fig. 7. Examples of executions accepted by the hybrid automaton.
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stability can be analyzed for non-deterministic hybrid ing the experimentalist to decide what to measure and

automata. why.
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