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Summary 

Using the lac operon as a paradigmatic example for a gene regulatory system in 

prokaryotes, we demonstrate how qualitative knowledge can be initially captured using 

simple discrete (Boolean) models and then stepwise refined to multivalued logical models 

and finally to continuous (ODE) models. At all stages, signal transduction and 

transcriptional regulation is integrated in the model description. We first show the 

potential benefit of a discrete binary approach and discuss then problems and limitations 

due to indeterminacy arising in cyclic networks. These limitations can be partially 

circumvented by using multilevel logic as generalization of the Boolean framework 

enabling one to formulate a more realistic model of the lac operon. Ultimately a dynamic 

description is needed to fully appreciate the potential dynamic behavior that can be 

induced by regulatory feedback loops. As a very promising method we show how the use 

of multivariate polynomial interpolation allows transformation of the logical network into 

a system of ordinary differential equations (ODEs), which then enables the analysis of 

key features of the dynamic behavior. 

1 Introduction 

Biological networks can be subdivided into metabolic, signal transduction and regulatory 

networks. Here the term "regulatory network" is used for transcriptional and translational 

regulation by convention, although regulatory features are associated with all cellular 

processes [1]. With rare exceptions [2,3] most of the previous computational analyses of 

cellular networks have focused on one of these network layers separately, without considering 

the interplay that exists between them. This conceptual division can be useful for the 

mathematical treatment, however in the cell all of the components work in an integrated 

fashion that promotes fitness [1]. A simple example for the interplay of the different network 

layers would be a receptor that is triggered by an extracellular stimulus and induces a 

signaling cascade, which results in the activation of a transcription factor. As a consequence, 

expression of a target gene is induced, resulting in the production of a protein which inhibits 

the signaling cascade at a certain stage and thereby prevents activation of the transcription 

factor in a negative feedback loop. This example shows the interconnectedness of signal 

transduction and transcriptional regulation. It is desirable to develop modeling frameworks 

that enable an integrated treatment of all layers that make up cellular life. 
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Mechanism-based modeling approaches based on differential equations enable a dynamic 

analysis of cellular networks and have a high predictive power. However, they are limited to 

rather small systems because they rely on detailed knowledge of kinetic laws and parameters 

of the underlying biochemical reactions which is often not available. For modeling large-scale 

networks, qualitative modeling approaches and network analysis techniques are usually better 

suited as they seek to elucidate functional features from the often well-characterized network 

topologies alone (e.g., wiring diagram of regulatory networks or reaction stoichiometries in 

metabolic networks). For example, in signaling and regulatory networks one is typically 

interested in (i) detection of network-wide functional interdependencies between network 

elements, (ii) identification of feedback loops, (iii) identification of interventions that induce a 

specific response and (iv) qualitative predictions on the effect of perturbations. We introduced 

a logical modeling framework (Boolean networks represented as logical interaction 

hypergraphs, LIHs [4,5]) that is ideal for the reconstruction and qualitative analysis of cellular 

networks with signal or information flows. Examples that have been studied include diverse 

signaling networks such as T cell signaling [6], cMet signal transduction [7], NF- B signal 

transduction [8], and EGF signaling [9]. Signaling networks are structured into input, 

intermediate and output layer, which facilitate crosstalk and integrated decision making and 

are often treated as acyclic network as a first approximation. Gene regulatory networks on the 

other hand are strongly determined by their feedback loops (cyclic networks). Signaling and 

regulatory networks are intertwined in the cell and accounting for the coupling of signaling 

and gene regulation is highly desirable towards a more complete model of the cell. 

As a case study we chose the well-described lac operon, the paradigmatic example for a gene 

regulatory system in prokaryotes [10-12]. The involvement of species from metabolic, 

signaling and gene regulatory network layers and also the existence of feedback loops in the 

regulation of the lac operon make it a very attractive system to evaluate different modeling 

approaches. 

In this study we initially start with a Boolean model of the lac operon and evaluate its 

potential to capture essential features of the mechanisms involved in the regulation of the lac 

operon. The problems and limitations that arise following a binary treatment will be shown 

and ways how to refine this representation to multivalued logic and then to qualitative ODE‟s 

will be presented. 

2 Methods 

2.1 Boolean networks represented as logical interaction hypergraphs 

For a detailed introduction into the formalism of logical interaction hypergraphs (LIHs) and 

its implementation in CellNetAnalyzer, we refer the reader to our previous publications 

[4,5,13]. In brief, this Boolean modeling framework was tailored for studying the qualitative 

input-output response of signaling networks. As in all Boolean networks, nodes in the 

network represent biomolecular species (e.g. kinases, adaptor molecules, transcription factors, 

or genes) each having an associated logical state (in the binary case only “on” (1) or “off” (0)) 

expressing whether the species is active (or present) or not. Signaling events are encoded as 

Boolean operations on the network nodes. In contrast to other works focusing on discrete 

dynamics in Boolean networks [14,15], the approach of LIHs was mainly used to study the 

input/output behavior of signaling networks by analyzing the qualitative (logical) steady state 

that results from a given external stimulation or perturbation. 

LIHs make only use of the Boolean operators AND (·), OR (+), and NOT (!), which are 

sufficient to represent any logical relationship. The so-called sum-of-product representation, 
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where AND terms are connected via OR operators, makes it possible to represent a given 

Boolean network as a (logical interaction) hypergraph (LIH) [5,13]. To exemplify this for a 

node in the lac operon network: allolactose is only produced (gets “on”, i.e. value 1) if lactose 

is present in the cell AND the -galactosidase LacY enzyme is expressed, i.e. lactose_int (for 

internal lactose) AND LacY must be “on” to produce allolactose (see figure 1). Hence, for the 

example described above we would write    

lactose_int AND LacY  allolactose 

or, shorter, 

lactose_int · LacY  allolactose 

In a graphical representation of the network such an AND connection is displayed as a 

hyperarc (see figure 1a) indicating that all start nodes of the hyperarc (lactose_int, LacY) must 

be in the ”on” state in order to activate the end node of the hyperarc (note that hyperarcs may 

have several start or end nodes). NOT operators for variables entering a hyperarc are allowed 

and are graphically indicated, e.g., by a red color or/and bars. For example, interaction 5 (see 

table 2 and its (hyper-)graphical representation in figure 1) reads  

!PTS-EIIA · lactose_ex · LacY  lactose_int 

indicating that the unphosphorylated form of EIIA
glc

 must be off (i.e. it is has to be in the 

phosphorylated form EIIA
glc

~P) AND the permease LacY AND the substrate lactose must be 

available in order to get internal lactose. Finally, OR connections can be accounted for in the 

hypergraphical representation by allowing a node to be independently activated by several 

incoming hyperarcs (i.e. by several independent AND connections). 

By this hypergraphical representation, we can study a number of useful properties of the 

logical network or its underlying interaction graph [5-9]. One particular application of which 

we will make use herein is the prediction of the input-output behavior that follows from a 

given input stimulus (possibly combined with internal perturbations such as knockout of 

certain nodes) by computing the resulting logical steady state (LSS). A detailed description of 

the algorithm for computing the LSS was given in [13]; here we will apply it to the lac operon 

model by computing the binary response of the involved species for given substrate mixtures 

(glucose or/and lactose). 

The logical models studied herein were implemented and analyzed with the software tool 

CellNetAnalyzer [4]. 

2.2 Multivalued logic 

As already proposed and applied by others (see e.g. [15]), the discretization of a node‟s 

activation level in more than two (binary) levels is possible. This mimics the fact, that in 

reality multiple relevant threshold values for a species may exist.  

It is straightforward to extend binary (Boolean) logic to multivalued logic. Embedded in the 

LIH formalism, CellNetAnalyzer also supports multivalued logic: in addition to the binary 

on/off-case, other levels for the species can be defined. For example we can formulate a 

logical function like this:  

!A  2 B   3C.  

This equation means that "C reaches level 3 if A is inactive (level 0) AND B is at least at level 

2". The word “at least” indicates that CellNetAnalyzer assumes monotone relationships (in 

principle, non-monotone logical functions can also be defined but are not considered herein). 
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2.3 Multivariate polynomial interpolation: ODEfy 

A more traditional model of transcriptional regulation and signaling based on chemical 

reaction kinetics involves the continuous description of concentration changes of the various 

species. The most common approach hereby is the use of a system of coupled ordinary 

differential equations (ODEs), which essentially ignore spatial dimensions as well as time 

delays and stochasticity for simplicity. In contrast to the discrete systems based on 

multivalued logic, the use of ODEs allows the ready inclusion of gradual concentration 

changes as well as fully time-resolved dynamics. This more fine-grained approach of course 

comes with the cost of many parameters such as reaction and degradation rates. While this 

allows a more detailed description of the observations and predictions, the rates need to be 

approximated by literature values or learned by fitting the model to data. Here, we will take 

the latter, unbiased approach. 

We have previously described how to extend a Boolean logic model to an ODE model [16], 

which we denote as ODEfy in the following. Given a n-variate Boolean function B, which is 

defined on the vertices of an n-dimensional hypercube, we defined a continuous extension C 

of B on the full hypercube by multi-linear interpolation. In order to accommodate different 

levels of activity for each input in B, we then concatenate C with a component-wise sigmoidal 

nonlinearity using the Hill function fk,n (x) xn /(xn kn ) . Here n is the degree of nonlinearity 

(which in the following we fix to n=3 for simplicity) and k the switching threshold. For 
n  this approaches a discrete switch at level x=k, which corresponds to the discrete 

function. This interpolation technique can be derived from a thermodynamical model for gene 

regulation [17]. However, other non-linear functions (e.g. logistic functions) could, in 

principle, be used. 

Using the example of „lactose_int AND LacY  allolactose‟ from above, this is linearly 

interpolated by the function C(lactose_int, LacY) = lactose_int * LacY, because C(x,y)=1 

only if both x=1 and y=1. The resulting dynamics is given by 

 

)1)()((
1

))(( 2,21,1 LacYf_intlactosefteallolactos
dt

d
nknk

eallolactos

 

 

where τallolactose denotes the life-time of the species allolactose, and k1, k2, n1, n2 the 

parameters of the Hill nonlinearity. We have shown that the Boolean attractors are conserved 

under this transformation given a sufficiently high degree of nonlinearity [16]. Applications to 

network inference from spatial patterns in neurodevelopment illustrate that this technique is 

capable of giving insight into biological dynamics based on initial qualitative information 

[18]. 

We provide the toolbox ODEfy as plugin to CellNetAnalyzer [19], which can be easily used to 

generate the ODE model in various formats. Here, we opt for export to SBToolbox2 for 

Matlab, where we can compile the resulting ODE in binary format for fast and efficient 

evaluation in the parameter fitting part described below. 

Other methods for transforming Boolean into continuous ODE models have been proposed 

and a comparison of ODEfy with alternative methods can be found in [16]. In short, we can 

group these methods into piecewise-linear interpolations, which are still discrete-output 

generalizations of step-functions, fuzzy-logic continuations, which depend on the choice of 

degree-of-memberships, and ad-hoc interpolations, which do not possess specific theoretical 

properties, but reflect various biomathematical aspects. We view the ODEfy approach of 
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multi-linear interpolation first pioneered by [20] in possible combination with Hill functions 

as the most simple nonlinear interpolation technique (in terms of complexity measured by 

degree of the used polynomial) that still allows a mechanistic derivation as proposed in [22]. 

3 Results 

3.1 Conceptual model of the lac operon 

In the following section a detailed description of a conceptual model of the lac operon is 

given, which comprises all the components that are translated into the Boolean model. 

The lac operon in E. coli consists of three different structural genes that are transcribed as a 

single mRNA [11] in response to a certain glucose/lactose ratio. This polycistronic lacZYA 

mRNA is translated into three proteins, which are required to import and digest the 

disaccharide lactose. The lac operon is the prototype of a single promoter being under the 

control by two different transcription regulators, the lac repressor LacI and the activator 

protein CAP (catabolite activator protein). 

The basic idea of Jacob and Monod was that the structural genes of the lac operon are 

regulated by a repressor, which represses transcription, until it interacts with a chemical 

"inducer" [11]. The lac operon can be described as an inducible regulatory system, although 

the term "inducer" can be misleading, because the environmental stimulus (lactose) halts the 

repression ("repression of the repressor"), which has in essence the effect of inducing 

transcription.  

Soon after Jacob and Monod published their model [12] the lactose repressor protein LacI that 

controls the structural genes responsible for lactose metabolism was experimentally identified 

[22,23]. The regulatory gene lacI encodes the Lac repressor LacI, which is capable of 

inhibiting transcription of the structural genes of the lac operon by binding with high affinity 

to the lac operon at a specific operator DNA sequence (lacO1) near the lac promotor 

[11,23,24]. In addition to the primary operator site O1, two auxiliary pseudo-operators were 

identified (O2 and O3) [11]. The binding of the LacI repressor next to the lac promotor has the 

effect that RNA polymerase binding is compromised [25,26]. As a consequence the lac 

mRNA level is strongly reduced but not to zero. The lac mRNA is thus not completely elimi-

nated by LacI binding, but reduced to a basal level (this aspect will later become important for 

building the multivalued model). LacI is a tetrameric protein, which can in principle bind two 

operator sites simultaneously [11], but this aspect is not considered in our model. The 

regulated structural genes are lacZ, lacY and lacA, which encode enzymes, that are all 

involved in lactose metabolism [11]. The lacZ gene encodes the -galactosidase LacZ, a 

hydrolase enzyme that catalyzes the hydrolysis of the disaccharide lactose into the mono-

saccharides glucose and galactose, which is the first step in lactose metabolism [27]. The lacY 

gene encodes β-galactoside permease (LacY), a membrane-bound transport protein that 

enables the entry of lactose into the cell [28]. The third gene lacA, which is also under the 

control of the lac promotor, encodes a thiogalactoside transacetylase, which transfers an 

acetyl group from coenzymeA (CoA) to the hydroxyl group of galactosides [11]. The trans-

acetylase is not essential for lactose metabolism [29] and therefore not included in the model. 

The lac repressor LacI inhibits transcription of the lac structural genes only when it is 

activated. LacI is inactivated, when it is bound by allolactose, a by-product of lactose 

metabolism (a small fraction of the cleavage products of lactose –glucose and galactose – can 

recondense to form allolactose). In this context the basal expression levels of lac permease 

and -galactosidase play an essential role. Enzymatic activity of the permease enables 

transport of lactose from the medium into the cell, where -galactosidase converts a small 
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fraction of lactose into 1,6-allolactose [11,30]. By binding to LacI with high affinity, 1,6-

allolactose lowers LacI´s affinity to the operator and thereby induces transcription of the lac 

structural genes. In the absence of lactose the Lac repressor switches off the operon – a 

mechanism for the cell not to waste energy for the production of enzymes for the lactose 

metabolism, when they are not needed.  

In the presence of glucose in the medium, E. coli uses it as the sole carbon source to produce 

energy via respiration, even when both lactose and glucose are available [31,32]. The 

presence of lactose in the medium alone is thus not sufficient for full induction of the lac 

operon. Although the repressor LacI does not occupy the operator site, the operon is 

transcribed infrequently and remains largely inactive, as long as glucose is available [11]. The 

uptake of glucose into the cell by the phosphoenol pyruvate-dependent phosphotransferase 

systems (PTS) decreases the level of phosphorylation of one of its components, the enzyme 

EIIA
Glc

 [33]. The dephosphorylated EIIA
Glc

 prevents the uptake of lactose by binding to the 

lac permease LacY [34,35]. As a consequence when both glucose and lactose are present in 

the medium, E. coli cells preferentially utilize glucose and the use of lactose is prevented until 

the glucose is depleted [33]. The result of reducing the transport activity of LacY by 

unphosphorylated EIIA
Glc

 is called inducer exclusion, because lactose cannot enter the cell, 

and as a consequence the inducer of the lac operon expression allolactose is not produced. 

An additional control mechnism by the catabolite activator protein (CAP), regulated by cyclic 

AMP (cAMP), contributes as well to the selective utilization of metabolites. In bacteria, 

cAMP is low when glucose is used as carbon source. This occurs through inhibition of the 

cAMP-producing enzyme, adenyl cyclase, as a side-effect of glucose transport into the cell 

[36]. Glucose is transported into the E. coli cell by the PTS [37]. A phosphate group is 

transferred form phosphoenol pyruvate through a series of intermediary proteins to the 

EIIA
Glc

 complex, which finally transfers a phosphate group to glucose, that enters the cell as 

glucose-6-phophate [37]. The EIIA
Glc

 subunit of the EII complex is also involved in the 

activation of the adenylate cyclase (AC). With glucose in the medium, the EIIA
Glc

-phosphate 

will be used to supply phosphate to the glucose and the amount of EIIA
Glc

-phosphate will thus 

be reduced. As only the phosphorylated form of EIIA
Glc

 stimulates the adenylate cylclase 

activity, the cAMP level will fall [37]. 

When glucose, the preferred carbon source of E. coli, is no longer available in the medium, 

the intracellular concentration of cAMP rises. The change of the cAMP level signals to the 

bacterium that glucose is no longer available and that it has to switch to lactose metabolism. 

This is achieved by binding of cAMP to CAP, which from a cAMP-CAP complex. In turn 

binding of this complex to a DNA sequence in the promotor region just upstream from the lac 

promoter enhances affinity of the RNA polymerase for the promotor and thereby initiates full 

transcription of the lac structural genes [11,31,32]. Without the binding of the activator CAP, 

the lac promotor is only marginally able to bind and position the RNA polymerase resulting in 

a low level of transcription (50-fold reduced) [31,32]. 

When glucose is present and cAMP concentration is low in the cell, the lac operon is switched 

off, because the activator protein CAP can only bind to DNA if it is bound to cAMP. Glucose 

uptake also interferes with LacY activity, leading to inducer exclusion as discussed above 

[37]. Inducer exclusion and the drop of the cAMP level in response to glucose uptake together 

mediate catabolite repression - the ability of glucose to inhibit lac expression [37,38]. 

The logical model should be able to explain how repression and activation control 

mechanisms account for the selective utilization of the available metabolites.  
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3.2 A Boolean model of the lac operon 

The Boolean network model of the of lac operon was constructed based on the biological 

knowledge described in the previous section. Figure 1a shows the resulting model in 

hypergraphical notation. The figure was drawn by using the Software CellDesigner following 

SBGN (Systems Biology Graphical Notation) conventions as far as possible. Figure 1b shows 

again the rules to depict Boolean gates in a hypergraphical representation (as LIH). Table 1 

and 2 lists the network species and interactions of the logical model. 

 

 

 

Figure 1: (a) Boolean model of the lac operon, hyperarcs are numbered according to the 

annotations in table 2. (b) Legend of graphical representations of logic operators. 
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Symbol Explanation 
AC adenylate cyclase 

allolactose allolactose 

cAMP cyclic adenosine monophophate 

CAP catabolite activator protein 

glucose_ex external glucose in the growth medium 

LacI-bound LacI repressor bound to the lac promotor 

lactose_ex external lactose in the growth medium 

lactose_int lactose inside of the cell 

LacY LacY permease 

lacZYA the structural genes of the lac operon: lacZ, lacY and lacA 

LacZ -galactosidase LacZ

lacZYA_mRNA polycistronic lacZYA mRNA 

PTS-EIIA unphosphorylated EIIA
Glc

 subunit of the phosphotransferase system 

Table 1: Species of the Boolean lac operon model. 

 

 

  Hyperarc Annotation 

1 glucose_ex  PTS-EIIA When glucose is imported, phosphate transfer from the PTS subunit 

EIIA
Glc  

to glucose  is induced. Active PTS-EIIA in the model 

corresponds to the unphosphorylated form of EIIA. 

2 !PTS-EIIA  AC Phosphorylated EIIA
Glc

 activates AC, thus PTS-EIIA must be off. 

3 AC   cAMP AC produces cAMP through conversion of ATP. 

4 cAMP  CAP cAMP binds to the receptor molecule CAP to form the activator CAP 

complex. 

5 !PTS-EIIA · lactose_ex · 

LacY  lactose_int 

Entry of lactose from the medium into the cell is enabled by the LacY 

permease, unphosphorylated EIIA blocks the import of lactose.  

6 lactose_int · LacZ   

allolactose 

If  galactosidase LacZ is expressed and lactose is present in the cell, 

allolactose is produced as a byproduct of lactose metabolism. 

7 !allolactose  LacI-bound Binding of allolactose to LacI inactivates the repressor. 

8 !LacI-bound · CAP · 

lacZYA  

lacZYA_mRNA 

Only when LacI is inactive and not bound to lacO and the lacZYA 

structural genes are present and CAP binds, lacZYA_mRNA is 

produced. 

9 lacZYA mRNA  LacY Translation of lacZYA mRNA produces the LacY permease. 

10 lacZYA mRNA  LacZ Translation of lacZYA mRNA produces the LacZ -galactosidase. 

11 lacZYA mRNA  LacA 

(dashed arcs are not 

incorporated in the model) 

Translation of lacZYA mRNA produces the LacA thiogalactoside 

 transacetylase (not included in the model; only for illustration). 

12,13,14 dashed arcs are not 

incorporated in the model 

lactose_int, glucose-phosphate and LacZ enter the lactose and glucose 

metabolism that are not considered in the model. 

Table 2: Hyperarcs of the Boolean lac operon model. Exclamation mark within the equations 

denote a logical NOT, dots indicate AND operations. 

 

As validation of the network model, well-known experimental scenarios should be reproduced 

by the model. As described under 3.1, the presence of glucose and lactose in the growth 
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medium control the state of the lac operon. We approximate the behaviours by on and off 

states of the network nodes. Four (2
2
) combinations of glucose/lactose in the medium are 

possible when considering the binary case 

These four scenarios were simulated with the Boolean model by setting the input cues glucose 

and lactose appropriately. The resulting logical steady states were computed with 

CellNetAnalyzer. The steady state values for the most important nodes are shown in table 3 

together with the experimentally observed state of the lac operon (measured by lacY 

expression). 

 

 

binary model +Glc / +Lac -Glc / -Lac +Glc / -Lac -Glc / +Lac 

cAMP 0 1 0 1 

allolactose 0 0 0 # 

LacI-bound 1 1 1 # 

lacZYA mRNA 0 0 0 # 

LacZ 0 0 0 # 

LacY 0 0 0 # 

lactose_int 0 0 0 # 

     

Observed         

lac operon off off off on 

Table 3: Logical steady states for the key nodes in the binary model and the observed lac operon 

state for four different scenarios with glucose/lactose as substrates.  

 

For the first three scenarios the model simulations are in agreement with the expected 

outcome from literature. The status of the lac operon can be deduced from the steady state 

value for lacZYA mRNA, i.e. whether mRNA is produced or not. In all these three cases, the 

model predicts correctly that the lac operon is switched off.  

For the last scenario, where only lactose is used as a stimulus (glucose is off), a unique logical 

response for this set of input stimuli cannot be resolved (see screenshot of CellNetAnalyzer in 

figure 2). A logical steady state (the final response of the system) cannot be calculated for all 

network nodes, because in the simulation the signal cannot be further propagated from 

lactose_ex to lactose_int without the LacY permease being in on-state. The limitations of a 

binary view of biology are made obvious: when lactose is sensed in the environment, the 

system should switch on the lac operon, which is achieved by binding of allolactose to the 

repressor. The only problem is that the genes for the permease and the -galactosidase, which 

are needed (i) to enable lactose to enter the cell and (ii) to produce allolactose are both 

structural genes within the lac operon whose activity, as mentioned above, depends in turn on 

the presence of allolactose (whose initial state is not given). To resolve this cyclic causality 

(induced by a positive feedback loop which is also the source of bistable behavior discussed 

in a later section) we need a basal expression level of the lac operon to produce some mRNA 

which will make the system work for the Glc /Lac+ scenario.  
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Figure 2: Logical steady state in the binary lac operon model for the -glucose/+lactose scenario 

(screenshot from CellNetAnalyzer). Colour-code for the boxes: blue=predefined state; 

green=calculated “on” state; red=calculated “off” state; brown=undefined value. 

3.3 Multivalued logical model 

Using the approach of multivalued logic described under 2.2 we can modify the model to 

circumvent problems that arise when the state of a network species is discretized to only two 

levels (on/off). The real biochemical behaviour can be approximated much better using 

multivalued logic. We therefore made the following alterations to our model: we defined three 

(instead of two) levels for the state of the lac operon. These three levels (0,1,2) correspond to 

different expression rates and are implemented as differential production of lacZYA_mRNA: 

Level 0: The lac genes are not transcribed at all, e.g. due to a knock-out of lacZYA. 

Level 1: Basal expression level of the lac operon, when LacI is bound to the lacO operator 

and the CAP complex is not present. From the on/off-binding kinetics of the lac 

repressor we know that the repressor is tightly bound, but still occasionally not bound, which 

enables a low basal expression level of the lac operon. When lactose then gets into the cell, 

the equilibrium is shifted towards a higher expression rate and higher level of permease will 

enable more lactose to enter the cell. 

Level 2: Full expression of the lac structural genes, LacI does not bind to lacO and the 

cAMP-CAP complex binds next to lacP and by enhancing affinity of the polymerase for lacP 

induces full transcription. 

To translate this into logical equations we replace interaction 8 by two novel hyperarcs that 

represent the two levels for the production of lacZYA mRNA: 
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Level 1: lacZYA  lacZYA_mRNA 

Level 2: lacZYA · CAP · !LacI   2 lacZYA_mRNA 

Moreover we define that lactose can enter the cell in two cases: i) the lac operon is at basal 

expression level (level 1) and thus the permease LacY is also produced at level 1. In this case 

the PTS has to be inactive (meaning that EIIA
Glc

 has to be phosphorylated), to enable lactose 

to enter the cell. ii) The lac operon is fully switched on (level 2), thus the permease LacY is 

also expressed at level 2. In this case it is sufficient for LacY to be at level 2 to allow lactose 

to enter the cell. This is translated by replacing the hyperarc 5 in the Boolean model (table 2) 

with the following two new hyperarcs: 

i) lactose_ex · LacY · !PTS-EIIA  lactose_int 

ii) lactose_ex · 2 LacY  lactose_int 

 

With these adjustments we simulated again the case where lactose is present and glucose is 

absent (figure 3). 

 

Figure 3: The multivalued logical model for the lac operon (screenshot from CellNetAnalyzer). 

The text boxes show the resulting logical steady state for the scenario -glucose/+lactose switching 

the lac operon fully on (level 2). For the colour-code of the boxes see figure 3. The numbers in the 

grey circles denote the level of multivalued nodes in the respective hyperarc.  

Figure 3 shows that now a unique steady state for the system can be calculated. In agreement 

with the experimental values, the lac operon is fully switched on (level 2 indicates full 

transcription). With the introduction of a basal expression level (level 1), which is already 

reached when the lacZYA structural genes are present, lactose_ex can enter the cell and the lac 
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operon is fully switched on (level 2). Multivalued logic thus enables a more realistic 

description of the system compared to the Boolean model. 

The remaining three scenarios were also simulated with the multivalued logical model. The 

steady state values for the key nodes are shown in table 4 indicating agreement with 

biological knowledge (similar as in the binary model): the model predicts that the structural 

lac genes are transcribed with low levels if either glucose or no lactose is present. The only 

difference to the Boolean model is, that lacZYA mRNA, LacZ and LacY are at level 1 

corresponding to the implemented basal expression level. 

 

model multival +Glc / +Lac -Glc / -Lac +Glc / -Lac -Glc / +Lac 

cAMP 0 1 0 1 

allolactose 0 0 0 1 

LacI 1 1 1 0 

lacZYA mRNA 1 1 1 2 

LacZ 1 1 1 2 

LacY 1 1 1 2 

lactose_int 0 0 0 1 

     

observed         

lac operon off off off on 

Table 4: Steady state values for the key nodes in the multivalued logic model for the 4 scenarios. 

In summary with the introduction of multi-level logic we get a more differentiated picture of 

the activity state of the lac operon and now all four scenarios can be correctly reproduced by 

the model.  

3.4  A qualitative ODE model for the lac operon derived with ODEfy 

As basis for the ODE-model, we use the multivalued discrete model from section 3.3. In 

principle there are two different approaches for interpolating multivalued discrete models: we 

can either rewrite the update rules in terms of Boolean species by introducing dummy species 

and interpolate those, or do a multivalued interpolation. We chose the second approach 

because it should be sufficient for monotone models considered herein. To build the 

continuous interpolation of a multivalued function, we therefore interpolate it on the maximal 

and minimal values, and then select appropriate parameters in the nonlinearities to be close to 

the interpolated discrete values. 

The resulting ODE-model consists of a 13-dimensional differential equation (one for each 

node) with in total 38 parameters. To derive meaningful dynamics, we need to select 

parameters by fitting the model to a set of observed data. Here, we chose a time-series of 

LacY-activity after growing on lactose [40], see figure 4a.  We fix the nonlinearity parameter 

n to 3 to reduce the dimensionality of the search space, and end up with 24 free parameters.  

In a first run, we estimate the parameters using normalized distance to the LacY data as single 

criterion. Fitting was performed using a global heuristic minimization technique based on 

differential evolution [41]. In figure 4a, we see that the interpolated LacY concentration fits 

the data very well. The dynamics of the other species concentrations is shown in figure 4b. 
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Figure 4: ODEfy simulations of the lac operon when switching from growth on glucose to lactose. 

a) LacY data (taken from [40]) and resulting ODEfy-interpolation after parameter estimation. b) 

Resulting dynamics of all state variables. 

However, as was to be expected we find many quite different parameter sets satisfying small 

distances to the data. Importantly, some parameter sets may lead to bistability whereas others 

do not. The potential of the lactose utilization network to induce bistability could be 

confirmed in experiments with the non-metabolizable lactose derivate thio-
methylgalactoside (TMG) [38,39]. To further reduce the parameter indeterminacies, in a 

second fitting run, we now search for models that fit the LacY data well but at the same time 

also produce different steady states when first grown on either lactose or glucose and then 

switched to equally low lactose levels (without presence of glucose). This bistable behavior is 

achieved by maximizing the distance between the two steady states. The resulting updated 

dynamics interpolate the data from figure 4a equally well. But at the same time they produce 

bistable behavior, see figure 5. 

 

 

Figure 5: Bistable behavior of the fitted system: Growth on lactose (a) or glucose (b), then switch 

to low lactose (0.2) at time t=200min. The resulting steady states differ (indicating bistability) 

and depend on the previous growth conditions. Differences in the steady states are particularly 

significant for LacI-bound, LacY, LacZ and lacZYA_mRNA. The changes of the internal 

concentrations of allolactose and lactose are less pronounced (for the chosen parameter set) but 

still sufficient to establish two steady states. 

Again, even when demanding bistability, we cannot hope to estimate a single „best model‟ 

and therefore aim at determining a whole ensemble of models satisfying the fitting criterion. 
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This is done using the Monte Carlo extension of the differential evolution algorithm put 

forward in [41]. The distribution of the resulting cost function values is shown in figure 6. 

The resulting parameters for distances to LacY data lower than 0.5 are shown in figure 7. We 

observe that many switching thresholds are not localized. However, some are such as 

parameter 10 (Km value of LacI in the regulation of lacZYA expression) which needs to be 

sufficiently high – presumably a requirement for inducing bistability. The lifetime 

distributions shown in figure 7b are more localized but tend to be at the boundary of the 

optimization interval, implying that longer lifetimes in particular for species 4 (CAP), 5 

(lacZYA_mRNA), 7 (LacY) and 8 (AC) are more optimal in the fitting procedure. 

 

 

Figure 6: Distribution of the resulting cost function from the Monte Carlo extension of the 

differential evolution algorithm [41] 

4 Discussion 

For the large scale analysis of signalling networks Boolean networks represented as logical 

interaction hypergraphs (LIHs) have proven to be a useful framework. Here we take the well 

described lac operon as an example for a gene regulatory network and integrate signal 

transduction and regulation of transcription in a Boolean model. Boolean models have their 

merits in the straight forward way to reconstruct them from biological knowledge and they 

can be used to identify important features of signaling and regulatory networks. However, the 

example of the lac operon also showed the limitations of a Boolean approach in cyclic 

networks because a unique network behavior can then often not be computed from a Boolean 

description. Accordingly, in one of the test scenarios a logical steady state could not be 

deduced for all nodes. 

With the introduction of multivalued logic, the problems and limitations that arise in the 

Boolean description can be partially circumvented by introducing multiple levels for the 

activity state of the lac operon. Multivalued logic is thus a promising extension for logical 

networks, enabling a more realistic and sophisticated description of biological networks. 

Multivalued logic can be used as an intermediate modeling step between a Boolean and a 

dynamical ODE-based model and is not limited to small systems. 
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Figure 7: Distributions of selected fitted parameters. The boxes have lines at the lower quartile, 

median, and upper quartile values, and whiskers span 1.5 times the interquartile ranges. 

Outliers, indicated by red plus signs, are data with values beyond the ends of the whiskers. 

a) switching thresholds (1=lactose_int_k_lactose_ex; 2=lactose_int_k_LacY; 

3=lactose_int_k_PTS; 4=allolactose_k_lactose_int; 5=allolactose_k_LacZ; 6=cAMP_k_AC; 

7=CAP_k_cAMP; 8=lacZYA_mRNA_k_CAP; 9=lacZYA_mRNA_k_lacZYA; 

10=lacZYA_mRNA_k_LacI_bound; 11= lacZ_k_lacZYA_mRNA; 12= LacY_k_lacZYA_mRNA; 

13=AC_k_PTS; 14=PTS_k_glucose_ex; 15=LacI_bound_k_allolactose.  

b) lifetimes (1=lactose_int_tau; 2=allolactose_tau; 3=cAMP_tau; 4=CAP_tau; 

5=lacZYA_mRNA_tau; 6=LacZ_tau; 7=LacY_tau; 8=AC_tau; 

9=PTS_tau;10=LacI_bound_tau). See text for discussion. 

By finally interpolating the discrete model to a continuous Hill-type ODE model using 

ODEfy, we can map the developed qualitative models onto a quantitative model, ready to be 

compared with transient and quantitative concentration data. This opens a promising 

modeling pipeline: Starting from the commonly available qualitative and topological 

information in the biological literature, we derive first discrete, then refined discrete and 

eventually continuous models in order to finally predict concentration time series. This 

however comes at the cost of increased complexity and in particular the issue of model fitting 

in the presence of many model indeterminacies. We have proposed to deal with the latter 

issue using Bayesian model fitting, thereby describing a whole ensemble of fitted models. We 

can then assign a plausibility value to any predictions by evaluating it on each of the 

ensemble‟s models. This approach was successful in predicting a novel interaction lying at the 

intersection of many discrete models in [41]. 

The case of the lac operon was used herein as an example network where much (though by far 

not all) biological details are known. We emphasize that even the ODE model does still not 

correctly reproduce all aspects of the behavior of the lac operon. For example, it is known that 

the cAMP level increases only transiently when switching from glucose to lactose utilization 

and it decreases when the shift to lactose metabolism has been achieved [37]. However, that 

this behavior is not reflected in the ODE model is not a limitation of the modeling approach: 

we probably have to include additional regulatory links into the model. For example, the 

expression of the adenylate cyclase is transcriptionally regulated and the activity of the latter 

(and thus the cAMP level) will also be affected by the lactose metabolism which was not 

taken into account in our models. Hence, the model results shown in figures 4-7 actually 

reflect the case where TMG (non-metabolizable lactose derivate) instead of lactose is used as 

external signal [38,39]. However, with our modeling approach it is straightforward to 

introduce the negative effect of lactose on the cAMP level in the logical model (AC  

!lactose_int  cAMP) and subsequently in the ODE model (by applying ODEfy) and then to 
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investigate the dynamic effects of this additional regulatory loop. Again we fitted the model to 

the data points as in figure 4a. Figure 8a shows a typical time course of the state variables 

when switching from glucose to lactose utilization (for a parameter set fitting the model well 

to the LacY data from figure 4a). We also studied the capability of this altered wiring diagram 

to induce bistable behavior (Figure 8b). As for the original model, there exist parameter sets 

that do not induce bistability at all whereas others have the potential. There is also no clear 

answer whether the looped model increases the capability of the system for bistability: 

although slightly more samples from the looped-model give better fit to the data while 

keeping strong bistability values (=distances of the two steady states), this is not yet sufficient 

to argue that based on the data we should choose the looped model over the non-looped one. 

The samples have been obtained by running multiple (connected) local optimizations, so they 

do not represent independent samples of the cost function‟s landscape. In order to more 

robustly infer model parameters and to perform model selection, we are working on 

implementing Bayesian reasoning and inference within the proposed model. However, this is 

out of the scope of this contribution. 

 

 

Figure 8: Simulations with the “looped model”. The looped model was derived from a 

multivalued logical model that accounts for the negative effect of the lactose metabolism on the 

cAMP level (the arc AC  cAMP in the non-looped (“standard”) model in figure 3 is replaced 

by the hyperarc AC  !lactose_int  cAMP). a) Simulations of the looped ODE Model. In 

contrast to figure 4b, the cAMP level increases during the transition from glucose to lactose 

utilization but decreases again when this shift has been accomplished. b): Potential of the looped 

and non-looped model to show bistability. Bistable behavior is quantified as the distance of the 

two steady states reached when growing on low lactose levels (0.2 in the ODEfy model) after 

preculturing either on lactose or glucose (the distance is zero if only one steady state exists). In 

both the standard and the looped model, we can identify parameters that fit the data (low 

distance to LacY) and also exhibit strong bistable behavior. The current sampling methods are 

not sufficient to differentiate these two models. 

5 Conclusion 

In summary, we used the lac operon as a paradigmatic example to demonstrate how 

qualitative knowledge can be initially captured using simple discrete (Boolean) models and 

then stepwise refined to multivalued logical models and finally to continuous (ODE) models. 

Each modeling formalism and the (forward) transformations between them are supported by 

CellNetAnalyzer enabling one to switch between different types of models without the need to 

reestablish the whole model building process.  
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