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Conceptual Maps and Simulated Teaching Episodes as Indicators of
Competence in Teaching Elementary Mathematics
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Network representation was used to assess knowledge obtained during a teaching method-
ology course in elementary mathematics. Participants were the course instructor, 4 teacher
educators, and 53 prospective teachers. Relatedness ratings on key terms were used to
construct associative networks. Teacher educator networks shared significant similarities to
the course instructor’s network, and similarities between the teacher educator and prospective
teacher networks were as predictive of course grades as similarity to the course instructor.
Fourteen of the prospective teachers participated in a simulated teaching task. Network
similarity predicted teaching for conceptual understanding, as did final course grade, and was
more predictive than were either exams or lab scores. The advantage of associative networks
may be in representing patterns of concept relations underlying mental models of teaching.

Teaching for conceptual understanding has become one
of the fundamental components of reform movements in
mathematics education. Educational researchers and profes-
sional associations alike are advocating a greater emphasis
on the development of conceptual knowledge to comple-
ment the traditional emphasis on procedural knowledge
(Eisenhart et al., 1993; Even, 1993; Mathematical Sciences
Education Board, 1991; Mathematical Association of
America, 1991; National Council of Teachers of Mathemat-
ics, 1991).

Procedural knowledge is defined as knowledge of the
symbols, rules, and algorithms that are used for solving
mathematical problems (Eisenhart et al., 1993), whereas
conceptual knowledge is defined as “the relationships and
interconnections of ideas that explain and give meaning to
mathematics” (Eisenhart et al., 1993, p. 9). In short, con-
ceptual knowledge is an understanding of the concepts that
underlie procedures. A procedural approach to teaching
division of fractions would emphasize a series of steps such
as (a) writing down the problem, (b) inverting the divisor,
and (c¢) multiplying the resulting fractions. A conceptual
approach, in contrast, would use models and manipulatives
(e.g., cuisenaire rods, fraction bars, drawings) to convey the
relationships of concepts such as whole number division,
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multiplication, and fractions, to the concept division of
fractions. A conceptual approach might also emphasize the
relation of fractions to proportions.

Educational researchers have also shown an increased
interest in the relationship between subject matter knowl-
edge and the instructional processes that teachers use in
conveying such knowledge to learners. This idea has be-
come known as pedagogical content knowledge. According
to Shulman (1987), pedagogical content knowledge is “the
capacity of a teacher to transform the content knowledge he
or she possesses into forms that are pedagogically powerful
yet adaptive to the variations in ability and background
presented by the students” (p. 15). Conveying subject matter
in understandable forms is fundamental to the notion of
pedagogical content knowledge and involves constructing
alternate ways of representing ideas to students. Shulman
advocates the use of analogies, metaphors, examples, dem-
onstrations, and simulations for this purpose.

Since the introduction of pedagogical content knowledge,
educational researchers have embarked on research pro-
grams for defining such knowledge in specific subject mat-
ter areas. Research in mathematics education has focused on
the relationship between knowledge of the subject matter
and the application of pedagogical content knowledge in
prospective and experienced teachers (Ball, 1990; Ball &
McDiarmid, 1988; Borko & Livingston, 1989; Cobb, Wood,
& Yackel, 1990; Eisenhart et al., 1993; Even, 1993; Fen-
nema, Frank, Carpenter, & Carey, 1993; Leinhardt & Smith,
1985; Livingston & Borko, 1989, 1990; Tirosh & Graeber,
1990). The research generally demonstrates that experi-
enced teachers have richer, more well-instantiated cognitive
representations about subject matter, pedagogical content
knowledge, classrooms, and the nature of children than do
inexperienced teachers. The breadth and depth of experi-
enced teachers’ knowledge enable them to provide instruc-
tion that is at once comprehensive and responsive to student
needs. Furthermore, experienced teachers are able to re-
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spond effectively to a diverse set of student learning prob-
lems through flexible and improvisational application of
robust, field-tested instructional routines and heuristics (i.e.,
pedagogical content knowledge built up in memory as a
function of extensive teaching experience). In contrast, pro-
spective and beginning teachers may have adequate subject
matter knowledge, but when confronted with student com-
prehension problems, they often have difficulty generating
alternate methods for conveying content knowledge. Fur-
thermore, prospective and beginning teachers may believe
in the value of teaching mathematics conceptually but may
lack a firm enough foundation in the subject matter or the
pedagogical content knowledge to teach for conceptual un-
derstanding. Finally, student teachers often encounter a con-
flict between the views espoused by university teacher
educators and school administrators and the actual imple-
mentation of mathematics curricula in the schools. For
example, teacher educators, central administrators, and
principals may encourage teaching for conceptual under-
standing, but a number of factors may work against such
efforts. Required standardized testing, management systems
based on procedural knowledge, and the commitment of
some cooperating teachers to teach “only” procedural
knowledge reduces the opportunities for student teachers to
acquire the pedagogical content knowledge necessary for
teaching conceptual knowledge (Eisenhart et al., 1993).

Statement of the Problem

Livingston and Borko (1989) suggest that educational
research should focus more on determining the types of
teacher education experiences that aid novices in develop-
ing expert-like knowledge structures. Additionally, little is
known about the actual content and organization of teacher
educator knowledge and how that knowledge is imparted to
prospective teachers (Floden & Klinzing, 1990; Howey &
Zimpher, 1990). Finally, research on prospective teachers
has not assessed the substance and organization (or struc-
ture) of knowledge obtained during teaching methodology
classes in elementary mathematics. Instead, the research
conducted thus far has focused on observations of student
teachers and beginning teachers as they teach mathematics
to children, and then infers the nature of conceptual and
pedagogical content knowledge from these observations.
Direct assessments of conceptual mathematical knowledge
acquired during teacher education coursework and the ap-
plication of this knowledge to student teaching has not been
forthcoming. An attempt to assess and compare the concep-
tual and pedagogical content knowledge of teacher educa-
tors and prospective teachers has potential for contributing
to an understanding of novice~expert differences in elemen-
tary math education, as well as methods for enhancing and
developing such knowledge in prospective teachers.

Structural-Based Assessment

Conceptual and pedagogical content knowledge can be
assessed structurally using the Pathfinder network scaling

algorithm (Schvaneveldt, 1990; Schvaneveldt, Durso, &
Dearholt, 1981, 1989) and an associated measure of net-
work similarity. The Pathfinder network scaling algorithm
generates empirically derived network representations of
the associative structure among a set of concepts by taking
relatedness ratings as input to use in generating networks
where each concept is represented by a node, and the
relations between concepts are represented by links between
nodes. The algorithm operates by computing all paths be-
tween two nodes and includes a link between those nodes
only if the link represents the most direct (or minimum
length) path between the two concepts. In Pathfinder net-
works, highly related concepts are directly linked and less
related concepts are separated by two or more links. The
reader will recognize that Pathfinder networks are essen-
tially semantic networks without labeled relations. Addi-
tionally, the primary method for constructing semantic net-
works is theoretical in nature (Collins & Loftus, 1975;
Meyer & Schvaneveldt, 1976; Quillian, 1969), whereas
Pathfinder generates networks empirically from estimates of
psychological distance.

The first step in the general procedure for producing
Pathfinder networks requires generating a list of concepts
representing the domain of inquiry (in the present domain
the concepts reflect the course instructor’s view of concep-
tual and pedagogical content knowledge critical to elemen-
tary math education). Then relatedness data are obtained by
having participants rate every possible pair of concepts on a
numerical scale. Once produced, the networks can be used
to compare and contrast differences in knowledge structure
using numerical indices of similarity and by means of visual
inspection.

Pathfinder has been used for representing knowledge in a
number of domains, including basic research in memory
(Cooke, 1992; Cooke, Durso, & Schvaneveldt, 1986), learn-
ing (Gomez & Schvaneveldt, 1994), problem solving
(Durso, Rea, & Dayton, 1994), representation of belief in
psychosomatic iliness (Gomez, Schvaneveldt, & Stauden-
mayer, 1996), representation of the cognitive structures
underlying expertise (Cooke & Schvaneveldt, 1988), and of
particular relevance to the present study, structural assess-
ment of knowledge growth for academic subject matter
(Acton, Johnson, & Goldsmith, 1994; Goldsmith, Johnson,
& Acton, 1991; Gonzalvo, Canas, & Bajo, 1994; Housner,
Gomez, & Griffey, 1993a, 1993b; Johnson, Goldsmith, &
Teague, 1994).

For example, Goldsmith et al. (1991) used a set-theoretic
measure, C, to assess the similarity between instructor and
student Pathfinder networks in the context of a university
course on statistics and experimental design. C capitalizes
on the degree to which a node in two graphs is connected to
similar sets of nodes (see Goldsmith & Davenport, 1990, for
a detailed discussion of the properties of this measure). The
correlation between C and exam scores (r = .74) was a
better predictor of performance than were correlations be-
tween the untransformed relatedness ratings and exam
scores, or measures based on the use of multidimensional
scaling (another structural-based assessment approach).
Given previous research suggesting that multidimensional
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scaling captures global properties of the relations among
concepts whereas Pathfinder captures the local properties
(Cooke et al., 1986), these findings suggested that reducing
the untransformed relatedness ratings to only the most sa-
lient relations among concepts, as is done in Pathfinder
analysis, might be capitalizing on the “configural character”
of domain knowledge. Goldsmith et al. (1991) argued that if
knowledge is indeed based on sensitivity to the relationships
among concepts, then a method that captures and represents
the configural character of these relationships should be
particularly useful.

Housner et al. (1993b) found similar results in a study
involving prospective teachers enrolled in pedagogy
courses. Knowledge of key pedagogical concepts was orga-
nized more consistently and was more similar to the instruc-
tor’s organization after completion of the course than it was
in the beginning of the course. Furthermore, Housner et al.
(1993a) demonstrated that the prospective teachers’ knowl-
edge showed the same growth trend in relationship to the
referent structures of other teacher experts, and to a com-
posite network based on these teachers, thus adding signif-
icantly to the generalizability and content validity of
this research (see Acton et al., 1994, for similar results in
the domain of computer programming, as well as a more
thorough treatment of the issue of appropriate referent
structures).

Finally, Gonzalvo et al. (1994) used the configural prop-
erties of Pathfinder networks to predict the acquisition of
conceptual knowledge in the domain of history of psychol-
ogy. Gonzalvo et al. conducted a fine-grained analysis of
the relationship of the concepts in Pathfinder networks to
students’ abilities to define these concepts. Each concept in
the instructor and student networks was assessed structur-
ally in terms of the concepts to which it was directly linked.
Well-structured concepts in the student networks were de-
fined as those sharing greater degrees of similarity (in terms
of direct links to the same set of concepts) with those links
found in instructor networks. Ill-structured concepts were
defined as those sharing less student—instructor link simi-
larity. Gonzalvo et al. found positive correlations between
the goodness of students’ definitions of concepts and struc-
tural similarity of their concepts to the concepts in the
instructor networks, as well as an increase in the number of
well-structured concepts at the end as compared with the
beginning of the course.

In short, these studies suggest that a structural-based
approach can provide a useful means for representing and
assessing the growth of domain knowledge. Relatedness
ratings represent a more indirect, but possibly objective,
approach to discovering the structure of knowledge than do
standard exams. Students are required to make a judgment
about every pair of concepts; thus, they are tested over a
wider range of comparisons than would be possible on an
essay or multiple-choice exam. Because no context is pro-
vided other than that which arises from the relationship
between the two concepts, relatedness ratings are not re-
stricted to the context implied by the test question. Relat-
edness judgments also rely more on recognition than recall
and thus are less susceptible to the problems associated with

recall (such as forgetting and selective remembering). An-
other problem with standard exams has to do with devising
simple and objective grading systems. This is especially
true in the case of percentage-based exam scores, where
student knowledge is assessed relative to other students
rather than directly in relation to the course instructor. Thus,
traditional exams may test the factual knowledge of one
student relative to another but give little insight into how
students organize knowledge in relation to the instructor or
some other referent (Goldsmith et al., 1991). On this view,
the use of relatedness ratings in combination with tech-
niques for determining the most salient relationships among
the concepts may provide a means for better reflecting a
system of knowledge than would the more traditional
method of eliciting answers to specific questions on an
exam.

Ironically, although the motivation for using structural-
based assessment has been largely justified on the grounds
that traditional course exams are inadequate as indicators of
the configural nature of knowledge (Goldsmith et al., 1991),
validation of this approach has relied almost exclusively on
comparisons with traditional course performance measures.
The use of course exams as the validation criterion is a
serious limitation in research on structural assessment.
Therefore, showing that network similarity is a valid indi-
cator of teaching competence would be an important exten-
sion of structural-based assessment approaches. It is also
important to assess how exam scores fit into this relation-
ship. Surprisingly little is known about how performance on
course exams relates to the ability to generalize knowledge
in an applied setting.

Participants in the present study were prospective math
teachers enrolled in an elementary mathematics methods
course, the course instructor, and four other experienced
math teacher experts. Given the results of previous research
using the Pathfinder methodology, we expected to find a
positive relationship between course performance and net-
work similarity to the course instructor (Goldsmith et al.,
1991; Housner et al., 1993b). We also expected to find a
high degree of between-expert similarity and a positive
relationship between course performance and network sim-
ilarity to a composite of the experts’ network (Acton et al.,
1994; Housner et al., 1993a). However, our primary re-
search objective was to examine students’ ability to apply
knowledge obtained in a teaching methodology course in
the context of a simulated teaching task. We were particu-
larly interested in determining the relationship between the
level of subject matter understanding as reflected in network
similarity and the ability to transform and convey this
knowledge in a teaching situation. In other words, we
wanted to know how network similarity relates to proce-
dural knowledge, conceptual understanding, and the ability
to apply pedagogical content knowledge. We took the next
reasonable step in a line of research (Acton et al., 1994;
Goldsmith et al., 1991; Gonzalvo et al., 1994; Housner et
al., 1993a, 1993b; Johnson et al., 1994) by moving beyond
recall of knowledge (as reflected in traditional course as-
sessment measures) to the application of knowledge (as
reflected in a simulated teaching task).
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Method

Participants

The course instructor. The course instructor taught an elemen-
tary mathematics methods course at New Mexico State University.
The instructor was selected because of his commitment to concep-
tually based approaches to mathematics instruction and his exten-
sive experience as a teacher educator (7 years) and as a teacher of
elementary children (11 years).

The teacher educators. Four mathematics teacher educators
from different universities were recruited to participate. Each of
the teacher educators had a doctorate in mathematics education, 5
years experience as a teacher educator, and a commitment to
conceptually based approaches to teaching mathematics.

The undergraduate students. Fifty-three students who were
enrolled in the elementary mathematics teaching methodology
course participated.

The Teaching Methodology Course

The focus of the course was on conceptually based approaches
to teaching elementary mathematics. The course consisted of as-
signed readings, lectures, and class discussions. A critical compo-
nent of the course was a laboratory section in which prospective
teachers were provided with modeled teaching demonstrations
pertaining to conceptually based approaches and were then re-
quired to apply these ideas in microteaching experiences with
fellow students. The prospective teachers also developed lesson
plans and teacher-made activities in the laboratory and were given
appropriate feedback on these assignments relative to conceptually
based teaching. The final course grade was based on performance
in the laboratory sessions and objective exams. Performance in the
laboratory sessions accounted for 50% of the course grade; objec-
tive exams accounted for the remaining 50%.

Materials

The initial step in the study was to delineate the knowledge
structure of the course instructor. The researchers conducted in-
terviews with the course instructor, focusing on his perceptions of
effective mathematics teaching. The critical knowledge identified
by the course instructor consisted of 27 terms, including teaching
topics, concepts relevant to each topic, and manipulatives used for
teaching concepts (see Table 1). For instance, concepts of impor-
tance for teaching whole number operations are algorithms, re-
grouping, partitive/measurement, and basic facts. Appropriate ma-
nipulatives for demonstrating these concepts are cuisenaire rods
and arrays. Of the 27 terms identified, 7 were teaching topics, 13
were concepts, and 7 were manipulatives. Manipulatives and ma-
terials that can be used to convey more than one concept are
repeated in Table 1.

Procedure

Representing the course instructor’s knowledge. The instructor
used a computerized program to rate every possible pairwise
combination of the terms on a 9-point relatedness scale (1 =
unrelated and 9 = highly related). The pairs were presented in
random order for rating. Once the ratings were obtained, the data
were converted to distance measures by subtracting each rating
from 10. The Pathfinder network algorithm was then used to
generate a network representing the course instructor’s organiza-
tion of knowledge. The parameters used to compute the network
were set at r = infinity and ¢ = n — 1, where n refers to the
number of terms in the data (in the present study, n = 27). The r
parameter was chosen to match the ordinal properties of the data,
and the g parameter was chosen for the purpose of generating the
sparsest network possible from the given data. The first parameter,
the Minkowski » metric, determines how distance between two
nodes not directly linked is computed. When r = infinity, the

Table 1
Key Math Concepts Used in the Experiment
Topics Concepts Manipulatives/materials
Prenumeration Classification/sorting Attribute/blocks
comparison Discrete/continuous
materials

Place value

One-to-many correspondence

Base 10 blocks

Proportional/nonproportional

Whole number operations Algorithms Cuisenaire rods
Regrouping Arrays
Basic facts
Partitive/measurement
Fractions LCM/GCF Shaded bars/squares/
Rename circles
Decimals Shaded bars/squares/
circles
Percents Ratios and proportions Shaded bars/squares/
circles
Measurement Area Color cubes
Volume
Note. LCM/GCF = lowest common multiple/greatest common factor.
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length of a path is equal to the magnitude of the maximum link on
the path. This means that only ordinal assumptions are required of
the data because when r = infinity, the same links will be included
for any monotonically increasing transformation of the data. The
second parameter, g, limits the namber of links allowed in search-
ing for shorter alternative paths. When ¢ = n ~ 1, where » equals
the number of concepts being compared, there is essentially no
limit on the number of links allowed in paths because the longest
possible path has n — 1 links (see Schvaneveldt et al., 1989, for
more information on choosing r and g parameiers).

Eliciting knowledge from the teaching educators. The four
experienced math teacher educators rated the set of concepts using
the same procedure as the course instructor. Pathfinder networks
were gencrated for each teacher educator in the same manner as for
the course instuctor. A composite expert network was generaied
by converting each teacher educator’s ratings to z scores and then
averaging the converted ratings. The individual and composite
networks were then compared with the network structure gener-
ated by the course instructor.

Eliciting knowledge from the prospective teachers. During the
last week of class, all 53 students in the math educaticn course
rated the same set of concepts as the course instructor and the math
teacher cducators. The relatedness ratings were used to generate
networks for all students in the class. A measurc of network
similarity {described below) was used to compare student met-
works with the networks for the course instructor and the teaching
educators. Network similarity to the course instructor was used to
identify the top 10 and bottom 10 students in the class. Of these,
7 in each group were recruited to participate in a simulated
teaching task. These students returned 3 months later to participaic
in the simulated teaching task and were each paid $15 for their
efforts.

In the simulated teaching task, the prospective teachers were
asked to explain and demonstrate how they would teach three
specific areas of elementary school mathematics o elementary
school children. The three areas of math concepts chosen for this
task were whole number operations, fractions, and measurement
problems. Three problems were generated for each math concept.
The tasks and protocol for the simulated teaching are presented in
Table 2. Students werc iold to use appropriate manipulatives (o
teach each concept and also to work each problem out by hand.
The purpose of the latter instruction was to determine whether the
students could produce the correct solution to the problem. The
participants were also asked to describe real-world situations
where they would apply multiplication and division of fractions
and where they would have 1o find perimeter and volume. Partic-
ipants were given their choice of eight types of manipulatives to
use in teaching the problems in the simulated teaching task. The
manipulatives were Base 10 blocks, shaded fraction bars, color
tiles, color cubes, cuisenaire rods, decimal squares, pattern blocks,
and color counters. The latter three manipulatives were included as
distracter items. The experimenter read the problem to the student
and the students were videotaped as they simulated teaching the
concept to the experimenter. Students were randomly assigned to
each of the three experimenters. The experimenters were ‘“blind”
as to whether the student was high or low on network similarity to
the course instructor,

Scoring

Simulated teaching task. After the simulated teaching tasks
were videotaped, each tape was rated by four independent raters
who were paid for their efforts. Two of the raters were instructors
for the elementary mathematics methods course at New Mexico

State University. The third rater taught math for education majors
in the mathematics department of the university, and the fourth
rater was a public school teacher who had received awards for
mathematics teaching in the public school system. Each problem
was scored according 1o four levels of performance difficulty, as
shown in Table 3. The first level of mastery reflects surface
knowledge of the procedures in this particular domain of math
problems. The second level reflects the ability to remember which
manipulatives are used for teaching particular classes of problems,
but provides no indication of whether the prospective teacher can
use the manipulative cotrectly. The third and fourth levels of
mastery reflect a deeper conceptual understanding in the ability to
use manipulatives to explain math problems for conceptual under-
standing (Level 3) and in the ability to generate real-world anal-
ogies {Level 4). That is, Levels 3 and 4 reflect degree of concep-
tual and pedagogical content knowledge, whereas Levels 1 and 2
refleet surface and procedural knowledge. Interrater reliability
between all pairs of observers ranged from .62 to .92, with a mean
of .83. These levels of agreement were considered acceptable. The
abservers' ratings were then aggregated for each student by com-
puting the average of the raters’ scores for each problem, at each
level of performance.

Nerwork similarity. Pathfinder networks were compared using
a network similarity index called NETSIM. NETSIM is based on
the expecied similarity between networks and is computed in the
following manner. First, the observed similarity is computed by
dividing the number of links shared by both networks (those in the
intersection) by the number of links in either network (those in the
union). Next, because the probability that two networks (Net | and
Net 2) will share k links can be computed from the hypergeometric
probability distribution, this information can be used to compute
the expected similarity of two random networks.! The expected
similarity is subtracted [rom the observed similarity between two
networks to get the NETSIM index, which is relative to the chance
level of similarity (or NETSIM = 0). For instance, with n = 27
concepts, if two networks (Net 1 and Net 2) contain L, = 66 and
L, = 55 links, respectively, and if & = 21 of the links are shared,
then there are 100 links in the union (i.e., 66 + 55 — 21 = 100).
The probability of sharing 21 links is .00013, obscrved similarity
is 0.210 (i.e., 21/100), expected similarity is .094, and NETSIM is

' Applying the hypergeometric probability distribution to graph

similarity vields the equation,
Ll. N - L|
k) La—k

w

L,

where maximum (0, L, + L, — N) = k = minimum{L,, L,). In this
equation, p(I = k) refers to the probability that Net 1 and Net 2 will
share k links, N denotes the total number of links possible in a
network (given n concepts, N = nfn — 1)/2), and L, and L, refer
to the number of links in Net 1 and Net 2, respectively. Expected
similarity, E{Sim), is then obtained by the usual method for com-
puting expected values:

pI=&=

max(f)

k
Eisiml = X pl =0y

k=min(/}

where E[Sim] = cxpected similarity, min (/) = maximum (0, L, +
L, — N) and max(/) = minimum (L, L,).
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Table 2
Problems Used in the Simulated Teaching Task
Task Problem
Whole number operations

Subtraction Show how the subtraction algorithm works using the problem: 53
-28=7

Multiplication Show how the multiplication algorithm works using the problem:
3X47 =7

Division Show how the division algorithm works using the problem: 736
+3=7

Fractions

Subtraction Show how to subtract the fractions 1v4 — V4.

Multiplication Show how to multiply the fraction %3 X ¥4 Describe a real world
situation where you would multiply two fractions like the ones
here.

Division Show what it means to divide the fractions 125 + Y5. Describe a
real world situation where you would divide two fractions like
the ones here.

Measurement

Perimeter Demonstrate how you would teach the concept of perimeter using
the given shape. (Students were given the outline of a T-shaped
area.) Describe a real world situation where you would find the
perimeter of an irregular shape like the one here.

Area Demonstrate how you would teach the concept of area using the
given shape. (Students were given the outline of an L-shaped
area.)

Volume Demonstrate how you would teach the concept of volume using

the given shape. (Students were given the outline of an L-
shaped area.) Describe a real world situation where you would
find the volume of a shape like the one here.

0.116. A positive NETSIM value indicates a greater degree of
similarity between two networks than that expected by chance.
Alternately, a negative NETSIM value means that the observed
network similarity is less than that expected by chance. Statistical
significance can be used as a criterion for determining whether the
NETSIM values statistically exceed the degree of network simi-
larity expected by chance. Using this index, one would expect to
find a higher degree of network similarity between high-knowl-
edge students and the course instructor or the teacher experts than
between low-knowledge students and the referent networks.
Although NETSIM is conceptually similar to the C measure
used in previous research (see Acton et al., 1994; Goldsmith &
Davenport, 1990; Goldsmith et al., 1991; Gonzalvo et al., 1994;
Housner et al., 1993b; Johnson et al., 1994), it should be noted that
the measures are not identical. The C measure is based on the

similarity of the “neighborhoods” of the corresponding nodes in
two networks, whereas NETSIM is derived from the similarity of
sets of links found in two networks. In the computation of C, the
neighborhood of each node in a network is taken to be the set of
nodes connected to the node in the network. For the corresponding
nodes in two networks, the similarity of their neighborhoods is
computed by the ratio of the number of nodes that are in both
neighborhoods over the number of unique nodes in either neigh-
borhood (the number of nodes in the intersection of the neighbor-
hoods over the number in the union). These values are computed
for every node in the network, and C is the mean of these
node-based values. NETSIM is similar in spirit, but the computa-
tion is based on the networks as wholes rather than node by node.
The primary advantage of NETSIM is that a chance value can be
computed, whereas attempts to find the distribution of C have not

Table 3
Criteria Used by Expert Raters to Score Performance on the Simulated Teaching Task
Level of performance Criteria
Level 1: Performed algorithm correctly 0=No1l = Yes
Level 2: Selected appropriate manipulative 0 = No 1 = Fair 2 = Best
Level 3: Used manipulative to explain concept 0 = Ineffective
effectively 1 = Moderately effective (some confusion,

Level 4: Explained real world application of
concept

lacked confidence, did not relate
explanation to algorithm)

2 = Effective (clear, confident, and related
explanation to algorithm)

0 = None

1 = Application suggested but lacked
accurate explanation

2 = Application accompanied by accurate
and detailed explanation
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been successful. NETSIM values can be interpreted relative to a
statistical distribution as well as relative to each other. C can be
interpreted only relative to other values. NETSIM values are quite
similar to C, with mean correlations of .93 in this study (the
correlations ranged from .80 to .99, depending on which referent
networks were used in the comparison).

Results

The Pathfinder network generated from the course in-
structor’s ratings is shown in Figure 1. The network reflects
many of the same relationships shown in Table 1. This is
particularly interesting given that the course instructor con-
structed the table analytically, whereas the network was
constructed from the course instructor’s judgments of relat-
edness. For example, the concepts “LCM/GCF” (lowest
common multiple/greatest common factor), “Rename,” and
“Shaded bars/squares/circles” are all related to the topic
“Fractions” and these relationships also show up as links in
the course instructor’s Pathfinder network. One expects
substantial overlap between the table and the network, given
that both representations were generated from the same
source (i.., the course instructor’s knowledge); however,
the network shown in Figure 1 is an empirical demonstra-
tion of this point. It should be noted that the primary source
of information in Pathfinder networks is in the presence
or absence of a link. Spatial layout and link lengths are
determined arbitrarily and therefore have no meaningful
interpretation.

Next, the generalizability of the course instructor’s
knowledge was assessed by comparing his knowledge struc-
ture with those of the four other experienced teacher edu-
cators. NETSIM values comparing the Pathfinder networks
of the course instructor, the four experienced teacher edu-

Partitive
measurement

Whole Number
Operations
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cators, and the composite networks are shown in Table 4.
The corresponding C values are also shown in Table 4. The
averaged ratings used to compute the five different com-
posite networks changed as a function of which teacher
educator was the focus of the comparison. For example, the
composite network used to compute network similarity in
comparison with the course instructor was generated from
the z-transformed ratings of Teacher Educators 1-4. In
contrast, the composite used to investigate network similar-
ity for the first teacher educator was based on the ratings
obtained from the course instructor and Teacher Educators
2-4. The probability of obtaining NETSIM values as large
or larger than those shown in Table 4 indicates levels of
agreement considerably above chance (all ps < .001).
Next, NETSIM values were computed for all 53 students
in the math pedagogy course. Students’ networks were
compared with the six referent networks: the course instruc-
tor’s network, those from the four teacher educators, and the
composite network based on the averaged ratings of the four
teacher educators. The resulting NETSIM values are shown
in Table 5. The analyses reported were all performed on
NETSIM values. Analyses were also performed using C
values that, although not reported here, were consistent with
the analyses using NETSIM. Results for the seven students
with the highest NETSIM scores and the seven students
with the lowest NETSIM scores are shown in Table 5. The
NETSIM values shown in Table 5 were all statistically (p <
.003) greater than baseline (NETSIM = 0). A repeated
measures ANOVA with six levels of referent structure was
computed for all students to determine whether NETSIM
values varied as a function of referent. The ANOVA re-
vealed a significant main effect of referent, F(5, 260) =
471, MSE = 0.0008, p < .001. Post hoc ¢ tests were
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Basic Facts
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NETSIM and C Values for Comparisons Between the Pathfinder Networks of the
Course Instructor, the Four Experienced Teacher Educators (TE 1-4), and the

Respective Composite Networks

NETSIM (Observed minus expected similarity)

Teacher educators 1 2 3 4 5 6
1. Instructor (42 links) —
2. TE 1 (55 links) —
NETSIM 154 —
C .200 —
3. TE 2 (66 links)
NETSIM .288 116 —
C .384 215 —
4. TE 3 (66 links)
NETSIM 176 .104 .190 —
C 302 .190 319 —
5. TE 4 (91 links)
NETSIM 165 128 219 .208 —
C 272 242 351 335 —
6. Composites (27-31 links)
NETSIM .249 133 222 216 .166 —
C .381 174 .296 312 251 —
Note. 'The number of links in a given network are shown in parentheses. NETSIM and C are both

network similarity indexes.

conducted for the purpose of determining whether NETSIM
to any one referent was better than NETSIM to the other
referent structures. Because of the number of tests involved
in these comparisons, the significance criterion was ad-
justed to control for familywise error rate (EF/k = .05/15 =
.003). Post hoc ¢ tests, comparing NETSIM to each referent
with NETSIM to every other referent, failed to result in
statistically significant differences (all ps > .03). A similar
analysis was conducted using only the 14 students who
participated in the simulated teaching task. A 2 (knowledge:
high vs. low) X 6 (referent structure) ANOVA, where
knowledge was treated as a between-subjects variable and

Table 5

referent structure was a within-subject variable, resulted in
a main effect of knowledge, F(1, 12) = 99.27, MSE =
0.0022, p < .001; a main effect of referent, F(5, 60) = 2.74,
MSE = 0.0006, p = .027; and a Knowledge X Referent
Structure interaction, F(5, 60) = 3.80, MSE = 0.0006, p=
.005. As with the analysis using all 53 students, post hoc ¢
tests were conducted to determine whether NETSIM was
statistically higher to any one referent than to the other
referents. With the significance criterion adjusted to control
for familywise error rate (EF/k = .05/15 = .003), post hoc
t tests, comparing NETSIM to each referent with NETSIM
to every other referent, resulted in only one difference. For

Means and Standard Deviations for NETSIM and C Comparisons to the Six Referent
Networks, Presented Separately for All Students and for High- and Low-Knowledge

Students
Course

Group and value  instructor TE 1 TE 2 TE 3 TE 4 TEs 14
All students

(n = 53)

NETSIM .12 (.06) A0(05)  11(05) .11(.05) .12(04) .12(.06)

C 22 (.07) 20(.05) .23(06) .23(.05) .26(.05) .20(.06)
High-knowledge

students

(n=T17)

NETSIM .19 (.03) 303y  .16(02) .16(.05) .14(.04) .16 (.03)

C .28 (.02) 23(.03) .28(.03) .27(05) 29(05) .23(.02)
Low-knowledge

students

(n=17

NETSIM .05 (.02) 04(02) .05(03) .06(01) .08(03) .05(0D

C .14 (.01) A5(03)  .18(03) .20(.02) .24(.05) .13(.01)

Note. TE = teacher educator. NETSIM and C are both network similarity indexes. Numbers in

parentheses are standard deviations.
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the high-knowledge students, NETSIM was significantly
higher to the course instructor than to Teacher Educator 1,
1(12) = 3.80, p = .003 (all other ps > .04). Post hoc ¢ tests
for low-knowledge students showed no differences in
NETSIM values as a function of referent structure (all ps >
.03). Most important, there were no statistical differences in
NETSIM values to the composite network compared with
NETSIM values to the course instructor (for all or for high-
or low-knowledge groups), suggesting that both networks
were equally predictive of course performance.

Pearson product-moment correlations were computed be-
tween course performance measures and the students’
NETSIM values. The correlations for the entire class and
the correlations for the 14 students participating in the
simulated teaching task are shown in Table 6 (note that the
latter correlations include two extreme groups of n = 7).
Mean test average for all 53 students was 86.14 percentage
points (SD = 8.68; range = 61.00-98.75), mean lab score
was 96.80 (SD = 3.10; range = 87.10-100.00), and mean
final grade was 91.47 (SD = 5.01; range = 75.98-99.22).
Mean test average for the 14 students who participated in
the simulated teaching task was 87.39 percentage points (SD
= 6.82; range = 70.75-95.00), mean lab score was 95.46
(SD = 2.87; range = 88.39-99.35), and mean final grade
was 91.40 (SD = 3.87; range = 82.79-96.28). Although
correlations between NETSIM and lab scores for the entire
class were numerically lower than correlations between
NETSIM and the other two course performance measures,
all but one correlation reached statistical significance. The
correlations between NETSIM and lab scores were some-
what higher when only the 14 students participating in the
teaching demonstration were included in the analysis; three
of the six correlations reached statistical significance
(NETSIM to Teacher Educators 1 and 3 and to the com-
posite network). When the entire class was included in the
analysis, all of the correlations of NETSIM with test aver-
age and final grade were statistically significant. However,
the correlations between test average and NETSIM were
numerically lower than the correlations between final grade
and NETSIM. NETSIM to the course instructor, and also to
the composite network, accounted for approximately 30%

Table 6

of the variance in final course grade. Interestingly, the
correlation of final grade with NETSIM to Teacher Educa-
tor 2 was slightly higher than the correlations for final grade
with NETSIM to the course instructor and with the com-
posite. When only the 14 students participating in the sim-
ulated teaching task were included in the analyses, the
correlations of test average with NETSIM were also numer-
ically lower than were the correlations of final grade with
NETSIM. In this case, NETSIM to the course instructor
accounted for 55% of the variance in final course grade and
NETSIM to the composite network accounted for 50% of
the variance in final course grade.

These results (for all students and for the 14 participating
in the teaching demonstration) replicate the findings re-
ported by Acton et al. (1994) and Housner et al. (1993a) by
demonstrating how network similarity to a composite of
experts can be as predictive of a course performance vari-
able (such as final grade) as similarity to the course instruc-
tor (rs = .74 and .71, respectively). Such a result is impor-
tant because it rules out the possibility that the student
teachers are merely organizing their knowledge in terms of
the particular views espoused by the course instructor. In-
stead, this result suggests that student teachers are learning
something more general with regard to the way teacher
educators organize their knowledge.

Given that the present results replicate those found earlier
in the literature, both in terms of predicting course perfor-
mance (Goldsmith et al,, 1991; Gonzalvo et al., 1994,
Housner et al.,, 1993b) and in terms of generalizing to a
composite network based on experts other than the course
instructor (Acton et al., 1994; Housner et al., 1993a), the
next objective was to assess performance on the simulated
teaching task and its relationship to network similarity.

Table 7 shows the percentage of points obtained for the
high- and low-knowledge groups as a function of problem
type (whole number operations, measurement problems,
and fractions) and performance on the simulated teaching
task (Levels 1-4). Note that the cell for Level 4 (“Exam-
ple”) is empty for whole number operations. This is because
students were not asked to provide real-world analogies to
these problems. Table 7 shows that students were generally

Correlations Between Course Performance Measures and NETSIM to the Six Referent
Networks, for All Students and Those Participating in the Simulated Teaching Task

Course
performance Course

variables instructor TE 1 TE 2 TE 3 TE 4 TEs 14

All students (N = 53)
Final grade S5%x* 31* H3FEE 54k SexE* S54x%k
Test average 52K .28* 60*** S50%k* S4xE S1wEx
Lab scores 32%* .20 36** 35% 30% 31*
Students participating in the simulated teaching task (n = 14)

Final grade T4%* 54* J2x* 61* .60* T1#*
Test average .64* 38 .66* 46 54* 56*
Lab scores 48 57 37 S55* .34 58

Note.

*p< 05. *p< 0l **p< 001

TE = teacher educator. NETSIM is a network similarity index.
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Table 7

Mean Percent Correct Scores and Standard Deviations for High- and Low-Knowledge
Groups at Four Different Levels of Mastery, Across Three Problem Types

Whole number Measurement
operations problems Fractions

Level of High Low High Low High Low

mastery n=17 n=17 n=17 n="17 n=17 =17
Algorithm 100 (0) 100 (0) 90 (25) 76 (32) 81 (26) 71 (30)
Manipulative 95 (13) 90 (13) 57 (%) 64 (22) 93 (19) 60 (36)
Explanation 52(11) 38 (8) 62 (18) 40(13) 21(23) 5(8)
Example — — 50 (14) 46 (17) 11 (28) 4(9)

Note.

able to perform at the first level of mastery. That is, most
students were able to solve the problems procedurally. In
cases of whole number operations, both high- and low-
knowledge students were able to choose an appropriate
manipulative for teaching the problem (Level 2). High-
knowledge, but not low-knowledge, students were able to
choose an appropriate manipulative for teaching fractions.
Both groups performed poorly when selecting an appropri-
ate manipulative for teaching measurement problems. Per-
formance was generally poor when teaching for conceptu-
ally based understanding (Level 3) and when attempting to
generate real-world analogies or examples (Level 4).

The overall analysis was broken into two separate
ANOVAs because of the empty cells for whole number
operations at the fourth level of mastery. A 2 (high vs. low
knowledge) X 3 (problem type) X 3 (Mastery Levels 1-3)
ANOVA, where knowledge was a between-subjects vari-
able and problem type and mastery level were within-
subject measures, resulted in main effects of knowledge,
F(1, 12) = 7.81, MSE = 571.52, p = .016; problem type,
F(2, 24) = 17.32, MSE = 35949, p < .001; and level of
mastery, F(2, 24) = 60.92, MSE = 483.44, p < .001. The
main effects of problem type and level of mastery were
mediated by a Problem Type X Mastery Level interaction,
F(4, 48) = 8.33, MSE = 322.34, p < .001. The interaction
is due primarily to the finding that the prospective teachers
had far more difficulty explaining fractions for conceptual
understanding than explaining whole number operations
and measurement problems. Students also had relatively

Table 8

Numbers in parentheses are standard deviations.

more difficulty selecting the appropriate manipulative for
measurement problems. A 2 (high vs. low knowledge) X 2
(problem type) ANOVA for performance at Level 4, where
knowledge was a between-subjects variable and problem
type was a within-subject variable, resulted in a main effect
of problem type, F(1, 12) = 29.94, MSE = 39434, p <
.001, but no effect for knowledge or interaction of these
variables (both Fs < 1). Prospective teachers were far better
at generating real-world examples for measurement prob-
lems than for fractions. This finding is consistent with that
reported in the previous analysis, where prospective teach-
ers had more difficulty teaching fractions for conceptual
understanding as compared with teaching measurement
problems. Although prospective teachers were far more
successful in selecting the correct manipulative for teaching
fractions as compared with measurement problems, this
apparent success did not factor into their ability to teach
fractions, as indicated by performance on Levels 3 and 4 of
the simulated teaching task.

Finally, correlations were calculated to clarify the rela-
tionship between network similarity, course performance,
and performance on the simulated teaching task. We were
particularly interested in determining how course perfor-
mance and network similarity mapped onto level of teach-
ing skill. Table 8 shows the correlations of simulated teach-
ing performance (collapsed across problem type) to final
grade, test average, lab score, network similarity to the
course instructor, and network similarity to the composite
network. Levels 1, 2, and 4 performance failed to correlate

Correlations Between Performance at Each Level of Mastery on the Simulated
Teaching Task and Network Similarity to the Course Instructor, the Composite
Network of the Four Teacher Educators, Final Course Grade, Test Average, and Lab

Score (n = 14)

Course

instructor Composite Final Test Lab

Level of mastery NETSIM NETSIM grade average score

Level 1: Algorithm 42 .50 .35 28 28
Level 2: Manipulative 31 .26 37 22 49
Level 3: Explanation 69%* 68** 62% 52 45
Level 4: Real-world example 11 17 -.05 —.11 11

Note. NETSIM is a network similarity index.

*p < 05 *p< Ol



582

significantly with either NETSIM or course performance
scores. However, the ability to teach for conceptually based
understanding (Level 3) was significantly correlated with
the two NETSIM measures and final course grade. NETSIM
to the course instructor and the composite network ac-
counted for 48% and 46% of the variance in Level 3
performance, and final course grade accounted for 38% of
the Level 3 performance variance.

To obtain a better understanding of the relationship be-
tween network similarity and course grades as predictors of
simulated teaching performance, we computed the partial
correlations of Level 3 teaching performance with NETSIM
to the course instructor, NETSIM to the composite, final
grade, test average, and lab scores, with the variance con-
tributed by the latter five indices individually held constant
(see Table 9). If NETSIM is accounting for variance not
accounted for in course performance measures, then
NETSIM should continue to predict Level 3 teaching per-
formance, even when the variance due to course measures is
partialled out. Alternately, if NETSIM shares a significant
degree of variance with a particular performance measure,
then partialling the measure out should result in a loss of
predictiveness. The second row in Table 9 shows the Level
3 predictiveness of NETSIM to the course instructor, with
NETSIM to the composite network, final course grade, test
average, and lab score individually held constant. It can be
seen that NETSIM to the course instructor correlates sig-
nificantly with Level 3 performance when test average and
lab scores are held constant, but not when NETSIM to the
composite or final course grade are partialled out. The third
row in Table 9 shows a similar pattern of results. That is,
NETSIM to the composite network is a significant predictor
of performance on Level 3 of the simulated teaching task
when either test average or lab score is partialled out, but
not when NETSIM to the course instructor or final grade is
held constant. In contrast, the fourth, fifth, and sixth rows in
Table 9 show how when either of the two NETSIM mea-
sures is individually partialled out, course performance
measures show no correlation with the ability to teach math
concepts for understanding. This pattern of findings sug-
gests that NETSIM measures based on comparisons of
Pathfinder networks capture unique variance not captured in
exams or lab scores.

Table 9
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Finally, NETSIM to the course instructor and final course
grade were included in a multiple regression equation to
determine whether these factors together would be a better
predictor of Level 3 teaching performance than either factor
taken alone. Combining these two factors resulted in R =
J1 (R* = 51), F(2, 11) = 5.74, MSE = 65.06, p = .019.
Although using either NETSIM or final course grade in the
regression equation significantly predicted Level 3 teaching
performance, R* = 48, F(1, 11) = 11.20, MSE = 65.06, p
= .006 for NETSIM, and R* = .38, F(1, 11) = 7.68, MSE
= 65.06, p = .017 for final course grade, the additional
improvement due to adding the other independent variable
was not large enough to be statistically significant, F(1, 11)
= 0.29, MSE = 65.06, when adding final course grade to
NETSIM, and F(1, 11) = 3.81, MSE = 65.06, when adding
NETSIM to final course grade. Thus, these two variables
appear to convey overlapping information with regard to
simulated teaching performance.

Discussion

The objectives of the research reported here were two-
fold. The first objective was to replicate previous research
using the Pathfinder network scaling methodology (Schvane-
veldt, 1990; Schvaneveldt et al., 1981), but in the domain of
math education. The results showed that the course instruc-
tor shared a high degree of structural knowledge with the
other experienced teacher educators. Furthermore, network
similarities to the composite network, generated from the
experienced teacher educators’ concept ratings, were virtu-
ally as predictive of the prospective teachers’ course grades
as were network similarities to the course instructor, repli-
cating the results of Acton et al. (1994) and Housner et al.
(1993a). Network similarity to the four teacher educators
was also predictive of course grades.

The second objective of the study was to take the next
logical step in research on structural-based assessment by
examining the relationship between knowledge structure
and the ability to apply this knowledge. Previous studies
have used course grades as validation criteria for structural-
based assessment. However, as the research in this partic-
ular study demonstrates, the relationship between course

Partial Correlations Between Knowledge Indexes as a Predictor of Performance on the
Explanation Component (Level 3) of the Simulated Teaching Task With Every Other

Knowledge Index Held Constant (n = 14)

Knowledge index used as
predictor (Level 3:

Explanation) 1 2 3 4 5 6
1. None
2. NETSIM to instructor .69%* — 22 44 55% 61%
3. NETSIM to composite .68%* .03 — 42 S54%* 57*
4. Final grade .62% 23 28 — 44 52
5. Test average 52 15 24 —-.21 — 52
6. Lab score 45 18 .09 .20 44 —

Note. NETSIM is a network similarity index.

*p < .05, **p< .0l
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performance and teaching skill is somewhat tenuous. We
assessed teaching performance on four different levels of
mastery and discovered that although most participants
were able to solve the problems procedurally and many
were able to select the correct manipulative for demonstrat-
ing the problems, students generally had greater difficulty
translating their knowledge of procedures into conceptually
based explanations and real-world analogies to problems.
Interestingly, network similarity was as sensitive an index
of the ability to teach for conceptual understanding as was
final course grade, and more sensitive than were exams and
lab scores. When test average and lab scores were individ-
ually held constant in partial correlations, NETSIM to the
course instructor and the composite network were predictive
of performance on the simulated teaching task, whereas the
opposite was not true. That is, partialling out the variance
due to NETSIM to either referent network essentially erad-
icated the relationship between test average, lab perfor-
mance, and the ability to convey math problems for con-
ceptual understanding. When final course grade was held
constant, NETSIM to the course instructor and the compos-
ite were no longer predictive of performance on the simu-
lated teaching task, suggesting that NETSIM and final
course grade were tapping shared variance. These results
demonstrate two important points. The first is that network
similarity can be useful for assessing a specific aspect of
knowledge, in this case conceptual and pedagogical content
knowledge. Secondly, the information captured using relat-
edness ratings and the Pathfinder methodology was just as
effective at measuring key knowledge as final course grade.
That Pathfinder was a more sensitive predictor of simulated
teaching performance than test average is consistent with
the view that standard exams may fail to represent the
configural nature of knowledge captured in structural ap-
proaches (Goldsmith et al., 1991).

A potential drawback of this study is in the use of two
very small groups on extreme ends of a continuum, with
each group consisting of only seven students. Given the
resources we had available, it was possible to test only a
small number of participants. Twenty students (10 with low
network similarity to the course instructor and 10 with high
network similarity to the instructor) were originally targeted
for the simulated teaching task. It was impossible to obtain
all 20 students due to the constraints that students either be
in the upper or lower quadrant of NETSIM scores and not
be concurrently fulfilling their student teaching require-
ments. The latter constraint served the purpose of avoiding
a confound due to differential degrees of teaching experi-
ence. Under any circumstances the use of such small groups
raises questions regarding the stability and generalizability
of the results, but the fact that we show statistical differ-
ences with such a small sample suggests that the effects are
sizable. More important, however, the correlations of teach-
ing performance with network similarity to the course in-
structor accounted for nearly 50% of the variance observed
in the data. Under such circumstances it is hard to imagine
how the use of additional participants could change the
conclusions drawn from this study.

There may be another problem resulting from the selec-

tion procedure, as it relates to predicting simulated teaching
performance. Because high- and low-knowledge students
were selected on the basis of NETSIM and not on the basis
of course grades, there could be an advantage for the former
compared with the latter. If scores were more variable on
NETSIM than on the traditional course measures, one might
expect higher correlations between NETSIM and simulated
teaching than between course performance and simulated
teaching. However, when variance in NETSIM to the course
instructor for students with the seven highest and seven
lowest final grades (M = .131, $? = .00422) was compared
to that of the seven high- and seven low-knowledge students
(M = .118, §* = .00593), the difference was statistically
indistinguishable, F(13, 13) = 0.71, p > .05.

Why would network similarity be a more sensitive index
of conceptually based understanding than exams or lab
scores? One explanation might be that microteaching per-
formance was assessed in the lab portion of the course
immediately after new concepts were presented by the
course instructor. This meant that students were relying on
recent memory to perform the lab exercises. Thus, the lab
score was reflecting short-term retention whereas network
similarity was reflecting longer term retention. However,
this does not explain the failure of exams to contribute to
measurement of teaching skill. A second factor could be a
lack of variance in exams or lab scores. However, exami-
nation of the distributions associated with course perfor-
mance suggests otherwise. Another explanation is that the
exams in this class were clearly designed to tap declarative
knowledge, whereas the lab scores were based on proce-
dures relevant to teaching skill. Some combination of de-
clarative and procedural knowledge, reflected in final
course grade, is clearly more predictive of teaching skill
than either source of knowledge alone. Such a combination
may also be more reliable because it is based on two
“subtests,” (i.e., labs and exams), rather than either one by
itself. With regard to network similarity, associative net-
works might provide a better means for representing a
mental model of a domain than does assessment based on
short-term retention and the declarative knowledge typically
measured in exams. That is, standard assessment measures
may reflect factual knowledge in a domain, but may fail to
tap into the system of relations that hold among concepts.
According to Johnson-Laird (1983), mental models are
functional representations or mental replicas (Craik, 1943)
of phenomena in the world. Mental models are used in
vision, control of movement, reasoning, and in communi-
cation. In short, mental models are used not only to under-
stand the world, but also to operate on the world. Mental
models are far more complex than associative networks,
involving recursive procedures, propositions, inferences,
analogies, images, and symbols, but at the core is the idea
that mental models capture the functional relationships
among ideas. Thus, the sensitivity of network representa-
tions for the particular problem explored here, teaching
elementary mathematics problems for conceptual under-
standing, may lie in the power to represent the systems (or
patterns) of structural relations that characterize mental
models in this domain.
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The value of such an explanation may depend, however,
on distinguishing between the strength of an association and
its propositional meaning (or link label).? One argument
against the methodology used here is that it represents
knowledge by means of numerical relatedness when ulti-
mately teachers must convey content knowledge in the form
of propositions. That is, the measures of structural similarity
used here may provide insight into the system of relations
among concepts, but they are silent on the particular labels
participants use when making numerical ratings. Thus, a
student might see two concepts as being highly related but
for very different reasons than the course instructor. How-
ever, the knowledge required for teaching, or any skill for
that matter, is complex and muitifaceted, consisting of both
implicitly and explicitly known relations (Greeno, 1983). It
is possible that strength of association better reflects im-
plicit knowledge than knowledge that is readily verbalized.
Strength of association may also serve to disambiguate link
labels in a way that propositions cannot. For example, the
concept pairs “dog—pet” and “mouse—pet” could share the
relation “is a type of,” but the former would likely receive
a higher numerical rating than the latter. Given the impor-
tance of distinguishing correct from incorrect propositional
knowledge in the domain of teaching skill, an important
extension of this work would be to investigate the nature of
the conceptual relations that hold among concepts. One
method, which has been used in the past (Housner et al.,
1993b), is to have prospective teachers label the links in an
expert’s network and then compare the novices’ link labels
with those assigned by an expert. Such an approach has
potential for providing a richer understanding of the pro-
gression of knowledge underlying teaching skill, as well as
a means for diagnosing the accuracy of pedagogical content
knowledge.

In summary, the findings reported here provide initial
support for the use of associative network methodologies as
tools for capturing changes in the pedagogical knowledge
structures of prospective teachers. Associative networks
appear to represent knowledge at a deeper conceptual level
than is reflected in certain traditional assessment measures.
In addition, the simulated teaching sessions used in this
study show promise as an in-depth method of assessing
pedagogical knowledge in the area of elementary school
mathematics. Both of these methods appear to be superior to
traditional course examinations. Perhaps both methods
could be used in teacher education programs prior to the
student teaching assignment as a means for determining
which students may need closer observation or assistance
during their practicum. These methods could also be used to
assess the progression of teaching skill as experience in
student teaching is obtained. This study extends past re-
search on the structural assessment of classroom learning,
not only by using teaching competence instead of course
grades as the criterion variable, but also by investigating the
relationship between knowledge structure and the applica-
tion of knowledge in a simulated teaching task. It is impor-
tant to note, however, that simulations may only approxi-
mate the authentic nature of teaching. On this view, future
attempts to examine the application of mathematical knowl-

edge by beginning teachers must be extended to schools and
classrooms where the exigencies of real-world teaching are
in operation.

? We would like to thank an anonymous reviewer for raising this
issue.
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