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Abstract

This paper studies the problem of default correlation. We first introduce a random variable called “time-
until-default” to denote the survival time of each defaultable entity or financial instrument, and define the
default correlation between two credit risks as the correlation coefficient between their survival times.
Then we argue why a copula function approach should be used to specify the joint distribution of survival
times after marginal distributions of survival times are derived from market information, such as risky
bond prices or asset swap spreads. The definition and some basic properties of copula functions are
given. We show that the current CreditMetrics approach to default correlation through asset correlation
is equivalent to using a normal copula function. Finally, we give some numerical examples to illustrate
the use of copula functions in the valuation of some credit derivatives, such as credit default swaps and
first-to-default contracts.



1 Introduction

The rapidly growing credit derivative market has created a new set of financial instruments which can be

used to manage the most important dimension of financial risk - credit risk. In addition to the standard

credit derivative products, such as credit default swaps and total return swaps based upon a single underlying

credit risk, many new products are now associated with a portfolio of credit risks. A typical example is the

product with payment contingent upon the time and identity of the first or second-to-default in a given credit

risk portfolio. Variations include instruments with payment contingent upon the cumulative loss before a

given time in the future. The equity tranche of a collateralized bond obligation (CBO) or a collateralized

loan obligation (CLO) is yet another variation, where the holder of the equity tranche incurs the first loss.

Deductible and stop-loss in insurance products could also be incorporated into the basket credit derivatives

structure. As more financial firms try to manage their credit risk at the portfolio level and the CBO/CLO

market continues to expand, the demand for basket credit derivative products will most likely continue to

grow.

Central to the valuation of the credit derivatives written on a credit portfolio is the problem of default

correlation. The problem of default correlation even arises in the valuation of a simple credit default swap

with one underlying reference asset if we do not assume the independence of default between the reference

asset and the default swap seller. Surprising though it may seem, the default correlation has not been well

defined and understood in finance. Existing literature tends to define default correlation based on discrete

events which dichotomize according to survival or nonsurvival at a critical period such as one year. For

example, if we denote

qA = Pr[EA], qB = Pr[EB], qAB = Pr[EAEB]

where EA, EB are defined as the default events of two securities A and B over 1 year. Then the default

correlation ρ between two default events EA and EB , based on the standard definition of correlation of two

random variables, are defined as follows
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ρ = qAB − qA · qB√
qA(1 − qA)qB(1 − qB) . (1)

This discrete event approach has been taken by Lucas [1995]. Hereafter we simply call this definition of

default correlation the discrete default correlation.

However the choice of a specific period like one year is more or less arbitrary. It may correspond with many

empirical studies of default rate over one year period. But the dependence of default correlation on a specific

time interval has its disadvantages. First, default is a time dependent event, and so is default correlation. Let

us take the survival time of a human being as an example. The probability of dying within one year for a

person aged 50 years today is about 0.6%, but the probability of dying for the same person within 50 years is

almost a sure event. Similarly default correlation is a time dependent quantity. Let us now take the survival

times of a couple, both aged 50 years today. The correlation between the two discrete events that each dies

within one year is very small. But the correlation between the two discrete events that each dies within 100

years is 1. Second, concentration on a single period of one year wastes important information. There are

empirical studies which show that the default tendency of corporate bonds is linked to their age since issue.

Also there are strong links between the economic cycle and defaults. Arbitrarily focusing on a one year period

neglects this important information. Third, in the majority of credit derivative valuations, what we need is

not the default correlation of two entities over the next year. We may need to have a joint distribution of

survival times for the next 10 years. Fourth, the calculation of default rates as simple proportions is possible

only when no samples are censored during the one year period1.

This paper introduces a few techniques used in survival analysis. These techniques have been widely applied

to other areas, such as life contingencies in actuarial science and industry life testing in reliability studies,

which are similar to the credit problems we encounter here. We first introduce a random variable called

1A company who is observed, default free, by Moody’s for 5-years and then withdrawn from the Moody’s study must have
a survival time exceeding 5 years. Another company may enter into Moody’s study in the middle of a year, which implies that
Moody’s observes the company for only half of the one year observation period. In the survival analysis of statistics, such incomplete
observation of default time is called censoring. According to Moody’s studies, such incomplete observation does occur in Moody’s
credit default samples.
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“time-until-default” to denote the survival time of each defaultable entity or financial instrument. Then,

we define the default correlation of two entities as the correlation between their survival times. In credit

derivative valuation we need first to construct a credit curve for each credit risk. A credit curve gives all

marginal conditional default probabilities over a number of years. This curve is usually derived from the

risky bond spread curve or asset swap spreads observed currently from the market. Spread curves and asset

swap spreads contain information on default probabilities, recovery rate and liquidity factors etc. Assuming

an exogenous recovery rate and a default treatment, we can extract a credit curve from the spread curve or

asset swap spread curve. For two credit risks, we would obtain two credit curves from market observable

information. Then, we need to specify a joint distribution for the survival times such that the marginal

distributions are the credit curves. Obviously, this problem has no unique solution. Copula functions used in

multivariate statistics provide a convenient way to specify the joint distribution of survival times with given

marginal distributions. The concept of copula functions, their basic properties, and some commonly used

copula functions are introduced. Finally, we give a few numerical examples of credit derivative valuation to

demonstrate the use of copula functions and the impact of default correlation.

2 Characterization of Default by Time-Until-Default

In the study of default, interest centers on a group of individual companies for each of which there is defined

a point event, often called default, (or survival) occurring after a length of time. We introduce a random

variable called the time-until-default, or simply survival time, for a security, to denote this length of time.

This random variable is the basic building block for the valuation of cash flows subject to default.

To precisely determine time-until-default, we need: an unambiguously defined time origin, a time scale for

measuring the passage of time, and a clear definition of default.

We choose the current time as the time origin to allow use of current market information to build credit

curves. The time scale is defined in terms of years for continuous models, or number of periods for discrete

models. The meaning of default is defined by some rating agencies, such as Moody’s.
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2.1 Survival Function

Let us consider an existing securityA. This security’s time-until-default, TA, is a continuous random variable

which measures the length of time from today to the time when default occurs. For simplicity we just use T

which should be understood as the time-until-default for a specific securityA. LetF(t) denote the distribution

function of T ,

F(t) = Pr(T ≤ t), t ≥ 0 (2)

and set

S(t) = 1 − F(t) = Pr(T > t), t ≥ 0. (3)

We also assume that F(0) = 0, which implies S(0) = 1. The function S(t) is called the survival function.

It gives the probability that a security will attain age t . The distribution of TA can be defined by specifying

either the distribution function F(t) or the survival function S(t). We can also define a probability density

function as follows

f (t) = F ′(t) = −S ′(t) = lim
�→0+

Pr[t ≤ T < t +�]

�
.

To make probability statements about a security which has survived x years, the future life time for this

security is T − x|T > x. We introduce two more notations

t qx = Pr[T − x ≤ t |T > x], t ≥ 0

tpx = 1 − t qx = Pr[T − x > t |T > x], t ≥ 0. (4)

The symbol t qx can be interpreted as the conditional probability that the security A will default within the

next t years conditional on its survival for x years. In the special case of X = 0, we have

tp0 = S(t) x ≥ 0.

4



If t = 1, we use the actuarial convention to omit the prefix 1 in the symbols t qx and tpx , and we have

px = Pr[T − x > 1|T > x]

qx = Pr[T − x ≤ 1|T > x].

The symbol qx is usually called the marginal default probability, which represents the probability of default

in the next year conditional on the survival until the beginning of the year. A credit curve is then simply

defined as the sequence of q0, q1, · · · , qn in discrete models.

2.2 Hazard Rate Function

The distribution function F(t) and the survival function S(t) provide two mathematically equivalent ways

of specifying the distribution of the random variable time-until-default, and there are many other equiva-

lent functions. The one used most frequently by statisticians is the hazard rate function which gives the

instantaneous default probability for a security that has attained age x.

Pr[x < T ≤ x +�x|T > x] = F(x +�x)− F(x)
1 − F(x)

≈ f (x)�x

1 − F(x) .

The function

f (x)

1 − F(x)
has a conditional probability density interpretation: it gives the value of the conditional probability density

function of T at exact age x, given survival to that time. Let’s denote it as h(x), which is usually called

the hazard rate function. The relationship of the hazard rate function with the distribution function and

survival function is as follows
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h(x) = f (x)

1 − F(x) = −S
′(x)
S(x)

. (5)

Then, the survival function can be expressed in terms of the hazard rate function,

S(t) = e−
∫ t

0 h(s)ds .

Now, we can express t qx and tpx in terms of the hazard rate function as follows

tpx = e−
∫ t

0 h(s+x)ds, (6)

t qx = 1 − e−
∫ t

0 h(s+x)ds .

In addition,

F(t) = 1 − S(t) = 1 − e−
∫ t

0 h(s)ds,

and

f (t) = S(t) · h(t). (7)

which is the density function for T .

A typical assumption is that the hazard rate is a constant, h, over certain period, such as [x, x + 1]. In this

case, the density function is

f (t) = he−ht
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which shows that the survival time follows an exponential distribution with parameter h. Under this assump-

tion, the survival probability over the time interval [x, x + t] for 0 < t ≤ 1 is

tpx = 1 − t qx = e−
∫ t

0 h(s)ds = e−ht = (px)t

where px is the probability of survival over one year period. This assumption can be used to scale down the

default probability over one year to a default probability over a time interval less than one year.

Modelling a default process is equivalent to modelling a hazard function. There are a number of reasons why

modelling the hazard rate function may be a good idea. First, it provides us information on the immediate

default risk of each entity known to be alive at exact age t . Second, the comparisons of groups of individuals

are most incisively made via the hazard rate function. Third, the hazard rate function based model can be

easily adapted to more complicated situations, such as where there is censoring or there are several types

of default or where we would like to consider stochastic default fluctuations. Fourth, there are a lot of

similarities between the hazard rate function and the short rate. Many modeling techniques for the short rate

processes can be readily borrowed to model the hazard rate.

Finally, we can define the joint survival function for two entities A and B based on their survival times TA

and TB ,

STATB (s, t) = Pr[TA > s, TB > t].

The joint distributional function is

F(s, t) = Pr[TA ≤ s, TB ≤ t]
= 1 − STA(s)− STB (t)+ STATB (s, t).

The aforementioned concepts and results can be found in survival analysis books, such as Bowers et al.

[1997], Cox and Oakes [1984].
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3 Definition of Default Correlations

The default correlation of two entities A and B can then be defined with respect to their survival times TA

and TB as follows

ρAB = Cov(TA, TB)√
V ar(TA)V ar(TB)

= E(TATB)− E(TA)E(TB)√
V ar(TA)V ar(TB)

. (8)

Hereafter we simply call this definition of default correlation the survival time correlation. The survival

time correlation is a much more general concept than that of the discrete default correlation based on a one

period. If we have the joint distribution f (s, t) of two survival times TA, TB , we can calculate the discrete

default correlation. For example, if we define

E1 = [TA < 1],

E2 = [TB < 1],

then the discrete default correlation can be calculated using equation (1) with the following calculation

q12 = Pr[E1E2] =
∫ 1

0

∫ 1

0
f (s, t)dsdt

q1 =
∫ 1

0
fA(s)ds

q2 =
∫ 1

0
fB(t)dt.

However, knowing the discrete default correlation over one year period does not allow us to specify the

survival time correlation.

4 The Construction of the Credit Curve

The distribution of survival time or time-until-default can be characterized by the distribution function,

survival function or hazard rate function. It is shown in Section 2 that all default probabilities can be
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calculated once a characterization is given. The hazard rate function used to characterize the distribution of

survival time can also be called a credit curve due to its similarity to a yield curve. But the basic question is:

how do we obtain the credit curve or the distribution of survival time for a given credit?

There exist three methods to obtain the term structure of default rates:

(i) Obtaining historical default information from rating agencies;

(ii) Taking the Merton option theoretical approach;

(iii) Taking the implied approach using market prices of defaultable bonds or asset swap spreads.

Rating agencies like Moody’s publish historical default rate studies regularly. In addition to the commonly

cited one-year default rates, they also present multi-year default rates. From these rates we can obtain the

hazard rate function. For example, Moody’s (see Carty and Lieberman [1997]) publishes weighted average

cumulative default rates from 1 to 20 years. For the B rating, the first 5 years cumulative default rates in

percentage are 7.27, 13.87, 19.94, 25.03 and 29.45. From these rates we can obtain the marginal conditional

default probabilities. The first marginal conditional default probability in year one is simply the one-year

default probability, 7.27%. The other marginal conditional default probabilities can be obtained using the

following formula:

n+1qx = nqx + npx · qx+n, (9)

which simply states that the probability of default over time interval [0, n+ 1] is the sum of the probability

of default over the time interval [0, n], plus the probability of survival to the end of nth year and default in

the following year. Using equation (9) we have the marginal conditional default probability:

qx+n = n+1qx − nqx

1 − nqx

which results in the marginal conditional default probabilities in year 2, 3, 4, 5 as 7.12%, 7.05%, 6.36% and

5.90%. If we assume a piecewise constant hazard rate function over each year, then we can obtain the hazard

rate function using equation (6). The hazard rate function obtained is given in Figure (1).
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Using diffusion processes to describe changes in the value of the firm, Merton [1974] demonstrated that a

firm’s default could be modeled with the Black and Scholes methodology. He showed that stock could be

considered as a call option on the firm with strike price equal to the face value of a single payment debt.

Using this framework we can obtain the default probability for the firm over one period, from which we

can translate this default probability into a hazard rate function. Geske [1977] and Delianedis and Geske

[1998] extended Merton’s analysis to produce a term structure of default probabilities. Using the relationship

between the hazard rate and the default probabilities we can obtain a credit curve.

Alternatively, we can take the implicit approach by using market observable information, such as asset swap

spreads or risky corporate bond prices. This is the approach used by most credit derivative trading desks. The

extracted default probabilities reflect the market-agreed perception today about the future default tendency of

the underlying credit. Li [1998] presents one approach to building the credit curve from market information

based on the Duffie and Singleton [1996] default treatment. In that paper the author assumes that there exists

a series of bonds with maturity 1, 2, .., n years, which are issued by the same company and have the same

seniority. All of those bonds have observable market prices. From the market price of these bonds we can

calculate their yields to maturity. Using the yield to maturity of corresponding treasury bonds we obtain a

yield spread curve over treasury (or asset swap spreads for a yield spread curve over LIBOR). The credit

curve construction is based on this yield spread curve and an exogenous assumption about the recovery rate

based on the seniority and the rating of the bonds, and the industry of the corporation.

The suggested approach is contrary to the use of historical default experience information provided by rating

agencies such as Moody’s. We intend to use market information rather than historical information for the

following reasons:

• The calculation of profit and loss for a trading desk can only be based on current market information.

This current market information reflects the market agreed perception about the evolution of the market

in the future, on which the actual profit and loss depend. The default rate derived from current market

information may be much different than historical default rates.

• Rating agencies use classification variables in the hope that homogeneous risks will be obtained
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after classification. This technique has been used elsewhere like in pricing automobile insurance.

Unfortunately, classification techniques omit often some firm specific information. Constructing a

credit curve for each credit allows us to use more firm specific information.

• Rating agencies reacts much slower than the market in anticipation of future credit quality. A typical

example is the rating agencies reaction to the recent Asian crisis.

• Ratings are primarily used to calculate default frequency instead of default severity. However, much

of credit derivative value depends on both default frequency and severity.

• The information available from a rating agency is usually the one year default probability for each rating

group and the rating migration matrix. Neither the transition matrixes, nor the default probabilities

are necessarily stable over long periods of time. In addition, many credit derivative products have

maturities well beyond one year, which requires the use of long term marginal default probability.

It is shown under the Duffie and Singleton approach that a defaultable instrument can be valued as if it is a

default free instrument by discounting the defaultable cash flow at a credit risk adjusted discount factor. The

credit risk adjusted discount factor or the total discount factor is the product of risk-free discount factor and

the pure credit discount factor if the underlying factors affecting default and those affecting the interest rate

are independent. Under this framework and the assumption of a piecewise constant hazard rate function, we

can derive a credit curve or specify the distribution of the survival time.

5 Dependent Models - Copula Functions

Let us study some problems of an n credit portfolio. Using either the historical approach or the market

implicit approach, we can construct the marginal distribution of survival time for each of the credit risks in

the portfolio. If we assume mutual independence among the credit risks, we can study any problem associated

with the portfolio. However, the independence assumption of the credit risks is obviously not realistic; in

reality, the default rate for a group of credits tends to be higher in a recession and lower when the economy
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is booming. This implies that each credit is subject to the same set of macroeconomic environment, and that

there exists some form of positive dependence among the credits. To introduce a correlation structure into

the portfolio, we must determine how to specify a joint distribution of survival times, with given marginal

distributions.

Obviously, this problem has no unique solution. Generally speaking, knowing the joint distribution of

random variables allows us to derive the marginal distributions and the correlation structure among the

random variables, but not vice versa. There are many different techniques in statistics which allow us to

specify a joint distribution function with given marginal distributions and a correlation structure. Among

them, copula function is a simple and convenient approach. We give a brief introduction to the concept of

copula function in the next section.

5.1 Definition and Basic Properties of Copula Function

A copula function is a function that links or marries univariate marginals to their full multivariate distribution.

For m uniform random variables, U1, U2, · · · ,Um, the joint distribution function C, defined as

C(u1, u2, · · · , um, ρ) = Pr[U1 ≤ u1, U2 ≤ u2, · · · , Um ≤ um]

can also be called a copula function.

Copula functions can be used to link marginal distributions with a joint distribution. For given univariate

marginal distribution functions F1(x1), F2(x2),· · · , Fm(xm), the function

C(F1(x1), F2(x2), · · · , Fm(xm)) = F(x1, x2, · · · xm),

which is defined using a copula function C, results in a multivariate distribution function with univariate

marginal distributions as specified F1(x1), F2(x2),· · · , Fm(xm).

This property can be easily shown as follows:
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C(F1(x1), F2(x2), · · · , Fm(xm), ρ) = Pr [U1 ≤ F1(x1), U2 ≤ F2(x2), · · · , Um ≤ Fm(xm)]
= Pr

[
F−1

1 (U1) ≤ x1, F
−1
2 (U2) ≤ x2, · · · , F−1

m (Um) ≤ xm
]

= Pr [X1 ≤ x1, X2 ≤ x2, · · · , Xm ≤ xm]

= F(x1, x2, · · · xm).

The marginal distribution of Xi is

C(F1(+∞), F2(+∞), · · ·Fi(xi), · · · , Fm(+∞), ρ)
= Pr [X1 ≤ +∞, X2 ≤ +∞, · · · , Xi ≤ xi, Xm ≤ +∞]

= Pr[Xi ≤ xi]
= Fi(xi).

Sklar [1959] established the converse. He showed that any multivariate distribution function F can be

written in the form of a copula function. He proved the following: If F(x1, x2, · · · xm) is a joint multivariate

distribution function with univariate marginal distribution functions F1(x1), F2(x2),· · · , Fm(xm), then there

exists a copula function C(u1, u2, · · · , um) such that

F(x1, x2, · · · xm) = C(F1(x1), F2(x2), · · · , Fm(xm)).

If each Fi is continuous then C is unique. Thus, copula functions provide a unifying and flexible way to

study multivariate distributions.

For simplicity’s sake, we discuss only the properties of bivariate copula functions C(u, v, ρ) for uniform

random variables U and V , defined over the area {(u, v)|0 < u ≤ 1, 0 < v ≤ 1}, where ρ is a correlation

parameter. We call ρ simply a correlation parameter since it does not necessarily equal the usual correlation

coefficient defined by Pearson, nor Spearman’s Rho, nor Kendall’s Tau. The bivariate copula function has

the following properties:

(i) Since U and V are positive random variables, C(0, v, ρ) = C(u, 0, ρ) = 0.
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(ii) Since U and V are bounded above by 1, the marginal distributions can be obtained by C(1, v, ρ) = v,

C(u, 1, ρ) = u.

(iii) For independent random variables U and V , C(u, v, ρ) = uv.

Frechet [1951] showed there exist upper and lower bounds for a copula function

max(0, u+ v − 1) ≤ C(u, v) ≤ min(u, v).

The multivariate extension of Frechet bounds is given by Dall’Aglio [1972].

5.2 Some Common Copula Functions

We present a few copula functions commonly used in biostatistics and actuarial science.

Frank Copula The Frank copula function is defined as

C(u, v) = 1

α
ln

[
1 + (eαu − 1)(eαv − 1)

eα − 1

]
, −∞ < α <∞.

Bivariate Normal

C(u, v) = %2(%
−1(u),%−1(v), ρ), −1 ≤ ρ ≤ 1, (10)

where%2 is the bivariate normal distribution function with correlation coefficientρ, and%−1 is the inverse of a

univariate normal distribution function. As we shall see later, this is the copula function used in CreditMetrics.

Bivariate Mixture Copula Function We can form new copula function using existing copula functions.

If the two uniform random variables u and v are independent, we have a copula function C(u, v) = uv. If

the two random variables are perfect correlated we have the copula function C(u, v) = min(u, v). Mixing

the two copula functions by a mixing coefficient (ρ > 0) we obtain a new copula function as follows
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C(u, v) = (1 − ρ)uv + ρmin(u, v), if ρ > 0.

If ρ ≤ 0 we have

C(u, v) = (1 + ρ)uv − ρ(u− 1 + v)&(u− 1 + v), if ρ ≤ 0,

where

&(x) = 1, if x ≥ 0

= 0, if x < 0.

5.3 Copula Function and Correlation Measurement

To compare different copula functions, we need to have a correlation measurement independent of marginal

distributions. The usual Pearson’s correlation coefficient, however, depends on the marginal distributions

(See Lehmann [1966]). Both Spearman’s Rho and Kendall’s Tau can be defined using a copula function only

as follows

ρs = 12
∫∫

[C(u, v)− uv]dudv,

τ = 4
∫∫

C(u, v)dC(u, v)− 1.

Comparisons between results using different copula functions should be based on either a common Spear-

man’s Rho or a Kendall’s Tau.

Further examination of copula functions can be found in a survey paper by Frees and Valdez [1988] and a

recent book by Nelsen [1999].
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5.4 The Calibration of Default Correlation in Copula Function

Having chosen a copula function, we need to compute the pairwise correlation of survival times. Using the

CreditMetrics (Gupton et al. [1997]) asset correlation approach, we can obtain the default correlation of two

discrete events over one year period. As it happens, CreditMetrics uses the normal copula function in its

default correlation formula even though it does not use the concept of copula function explicitly.

First let us summarize how CreditMetrics calculates joint default probability of two creditsA andB. Suppose

the one year default probabilities for A and B are qA and qB . CreditMetrics would use the following steps

• Obtain ZA and ZB such that

qA = Pr[Z < ZA]

qB = Pr[Z < ZB]

where Z is a standard normal random variable

• If ρ is the asset correlation, the joint default probability for credit A and B is calculated as follows,

Pr[Z < ZA,Z < ZB] =
ZA∫

−∞

ZB∫
−∞

φ2(x, y|ρ)dxdy = %2(ZA,ZB, ρ) (11)

where φ2(x, y|ρ) is the standard bivariate normal density function with a correlation coefficient ρ, and

%2 is the bivariate accumulative normal distribution function.

If we use a bivariate normal copula function with a correlation parameter γ , and denote the survival times

for A and B as TA and TB , the joint default probability can be calculated as follows

Pr[TA < 1, TB < 1] = %2(%
−1(FA(1)),%

−1(FB(1), γ ) (12)

where FA and FB are the distribution functions for the survival times TA and TB . If we notice that
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qi = Pr[Ti < 1] = Fj(1) and Zi = %−1(qi) for i = A,B,

then we see that equation (12) and equation (11) give the same joint default probability over one year period

if ρ = γ .

We can conclude that CreditMetrics uses a bivariate normal copula function with the asset correlation as the

correlation parameter in the copula function. Thus, to generate survival times of two credit risks, we use

a bivariate normal copula function with correlation parameter equal to the CreditMetrics asset correlation.

We note that this correlation parameter is not the correlation coefficient between the two survival times. The

correlation coefficient between the survival times is much smaller than the asset correlation. Conveniently,

the marginal distribution of any subset of an n dimensional normal distribution is still a normal distribution.

Using asset correlations, we can construct high dimensional normal copula functions to model the credit

portfolio of any size.

6 Numerical Illustrations

This section gives some numerical examples to illustrate many of the points discussed above. Assume that

we have two credit risks, A and B, which have flat spread curves of 300 bps and 500 bps over LIBOR. These

spreads are usually given in the market as asset swap spreads. Using these spreads and a constant recovery

assumption of 50% we build two credit curves for the two credit risks. For details, see Li [1998]. The two

credit curves are given in Figures (2) and (3). These two curves will be used in the following numerical

illustrations.

6.1 Illustration 1. Default Correlation v.s. Length of Time Period

In this example, we study the relationship between the discrete default correlation (1) and the survival time

correlation (8). The survival time correlation is a much more general concept than the discrete default
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correlation defined for two discrete default events at an arbitrary period of time, such as one year. Knowing

the former allows us to calculate the latter over any time interval in the future, but not vice versa.

Using two credit curves we can calculate all marginal default probabilities up to anytime t in the future, i.e.

t q0 = Pr[τ < t] = 1 − e−
∫ t

0 h(s)ds,

where h(s) is the instantaneous default probability given by a credit curve. If we have the marginal default

probabilities t qA0 and t q
B
0 for both A and B, we can also obtain the joint probability of default over the time

interval [0, t] by a copula function C(u, v),

Pr[TA < t, TB < t] = C(tqA0 , tqB0 ).

Of course we need to specify a correlation parameter ρ in the copula function. We emphasize that knowing

ρ would allow us to calculate the survival time correlation between TA and TB .

We can now obtain the discrete default correlation coefficient ρt between the two discrete events that A and

B default over the time interval [0, t] based on the formula (1). Intuitively, the discrete default correlation ρt

should be an increasing function of t since the two underlying credits should have a higher tendency of joint

default over longer periods. Using the bivariate normal copula function (10) and ρ = 0.1 as an example we

obtain Figure (4).

From this graph we see explicitly that the discrete default correlation over time interval [0, t] is a function

of t . For example, this default correlation coefficient goes from 0.021 to 0.038 when t goes from six months

to twelve months. The increase slows down as t becomes large.

6.2 Illustration 2. Default Correlation and Credit Swap Valuation

The second example shows the impact of default correlation on credit swap pricing. Suppose that credit A

is the credit swap seller and credit B is the underlying reference asset. If we buy a default swap of 3 years
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with a reference asset of credit B from a risk-free counterparty we should pay 500 bps since holding the

underlying asset and having a long position on the credit swap would create a riskless portfolio. But if we

buy the default swap from a risky counterparty how much we should pay depends on the credit quality of the

counterparty and the default correlation between the underlying reference asset and the counterparty.

Knowing only the discrete default correlation over one year we cannot value any credit swaps with a maturity

longer than one year. Figure (5) shows the impact of asset correlation (or implicitly default correlation) on the

credit swap premium. From the graph we see that the annualized premium decreases as the asset correlation

between the counterparty and the underlying reference asset increases. Even at zero default correlation the

credit swap has a value less than 500 bps since the counterparty is risky.

6.3 Illustration 3. Default Correlation and First-to-Default Valuation

The third example shows how to value a first-to-default contract. We assume we have a portfolio of n credits.

Let us assume that for each credit i in the portfolio we have constructed a credit curve or a hazard rate function

for its survival time Ti . The distribution function of Ti is Fi(t). Using a copula function C we also obtain

the joint distribution of the survival times as follows

F(t1, t2, · · · , tn) = C(F1(t1), F2(t2), · · · , Fn(tn)).

If we use normal copula function we have

F(t1, t2, · · · , tn) = %n(%−1(F1(t1)),%
−1(F2(t2)), · · · ,%−1(Fn(tn)))

where %n is the n dimensional normal cumulative distribution function with correlation coefficient matrix

-.

To simulate correlated survival times we introduce another series of random variables Y1, Y2, · · ·Yn, such

that

Y1 = %−1(F1(T1)), Y2 = %−1(F2(T2)), · · · , Yn = %−1(Fn(Tn)). (13)
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Then there is a one-to-one mapping between Y and T . Simulating {Ti |i = 1, 2, ..., n} is equivalent to

simulating {Yi |i = 1, 2, ..., n}. As shown in the previous section the correlation between the Y ′s is the asset

correlation of the underlying credits. Using CreditManager from RiskMetrics Group we can obtain the asset

correlation matrix -. We have the following simulation scheme

• Simulate Y1, Y2, · · ·Yn from an n-dimension normal distribution with correlation coefficient matrix-.

• Obtain T1, T2, · · · Tn using Ti = F−1
i (N(Yi)), i = 1, 2, · · · , n.

With each simulation run we generate the survival times for all the credits in the portfolio. With this

information we can value any credit derivative structure written on the portfolio. We use a simple structure

for illustration. The contract is a two-year transaction which pays one dollar if the first default occurs during

the first two years.

We assume each credit has a constant hazard rate of h = 0.1 for 0 < t < +∞. From equation (7) we

know the density function for the survival time T is he−ht . This shows that the survival time is exponentially

distributed with mean 1/h. We also assume that every pair of credits in the portfolio has a constant asset

correlation σ 2.

Suppose we have a constant interest rate r = 0.1. If all the credits in the portfolio are independent, the hazard

rate of the minimum survival time T = min(T1, T2, · · · , Tn) is easily shown to be

hT = h1 + h2 + · · · + hn = nh.

If T < 2, the present value of the contract is 1 · e−r·T . The survival time for the first-to-default has a density

function f (t) = hT · e−hT t , so the value of the contract is given by

2To have a positive definite correlation matrix, the constant correlation coefficient has to satisfy the condition σ > − 1
n−1 .
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V =
∫ 2

0
1 · e−rtf (t)dt

=
∫ 2

0
1 · e−r thT · e−hT tdt (14)

= hT

r + hT
(
1 − e−2.0·(r+hT )) .

In the general case we use the Monte Carlo simulation approach and the normal copula function to obtain

the distribution of T . For each simulation run we have one scenario of default times t1, t2, · · · tn, from which

we have the first-to-default time simply as t = min(t1, t2, · · · tn).

Let us examine the impact of the asset correlation on the value of the first-to-default contract of 5-assets. If

σ = 0, the expected payoff function, based on equation (14), should give a value of 0.5823. Our simulation of

50,000 runs gives a value of 0.5830. If all 5 assets are perfectly correlated, then the first-to-default of 5-assets

should be the same as the first-to-default of 1-asset since any one default induces all others to default. In this

case the contract should worth 0.1648. Our simulation of 50,000 runs produces a result of 0.1638. Figure

(6) shows the relationship between the value of the contract and the constant asset correlation coefficient.

We see that the value of the contract decreases as the correlation increases. We also examine the impact of

correlation on the value of the first-to-default of 20 assets in Figure (6). As expected, the first-to-default of

5 assets has the same value of the first-to-default of 20 assets when the asset correlation approaches to 1.

7 Conclusion

This paper introduces a few standard technique used in survival analysis to study the problem of default

correlation. We first introduce a random variable called “the time-until-default” to characterize the default.

Then the default correlation between two credit risks is defined as the correlation coefficient between their

survival times. In practice we usually use market spread information to derive the distribution of survival

times. When it comes to credit portfolio studies we need to specify a joint distribution with given marginal

distributions. The problem cannot be solved uniquely. The copula function approach provides one way of
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specifying a joint distribution with known marginals. The concept of copula functions, their basic properties

and some commonly used copula functions are introduced. The calibration of the correlation parameter used

in copula functions against some popular credit models is also studied. We have shown that CreditMetrics

essentially uses the normal copula function in its default correlation formula even though CreditMetrics does

not use the concept of copula functions explicitly. Finally we show some numerical examples to illustrate the

use of copula functions in the valuation of credit derivatives, such as credit default swaps and first-to-default

contracts.
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Figure 1: Hazard Rate Function of B Grade Based on Moody’s Study (1997)
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Figure 2: Credit Curve A
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Figure 3: Credit Curve B
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Figure 4: The Discrete Default Correlation v.s. the Length of Time Interval
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Figure 5: Impact of Asset Correlation on the Value of Credit Swap
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Figure 6: The Value of First-to-Default v. s. Asset Correlation
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