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ABSTRACT 

Partial updating of LMS filter coefficients is an effective method 
for reducing the computational load and the power consumption 
in adaptive filter implementations. Only in the recent past has any 
work been done on deriving conditions for filter stability, conver- 
gence rate, and steady state error for the Partial Update LMS al- 
gorithm. In [5] approximate bounds were derived on the step size 
parameter 1-1 which ensure stability in-the-mean of the altemating 
evedodd index coefficient updating strategy. Unfortunately, due 
to the restrictiveness of the assumptions, these bounds are unre- 
liable when fast convergence (large p )  is desired. In this paper, 
tighter bounds on 1-1 are derived which guarantee convergence in- 
the-mean of the coefficient sequence for the case of wide sense 
stationary signals. 

1. INTRODUCTION 

Partial updating of the LMS adaptive filter has been proposed to re- 
duce computational costs [2,3,4]. In this era of mobile computing 
and communications, such implementations are also attractive for 
reducing power consumption. However, theoretical performance 
predictions on convergence rate and steady state tracking error are 
more difficult to derive than for standard full update LMS. Accu- 
rate theoretical predictions are important as it has been observed 
that the standard LMS conditions on the step size parameter fail to 
ensure convergence of the partial update algorithm. 

The two types of partial update LMS algorithms that are preva- 
lent in the literature have been described in [SI. They are referred 
to as the “Periodic LMS algorithm” and the “Sequential LMS al- 
gorithm”. An attempt was made to recalculate the bounds on the 
step-size parameter for both mean and mean-square Convergence. 
Due to simplifying assumptions, the bounds derived turned out 
to be the same as those for the standard LMS algorithm. It was 
shown, however, that these bounds fail to predict situations where 
the Sequential LMS algorithm is unstable when implemented with 
these standard stepsize constraints. 

In this paper we derive bounds on the step-size parameter which 
ensures convergence in mean for the special case involving alter- 
nate even and odd coefficient updates. The bounds are based on 
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extremal properties of the matrix 2-nom and the Bauer-Fike the- 
orem. For simplicity we assume all sequences to be real and sta- 
tionary and we make the standard independence assumptions used 
in the analysis of LMS [ 11. It is shown that as the input signal be- 
comes more correlated the bounds become much tighter than the 
bound approximation derived in [5] .  

The organization of the paper is as follows. First in Section 2, 
a motivating example is shown which illustrates the need for this 
work. This is followed by a brief description and analysis of the 
partial update algorithm in Section 3. In Section 4 verification of 
the theoretical analysis is canied out via simulations. Finally con- 
clusions and directions for future work are indicated in Section 5. 

2. MOTIVATING EXAMPLE 

Consider a 2-tap adaptive filter with altemating update of the first 
and second coefficients W1.k and W 2 , k .  For odd k, the updates are 
given by 

And for even k, the updates are given by 

[ :::::: ] = [ :::: ] + [ P e % x k  ] 
e k  is the error signal given by e k  = d k  - w z x k  where w k  = 

Now make the standard assumption 111 that there exists a co- 
efficient vector ivoopt such that d k  = w & i x k  + n k  with { n k }  a 
zero mean i.i.d sequence independent of the input sequence { X k } .  

Then defining v k  = [ q , k  V2,kIT = ~k - ~ , , t ,  for odd k we 
have the following update equation. 

[ W l , k  W 2 , k ]  and - y k  = [ x k  Xk-11.  d k  is the desired response. 

(3) 

1 P n k x k - 1  

- P 2 n k x k + 1 x k x k - 1  + / l n k + l X k + l  
F [ ] + [ 

V1.k 

where the elements of F are 

f l l  = 1-1-12;-1 

f l 2  = - / J x k - l x k  

f21 = - p X k + l x k  -k 1-12xk+1xkxE-,  

f22 = 1 - p Z : + i  + 1 - 1 2 ( x k + 1 x k ) ( Z k - l x k )  

Assuming (216) and { X k }  to be uncorrelated with each other and 
&+l to be independent of x k  with E[x:J = 1, E [ X k x k - l ]  = 
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p and E [ z k z k - 2 ]  = p2 and taking expectations of the update 
equations we obtain 

E [ v 2 , k + 2  ] = [ s - P  

We also define coefficient error vectors as 

K , k  = W e , k  - W e , o p t  

V o , k  = W o , k  - W o , o p t  

v k  = w k  - W o p t  
-pp 2 ] E [ ] (4) 

'u l ,k+2 PP(P--1)  1--cL+cL P V l , k  

It can be easily verified that for p z 1 and p = 0 the necessary 
and sufficient condition on p for stability of the recursion (4) is 
given by 

whereas, using the update equations for expected values of coeffi- 
cient error in [SI, the condition in [5]  for convergence is 

(6)  
2 

O < p < -  
1 + p '  

As (I. - p2))/p2 < 1 for p2 > 112, we have that - < & so 
that if the upper bound in condition (6) is used to set p in partial 
updace LMS, divergence occurs. 

3. ALGORITHM DESCRIPTION AND ANALYSIS 

It is assumed that the filter is a standard FIR filter of even length, 
N .  For convenience, we start with some definitions. Let { Z k }  be 
the input sequence and let { W ; , k }  denote the coefficients of the 
adaptive filter. Define 

T 
W e . k  = [W2,k  W 4 , k  w 6 , k  . . . w N , k )  

W o , k  = [ W l , k  W 3 * k  w 5 , k  . . . W N - l , k ]  

X e , k  = [ Z k - 1  x k - 3  . . . z k - N + l ]  

X o , k  = [ Z k  Z k - 2  . . . x k - N + 2 ]  
T 

T 

T 

T 

w k  

x k  = [ z k  z k - 1  z k - 2  . . . Z k - N + l ]  

[ W l , k  w 2 . k  . . . W N . k ]  
T 

where the terms defined above are for the instant k. In addition. 
Let d k  denote the desired response. In typical applications d k  is 
a known training signal which is transmitted over a noisy channel 
with unknown FIR transfer function. 

In this paper we assume that d k  itself obeys an FIR model 
given by d k  = w & t x k  + n k  where Wept are the coefficients of 
an FIR model given by Wept = [ w l , o p t  . . . W N , ~ ~ ~ ] ~ .  Here { n k }  
is assumed to be a zero mean i.i.d sequence that is independent of 
the input sequence {zk}. This  is a standard assumption used in the 
analysis of the standard LMS algorithm [ 11 which can be shown to 
be reasonable for jointly stationary x k  and d k .  

The coefficient updates for odd k in the partial update LMS 
algorithm considered here are given by 

and for even k 

where e k  is the error and is defined to be e k  = d k  - w z x k  

V;O = . [ 2;; ] 
where 

W e , o p t  = [WZ.opt W 4 , o p t  W 6 , o p t  . . . W N . o p t ]  

W 0 , o p t  = [ W l , o p t  W 3 , o p t  W 5 , o p t  . . . W N - l . o p t ]  

Assuming that { Z k }  is a WSS random sequence, we andyse 
the convergence of the mean coefficient error vector E ( v k ] .  For 
regular LMS algorithm the recursion for E [ v k ]  is given by 

E [ v k + l ]  = ( I  - @ ) E  [ v k ]  (9) 

where I is the N-dimensional identity matrix and R = E [ X k - Y ? ]  

is the input signal correlation matrix. The necessary and sufficient 
condition for stability of the recursion is given by 

(10) 

where Am,, is the maximum eigen-value of the input signal cor- 
relation matrix R .  

For odd k,  combining the even and odd update equations and 
writing them in terms of v , k ,  we obtain 

0 < /A < P/Amoz 

v;& = 

where the elements of F are 

We next make the standard assumptions that v k  and .yk are 
mutually uncorrelated and that x k  is independent of X k - l  [l]. 
These assumptions are somewhat restrictive but greatly simplify 
the analysis. Taking expectations, using the independence assump- 
tion on the sequences X k  , n k ,  the mutual independence assump- 
tion on x k  and V k ,  and simplifying we obtain 

where 

and% = E [ x e , k x z k ] ,  R, = E [ - Y o , k x o , k ] ~  R e o  = E [-re,k-r::k: 

and he = E [ x o , k x z k ]  = R L .  Under the assumption of even 
integer N and real W.S.S. { Z k }  it can be shown that Re = &. 

For even k, combining the even and odd update equations and 
writing them in terms of v , k ,  we obtain 

V l T 2  = 
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where the elements of F' are Using the properties of the matrix 2-norm 16. pp. 56-57] we 

where (23) 

p R o ( p &  - 1) (16) For a given a' if we define a' = arg min,Ea(A) IQ -a'! then we 
I-p& 1 have 

(24) 
It can be shown that under the above assumptions on &, v k  

and dk. the convergence conditions for even and odd update equa- 
tions are identical. We therefore focus on (12). If we want to write 

form as (12) we would have 

IQ' - a' I 5 p2p 

the update equations for the regular LMS algorithm in the Same Using the Propew l a l  - lb I  5 l a  - bl we have for j = 1t ' ' ' I 

lag1 - P2P 5 1.151 5 la71 + p2p (25) 

Now, invoking the necessary and sufficient condition for sta- (17) 

which is the same as (9) only expressed in a different form. It 
should be noted here that even though 

bility of (12) 

[a;[ < 1  V j = l ,  ..., N .  (26) 

the matrix on the right is the correlation matrix for a permuted form 
of the input signal and therefore is also an input signal correlation 
matrix with the same eigenvalues as R. 

Now to ensure stability of (12), the eigenvalues of I - pR' 
should lie inside the unit circle. To estimate the eigenvalues of I - 
pR' we employ the Bauer-Fike theorem [6, p. 3211 which states 
that if a' is an eigenvalue of A + E E Cnxn and M-'AAf = 
diag(a1, .  . . ,a,) then 

where l [ . l l p  denotes any ofthep-normsandKp(M) = l1h . f1 lp1lM-' l lp-  

For convenience, we will choose p = 2. 
Now writing I - pR' as A + E where 

0 
P 2 R o e R  p2RoeRco 

E =  [ 
we have 

that is so because ~ 2 ( A f )  = 1 on account of A being an Hermitian 
matrix which admits a matrix of orthogonal eigenvectors N .  Now 
E can be written as E = B C  where 

we obtain the sufficient condition 

la71 + p2p < 1 v j  = 1,. , . , N .  (27) 

Since the set of a"s is a subset of the set of a's and since aj = 
1 - PA,, (27) can be ensured by the simpler condition 

11 - pAj( + p2p < 1 v j  = 1 , .  . . , N .  (28) 

A sufficient condition on p which satisfies (28) and hence en- 
sures stability is 

which leads to 

Recall that p = +R(O)AmaZ, which for W.S.S. { l k }  can be 
rewritten as p = i t r ( R ) A m a z ,  as the trace of R satisfies t r ( R )  = 
N R ( 0 ) .  Hence, as N 1 2 ,  = & 5 & and 
we have 

which is the sufficient condition ensuring convergence of (12) and 
is the main result of this paper. 

This condition when applied to the motivating example gives 
us the bound on p: 0 < p < (1 - p ) / ( l  + p) which satisfies (5). 
It should be noticed that as the signal becomes more correlated 
Ami,, + 0 making the bound tighter. 
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Figure I :  Trajectory of W l , k  and W2.k f o r p  = 0.005 

Figure 2: Trajectory of W 1 . k  and w2.1. for fi  = 0.5 

4. SIMULATIONS 

We have plotted the evolution trajectory of the 2-tap filter consid- 
ered in Section 2 for p = 0.99 and W , , t  = [0.4 0.51 in Figures 
I and 2. For Figure 1 p was chosen according to condition (31) 
and for Figure 2 p was chosen according to (10) which is the con- 
dition given in [5] for convergence in-the-mean. For simulation 
purposes we set dk = w & t s k  + n k  where s k  = [ S k  sI.-1IT is 
a vector composed of the W.S.S. AR process { S k }  with variance 
equal to 1 and AR coefficient p = 0.99, and { n k }  is a white se- 
quence, with variance equal to 0.01, independent of { S k } .  We set 
{zk} = { S k }  + { V I ; }  where ( V I . }  is a white sequence, with vari- 
ance equal to 0.01, independent of { S k } .  As can be seen from 
Figure 2 stricter conditions are needed for convergence in mean 
than those given by (10). 

5. CONCLUSION 

condition on p which ensures convergence in the mean. The anal- 
ysis also leads directly to an estimate of mean convergence rate. 
Mean-square convergence analysis was not undertaken in this pa- 
per as the primary motivation was to show that current bounds on 
step-size are not sufficient to guarantee Convergence. Theoretical 
analysis in the manner considered here for the general case of “Se- 
quential LMS Algorithm” is more complicated but feasible. 
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We have analyzed the alternating odd/even partial update LMS al- 
gorithm and we have derived stability bounds on step-size param- 
eter p for wide sense stationary signals based on extremal prop- 
erties of the matrix 2-norm. While these may not be the weakest 
possible bounds, they do provide the user with a useful sufficient 
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