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Abstract

There is a long and rich tradition of using ideas from both equilibrium thermo-

dynamics and its microscopic partner theory of equilibrium statistical mechan-

ics. In this chapter, we provide some background on the origins of the

seemingly unreasonable effectiveness of ideas from both thermodynamics

and statistical mechanics in biology. After making a description of these foun-

dational issues, we turn to a series of case studies primarily focused on binding

that are intended to illustrate the broad biological reach of equilibrium thinking

in biology. These case studies include ligand-gated ion channels, thermody-

namic models of transcription, and recent applications to the problem of

bacterial chemotaxis. As part of the description of these case studies, we

explore a number of different uses of the famed Monod–Wyman–Changeux

(MWC) model as a generic tool for providing a mathematical characterization

of two-state systems. These case studies should provide a template for tailoring

equilibrium ideas to other problems of biological interest.
vier Inc.

reserved.
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28 Hernan G. Garcia et al.
1. Introduction: Thermodynamics is Not

Just for Dead Stuff

Thermodynamics has long been a key theory in biology, used in
problems ranging from the interpretation of binding both in vitro and
in vivo to the study of the conformations of DNA whether under the action
of optical traps in well-characterized solutions or in the highly compacted
state of the cellular interior. Despite this long tradition, there is often the
sneaking suspicion that because thermodynamics (perhaps more properly
referred to as thermostatics) is a theory of equilibrium that tells us how to
reckon the “terminal privileged states” of systems (Callen, 1985), it is
somehow irrelevant for thinking about the behavior of living cells which
are demonstrably not in equilibrium. While the terminal state of a living
system is death, there are many problems for which an equilibrium treat-
ment is not only a good starting point, but may be the most appropriate tool
for the problem of interest.

In a now classic article, Eugene Wigner spoke of the “unreasonable
effectiveness of mathematics in the natural sciences,” (Wigner, 1960),
expressing surprise at the truth of Galileo’s earlier assertion that “Mathe-
matics is the language with which God has written the universe.” In the
time since Wigner’s article, many others have taken liberties with his theme
by noting the seemingly unreasonable effectiveness of other specific ideas in
a much more general context than they were originally intended, and now
it is our turn to add our names to the list. Indeed, the unreasonable
effectiveness of equilibrium ideas for inherently out-of-equilibrium pro-
blems has already been developed by Astumian for specific cases such as a
colloidal particle falling through water and a single molecule being stretched
by an atomic force microscope (Astumian, 2007). This chapter comple-
ments that of Astumian by exploring the perhaps surprising effectiveness of
equilibrium thermodynamics in thinking about a wide range of biological
problems.

Our chapter has several goals. First, we describe the key theoretical
foundations required for the application of equilibrium statistical mechanics
models to problems spanning from ligand-gated ion channels to the action
of enhancers in transcriptional regulation. In addition, we address concep-
tual issues related to the applicability of equilibrium concepts by using
arguments about separation of time scales to determine when equilibrium
ideas can be appropriately used in a living biological context, even though
the cell as a whole is not in equilibrium.With these theoretical preliminaries
in hand, we carry out a series of illustrative case studies from the last decade
or so that show the broad reach of equilibrium ideas to a number of topics
that are both timely and exciting. One of our main goals is to argue that
equilibrium ideas are a good jumping-off point for thinking quantitatively
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about a range of problems in cell biology. In particular, they often lead to
mathematical formulae that can be explicitly tested in biological experi-
ments to arrive at a deeper understanding of a proposed mechanism. These
ideas will be made explicit in the examples to follow.
2. States and Weights from the Boltzmann Rule

For all of the biological examples we wish to examine, the problem
formulation plays out the same way. Our starting point is the notion of a
“microstate,” one of the many distinct ways that the microscopic objects
making up our macroscopic system can be arranged. For example, if we are
interested in the disposition of a fluorescently labeled DNA molecule on a
surface, there are many different ways in which the molecule can lie down
on the surface, as shown in Fig. 2.1. Each one of these conformations is a
distinct microstate but they all share the common feature that the molecule
is adsorbed on the surface (Maier and Radler, 1999). Similarly, if we have a
collection of ligands in solution, both the positions and the momenta of
the different ligands can be shuffled around without changing the
overall concentration and temperature, for example. Again, each such
arrangement corresponds to a different microstate. The job of statistical
mechanics is to compute the relative probabilities of all the microstates
consistent with the constraints imposed on the system. The constraints are
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Figure 2.1 Microstates for DNA on a surface. (A) Fluorescence microscopy image of
dye-labeled l-phage DNA on a surface (Maier and Radler, 1999). Each configuration
observed corresponds to a different microstate. (B) Schematic showing a series of
different allowed microstates for a given DNA molecule on a surface. (C) Discrete
representation of the microstate of the DNA molecule. The molecule is divided into a
series of segments and there is a vector ri which points to the ith segment. Each
microstate is characterized by a different set of positions. (D) Continuous representa-
tion of the microstate of the DNAmolecule. Each point on the molecule has its position
defined by the vector r(s), where s is the arclength along the molecule.



30 Hernan G. Garcia et al.
defined by macroscopic variables like temperature, mean distance between
the ends of the DNA, or the concentration of ligands in solution. For
problems of biological interest, the challenge is to determine what set of
microstates are biologically equivalent, and then to enumerate these micro-
states and calculate their probabilities. For example, a receptor in the pres-
ence of many molecules of ligand in solution may be considered “activated”
if any one of the individual ligand molecules is bound, although these would
all be considered distinct microstates. In practice, it would be tedious or
impossible to actually enumerate the microstates for any real system, but the
toolkit of statistical mechanics provides elegant methods to accurately esti-
mate their numbers and probabilities, even for complex living systems.

For thinking about processes in the living world, one relevant constraint
is the assumption of fixed temperature, which is equivalent to imposing the
constraint of constant mean energy. For some biological systems, such as
endothermic animals, this approximation is almost true, and in nearly all
biological systems, the temperature changes very slowly compared to the
rapid molecular transformations that we consider here. This is one example
of the importance of the separation of time scales in the application of
thermodynamics concepts to biological systems; as long as we can treat
temperature as being nearly constant, we can vastly simplify the task of
determining the probabilities of the microstates in the system. In this case,
statistical mechanics provides us with an elegant and compact formula
for the probabilities of all the microstates in the form of the celebrated
Boltzmann formula, namely,

pi ¼ e�bEi

Z
; ð2:1Þ

where Ei is the energy of the microstate i, b ¼ 1/kBT, kB is the Boltzmann
constant, and T is the temperature. The denominator in this expression is
obtained by summing over theBoltzmann factors (exp(�bEi)) for each of the
distinct microstates and is known as the partition function. The key intuition
provided by this formula is that the probability of every microstate of the
system is solely determined by its energy. Formany biological experiments, it
is easier to determine the probability of a state (e.g., the concentration of
ligand-bound receptors) than to directly measure its energy. Within this
framework, the two properties can be conveniently interconverted.

Perhaps the simplest problem of biological interest to which these ideas
can be applied is that of a “two-state” ion channel like that shown in Fig. 2.2.
In such models, it is assumed that the channel has only two states, closed and
open, and the probabilities of these two states can be read off from the fraction
of the time spent in each state, as is shown in Fig. 2.2A. There are several
underlying assumptions explicit in this treatment, including the idea that the
channel has no “memory” of how long it has been open or closed, and the
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Figure 2.2 States and weights for ion channel dynamics. (A) Current trace showing
how the channel transitions back and forth between the open and closed states (Keller
et al., 1986). By evaluating the fraction of time spent in either of these two states, we can
compute the open (and closed) probability. (B) States of the two-state ion channel, the
corresponding energies and the Boltzmann weights. (C) Plot of the probability of the
channel being open as a function of the difference in energy between the open and closed
states. This difference in energy can be tuned by the driving force such as ligands,
voltages and tension on themembrane. The expression plotted corresponds to Eq. (2.3).
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idea that all the channels in a population are functionally equivalent. In other
words, the system is assumed to be ergodic, such that the average open
probability for a single channel examined over time should be the same as
the average fraction of channels in a population that happens to be open at any
given instant. For cases where these assumptions are reasonable (or nearly
reasonable), statistical mechanics tells us how to compute the probabilities of
each of the states from their energies, or equivalently to compute their
energies from their probabilities. In this chapter, we will repeatedly resort
to the same cartoon depiction of the Boltzmann rule by showing a cartoon of
the states and their corresponding Boltzmann weights which are obtained by
exponentiating the energy of the relevant state, as shown in Eq. (2.1), and
multiplying the Boltzmann factor by its associatedmultiplicity. For a channel
like the one being considered here, the corresponding states and weights are
shown in Fig. 2.2B. Using these ideas, we see that the probability of the open
state is obtained as the ratio

popen ¼ e�beopen

e�beopen þ e�beclosed
; ð2:2Þ

where eopen and eclosed are the energies of the open and closed states,
respectively. This expression can be rewritten in the alternative fashion

popen ¼ 1

1þ e�bDe ; ð2:3Þ
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where De ¼ eclosed � eopen. The functional form introduced above is used
widely in the fitting of opening-probability curves (Keller et al., 1986;
Perozo et al., 2002; Zhong et al., 1998) and is shown in Fig. 2.2C. Our
interest here was simply to note the way in which this functional form arises
completely naturally from the ideas of statistical mechanics.

Of course this is a deliberate oversimplification, as an ion channel that is
opening and closing must go through a continuum of multiple structural
states in between. However, inspection of the time trace in Fig. 2.2A reveals
that the amount of time spent during these transitions is relatively brief
compared to the time that the channel typically dwells in either the open or
closed states, so for purposes of estimating probabilities, we may make the
useful simplification that the system exists primarily in just these two states.
Furthermore, we acknowledge that any one state, for example, “open,” may
in reality represent several or many structurally distinct substates that are
equivalent as far as their biological function is concerned, that is, the amount
of current that passes through them. One of the most useful properties of the
thermodynamic framework for the analysis of biological systems is its flexi-
bility with respect to the precisionwithwhich the states are defined; depend-
ing on the exact question being asked, the investigator can choose how finely
to delineate the various states of the system.Overall, we argue that extremely
simplemodels such as the two-state ion channel seem to fit experimental data
unreasonably well, and furthermore provide extremely useful intuition as a
starting point for thinking about highly complex systems.

There are many different kinds of ion channels, characterized not only by
their selectivities for different ions, but also by the classes of driving forces that
gate them (Hille, 2001). Regardless, from the two-state statistical mechanics
perspective adopted here, the difference in gating mechanisms from one
channel to the next is embodied in the dependence of De on the driving
force,whether it is the voltage applied across themembrane, the concentration
of some ligands, or the tension in the membrane. This is where the power and
utility of the statistical mechanics approach becomes clear. All of the different
environmental influences that may affect the opening and closing of the ion
channel may be characterized with respect to their effect on the energy (or
equivalently, on the probability) of the closed versus open state. So, the
expectations for the behavior of a channel with multiple different ligands, or
a channel affected by both ligand binding and voltage, can be described
quantitatively within this framework, using energy as a universal currency.
Formally, it is straightforward to predict quantitatively how a channel with
multiple environmental influences is expected to respond when the several
different factors operate independently of one another. If the factors such as
ligand binding and voltage are not in fact independent, that will be revealed by
the failure of the data (measurement of open probability as a function of these
two variables) to fit the simple model, and the actual energy of the coupling
between the factors can then be calculated.
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3. Binding Reactions and Biological

Thermodynamics

3.1. Thermodynamic models of binding

One of the poster children for the usefulness of equilibrium thermodynamics
and its statistical mechanics partner ideas in biology is the study of binding
reactions (Dill and Bromberg, 2003; Hill, 1985; Klotz, 1997). To illustrate our
points, we focus on several key case studies. First, we use simple ideas about
binding reactions to highlight a few key points about transcriptional regulation.
With these ideas in hand, we turn to a class of models that have served as a
centerpiece in the analysis of biological cooperativity, namely, the Monod–
Wyman–Changeuxmodels (MWC;Monod et al., 1965)which,wewill argue,
serve in the samecapacity in biology that the Isingmodel introduced todescribe
the magnetic properties of materials does in physics (Brush, 1967; Plischke and
Bergersen, 2006). Both the MWC model and the Ising model make the
extremely useful simplifications that, first, the individual elements within a
complex system can exist only in a countable number of discrete states (rather
than in a continuum), and that an individual element can sometimes change its
state. For the simplest cases, such as the spinsmaking up amagnet or ion channel
opening, the number of discrete states is just two, but as we will see below, this
same framework can be readily expanded to include more than two states.

As a biological case with very broad applicability, we start by considering
binding problems in which several different molecular species can exist
either separately or in complexes. As shown in Fig. 2.3A, the simplest
receptor–ligand binding system can exist in one of two classes of states, or
one of two macrostates. Either the receptor is unoccupied or occupied by a
ligand molecule. However, for each of these macrostates, there are many
different microscopic realizations of the system since the ligands can be
distributed in many different ways throughout the solution. For simplicity,
we introduce a model of the solution known as a “lattice model” in which
the solution is divided into a huge number O of boxes and the configura-
tions of the solute molecules are captured by their placement on these lattice
sites. This idea is captured in the “multiplicity” column in Fig. 2.3A which
tells us the number of distinct ways of arranging our L ligands in the lattice
model of the solution adopted here. In reality, of course, the unbound
ligands are not confined to boxes in the solution volume; they may exist at
any location. However, the lattice model provides an unreasonably effective
approximation to a continuous solution in the limit where the number of
possible lattice positions is taken to be very large, and it greatly simplifies the
statistical mechanics task of enumerating the microstates (Dill and
Bromberg, 2003). To find the total statistical weight, we simply multiply
the multiplicity of the two macrostates times their associated Boltzmann
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Figure 2.3 Statistical mechanics of receptor–ligand binding. (A) We consider a lattice
model of L ligands in solution, represented as a lattice of O boxes, and one receptor.
There are two broad classes of allowed states (i.e., two macrostates), those in which the
receptor is empty and those in which the receptor is occupied by one of the ligands. To
enumerate the microstates that make up each of the two macrostates, we count the
number of ways that the ligands in solution can be distributed among the O boxes; this
leads to the multiplicity factor. Furthermore, we assume that in the solution, the ligand
has an energy esolution and while bound to the receptor its energy drops to ebound, and
these two energies define the Boltzmann factors associated with each of the two
macrostates. (B) Plot of the probability of receptor occupancy as a function of the
concentration of ligands as shown in Eq. (2.4) for three different choices of the
difference in binding free energy between the solution and the receptor.
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factors which depend upon their corresponding energies (i.e., upon the
energy of binding ebound and the energy of being in solution esolution).

With the statistical weights in hand, we can now compute the probabil-
ity of either of the twomacrostates as its statistical weight divided by the sum
of the statistical weights of all of the possible microstates. In particular, this
leads to a formula for the probability of the receptor to be occupied by a
ligand of the form

pbound Lð Þ ¼
L
O e

�bDe

1þ L
O e

�bDe ; ð2:4Þ
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where De ¼ ebound � esolution is the energy loss of the ligand upon binding
to the receptor and we have assumed that the number of ligands L is much
less than the size of the solution represented by the number of boxes in the
lattice model, O. The factor L/O accounts for the loss in translational
entropy of the ligand upon binding. As written, this equation describes
the probability of receptor occupancy as a function of the number of ligands
in our lattice model of solution. This probability is plotted in Fig. 2.3B as a
function of several choices of De. However, to make contact with concen-
trations, it is convenient to rewrite this expression by using the volume per
elementary box in our lattice model (v) and occupied by ligand as a function
of ligand concentration [L]. In particular, we can write the number of
ligands L as L ¼ [L]Ov, in which case the equation takes on a familiar form

pbound L½ �ð Þ ¼
L½ �
Kd

1þ L½ �
Kd

; ð2:5Þ

where Kd ¼ ebDe

v
is the equilibrium dissociation constant which provides the

concentration at which the receptor has a probability of being occupied
of 1/2.

In most interesting biological systems, the concentration of ligand will
change over time (e.g., because of changes in cellular signaling), so the
system is not truly in equilibrium. However, this is another instance where
the separation of time scales is important. As long as the rate at which the
ligand concentration changes is relatively slow compared to the individual
rates of ligand binding and unbinding, the system can be considered to be
nearly in equilibrium at each moment in time, with the probability of ligand
binding simply adjusting as its concentration changes slowly.

Often in binding problems that are biologically interesting, the simple
functional form defined above is not consistent with the data. This is usually
the case when, for example, more than one ligand may bind to the same
receptor simultaneously, or when ligand binding causes receptor dimeriza-
tion. The general biochemical problems of understanding cooperativity and
allostery have historically received a great deal of attention (Cui and
Karplus, 2008). Below, we will argue that these more complex situations
may also be analyzed usefully within this same formal framework. Indeed,
the classic MWC model for allostery and cooperativity is a statistical
mechanical model that considers molecules that intrinsically exist in a
distribution of possible conformational states and assigns these different
states different binding affinities (Cui and Karplus, 2008; Gunasekaran
et al., 2004). But first, with the basics of the statistical mechanics of single-
ligand binding under our belt, we are now equipped to attack a specific
problem of biological interest, the regulation of gene expression.
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3.2. Thermodynamic models of transcription

Regulation is one of the great themes of biology. Few are left unimpressed
after watching the ordered cell divisions and differentiation that attend
embryonic development, which serves as a great reminder of what has
been dubbed “the regulatory genome” (Davidson, 2006). The roots of
regulatory biology are largely to be found in the study of prokaryotes
(Ackers et al., 1982; Jacob et al., 2005; Ptashne and Gann, 2002), and
these simple single-celled organisms continue to provide valuable insights
into transcription and other processes of the central dogma of molecular
biology (Buchler et al., 2003; Michel, 2010; Wall et al., 2004). One of our
arguments is that the systems that were the early proving ground for our
understanding of regulation, namely, questions centering on bacterial
metabolism and the bacteriophage life cycle, can now be used as a test bed
for a more stringent, systematic, and quantitative attack on questions in
regulation. One of the earliest systematic uses of thermodynamic models for
computing the properties of a regulatory network was carried out by Ackers
and Shea on the decision-making apparatus in bacteriophage lambda
(Ackers et al., 1982). More recently, those efforts were generalized to
consider the question of how various transcription factors by virtue of
being present or absent from regulatory regions of the DNA can conspire
to yield combinatorial control of the expression of a particular gene (Bintu
et al., 2005a,b; Buchler et al., 2003). In the time since, these ideas have been
used even more aggressively for an ever-increasing set of regulatory archi-
tectures (Dodd et al., 2005; Fakhouri et al., 2010; Giorgetti et al., 2010;
Kuhlman et al., 2007).

To see the way in which these ideas play out most simply within the
statistical mechanics framework, consider the case of repression of transcrip-
tion by a transcription factor (repressor), as shown in Fig. 2.4. The idea is
one of simple competition. The promoter can either be unoccupied,
occupied by RNA polymerase, or occupied by repressor, but not by both
simultaneously. The transcriptionally active state corresponds to that state in
which RNA polymerase is bound to the promoter. In the thermodynamic
models, all attention is focused on promoter occupancy, and it is assumed
that the level of gene expression is proportional to the probability of
promoter occupancy by RNA polymerase (Straney and Crothers, 1987).
As with the examples worked out above for the two-state ion channel and
the simple binding problem, we can compute the probability of interest by
resorting to the states and weights diagram shown in Fig. 2.4 which tells us
that the probability of promoter occupancy is given by

pbound ¼
P

NNS
e�bDepd

1þ P
NNS

e�bDepd þ R
NNS

e�bDerd
: ð2:6Þ
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Figure 2.4 States and weights for simple repression. A promoter has a binding site for
a repressor molecule which excludes the binding of RNA polymerase. The statistical
weights of the different states depend upon the number of polymerases (P), the number
of repressors (R), and their respective energies of binding to DNA, Depd, and Derd. To
derive these weights, we use the same approach as that described for ligand–receptor
binding, except now we assume that both polymerases and repressors when not bound
to the promoter are distributed among NNS sites on the bacterial genome (this is
essentially the size of the genome). The energies in the Boltzmann factors are computed
as the difference between the energy when repressor or polymerase is bound specifically
to the promoter region of the DNA and when they are bound nonspecifically some-
where else on the genome (Bintu et al., 2005b).
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Here, the probability is expressed as a function of the number of poly-
merases (P), the number of repressors (R), the size of the genome NNS in
base pairs, and the relevant energy differences that characterize the binding
of polymerase and repressor to promoter and operator DNA, Depd and Derd,
respectively. Details about how this formula is obtained in analogy to the
probability of the ligand binding to a receptor from Eq. (2.4) are shown in
the caption of Fig. 2.4.

From an experimental point of view, often the most convenient mea-
surable quantity for carrying out the kind of quantitative dissection that is
possible using thermodynamic models of gene expression is the fold-
change, defined as the ratio of the level of expression in strains that harbor
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the repressor molecule to the level of expression in strains that do not. This
definition can be generalized to an array of different regulatory architectures
by always computing the ratio of the level of expression in the regulated
strain to that in an unregulated strain. The prediction for the fold-change
that follows from the thermodynamic model of simple repression described
above is fold-change ¼ pbound(R)/pbound(R ¼ 0). For repression, the fold-
change is always less than one, while for activation, the fold-change is
greater than one. As shown in Fig. 2.5, several different bacterial promoters
have had their fold-change systematically characterized, and we compare
the measured value with the thermodynamic models that are appropriate for
the particular promoter. Such experiments lead to knowledge of the para-
meters of the promoter architecture such as the relevant binding energies.
Using these parameters, falsifiable predictions about the gene regulatory
input–output relations can be generated (Bintu et al., 2005a).

The idea to use models based on equilibrium ideas to describe the
transcriptional output of a promoter might seem ill-conceived, given that
transcription is an inherently out-of-equilibrium process with key steps like
the elongation stage of transcription leading to mRNA production being
essentially irreversible. Still, the key thing to keep in mind is what makes
equilibrium ideas useful in these settings is always the separation of time
scales. For example, even in the setting in which statistical mechanics and
thermodynamics are typically taught, that of an ideal gas, the gas is thought
of as being held in a container that is impermeable (i.e., molecules cannot
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Figure 2.5 Fold-change in gene expression. Two different promoters have been
characterized as a function of the number of repressors (Oehler et al., 1994;
Rosenfeld et al., 2005). The thermodynamic models predict a precise dependence of
the fold-change in gene expression on the concentration of repressors. The theoretical
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promoters are given by the data points. These predictions were obtained using the
reasoning outlined in Fig. 2.4, equation 2.5, and the weak promoter approximation
described in Bintu et al. (2005a,b).
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escape). In reality, no such container exists! Still, if the diffusion of the gas
out of the container occurs on times scales that are much slower than the
rate at which the gas explores the volume of the container (i.e., the time for
a molecule to diffuse from one end of the container to the other), then we
can consider the gas to be in equilibrium. Similarly, if transcription factor
and RNA polymerase binding and falling off the DNA occur on time scales
that are distinct from the time scales associated with initiation of transcrip-
tion, we can treat the different states representing combinations of tran-
scription factors bound to promoter DNA as being in equilibrium with each
other. This is illustrated in Fig. 2.6. A more intuitive way of restating this
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Figure 2.6 Transcriptional time series for several different classes of rate constants.
The schematic emphasizes two scenarios in which thermodynamic models of gene
regulation are valid. In case 1, the promoter switches fast on the time scale defined by
transcription initiation, while in case 2, the opposite limit is illustrated. In both limits,
the steady-state number of transcripts (mRNA degrades due to the action of RNases
and by dilution after cell division) is proportional to the fraction of time the promoter is
in the active state (state 1), which can be computed using equilibrium techniques. We
are grateful to Alvaro Sanchez for his articulation of the ideas embodied in this figure.
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conclusion is that the rate of transcription should depend on the concentra-
tion and activity of the transcription factors, a proposition that is likely to be
widely accepted. Here, we have simply developed the formal underpinnings
of this assertion.
3.3. The unreasonable effectiveness of MWC models

In the world of statistical mechanics, the Ising model has celebrity status and
can be argued to be one of the most useful conceptual frameworks in all of
physics. One of the arguments we want to make here is for a similar status
for the MWC model in the context of biology (Monod et al., 1965). The
biological essence of the MWC philosophy is that many of the molecules of
life, or complexes consisting of many molecules, can exist in several differ-
ent functional states (e.g., inactive and active), and their propensity to bind
ligands is different in those states. For a protein that is activated by ligand
binding, the simplest picture is that the free energy of the inactive state is
intrinsically lower, making it more likely in the absence of ligands. How-
ever, if the binding energy for ligands is greater when the molecule is in the
active state, then the presence of ligands can shift the equilibrium toward this
state. What this means in turn is that as ligands are titrated in, the active state
will ultimately be the thermodynamic winner. More generally, the same
kind of enumeration of discrete states can be applied to any other reversible
biological transformation such as protein phosphorylation and dephosphor-
ylation, and transport into or out of a subcellular compartment. There are
many important and nuanced features of this idea, some of which will be
made mathematically explicit in the case studies to be given in the remain-
der of the chapter.

3.3.1. MWC and hemoglobin: Where it all began
The MWC model in its various forms has been applied in many different
contexts. The most famous example and a story told many times before
concerns the application of these ideas to the binding of oxygen to hemo-
globin. Because hemoglobin can bind four separate oxygen molecules, there
are at least five distinct states of occupancy: empty, single-, double-, triple-,
and quadruple occupancy (we are glossing over the possible distinctions
among the substates within these states; e.g., a single hemoglobin tetramer
with two bound oxygens may carry those oxygens either on the two alpha
chains, the two beta chains, or one of each). One of the most important
experimental findings about these binding probabilities is the existence of
cooperativity: one way of couching it is the idea that the Kd for adding the
next ligand depends upon how many ligands are already present. In this
situation, the simple binding curves such as those shown in Fig. 2.3B fit the
experimental data very poorly. In this case, people often resort to a richer
binding curve known as a Hill function, which is a generalization of the
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functional form shown in Eq. (2.5) to the case where the ratio [L]/Kd in the
numerator and the denominator is raised to the power n,

pbound L½ �ð Þ ¼
L½ �
Kd

� �n

1þ L½ �
Kd

� �n : ð2:7Þ

The parameter n is the so-called Hill coefficient and is usually associated
with the degree of cooperativity. For the hemoglobin case, the cooperativ-
ity concept was developed by Linus Pauling in 1935 specifically as a way to
explain the nontrivial shape of the observed binding curve (Pauling, 1935).
In this framework, the binding of one oxygen molecule to hemoglobin
alters its affinity for the subsequent binding of another oxygen molecule to
another site. While conceptually attractive and very useful for fitting exper-
imental data, the Pauling model for cooperativity and subsequent elabora-
tions of it (Koshland et al., 1966) require an explicit accounting for how
each ligand affects the energetics of subsequent binding events. This formu-
lation becomes increasingly unwieldy if other kinds of interactions are also
considered. For example, the metabolic byproduct 2,3-bisphosphoglycerate
(2,3-BPG) is found at high concentrations in red blood cells and binds to a
site on the hemoglobin tetramer far from the heme groups, substantially
decreasing the affinity of hemoglobin for oxygen as part of the blood-based
oxygen delivery system in mammals (Benesch and Benesch, 1967). Incor-
poration of 2,3-BPG into a Pauling-style model for hemoglobin (or, simi-
larly, incorporation of the Bohr effect, etc.) requires a proliferation of
coupling terms describing how the binding of each ligand affects the affinity
for every other possible ligand (Phillips et al., 2009a).

The MWC view of the cooperativity problem is fundamentally differ-
ent. The original MWC model took the approach of assuming that hemo-
globin itself could exist in only two distinct structural states: in one, the
binding of oxygen to all the sites is weak, while in the other, it is strong;
there is also an energy penalty to be paid when switching from the state in
which oxygen is bound weakly to the one in which it is bound more
strongly. The cooperativity in this case arises from the fact that the penalty
for binding one, two, three, or four oxygen molecules tightly is the same
regardless of the number of molecules. In other words, the presence of one
or more bound ligands simply alters the probability of the protein being in
each of the two structural states (or in the language of statistical mechanics,
alters the energy difference De between the two; Monod et al., 1965).
Inclusion of 2,3-BPG in this framework is straightforward; binding of
2,3-BPG also alters the population distribution between the states, lowering
the relative energy of the weak oxygen-binding state, and therefore
driving the population of hemoglobin molecules in that direction. For this
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first-order model, the ligands can all be assumed to stabilize or destabilize
each possible protein structural state independently, and the effect of
combining the various different ligands can be predicted by calculating
the linear combination of all of the binding energies with respect to the
state probabilities. Though the hemoglobin example was historically foun-
dational, we believe that the MWC framework for biological statistical
mechanics can be even more usefully applied to an unreasonably broad
range of biological problems by virtue of its intrinsic ability to describe
systems that exist primarily in a countable number of discrete functional
states.
3.3.2. MWC and ligand-gated ion channels: Cooperative gating
The general applicability of the MWC philosophy is perhaps best illustrated
with the example of ion channels. This time our discussion is based on an
ion channel that is gated by the binding of ligands. Even though it is an
oversimplification, we continue with the picture of ion channels that have
only two allowed conformational states, an open state which permits the
flow of ions and a closed stated which forbids any ionic current. Further,
imagine an ion channel like the nicotinic acetylcholine receptor that has
two binding sites for ligands, meaning that there are four possible states of
occupancy when the channel is in a given state: unoccupied by ligand,
occupied by ligand on site 1, occupied by ligand on site 2, and occupied by
ligands on both sites 1 and 2. This is a reasonable first description of the
acetylcholine receptor involved in the neuromuscular junction, which is
also one of the best-studied ligand-gated channels, though detailed studies
show that a faithful interpretation of these channels requires more than this
simplest of models provides (Colquhoun and Sivilotti, 2004). The interest-
ing twist that results from exploiting the MWC framework is that the
binding energy for the ligands is different in the open and the closed state.
All of these eventualities are shown in Fig. 2.7A.

If we make the simplifying assumption that the binding energy for the
two different sites is identical, then the statistical weights of the different
states can be written in the simple form shown in Fig. 2.7A. The outcome of
this model is that the open probability as a function of ligand concentration
has the simple but subtle form

popen ¼
e�beopen 1þ L½ �

K
oð Þ
d

� �2

e�beopen 1þ L½ �
K

oð Þ
d

� �2

þ e�beclosed 1þ L½ �
K

cð Þ
d

� �2
: ð2:8Þ
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Figure 2.7 MWC model of ligand-gated ion channel. The channel is presumed to
exist in one of two states, closed and open. The binding affinities of the ligands for the
two binding sites on the channel are the same and they depend upon whether the
channel is closed or open. This dependence leads to cooperative binding of the ligands.
(A) States and weights for a toy model of a ligand-gated ion channel with two binding
sites for the gating ligand. (B) Probability of the two states of the channel (open and
closed) as a function of the gating ligand. Notice how in the absence of ligand the
probability of the channel being open is the same as that calculated in Eq. (2.3), while
the presence of ligand biases the channel toward the open state. The parameters used
are De ¼ eopen � eclosed ¼ 5kBT and Kd

(c)/Kd
(o) ¼ 20.
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The parameters that come into play here include the energies of the
open and closed states, namely, eopen and eclosed, and the dissociation con-
stants for the ligand when in the open and closed states, namely, Kd

(o) and
Kd

(c), while the concentration of the ligands themselves is given by [L].
Note that this functional form bears some resemblance to that worked out
earlier for the simple two-state ion channel, but as a result of the fact that the
concentration-dependent terms come in a quadratic fashion, the depen-
dence of the open probability on the ligand concentration is sharper than
revealed in our earlier model. This sharpness can be explored by looking
at the way that the open probability changes with concentration.
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Not surprisingly and just as in the case of hemoglobin, more careful studies
of the dynamics of ligand-gated channels reveal behavior that is more
nuanced than that captured in the simplest MWC model (Colquhoun and
Sivilotti, 2004). Nevertheless, the simple treatment represents a very good
first approximation to describing the system that can be used to build
intuition and refine the precision of the quantitative questions that can be
brought to bear. Within the same statistical mechanics framework, more
sophisticated models can be constructed by including more precisely
defined structural states and including the possibility for energetic coupling
between the two ligand-binding sites (Colquhoun and Sivilotti, 2004).

3.3.3. MWC and chemotaxis: Cooperativity in signal detection
One of the most beloved microscopy videos in the history of modern
biology was taken by David Rogers and shows the purposeful motion of a
neutrophil as it chases down a bacterium, Staphylococcus aureus. This com-
pelling directed motion, a few frames of which are shown in Fig. 2.8,
captures people’s imaginations because at first blush one cannot avoid a
sense of amazement that so many different processes can be so exquisitely
synchronized on such short time scales. Indeed, similar rich and complex
behavior of the single-celled Paramecium led some to wonder whether they
were capable of some form of primitive thought (Greenspan, 2006). One of
the captivating features of the Rogers video is that the neutrophil “knows”
which way to go in order to track down its prey, revealing a specific
example of the widespread phenomenon of chemotaxis. Though eukary-
otic chemotaxis is a field unto itself, the study of chemotaxis in bacteria is, in
many ways, the fundamental paradigm of signal transduction and has also
been fruitfully viewed through the prism of equilibrium statistical mechan-
ics (Berg, 2004).

The motion of a bacterium such as E. coli is characterized by “runs” and
“tumbles” in which the bacterium moves forward in a nearly straight path,
reorients in the tumbling process, and then heads off in a new direction
(Berg, 2000). Bacterial chemotaxis refers to the way in which bacteria will
bias the frequency of their tumbles in the presence of a gradient of che-
moattractants (Cluzel et al., 2000). At the molecular level, this behavior is
mediated by surface-bound chemoreceptors and cytoplasmic response reg-
ulators that communicate with the flagellar rotary apparatus (Falke et al.,
1997). To illustrate how equilibrium statistical mechanics has been used to
study chemotaxis, we consider the simplified scenario shown in Fig. 2.9.
This watered-down version of the chemotaxis process centers on mem-
brane-bound receptors that can bind soluble chemoattractants in the
surrounding medium. The receptor communicates the presence of che-
moattractants in the external milieu by modifying response regulators
within the cell through phosphorylation. More precisely, from the stand-
point of the statistical mechanics approach advocated here, the receptor can



0 s

Bacterium

Neutrophil
Red blood cells

1 s

2 s

20mm

Figure 2.8 Snapshots from the Rogers video showing the directed motion of a
neutrophil. Three different frames from the video separated by one-second time inter-
vals reveal that the cell has made a sharp right turn in its pursuit of the bacterium (video
by David Rogers, Venderbilt University and digital capture by Tom Stossel, Brigham
and Women’s Hospital, Harvard Medical School).
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be either in an inactive or an active state, with only the active state able
to perform the posttranslational modification of the response regulator.
The balance of the active and inactive states of the receptor is determined,
in turn, by whether or not the receptor is occupied by a ligand. Just as the
balance between the open and closed states of the ligand-gated channel is
altered by the presence of a ligand, here, the kinase activity of the receptor is
tuned by ligand binding.

To compute the probability that a given receptor is activated and hence
that the frequency of tumbles is altered, we resort to precisely the same states
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and weights philosophy already favored throughout the chapter. We begin
with the simplest model of an isolated chemoreceptor, as shown in Fig. 2.9.
In this case, the states and weights are shown in the figure and reflect the
four eventualities that can be realized: the receptor is either inactive or
active and ligand-bound or not. When the ligand is bound, the entropy of
the ligands in solution is changed and there is an additional binding energy.
This results in probability of being active of the form

pactive ¼
e�beactive 1þ L½ �

K
activeð Þ
d

� �

e�beactive 1þ L½ �
K

activeð Þ
d

� �
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K
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d

� � ; ð2:9Þ
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Figure 2.10 States and weights for chemoreceptors in the chemotaxis process. This
figure shows the states and weights for a single receptor.
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where we have introduced the energies eactive and einactive to capture the
energy of the receptor in the active and inactive states, respectively, and
Kd

(active) and Kd
(inactive) to capture the equilibrium dissociation constant for

the ligand to bind the receptor when in the active and inactive states,
respectively. The states and weights corresponding to this model are
shown in Fig. 2.10.

One of the most important outcomes of systematic quantitative experi-
mentation on bacterial chemotaxis is the recognition that the behavior is
much more cooperative than indicated by the simple formula derived above
(Sourjik and Berg, 2002). The first level of sophistication beyond the
naı̈ve model written above is to incorporate the idea that chemoreceptors
exist in clusters (Mello and Tu, 2005). In this case, as shown in Fig. 2.11A,
the various weights conspire to yield an expression for the probability of
the active state as a function of the concentration of chemoattractant,
namely,

pactive ¼
e�beactive 1þ L½ �

K
activeð Þ

d
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e�beactive 1þ L½ �
K

activeð Þ
d

� �N
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In this scenario, N individual receptor molecules within a cluster are envi-
sioned as acting as a unit, where the entire cluster can interconvert between
the active and inactive states. This translates into the sharpness of the
transition from inactive to active shown in the plot in Fig. 2.11B. Con-
ceptually, the cooperativity for ligand-based activation of the clusters of
receptor molecules can be treated in much the same way as the coopera-
tivity for oxygen binding in the MWC model for hemoglobin.
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Structurally, the chemotaxis receptors can, in fact, be seen in trimeric
clusters on the bacterial surface (Briegel et al., 2009; Shimizu et al., 2000), in
support of the validity of this treatment. In fact, this picture is itself only the
starting point of a much more sophisticated set of models which acknowl-
edge the collective action of many such receptors as the trimers are arranged
in structurally connected networks. Such models even account for the
possibility that different receptor types can interact, thus explaining the
intriguing experimental observation that the presence of a ligand for one
type of chemotaxis receptor can alter the apparent sensitivity of the bacteria
to ligands for other receptor types. These models accomplish this without
the need to postulate the existence of any unidentified signaling pathways
that would enable this kind of crosspathway communication (Keymer et al.,
2006; Mello and Tu, 2005). Yet, a further complication in the chemotaxis
signaling system is the fact that receptors can be reversibly methylated at
several sites in response to continuous stimulation, allowing adaptation over
a wide range of ligand concentrations. Within the MWC framework, these
posttranslational modifications can also be incorporated as effectively inde-
pendent “ligands” that alter the probability that the receptors will be either
active or inactive, by altering the relative stability of the two states.
A statistical mechanics model based on these ideas for modifying the
population distribution of simple two-state receptors is unreasonably well-
able to reproduce experimental data over a broad range of conditions,
including the prediction of system behavior for mutants where methylation
is either constitutively on or off at any of several of the possible modification
sites (Keymer et al., 2006).

3.3.4. MWC and eukaryotic transcriptional regulation: From
nucleosomes to enhancers

A less familiar example of the use of MWC-like models is to binding
problems involving DNA and its binding partners. In particular, in a recent
set of papers, it was suggested that by analogy to the inactive and active states
of a protein, DNA could be either inaccessible or accessible to binding by
transcription factors (Mirny, 2010; Raveh-Sadka et al., 2009). One concrete
mechanism for how that idea might be realized in a biological system is that
the DNA could either be wrapped up in nucleosomes (inaccessible) or open
for interaction with other factors. In Fig. 2.12A, we show a schematic of the
states and weights for this case, with the “ligands” in this case now being
DNA-binding proteins such as transcription factors which bind to some
enhancer. For the concrete case shown in the figure, inspired by an
enhancer in Drosophila, we consider an enhancer region containing seven
binding sites, all of which have the same affinity for the transcription factor
of interest (though this simplification is not at all crucial).

The idea embodied in the figure is once again that embodied in an
MWC model. This means that the system can exist in two overall states
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Figure 2.12 MWCmodel for eukaryotic action at a distance. The regulatory region of
the DNA is pictured here to have seven distinct binding sites. The organization of the
DNA itself is further posited to exist in two different states. Following the MWC
philosophy, the binding energy of the transcription factors (pictured here as triangles)
depends upon whether the DNA is in the “closed” or “open” state. (A) States and
weights corresponding to the model. (B) Data for the normalized level of Hunchback
protein as a function of the level of Bicoid protein (Gregor et al., 2007) measured in
units of [Bcd1/2], the concentration of Bicoid protein for which [Hb]/[Hbmax] ¼ 1/2,
overlaid with a fit to a Hill function [Hb]/[Hbmax] ¼ b(1 þ f([Bcd]/Kd)

5)/
(1 þ ([Bcd]/Kd)

5) and the MWC model shown in Eq. (2.11). The parameters of the
Hill function are b ¼ 0.01, f ¼ 99, and Kd ¼ 0.88. For the MWC model, we took the
limit Kd

(inactive) ! þ 1 and used the parameters Kd
(active) ¼ 0.3, and

De ¼ eactive � einactive ¼ 9.5 kBT.
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(accessible and inaccessible) and that the affinity of the relevant ligands for
their target sites depends upon which of the two overall conformational
states the system is in. An equivalent way of stating this is that the relative
population distribution and therefore relative stability for each of the two
DNA conformational states is influenced by the binding of the ligands. For
the particular example shown here, we were loosely inspired by the binding
of the transcription factor Bicoid in its role as an activator of a second gene
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known as Hunchback, two genes that play a specific role in the much larger
process of development in the Drosophila embryo (Gilbert, 2010). For
simplicity, we assume that each of the seven distinct bicoid target sites has
the same binding energy and that there is no cooperativity in the sense that
the binding of one protein does not alter the binding energy of a second
molecule of the bicoid protein to one of the other sites. As a result, the
partition function can be evaluated simply in the closed form shown here
and results in the level of Hunchback activation given by

Hb½ � ¼ Hbmax½ �
e�beactive 1þ Bcd½ �

K
activeð Þ

d

� �7

e�beactive 1þ Bcd½ �
K

activeð Þ
d

� �7
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K

inactiveð Þ
d
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where [Bcd] and [Hb] are the Bicoid and Hunchback concentrations,
respectively. The data for the relationship between bicoid binding and
hunchback expression has been explored in a recent paper (Gregor et al.,
2007). Empirically, the authors of that study found that the expression of
Hunchback can be fit to a Hill function that depends upon the concentra-
tion of Bicoid. An example of both the Hill function approach favored in
that study and the MWC functional form described here are shown in
Fig. 2.12B. At this point, the quantitative dissection of developmentally
important enhancers in eukaryotes is still in the very early stages, and there is
a huge amount still to be done both in carrying out experiments that are at
once quantitative and revealing and in finding the right set of “knobs” that
can be tuned in both these experiments and the models that are developed
in response. Our discussion is meant simply to illustrate the types of ques-
tions that are currently being considered and the way that simple thermo-
dynamics are beginning to be used to answer those questions (Fakhouri
et al., 2010).

3.3.5. The biological reach of MWC models
Of the nearly 5700 citations at the time of this writing of the original paper
by Monod, Wyman, and Changeux (Monod et al., 1965), many are
concerned with the limits and validity of this class of models and how
they can be used to reflect on a broad class of biological problems with
special interest in the fitting of some class of data. Our intent here has mainly
focused instead on what such models assume about the molecules they
describe and how to use simple ideas from equilibrium statistical mechanics
to compute the MWC expressions for binding probability.

It is important to realize that in all of the case studies set forth here, the
key point is to illustrate the style of analysis and not the claim that the
particular models are the final word on the subject in question. For example,
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our treatment of the ligand-gated ion channel, while a useful starting point,
has been found to miss certain detailed features of the gating properties of
these channels. Similarly, our introduction to the MWC approach for
bacterial chemotaxis has swept many of the key nuances for this problem
under the rug. For example, to really capture the detailed behavior of these
systems requires positing a heterogeneous clustering of the different types of
chemoreceptors. As concerns transcriptional activation in eukaryotic
enhancers, the use of models like that presented here is in its infancy and
may end up not being the right picture at all. The key reason for promoting
these models is that they provide quantitative hypotheses about the pro-
cesses of interest which can be used a starting point for developing experi-
ments that test them. As is often the case for the application of simplified
analytical models to biological systems, their most useful role can be to help
the investigator determine what information is missing. To a first approxi-
mation, experimental data that are extremely well-fit by MWCmodels may
be reasonably assumed to operate more-or-less as discrete state systems,
where the relevant separation of time scales has rendered the equilibrium
assumption of statistical mechanics to be close to correct. In such cases, no
further complexifications of the mechanism need be postulated to explain
the phenomenon at hand, at least within the limits of the available data
which is well fit by the simple model. In the more interesting and perhaps
more common case where the simplest statistical mechanics models reveal
systematic differences from the data, new kinds of experiments may suggest
themselves that will account for the discrepancies and reveal more insight
into the workings of the system. Thus, a careful comparison of theory and
experiment can serve to uncover quantitative details of the mechanism,
whether it be gene regulation, ion-channel gating, or detection of
chemoattractant.
4. The Unreasonable Effectiveness of

Random-Walk Models

So far, our emphasis has been almost exclusively on binding problems.
However, our argument that equilibrium ideas have a broad reach in the
biological setting transcends these applications. To demonstrate that point,
we close with a brief discussion of the power of such thinking in the context
of random-walk models in general and their uses for thinking about poly-
mer problems in particular. The random-walk model touches on topics
ranging from evolution to economics, from materials science to biology
(Rudnick and Gaspari, 2004). For our purposes, we reflect on the random-
walk model in its capacity as the first approach one is likely to try when
thinking about the equilibrium disposition of polymers, including those
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referred to by Crick as the two great polymer languages, namely, nucleic
acids and proteins. Though the particular case study we address here con-
cerns proteins that harbor tethered receptor–ligand pairs, the same underly-
ing ideas can be applied just as well to nucleic acids for thinking about the
ubiquitous process of DNA looping in transcriptional regulation, for exam-
ple, (Garcia et al., 2007; Rippe, 2001).

There is a vast literature on the use of models from equilibrium statistical
mechanics to explore the properties of biological polymers (de Gennes,
1979; Grosberg and Khokhlov, 1997). As usual, the idea is to figure out
what the collection of allowed microstates is for the biological polymer of
interest (an example for the conformations of DNA was given in Fig. 2.1).
Perhaps the simplest example imagines the polymer of interest in much the
same way we would think of a chain of interlinked paper clips. In particular,
we treat the polymer as a chain of N segments, each of which has length a.
We then posit that each and every configuration has the same energy (and
hence the same Boltzmann factor) and thus, the problem of finding the
probability of different configurations becomes one of counting their
degeneracies. For example, those macrostates, characterized by a particular
end–end distance which can be realized in the most different ways are the
most likely. These ideas and their generalizations have been used to consider
many interesting problems (Phillips et al., 2009b). One of the most cele-
brated examples that we will not elaborate on here concerns the use of these
ideas in the setting of single-molecule biophysics where it has now become
routine to manipulate individual proteins and nucleic acids. Indeed, the
force-extension properties of these biological polymers are so well described
by ideas of equilibrium polymer physics that stretching individual DNA
molecules has become a way to calibrate various single-molecule apparatus
such as optical and magnetic traps.

To get a sense of how these ideas from polymer physics insinuate
themselves into biological binding problems hence building upon the earlier
parts of the chapter, we consider the simple competition between a tethered
ligand–receptor pair and soluble competitor ligands. This kind of motif
exists in a number of signaling proteins and has also been the basis of
fascinating recent experiments in synthetic biology (Dueber et al., 2003).
In particular, the toy model introduced here mimics a synthetic receptor–
ligand pair in which the actin cytoskeletal regulatory protein, N-WASP, has
been modified to include a single PDZ domain, thus allowing N-WASP
activity to be artificially brought under the influence of the PDZ ligand.
Furthermore, a copy of the ligand is also attached to the modified
N-WASP, with both ligand and receptor domains attached by flexible
unstructured protein domains that serve as tethers. As shown in
Fig. 2.13A, there are three distinct classes of states available to the system.
In the first state, the tethered ligand and receptor are bound to each other.
In the second state, the receptor is unoccupied. In the third state, one of the
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of the tethered ligand–receptor pair and the associated statistical weights. The multi-
plicities for the polymer are computed using a one-dimensional toy model of the tether.
NR and NL represent the number of right- and left-pointing segments out of the total
N ¼ NR þ NL. The rest of the parameters are defined as in Fig. 2.3. For more realistic
calculations, see Van Valen et al. (2009). (B) Concentration dependence of the prob-
abilities of the different states that can be realized by the tethered ligand–receptor pair.
The parameters used in the plot are De ¼ ebound � esolution ¼ � 15 KBT and a proba-
bility of looping given by the one-dimensional random walk of 10�6. The volume
of the elementary box v has been chosen to be approximately 1.67 nm3.
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soluble ligands is bound to the receptor. The question we are interested in
addressing is the relative probability of the two different bound states and
how they depend upon the concentration of soluble ligands.

The intuitive argument is that the probability that the receptor will be
occupied by a ligand is a result of the competition between the tethered
ligand and its soluble partners. As the concentration of the soluble ligands is
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increased, it becomes increasingly likely that they will form a partnership
with the tethered receptor. To explore the nature of this competition, we
compute the ratio of the probabilities for the free and tethered ligands. For
the purposes of the model shown in Fig. 2.13A, we treat the tether using the
simplest one-dimensional model of a random walk since all we are trying to
demonstrate is the concept, as opposed to the quantitative details. What this
means really is that we evaluate the entropic cost of loop formation using a
one-dimensional model which makes it a simple counting exercise to
determine the fraction of conformations which close on themselves. Stated
simply, if we think of each monomer in the polymer as pointing left or
right, then loop formation in this context requires that the number of right
and left-pointing monomers be the same. The key point is that in the closed
conformation, the two tethers have many fewer conformations available to
them in comparison with the case when they are no longer linked, and each
side is free to flop around on its own. The result of this competition as a
function of the soluble ligand concentration is shown in Fig. 2.13B, and is
consistent with our intuition in the sense that in the high concentration
limit, the receptor is saturated by soluble ligands. The specific concentration
at which the tethered ligand and the soluble ligands have the same proba-
bility of being bound to the receptor depends upon the looping probability.
As the relative flexibility and length of the tethers are varied experimentally,
the quantitative predictions of this simple model can be rigorously tested
(Dueber et al., 2003).
5. Conclusions

Thermodynamics is unreasonably effective in the biological setting,
but effective it is. As noted by Einstein in his autobiography, “A theory is the
more impressive the greater the simplicity of its premises is, the more
different kinds of things it relates, and the more extended its area of applica-
bility. Therefore the deep impression which classical thermodynamics made
upon me. It is the only physical theory of universal content concerning
which I am convinced that, within the framework of the applicability of its
basic concepts, it will never be overthrown.” (Schilpp, 1970).

Equilibrium thermodynamic ideas and their statistical mechanics partner
concepts pervade not only the in vitro domain of traditional biochemical
binding reactions, but also permeate our thinking for more biologically
relevant in vivo examples ranging from gene regulation to signaling net-
works to the physical limits on biological detection (Bialek and Setayeshgar,
2005, 2008). In this chapter, we have tried to articulate some of the
fundamentals of equilibrium models for a variety of different problems.
Our analysis has focused more on the conceptual underpinnings that on
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the specific and detailed ways that biological data is greeted by these kinds of
models. Here, we have described a few of our favorite examples of the
confrontation of the models and corresponding experiments, and many
more can be found elsewhere (Bintu et al., 2005a,b; Hill, 1985; Keymer
et al., 2006; Klotz, 1997; Mello and Tu, 2005; Phillips et al., 2009c). We
have argued that conceptually part of the reason for the effectiveness of
equilibrium ideas in the biological setting is likely a matter of separation of
time scales, and the most unreasonably effective simplification underlying
the MWC and statistical mechanical treatment of these problems, that they
exist primarily in a countable number of interconvertible functional states
rather than as a squishy continuum.

In his book “How the Mind Works,” Steven Pinker notes “The linguist
Noam Chomsky once suggested that our ignorance can be divided into
problems and mysteries. When we face a problem, we may not know its
solution, but we have insight, increasing knowledge, and an inkling of what
we are looking for. When we face a mystery, however, we can only stare in
wonder and bewilderment, not knowing what an explanation would even
look like. I wrote this book because dozens of mysteries of the mind have
recently been upgraded to problems. Every idea in the book may turn out to
be wrong, but that would be progress, because our old ideas were too vapid
to be wrong.” (Pinker, 2009). In our view, one of the most important
reasons for the potency of the quantitative slant which equilibrium models
are but one example of is that they are a tool for generating specific and
detailed hypotheses which are a step along the way to turning mysteries into
problems and which give us an opportunity to design experiments that can
tell us whether we are wrong. The rigorous framework of statistical
mechanics provides no space for being vapid.
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