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Abstract

A new nonlinear predictive control law for a class of multivariable nonlinear sys-

tems is presented in this paper. It is shown that the closed-loop dynamics under this

nonlinear predictive controller explicitly depend on design parameters (prediction

time and control order). The main features of this result are that an explicitly ana-

lytical form of the optimal predictive controller is given, on-line optimisation is not

required, stability of the closed-loop system is guaranteed, the whole design proce-

dure is transparent to designers and the resultant controller is easy to implement. By

establishing the relationship between the design parameters and time-domain tran-

sient, it is shown that the design of an optimal generalised predictive controller to

achieve desired time-domain specifications for nonlinear systems can be performed

by looking up tables. The design procedure is illustrated by designing an autopilot

for a missile.
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1 Introduction

Optimal control of nonlinear systems is one of the most active subjects in

control theory. One of the main difficulties with classic optimal control theory

is that, to determine optimal control for a nonlinear system, the Hamilton-

Jacobi-Bellman (HJB) partial differential equations (PDEs) have to be solved

(Bryson and Ho, 1975). There is rarely an analytical solution although several

numerical computation approaches have been proposed; for example, see Po-

lak (1997). The same difficulty also occurs in recently developed “nonlinear”

H∞ control theory where Hamilton-Jacobi-Issacs PDEs have to be solved (for

example see Ball et al. (1993)).

As a practical alternative approach, model based predictive control (MPC)

has received a great deal of attention and is considered by many to be one

of the most promising methods in control engineering (Garcia et al., 1989).

The core of all model based predictive algorithms is to use “open loop optimal

control” instead of “closed-loop optimal control” within a moving horizon.

Among them, long range Generalised Predictive Control (GPC) is one of the

most promising algorithms (Clarke, 1994). Following the successes with linear

systems, much effort has been taken to extend GPC to nonlinear systems

(for state-of-the-art of nonlinear predictive control see Allgöwer and Zheng

(1998)). Various nonlinear GPC methods for discrete-time systems have been

developed; for example, see Bequette (1991), Biegler and Rawlings (1991),

Mayne (1996), and Allgöwer and Zheng (1998). The main shortcoming of these

methods is that on-line dynamic optimisation is required, which, in general,

is non-convex. As pointed by Chen et al. (2000), heavy on-line computational

burden is the main obstacle in the application of GPC in nonlinear engineering

systems. This causes two main problems. One problem is a large computational

delay and the other problem is that global minimum may not be achieved, or

even worse a local minimum cannot be achieved due to time limitation in each
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optimisation cycle.

To avoid the online computational issue, one way is to develop a closed form

optimal GPC. To this end, Lu (1995), Soroush and Soroush (1997) and Siller-

Alcala (1998) limit the control order to be zero, that is, to limit the control

effort to be a constant in the predictive interval. Then the closed form optimal

GPC laws are given. However, it is difficult to predict the system output over

a long horizon since the output order is limited to be the relative degree of a

nonlinear system in this approach. Moreover, as shown in this paper, however

small the predictive horizon is chosen, the closed-loop system is unstable for

plants with large relative degree, i.e., ρ > 4. To obtain adequate performance,

the control order should be chosen to be reasonably large. When this approach

is used to deal with the control order larger than zero by augmenting the

derivatives of the control as additional state, the control law derived depends

on the derivatives of the control that are unknown and thus is impossible

to implement. Alternatively, it is shown by Gawthrop et al. (1998) that the

special case of zero prediction horizon also leads to an analytic solution related

to those obtained by the geometric approach (Isidori, 1995).

In a similar vein, this paper looks at another special case of the nonlinear GPC

of Gawthrop et al. (1998) where the degree of the output prediction is con-

strained in terms of both relative degree and control order. The approach gives

an analytic solution for a class of multivariable nonlinear systems in terms

of a generalised predictive control performance index. The result is based on

four concepts: prediction via Taylor series expansion, receding horizon control,

control constraints (within the moving horizon time frame) and optimisation.

In order to avoid the numerical computation difficulties in optimisation, an

analytical solution to a set of nonlinear equations arising in optimisation is de-

rived. As a result, an optimal generalised predictive control law is presented in

a closed form, which turns out to be a time invariant nonlinear state feedback

control law. By showing that the closed-loop system is linear, the stability of
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the closed-loop system is established. Moreover the design parameters in this

nonlinear control design method can be directly chosen according to desired

time-domain transient and thus a trade-off between performance specifications

and control effort is possible.

2 Predictive control for nonlinear systems

2.1 Nonlinear Generalised Predictive Control (NGPC)

Consider the nonlinear system





ẋ(t) = f
(
x(t)

)
+ g

(
x(t)

)
u(t)

yi(t) = hi

(
x(t)

)
, i = 1, . . . ,m,

(1)

where x ∈ Rn, u ∈ Rm and y = [y1, y2, . . . , ym]T ∈ Rm are the state, control

and output vectors respectively. In general, an optimal tracking problem can

be stated as follows: design a controller such that the closed-loop system is

asymptotically stable and the output, y(t), of the nonlinear system (1) op-

timally tracks a prescribed reference, w(t), in terms of a given performance

index.

To avoid the difficulties in solving PDEs in classic optimal control theory, the

moving-horizon control concept is adopted in this paper (Mayne and Michal-

ska, 1990; Demircioglu and Gawthrop, 1991). Briefly, the basic idea is, at any

time t, to design ”open-loop control” within a moving time frame located at

time t regarding x(t) as the initial condition of a state trajectory x̂(t + τ)

driven by an input û(t + τ) together with associated predicted ŷ(t + τ). To

distinguish them from the real variables, the hatted variables are defined as

the variables in the moving time frame.
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The receding-horizon performance index adopted in this paper is given by

J =
1

2

∫ T

0

(
ŷ(t + τ)− ŵ(t + τ)

)T (
ŷ(t + τ)− ŵ(t + τ)

)
dτ (2)

where T is the predictive period. Following Gawthrop et al. (1998), Demir-

cioglu (1989) and Chen et al. (1999a), the control weighting term is not in-

cluded in the performance index (2). How to limit the control effort in NGPC

will be discussed in Section 3. Similar to other receding control strategies, the

actual control input, u(t), is given by the initial value of the optimal control

input û(t + τ), 0 ≤ τ ≤ T , which minimises the performance index (2); that

is,

u(t + τ) = û(t + τ) when τ = 0. (3)

Hence the hatted variables are different from the actual variables except when

τ = 0

In this paper the following assumptions are imposed on the nonlinear system

(1):

A1: The zero dynamics are stable (Isidori, 1995);

A2: All states are available;

A3: Each of the system output y(t) has the same well-defined relative degree

ρ (Isidori, 1995);

A4: The output y(t) and the reference signal w(t) are sufficiently many times

continuously differentiable with respect to t.

Assumption A3 is not necessary: the result and method in this paper can

be extended to a system with different relative degrees. This assumption is

imposed to emphasise the main contribution of this paper. Assumption A4 is

made in most of nonlinear control theory (Nijmeijer and van der Schaft, 1990).

Definition 1 : The control order in continuous time predictive control is said
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to be r if the control signal û(t + τ) satisfies

{
û[r](t + τ) 6= 0 for some τ ∈ [0, T ];

û[k](t + τ) = 0 for all k > r and τ ∈ [0, T ].

where û[r](t + τ) denotes the rth derivative of û(t + τ) with respect to τ .

The specification of the control order determines the allowable set, U , of the

optimal control input û(t+τ) in the moving horizon time frame, hence imposes

the constraints on û(t + τ). In the NGPC algorithm presented in this paper,

similar to the linear system case (Demircioglu and Gawthrop, 1991; Gawthrop

et al., 1998), the control constraints in the moving horizon time frame are

imposed by the choice of the control order r. For example, if the control order

is chosen as 0, then the control input û(t + τ) to be optimised in the moving

time frame is constant. There is no limitation on the control order and it can

be an arbitrary positive integer in this paper. It should also be noted that

the control constraints are only imposed on the control signal in the moving

horizon time frame, û, rather than the actual control signal u.

2.2 Output prediction

The output in the moving time frame is predicted by Taylor series expansion.

Repeated differentiation up to ρ times of the output ŷ with respect to time,

together with repeated substitution of the system (1) gives

˙̂y(t) = Lfh(x) (4)
...

ŷ[ρ−1](t) = Lρ−1
f h(x) (5)

ŷ[ρ](t) = Lρ
fh(x) + LgL

ρ−1
f h(x)û(t) (6)

where

h(x) =
[
h1(x), . . . , hm(x)

]T
. (7)
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The standard Lie notation is used in this paper (Isidori, 1995) and the only

reason for using it is to simplify the notation.

When the control order is chosen to be r, the order of the Taylor expansion

of the output ŷ(t + τ) must be at least ρ + r. to make the rth derivative of

the control signal appear in the prediction. Differentiating Equation (6) with

respect to time yields

ŷ[ρ+1](t) = Lρ+1
f h(x) + p11

(
û(t), x(t)

)
+ LgL

ρ−1
f h(x) ˙̂u(t) (8)

where

p11

(
û(t), x(t)

)
= LgL

ρ
fh(x)û(t) +

dLgL
ρ−1
f h(x)

dt
û(t) (9)

Note that p11 is nonlinear in both û(t) and x(t).

Similarly the higher derivatives of the output, ŷ(t), can be derived and by

summarising them with (4)–(8), one has

ˆ̄Y (t) =




ŷ[0]

ŷ[1]

...

ŷ[ρ]

ŷ[ρ+1]

...

ŷ[ρ+r]




=




h(x)

L1
fh(x)

...

Lρ
fh(x)

Lρ+1
f h(x)

...

Lρ+r
f h(x)




+




0m×1

...

0m×1

H(ˆ̄u)




(10)

where H(ˆ̄u) ∈ Rm(r+1) is a matrix valued function of û(t), ˙̂u(t), . . . , û[r](t),
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given by

H(ˆ̄u) =




LgL
ρ−1
f h(x)û(t)

p11

(
û(t), x(t)

)
+ LgL

ρ−1
f h(x) ˙̂u(t)

...

pr1

(
û(t), x(t)

)
+ · · ·+

prr

(
û(t), . . . , û[r−1](t), x(t)

)
+

LgL
ρ−1
f h(x)û[r](t)




(11)

and

ˆ̄u =

[
û(t)T ˙̂u(t)T ¨̂u(t)T . . . û[r](t)T

]
(12)

Within the moving time frame, the output ŷ(t + τ) at the time τ is approxi-

mately predicted by

ŷ(t + τ)
.
= T (τ) ˆ̄Y (t) (13)

The m×m matrix τ̄ and the m×m(ρ + r + 1) matrix T (τ) are given by

τ̄ = diag{τ, . . . , τ} (14)

T (τ) =

[
I τ̄ · · · τ̄ (ρ+r)

(ρ+r)!

]
(15)

In the moving time frame, the reference w(t+τ) at the time τ is approximated

by the Taylor expansion of w(t) at the time t up to (ρ + r)th order, given by

ŵ(t + τ) = T (τ)W̄ (t) (16)

where

W̄ (t) =

[
w(t)T ẇ(t)T · · · w[ρ+r](t)T

]T

(17)

The optimal tracking problem now can be reformulated as, at any time t, to

find optimal ˆ̄u(t) ∈ R(ρ+r+1)m such that the performance index (2) is min-

imised.
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It should be noted that p11, p21, p22, . . . , pr1, . . . , prr are complicated nonlinear

functions of the elements in the optimised vector ˆ̄u(t).

2.3 Nonlinear optimal controllers

One of our main results is given in Theorem 1. The proof of Theorem 1 is

given in Appendix A

Theorem 1 Consider a multivariable continuous-time nonlinear system sat-

isfying Assumptions A1 − A4 and suppose that the output in the predictive

interval is predicted by Taylor expansion up to ρ + r order where ρ is the rela-

tive degree. Then for a given control order r ≥ 0, the optimal nonlinear control

law which minimises the receding horizon performance index (2) is given by

u(t) = −
(
LgL

ρ−1
f h(x)

)−1(
KMρ + Lρ

fh(x)− w[ρ](t)
)

(18)

where Mρ ∈ Rmρ is given by

Mρ =




h(x)− w(t)

L1
fh(x)− w[1](t)

. . .

Lρ−1
f h(x)− w[ρ−1](t)




(19)

and K ∈ Rm×mρ is the first m columns of the matrix T̄ −1
rr T̄ T

ρr , given by

T̄rr =




T̄(ρ+1,ρ+1) · · · T̄(ρ+1,ρ+r+1)

...
. . .

...

T̄(ρ+r+1,ρ+1) · · · T̄(ρ+r+1,ρ+r+1)




, (20)
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T̄ρr =




T̄(1,ρ+1) · · · T̄(1,ρ+r+1)

...
. . .

...

T̄(ρ,ρ+1) · · · T̄(ρ,ρ+r+1)




, (21)

T̄(i,j) =
T̄ i+j−1

(i− 1)!(j − 1)!(i + j − 1)
, i, j = 1, . . . , ρ + r + 1, (22)

and

T̄ = diag{T, . . . , T} ∈ Rm×m. (23)

Remark 1 : The optimal control law (18) is a nonlinear time invariant state

feedback law. The matrix K in the control law (18) is constant. It only depends

on the predictive time, T , the control order, r, and the relative degree of the

system, ρ. Moreover, the expressions of the Lie derivatives of the output can

be obtained by manual computation or using symbolic computation software,

for example, Reduce (Hearn, 1995). It can be seen that they only depend on

the system states.

Remark 2 : In many continuous time GPC algorithms, the control order r and

the output order Ny, which is defined as the highest order derivative of the

output used in predicting the output in the moving time frame, are two free

parameters to be determined (Demircioglu and Gawthrop, 1991; Demircioglu

and Gawthrop, 1992; Gawthrop et al., 1998). The NGPC developed in this

paper only has one free parameter, i.e., the control order r. The output order

is determined by the control order plus the relative degree of the system.

As pointed by Demircioglu and Clarke (1992), this is reasonable and natural

since the rth derivative of the control first appears in the expression of the

ρ + rth derivative of the output and higher derivatives of the control u will

appear in the expression of the derivatives of the output with the order larger

than ρ + r. The control order is also chosen as the only design parameter in

Lu (1995), Soroush and Soroush (1997) and Siller-Alcala (1998) where the

control order r is zero. The choice of the control order and the output order as
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two independent free parameters does provide the ability for GPC to handle

nonlinear systems with unstable zero dynamics and ill-defined relative degree

(Demircioglu, 1989; Siller-Alcala, 1998; Gawthrop et al., 1998), where the

derivatives of the control signal in the moving time frame with the order larger

than Ny−ρ−r are set to be zero. However, as shown in above and later, there

are several significant advantages in choosing only the control order as the

design parameter, including having the nonlinear GPC law in a closed-form.

Remark 3 : Another advantage of the NGPC method derived in this paper

is that the highest order of the derivatives of the output y(t) necessary for

computing the control law (18) is equal to the relative degree of the nonlinear

system, ρ, no matter what control order, r, is prescribed. This is an important

property in computation. It is not easy to compute the high order derivatives

for a nonlinear system manually, however it can be done by a computer algebra

program. Experience has shown that even for a simple nonlinear system such

as a two link robotic manipulator, to predict the output of the systems with

the fifth order derivative, an equation with more than one hundred terms

arises.

2.4 Stability of closed-loop systems

One of the main issues in optimal control is whether or not the closed loop

system under the derived optimal control law is stable. In this section, stability

of the optimal nonlinear control law (18) is analysed. Before giving the stability

result, the following assumption is imposed on the system (1).

A5: (Isidori, 1995) The internal zero dynamics of the system (1) driven by w

are defined for all t ≥ 0, bounded and uniformly asymptotically stable.
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Let the matrix K in (18) be partitioned as

K =

[
k0 k1 · · · kρ−1

]
(24)

where ki ∈ Rm×m, i = 0, . . . , ρ− 1. Substituting the control law (18) and (19)

into Equation (6) yields

y[ρ](t) = Lρ
fh(x)−

ρ−1∑

i=0

ki

(
Li

fh(x)− w[i](t)
)
− Lρ

fh(x) + w[ρ](t), (25)

Following Equations (4)–(6) and defining the tracking error e(t) as

e(t) = w(t)− y(t), (26)

Equation (25), which defines the closed-loop system consisting of the plant (1)

and the control (18), becomes

e[ρ](t) + kρ−1e
[ρ−1](t) + · · ·+ k0e(t) = 0 (27)

Based on this result, the stability result for the NGPC (18) is given in Theo-

rem 2. The proof of Theorem 2 is given in Appendix B.

Theorem 2 The closed loop system for a plant (1) satisfying Assumptions

A1–A5 under the NGPC (18) is linear. The stability of the overall closed-

loop system only depends on the relative degree ρ and the control order, r. The

closed-loop stability result under the NGPC (18) is given in Table 1 where “+”

and “−” denote that the closed-loop system is stable and unstable respectively.

Remark 4 : The stability of the linear closed-loop system (27) is independent

of the predictive time T since it can be shown that the choice of T does not

affect the sign of the roots of the polynomials (B.5). It only depends on the

relative degree order, ρ, of the nonlinear plant and the control order r.

Table 1 lists the stability result of a nonlinear system with a relative degree less

than 10 where r and ρ are the control order and the relative degree respectively.

It can be shown from Table 1 that when a nonlinear system has a low relative
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Table 1

Stability of optimal nonlinear Generalised Predictive Control

ρ 1 2 3 4 5 6 7 8 9 10

r = 0 + + + + − − − − − −

r = 1 + + + + + − − − − −

r = 2 + + + + + + + − − −

r = 3 + + + + + + + + − −

r = 4 + + + + + + + + + −

r = 5 + + + + + + + + + +

r = 6 + + + + + + + + + +

r = 7 + + + + + + + + + +

degree (less or equal to 4), the closed-loop system is always asymptotically

stable no matter what control order r is chosen. However when the relative

degree of a nonlinear system is high, the system is unstable if the control order

is too low. It can be explained by the fact that a high relative degree means

a large delay in control effect and therefore the nonlinear system is difficult

to control. Table 1 shows that the system is always stable when the difference

between the relative degree and the control order is less than 4.

3 Design procedure based on time-domain specifications

In the nonlinear predictive control design method developed above there are

two design parameters: the control order, r, and the predictive time, T . How to

choose these parameters according to time-domain specifications is discussed

in this section.
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Table 2

Relative degree ρ = 2

r σ (%) T5%(T ) T2%(T )

0 5.23 2.536 3.288

1 2.13 0.839 1.384

2 1.30 0.532 0.593

3 0.97 0.368 0.413

4 0.79 0.270 0.305

5 0.70 0.206 0.234

6 0.63 0.163 0.185

7 0.59 0.132 0.150

In many cases the time-domain specification of a system is given in terms of its

step response. There are two important indices, overshoot and settling time.

Since the error equation for a nonlinear system under the nonlinear GPC (18)

is given by (27), it is easy to calculate the step response when the matrix

K is known, which is determined by the control order, r, and the predictive

time, T . For the nonlinear systems with relative degree 2, the relationships

between the time-domain specifications and the design parameters is shown

in Tables 2, where σ is the overshoot, T5% and T2% are the settling time for

within 5% or 2% steady state error respectively. The settling time is given

in terms of the predictive time T . For a nonlinear system with other relative

degree, the similar tables have been worked out but due to the limitation of

the space, they are not reported here.

One interesting aspect of the NGPC (18) is that although control weighting

does not appear in the performance index (2) explicitly, the control effort

does not approach infinity. Here we give an informal discussion of the effects
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of the choice of the predictive time and the control order on the control effort.

Firstly the control effort can be reduced by increasing the predictive time in

the performance index (2). It can be explained from (B.1) and (18). When the

predictive time T increases, (B.1) indicates that the elements in the matrix

K in (18) are reduced. Consequently, the control effort is, in general, reduced

under the same tracking error since the gain matrix in the control law (18)

decreases. This has been shown with a two-link robotic manipulator in (Chen

et al., 1999a). Similarly it can be argued that the control effort can be reduced

by choosing a lower control order.

Therefore while the time domain specifications are satisfied, the control order

should be selected as low as possible and the predictive time should as large

as possible. This gives a small control effort and input energy requirement

while the time-domain transient is achieved. If the time-domain specifications

conflicts with the limitation of the control effort, one has to relax the time-

domain specifications or the limitation on the control effort.

4 Example: Predictive control of a missile

The method of this paper is demonstrated by the design of an autopilot for

a high angle of attack missile. The model of the longitudinal dynamics of a

missile is taken from Reichert (1990), given by

α̇ = f1(α) + q + b1(α)δ (28)

q̇ = f2(α) + b2δ (29)

where α is the angle of attack (deg), q the pitch rate (deg/s), and δ the tail

fin deflection (deg). The nonlinear functions f1(α), f1(α), b1(α) and b2 are

determined by the aerodynamic coefficients (Reichert, 1990).
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The tail fin actuator dynamics are approximated by a first-order lag

δ̇ =
1

t1
(−δ + u) (30)

where u is the commanded fin deflection(deg). In addition the fin deflection is

limited by

|δ| ≤ 30 deg (31)

The output of this system is the angle of attack. The design objective is to

develop a controller such that the missile can track a given angle of attack

command. The tracking performance specifications are given in terms of its

step response. More specifically, under all angle of attack command |w(t)| ≤ 20

deg, the overshoot is less than 3% and the settling time (within 5% steady

state error) is less than 0.2 second.

It can be shown that the longitudinal dynamics of the missile have well-defined

relative degree, ρ = 2. According to the overshoot specification, from Table 2,

the controller order should be equal to or greater than 1. To make the control

effort is as small as possible, the control order should be chosen as small as

possible and hence is chosen r = 1 in this paper; using this control order, the

corresponding overshoot is 2.13%. Since the settling time specification is less

than 0.2 sec, following from Table 2, the predictive time should satisfies

T ≤ 0.2

0.839
= 0.2384 sec

So T is chosen as 0.238 sec. The design parameters in the NGPC are deter-

mined and then the optimal GPC can be obtained by Theorem 1

The controller design is tested by simulation. The angle of attack (α), in

response to a square wave between 0 deg and 15 deg, is plotted in Figure 1.

It can be seen that all time-domain specifications are achieved: the overshoot

is less than 3% and the settling time is less than 0.2 sec. It exhibits excellent

tracking performance.
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Fig. 1. The tracking performance under the nonlinear GPC

5 Conclusion

This paper presents a systematic method for designing an optimal controller

to achieve prescribed time-domain specifications for a nonlinear system that

satisfies Assumptions A1–A4. By defining an optimal tracking problem in

terms of a generalised predictive control performance index, an optimal control

law for a continuous-time nonlinear plant has been derived.

The significant features of this new optimal predictive control law are:

• the optimal control is given in a closed-form, which only depends on the

states of a nonlinear system;

• on-line optimisation is not necessary;

• the design parameters, the control order and the predictive time, can be

determined according to overshoot and settling time specifications directly

by looking up tables;

• the stability of the closed-loop system is guaranteed for a nonlinear system

17



with a low relative degree(≤ 4);

• the stability is achieved for a nonlinear system with a high relative degree

by increasing the control order.

The NGPC developed in this paper is easy to design and implement. The

design parameters are transparent to the designer. The whole design procedure

should be understandable by, and acceptable to, engineers. A method to ensure

integral action in NGPC is discussed in Chen et al. (1999b).

Appendix

A Proof of Theorem 1

Using (13) and (16), the performance index (2) can be written as

J =
1

2

∫ T

0

(
ˆ̄Y (t)− W̄ (t)

)TT (τ)TT (τ)
(
ˆ̄Y (t)− W̄ (t)

)
dτ

=
1

2

(
ˆ̄Y (t)− W̄ (t)

)T T̄
(
ˆ̄Y (t)− W̄ (t)

)
(A.1)

where T̄ is an m(ρ + r + 1)×m(ρ + r + 1) matrix, defined by

T̄ =
∫ T

0
T (τ)TT (τ)dτ (A.2)

Let

T̄ =




T̄(1,1) · · · T̄(1,ρ+r+1)

...
...

...

T̄(ρ+r+1,1) · · · T̄(ρ+r+1,ρ+r+1)




. (A.3)

From (15) and (A.2), the ijth (matrix) element in the matrix T̄ is given by

(22) where T̄ is obtained by replacing τ with T in (14).
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It follows from (10) that

ˆ̄Y − W̄ = M +




0mρ×1

H(ˆ̄u)




. (A.4)

where

M =




L0
fh(x)

L1
fh(x)

...

Lρ+r
f h(x)




−




w(t)

ẇ(t)

...

w[ρ+r](t)




(A.5)

Differentiating H in (11) with respect to ˆ̄u gives

∂H(ˆ̄u)

∂ ˆ̄u

=




LgL
ρ−1
f h(x) 0m×m 0m×m · · · 0m×m

×m×m LgL
ρ−1
f h(x) 0m×m · · · 0m×m

...
...

...
...

...

×m×m ×m×m · · · ×m×m LgL
ρ−1
f h(x)




(A.6)

where ‘×m×m’ denotes the nonzero m×m block element in the matrix ∂H(ˆ̄u)
∂ ˆ̄u

.

The necessary condition for the optimal control ˆ̄u is given by

∂J

∂ ˆ̄u
= 0 (A.7)
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Partition the matrix T̄ into the submatrices

T̄ =




T̄ρρ T̄ρr

T̄ T
ρr T̄rr




(A.8)

where

T̄ρρ ∈ Rmρ×mρ, T̄ρr ∈ Rmρ×m(r+1), T̄rr ∈ Rm(r+1)×m(r+1)

It can be shown that the necessary condition (A.7) can be written as

(
∂H(ˆ̄u)

∂ ˆ̄u

)T [
T̄ T

ρr T̄rr

]
M +

(
∂H(ˆ̄u)

∂ ˆ̄u

)T

T̄rrH(ˆ̄u) = 0 (A.9)

Since LgL
ρ−1
f h(x) is invertible according to the relative degree definition, then

∂H(ˆ̄u)
∂ ˆ̄u

in (A.6) is also invertible. Note that the matrix T̄rr is positive definite.

Equation (A.9) implies

H(ˆ̄u) = −
[
T̄ −1

rr T̄ T
ρr Im(r+1)×m(r+1)

]
M (A.10)

Noting equation (11), the first m equations in (A.10) can be written as

LgL
ρ−1
f h(x)û(t) + KMρ + Lρ

fh(x)− w(t)[ρ] = 0 (A.11)

where K denotes the first m columns of the matrix T̄ −1
rr T̄ T

ρr and, following

(A.5), Mρ is given by

Mρ =

[
(
h(x)− w(t)

)T (
L1

fh(x)− w[1](t)
)T

. . .

(
Lρ−1

f h(x)− w[ρ−1](t)
)T

]T

(A.12)

The optimal control û(t) can be uniquely determined by (18) since this is the

only solution to Equation(A.10) and thus optimal condition (A.7).
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B Proof of Theorem 2

Since K is the first m columns of the matrix T̄ −1
rr T̄ T

ρr , it can be shown that

ki = ziT
−ρ+i ρ!

i!
, i = 0, . . . , ρ− 1 (B.1)

where zi ∈ Rm×m, i = 0, . . . , ρ− 1, are the submatrices of the first m columns

of the matrix M−1
1 M2 and

M1 =

{
1

i + j + 2ρ− 1
Im×m

}

i,j=1,...,r+1

(B.2)

M2 =

{
1

i + j + ρ− 1
Im×m

}

i=1,...,r+1,j=1,...,ρ

(B.3)

It follows from (27) that the characteristic polynomial matrix equation of the

closed-loop system is given by

Im×msρ + kρ−1s
ρ−1 + · · ·+ k0 = 0 (B.4)

Substituting (B.1) into (B.5) yields

T̄ ρ

ρ!
sρ + zρ−1

T̄ ρ−1

(ρ− 1)!
sρ−1 + · · ·+ z0 = 0 (B.5)

The roots of the above polynomial matrix can be calculated for different con-

trol orders and relative degrees and hence the stability of the linear closed loop

dynamics can be determined as in Table 1. Furthermore, according to stan-

dard result in geometric nonlinear control theory (Proposition 4.5.1 in Isidori

(1995)), the stability for the linear closed-loop dynamics implies that of the

overall closed-loop system under the NGPC since Assumption A5 is satisfied.
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