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Abstract

Methods for optimal design of different means of control are developed in this
thesis. The main purpose is to maintain the laminar flow on wings at a chord
Reynolds number beyond what is usually transitional or turbulent. Linear sta-
bility analysis is used to compute the exponential amplification of infinitesimal
disturbances, which can be used to predict the location of laminar-turbulent
transition. The controls are computed using gradient-based optimization tech-
niques where the aim is to minimize an objective function based upon, or re-
lated to, the disturbance growth. The gradients of the objective functions with
respect to the controls are evaluated from the solutions of adjoint equations.

Sensitivity analysis using the gradients of the disturbance kinetic energy
with respect to different periodic forcing show where and by what means control
is most efficiently made. The results are presented for flat plate boundary layer
flows with different free stream Mach numbers.

A method to compute optimal steady suction distributions to minimize the
disturbance kinetic energy is presented for both incompressible and compress-
ible boundary layer flows. It is shown how to formulate an objective function in
order to minimize simultaneously different types of disturbances which might
exist in two, and three-dimensional boundary layer flows. The problem for-
mulation also includes control by means of realistic pressure chambers, and
results are presented where the method is applied on a swept wing designed for
commercial aircraft.

Optimal temperature distributions for disturbance control are presented
for flat plate boundary layer flows. It is shown that the efficiency of the control
depends both on the free stream Mach number, and whether the wall down-
stream of the control domain is insulated, or heat transfer occurs.

Shape optimization is presented with the aim of reducing the aerodynamic
drag, while maintaining operational properties. Results of optimized airfoils
are presented for cases where both the disturbance kinetic energy, and wave
drag are reduced simultaneously while lift, and pitch-moment coefficients as
well as the volume are kept at desired values.

Descriptors: fluid mechanics, laminar-turbulent transition, boundary layer,
laminar flow control, natural laminar flow, adjoint equations, optimal control,
objective function, PSE, APSE, ABLE, HLFC, e/V-method, Euler equations
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Part 1

Summary






CHAPTER 1
Introduction

The final design of an aircraft wing is always a compromise in the intersection
of feasibility imposed by various requirements. Aerodynamics is one important
aspect as it enables calculations of operational properties such as lift, moments
and drag. Traditionally, the design work has been an iterative process between
theory and experiments, in which the latter has often been costly. Orville and
Wilbur Wright! spend many hours in the laboratory using their home made
wind tunnel to test different types of wings in order to increase the lift coef-
ficient enough enabling their first controlled flight in 1903. Nowadays, when
available computer power increases rapidly and numerical tools increase in ac-
curacy and modeling capability, both experiments and numerical calculations
are part of the total design process. For a computational method to be reli-
able as a tool, it must be based on a mathematical model which provides an
appropriate representation of the significant features of the flow, such as shock
waves, boundary layers and laminar-turbulent transition.

The total drag of an aircraft is mainly given by the sum of pressure or wave
drag, related to the existence of shock waves for transonic and supersonic flows,
and viscous drag, whose magnitude depends on whether the flow is laminar or
turbulent. Turbulent flow, in some cases, produces a much larger drag; thus
important research efforts have been devoted to find efficient means to keep the
flow laminar over the largest possible portion of the wing surface. A similar
situation is encountered in other industrial applications (wind-turbine blades,
diffuser inlets), where less turbulence means less energy spent to achieve the
same motion, which in turn translates directly to less pollution and reduced
expenses.

Control of fluid flow can be made by means of active or passive control
devices. A natural passive device is the shape of the wing itself, and reduction of
drag is obtained by a properly made design. An approach in which the aim is to
increase the laminar portion of the wing is usually called Natural Laminar Flow
(NLF) design. Other examples are found looking at the surface structure where
roughness elements or cavities, such as on golf-balls, are sometimes used. An
active device which has been investigated extensively is suction of air through
the whole or parts of the wing which have been equipped with a porous surface.
This technique falls into the category of Laminar Flow Control (LFC) which

IThe 17th of December 2003 is the 100 year anniversary of the first controlled flight performed
by O. and W. Wright in 1903 which had a duration of 59 seconds.

3



4 1. INTRODUCTION

means to maintain the laminar flow at a chord Reynolds number beyond what
is usually transitional or turbulent when no control is used. With this definition
it does not cover cases where the aim is to relaminarize already turbulent flow.
A combination of NLF and LFC in which the active control is imposed only on
a part of the wing is usually called Hybrid Laminar Flow Control (HLFC). A
distinctive feature of any flow design process as opposed to one not involving
fluids is that the computation is often very costly, or even totally out of reach of
any existing computer when turbulent flow in complex geometries is involved.
It is therefore common practice to introduce approximations. Once a reliable
and efficient numerical tool is available, a straight-forward approach for design
of passive or active devices is a vast parameter study in order to find the
control which best meets certain criteria set on the operational properties, and
decreases the drag. In most cases the number of possible designs is large, and
it is very unlikely that a truly optimal design can be found without assistance
of automatic tools. For this reason, there is a growing interest in utilizing
numerical optimization techniques to assist in the aerodynamic design process.

The aim of the work presented in this thesis is to integrate physical model-
ing of the flow and modern optimization techniques in order to perform optimal
NLF and HLFC design. Gradient-based optimization techniques are used and
the gradients of interest are derived using adjoint equations. When one consid-
ers highly streamlined bodies such as wings, there is often a substantial laminar
portion, thus a correct transition prediction becomes essential for a good es-
timate of the total drag. The governing equations for the physical problem
are introduced in chapter 2, and transition prediction is covered in chapter 3.
Means of control laminar-turbulent transition is discussed in 4, and the ap-
proach taken here to perform optimal HLFC and NLF is given in chapter 5.
A summary and conclusions are given in chapter 6, and papers related to the
work presented in these chapters are given in the second part.



CHAPTER 2

Modeling the flow

2.1. Governing equations

The motion of a compressible gas is given by the conservation equations of
mass, momentum and energy and the equation of state. The conservation
equations in dimensionless form and vector notation are

ap B
ot +V-(pu) =0, (2.1)

p[%—? +(u- V)u} - _Vp+ %V{)\(V : u)} + %v- [u(Vu+ VuT)}, (2.2)
pcp[aa—f—k(u-V)T} - RelPrV-(/iVTH—(v—l)MQ[%+(u-V)p+%
yM?p = pT, (2.4)

with viscous dissipation given as

1 2
= \V-u?+ §M[Vu+ VuT} .

Here t represents time, p, p,7T stand for density, pressure and temperature, u
is the velocity vector. The quantities A, 4 stand for the second and dynamic
viscosity coefficients, « is the ratio of specific heats, x the heat conductivity
and ¢, the specific heat at constant pressure. All flow quantities are made
dimensionless by corresponding reference flow quantities at a fixed streamwise
position xf, except the pressure which is made dimensionless with two times
the corresponding dynamic pressure. The reference length scale is fixed and

taken as
* ek
I — Yoo
0 — %
Ug

The Mach number, M, Prandtl number, Pr and Reynolds number, Re are
defined as

* * Kk
_ % pr — H0%0

Re — U0l
NS " v
where R is the specific heat constant and superscript * refers to dimensional
quantities. In order to generalize the equations for geometries with curved
surfaces an orthogonal curvilinear coordinate system is introduced. The trans-
formation from Cartesian coordinates X to curvilinear coordinates z* is made

5



6 2. MODELING THE FLOW

using the scale factors h,;. The definition of the scale factors and corresponding

derivatives m,; are given as

3

0X7\2 1 Oh,
hsz( ) and m;; = ———.
, ox't 7 hh, Oz
J=1 v
Using the scale factors, an arc length in this coordinate system can be written
as
3 2
ds* =Y (hidxl> .
i=1
Here, 2!, 22 and 2 are the coordinates of the streamwise, spanwise and wall

normal directions respectively'.

2.2. The steady boundary layer flow

In this thesis flat plate boundary-layer flows with and without pressure gradient
are considered as well as the flow past a swept wing with infinite span. All these
different flows are special cases of the flow past a swept wing with infinite span.
They are here given in dimensionless primitive variable form as

1.9(pU) | 9(pW)

hy Oz or 0 (25)
pUOU | oU _ 1dR 1 0 oU
hy Oxt +pW8x3 ~ hydx' " Reda3 (u8x3>’ (26)
POV LoV 10 oV
hy Oxt +pW8x3 ~ Re0a3 (M8x3>’ 27)
U oo L i(,ﬁi)
P'hy Ox! PP 923 T RePr 0x® \"9z°
e UAR (U2 0V
+O-DM {hl daxt N Re [<8x3> + <8x3> }}’ (28)

where U, V, W are the streamwise, spanwise and wall-normal velocity compo-
nents, respectively?. Under the boundary-layer assumptions, the pressure is
constant in the direction normal to the wall, i. e. P = P.(x!). The equation of
state can then be expressed as

2
YM*P. = pT,
and the streamwise derivative of the pressure is given by the inviscid flow as
dP. _ . dU.
dzt Vet
n the second paper the coordinates are given as z' = x, 2 = z and z° = y, where z,v, z

are the streamwise, wall normal and spanwise coordinates, respectively.
2In the second paper U, V, W are the streamwise, wall normal and spanwise velocity compo-
nents respectively.



2.3. LINEAR STABILITY EQUATIONS 7

The corresponding boundary conditions with no-slip conditions and assuming
an adiabatic wall condition are
oT
U=V=W=—-—=0, at 2°=0,
Ox3

o, v, T)— (U, V., T.), as 2% — +oo.

The variables with subscript e are evaluated at the boundary layer edge and are
calculated from well known fundamental relations using respective free stream
values found either from measurements or inviscid flow calculations. The first
relation is that the total enthalpy is constant along a streamline in an inviscid,
steady, and adiabatic flow. The second is the isentropic relations which are used
to obtain the relation between pressure, density and temperature expressed as
ratios between total and static quantities.

2.3. Linear stability equations

In order to derive the linear stability equations, we decompose the total flow
field ¢ and material quantities into a mean ¢, and a perturbation part ¢ as

q(z', 2%, 2% t) = g(a', 2% 2°) + (2, 2%, 2% 1) (2.9)
where g € [U,V,W,p, T, p] and G € [@,ﬁ,w,ﬁ,f,ﬁ]. The mean flow quantities
were introduced in the previous sections and the lower case variables correspond
the the disturbance quantities. It is assumed that c,, 4 and s are functions of

the temperature only and are divided into a mean and perturbation part. The
latter are expressed as expansions in temperature as

- de ~ - du ~ ~ d,k“/ ~
=—T =—T =—T.
“=ar>  FTar "Tar
The ratio of the coefficients of second and dynamic viscosity is given as
A 2
S o (2.10)
N
were the bulk viscosity f,, is given as
w,(T) (u_v> ox (T—293.3>
w(T) — \ p/r=2033 K 1940 /7

and is taken from Bertolotti (1998). Note here that Stokes’ hypothesis is used
setting p1,, = 0 in expression (2.10). We introduce the flow decomposition (2.9)
into the governing equations (2.1)—(2.4), subtract the mean flow, and neglect
non-linear disturbance terms. The result can be written as

..
D—?+pV-ﬁ+ﬁV~u—|—ﬁ-Vp:O, (2.11)
Da . ) 1 .
,oD—t+(u-V)u]+p(u-V)u_—vp+Ev[A(v-u)+A(v-u)}
1

+ V- [u(Vﬁ + VAT + i(Vu + VuT)} . (2.12)
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T o .
PCp Dt + (@ V)T| + (pép + pep)(u- V)T = Re Prv - (kVT)
1 . Djp . 1 -
) T — )M =L . — o, (2.1
eV YD)+ (- DM [ (@ O+ o8 (23
yM?p = pT + pT, (2.14)
where D 9
bi oY
and

&=V -u)?+ 2)\[(V ) (V- ﬁ)} ¥ u(Vu+ vub) : (Vi + vaT)

1
+ 5ﬂ(Vu +Vu"): (Vu+Vu'), (2.15)

with the definition A : B = A;;B;;. These equations are subject to the following
boundary conditions:

=w="T at =0,

= O7
(@,0,w,T) — 0, as  x° — +oo.

<

’[1:

2.4. Parabolized stability equations

In most cases a boundary layer grows in the downstream direction. In classical
or quasi-parallel stability theory the parallel-flow assumption is made which
means that the growth of the boundary layer is not taken into account. Setting
the non-parallel terms to zero is commonly made on grounds that the growth
of the boundary layer is small over a wave length of the disturbances and that
the local boundary layer profiles will determine the behavior of the disturban-
ces. This is an additional approximation made on the linearized equations
which for instance has to be considered in comparisons between theory and
experiments. Theoretical investigations of the instability of growing boundary
layers can be found in e. g. Gaster (1974); Saric & Nayfeh (1975) who used
a method of successive approximations and a multiple-scales method, respec-
tively. In Hall (1983), the idea of solving the parabolic disturbance equations
was introduced to investigate the linear development of Goértler vortices. Par-
abolic equations for the development of small-amplitude Tollmien-Schlichting
waves was developed by Itoh (1986). Further development was done by e. g.
Herbert & Bertolotti (1987); Bertolotti et al. (1992) who derived the non-linear
Parabolized Stability Equations (PSE). Simen (1992) developed independently
a similar theory for the development of convectively amplified waves propa-
gating in non-uniform flows. The PSE has since its development been used
to investigate different kind of problems such as stability analysis of different
types of flows (Bertolotti et al. 1992; Malik & Balakumar 1992), receptivity
studies (Hill 1997a; Airiau 2000; Dobrinsky & Collis 2000), sensitivity analysis
(Pralits et al. 2000) and optimal control problems (Hill 1997b; Pralits et al.
2002; Walther et al. 2001; Pralits & Hanifi 2003; Airiau et al. 2003). In the
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following sections an outline based on Hanifi et al. (1994) is given on the deriva-
tion of the parabolized stability equations used in this thesis. A review of the
PSE can be found in Herbert (1997).

2.4.1. Assumption and derivation

The disturbance equations are derived for mean flows which are independent
of the z? direction i. e. quasi-three dimensional flows. Two assumptions are
used in the derivation:

1. The first is of WKB (Wentzel, Kramers and Brillouin) type in which
the dependent variables are divided into a amplitude and a oscillating part as

a(a',t) = a(at, %)e’ (2.16)
where q is the complex amplitude function and ¢ the imaginary unit,
wl
o= / (o) d’ + Ba® — wt
XO
the complex wave function with angular frequency w, streamwise and spanwise
wave numbers « and [, respectively. Note that both the amplitude and wave
functions depend on the 2'-direction.

2. The second assumption is a scale separation Re, ! between the weak
variation in the x'-direction and the strong variation in the z>-direction. Here,
Re, is the local Reynolds number at a streamwise position x,. Further, the
wall normal component of the mean flow W and the derivatives of the scale
factors m;; are also assumed to scale with Rey'. A slow scale 2§, = ' Rey ! is
introduced which gives the new dependent variables

h; = h;(zk, 2 Regt),
~ /1 3 _ 1 ,.3yp,—1
a=q(zg,z°), W =Wg(xg,2°)Rey
q=q(zs,2%), a = alry). (2.17)

If the ansatz (2.16) and the scalings (2.17) are introduced in the linearized gov-
erning equations, keeping terms up to (Reg 1), we obtain the linear parabolized
stability equations. They can be written in the form
. 1 09 1 9%q 1 0q
A B—— C— D—— =0, 2.18
4+ hy Ox3 i h3 (0x3)2 i hy Ox! (2.18)

where q = (p, 4, 0, W, T)T. These equations describe the non-uniform propaga-
tion and amplification of wave-type disturbances in a non-uniform mean flow.
The non-zero coefficients of the 5 x 5 matrices A, B,C and D are found in Pralits
et al. (2000). Equation (2.18) is a set of nearly parabolic partial differential
equations (see section 2.4.2). The boundary conditions of the disturbances at
the wall and in the freestream are

, at =0,

, as 3 — 4o0.
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Note that in the ansatz (2.16), both the amplitude and wave functions given
above depend on the z'-direction. To remove this ambiguity, a normalization
or auziliary condition is introduced such that the streamwise variation of the
amplitude function remains small. This is in accordance with the WKB type
assumption where the amplitude function should vary slowly on the scale of
a wavelength. Various forms of the normalization condition exist (see Hanifi
et al. 1994). In the investigations presented here we have used the following

condition
+o0 a4
/ =L gy3 = o, (2.19)
0

where superscript u denotes the conjugate transpose. The stability equation
(2.18) is integrated in the downstream direction initiated at an upstream po-
sition 2! = X with the initial condition § = ¢, given by the local stability
theory. At each streamwise position the streamwise wavenumber « is iterated
such that the normalization condition (2.19) is satisfied. When a converged
streamwise wave number has been obtained the disturbance growth rate o can
be calculated. For an arbitrary disturbance component ¢ the growth rate is
given as
10
o=—o +Real{ga—fl}

where the first term on the right hand side is the contribution from the expo-
nential part of the disturbance and the second part due to the changes in the
amplitude function. The variable £ is usually i, 0,w,T or pu + pu taken at
some fixed wall normal position or where it reaches its maximum. In addition,
the growth rate can be based on the disturbance kinetic energy

—+oo
B= [ plluP + 1o + uf?) s,
0

and is then written p

2.4.2. Step-size restriction

In the parabolized stability equations presented here no second derivatives of q
with respect to 2! exist. The ellipticity has however not entirely been removed.
This is known to cause oscillations in the solution as the streamwise step size
is decreased. The remaining ellipticity is due to disturbance pressure terms
or viscous diffusion terms. Several investigations (see Haj-Hariri 1994; Li &
Malik 1994, 1996; Andersson et al. 1998) have been performed regarding this
problem. Li & Malik showed that the limit for the streamwise step size in order
to have stable solution is 1/|a|. Haj-Hariri proposed a relaxation of the term
9p/0z" in order to allow smaller streamwise steps. Li & Malik showed however
that this approach is not sufficient to eliminate the step-size restriction. They
showed instead that eliminating 0p/dx! relaxes the step-size restriction. The
approach which best removes the ellipticity while still producing an accurate
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o DNS
—— PSE

=

N~
= N M O o N

amplitudes

0.8

0 5 10 15 20
yIoc

Ficure 2.1. Comparison of amplitude functions for a second
mode instability with F' = 122 x 10™% at Re = 1900 between
DNS by Jiang et al. (2003) and the NOLOT/PSE code for
the flow past a flat plate at M_=4.5, T, =61.11 K, Pr = 0.7,
Sutherland’s law for viscosity, Stokes hypothesis for the second
viscosity.

result is the technique introduced by Andersson et al. (1998), where some of
the originally neglected higher order terms, O(Re~2), are reintroduced in the
stability equations. This method is used in the second paper where more details
can be found regarding the modifications of the parabolized stability equations.

2.4.3. Comparison with DNS

Since the development of the Parabolized Stability Equations, several verifica-
tions have been made in which the PSE has been compared with the results
of Direct Numerical Simulations (DNS), see for instance the investigations by
Pruett & Chang (1993); Hanifi et al. (1994) and Jiang et al. (2003). An example
is given here for the case of a flat plate boundary layer with a free stream Mach
number M__ =4.5 and temperature 7, =61.11 K. The disturbance analyzed is a
second mode® with reduced frequency F' = 122 x 1075, Here, F = 27 f*v? /U >
where f*,v* and U* are the dimensional frequency, kinematic viscosity and
streamwise velocity, respectively. In Figure 2.1, a comparison can be seen be-
tween the amplitude functions @, and T' obtained with the NOLOT/PSE
code* used for the calculations in this thesis and the DNS data provided by
Jiang et al. (2003). The data has been normalized with the maximum value of
|ti|. As can be seen from the figure the agreement is very good.

3The second mode is defined in chapter 4.
4ANOLOT was developed by the authors given in Hanifi et al. (1994) and Hein et al. (1994)






CHAPTER 3
Transition prediction

Even though linear theory cannot describe the non-linear phenomena prior
and after transition, it has been widely used for transition prediction. Using
the linear stability equations previously described, we can calculate the ratio
between the amplitudes As and A; which are given at two streamwise positions

X and X5 as
Ay /X2 L
— =ex odx | .
Aq p( X,

A problem then arises if we say that transition occurs when 'the most danger-
ous disturbance’ reaches a certain threshold amplitude, as the values of A; and
Ay remain unknown. Some empirical methods exist however, where the linear
amplification of a disturbance is correlated with the experimentally measured
onset of transition. The one which has been mostly used is the e/¥-method (see
van Ingen 1956; Smith & Gamberoni 1956) and a brief review is given here. For
an excellent overview of this method see Arnal (1993). As an example we con-
sider the two-dimensional disturbances superimposed on the Blasius boundary
layer. If we perform a stability analysis for each streamwise position and for a
large number of frequencies f1, f2, -+, fn we can draw a neutral curve in the
f — Re plane which defines the intersection between the regions where these
disturbances are damped and amplified. If the upstream position of the neutral
curve (branch one) of a frequency f; is denoted X with its ’initial” amplitude
Ap, then we can calculate any downstream amplitude A related to the initial

one as
X X

i = exp / odr? or In (i) :/ odx!.
A X A X

The frequencies f; are amplified in different streamwise regions, and the corre-
sponding maximum amplification and streamwise position will therefore vary
with frequency. If we take the envelope of the amplification curves over all

frequencies as
N a [l ( A )] (3.1)
= max |In | —— B .
f Ao

then at each x', N represents the maximum amplification factor of these dist-
urbances. Expression (3.1), which is commonly denoted the N-factor, cannot
however determine the position of transition without additional information.

13
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: 10°Rx+
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FIGURE 3.1. Comparison between e"-method using expres-
sion (3.2) (line), and wind tunnel data (symbols) for a flat
plate incompressible boundary layer flow. (Arnal 1993).

It was early found in experiments by Smith & Gamberoni (1956) and van In-
gen (1956) that the N-factor at the transition position was nearly constant
(N,, = 7—9). This is unfortunately not universal and does only apply under
certain conditions. The disturbances inside the boundary layer can be triggered
by acoustic waves, surface roughness, and free stream turbulence. The mecha-
nisms which explain how disturbance enter the boundary layer are commonly
called receptivity. Since the route to transition is preceded by receptivity and
transition itself involves non-linear mechanisms, their absence in this approach
is a shortcoming. Mack (1977) proposed the following expression for the tran-
sition N-factor to account for dependence of N,,. on the free stream turbulence
level T'u

N,, = —8.43 —2.4InTwu, (3.2)

This relation was derived to fit numerical results to low speed zero pressure
gradient wind tunnel data. Results of a comparison between expression (3.2)
and wind tunnel data can be seen in Figure (3.1). For values of T'u between
0.1% and 1% transition is probably due to exponential instability waves. For
higher values of Tu, and especially for Tu > 3% transition occurs at N = 0
indicating that transition is not caused by exponential instabilities. In several
experiments, (see e. g. Westin et al. 1994; Matsubara & Alfredsson 2001),
performed at moderate to high free stream turbulence levels, streamwise elon-
gated structures have been observed with streamwise scales much larger than
the spanwise scales. A model for transition prediction which correlates well
with experimental data from e. g. Matsubara & Alfredsson (2001) for Tu > 1%
was derived by Levin & Henningson (2003). They calculated both exponential
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and spatial transient (non-modal) growth of disturbances. For sufficiently large
disturbance amplitudes, the latter can lead to the so called bypass transition,
which is not associated with exponential instabilities (see e. g. Brandt 2003).

An important issue in applying the eV-method to more complex geome-
tries, where the flow is three dimensional, is the choice of the integration path.
For results presented in this thesis we follow the suggestions by Mack (1988).
There, applying the condition that the wave number vector is irrotational to-
gether with the assumption of a wing with infinite span implies that 3 (spanwise
wavenumber) is constant. The N-factor is then computed maximizing over w
and (. This is here denoted envelope of envelopes (EoE). Due to the short-
comings and limitations of the e/V-method mentioned before, better transition
prediction models are needed. However, in this thesis the N-factor curves
should be seen as capturing the trends of variation of the amplification rather
than exact prediction of the transition position.






CHAPTER 4

Disturbance control

The linear stability analysis presented in chapter 2 can be used to calculate the
growth of a disturbance superimposed on the mean flow for a given geometry
and flow condition. The growth rate can then be used as outlined in chapter 3
for the purpose of transition prediction. In many applications it is also of
interest to know how to affect the disturbance growth in order to control the
position of laminar-turbulent transition and thus the laminar portion of a given
geometry.

The linear stability of compressible boundary layers is different from that
of incompressible boundary layers in many ways. The incompressible Blasius
boundary layer is stable to inviscid disturbances, as opposed to the compress-
ible boundary layer on an adiabatic flat plate which has a so called general-
ized inflection point and is therefore unstable to inviscid disturbances. The
generalized inflection point y, is defined as the wall normal position where
D(pD(U)) = 0, (D = 8/023). As the Mach number is increased the general-
ized inflection point moves away from the wall and hence the inviscid instability
increases. The viscous instability becomes less significant when M > 3, so the
maximum amplification rate occurs at infinite Reynolds number and viscosity
has a stabilizing instead of destabilizing effect. In incompressible flows there is
at most one unstable wave number (frequency) at each Re, whereas multiple
unstable modes exist whenever there is region of supersonic flow relative to the
disturbance phase velocity. The first unstable mode (first mode) is similar to
the ones in incompressible flows. The additional modes, which do not have
a counter part in incompressible flows, were discovered by Mack (1984) who
called them higher modes. The most unstable first-mode waves in supersonic
boundary layers are three dimensional, whereas the two-dimensional modes are
the most unstable in incompressible boundary layer flows. The most unstable
higher mode (second mode) is two-dimensional.

A brief review is made in this chapter on different active and passive meth-
ods to act on, or control disturbances in order to affect their amplification.
The expression active control implies that energy is added to the flow in order
to control, for example suction and blowing at the wall. A passive control on
the other hand is made without additional energy added, and an example is
changing the curvature of the wall. The review is restricted to methods which
will be used later on in the thesis for the purpose of optimal laminar flow

17
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control using blowing/suction, wall temperature distributions, and shape opti-
mization. Other methods which can be used to affect the disturbance growth
are e. g. surface roughness, transpiration cooling, nose bluntness and MHD
(magneto-hydro-dynamic) flow control.

4.1. Suction/blowing

When steady suction is applied, a second inflection point y,,; appear close
to the wall. This additional inflection point does not destabilize the inviscid
disturbances. Masad et al. (1991) showed that the suction level needed to
remove the generalized inflection point increases with increasing Mach number.
They further found that suction is more effective in stabilizing the viscous
instabilities and therefore more effective at low Mach numbers. Al-Maaitah
et al. (1991) showed that suction is more effective in stabilizing second-mode
waves at low Mach numbers. They also found that the most unstable second
mode remains two-dimensional when suction is applied. In Masad et al. (1991)
and Al-Maaitah et al. (1991) it was found that the variation of the maximum
growth rate with suction level is almost linear for both first and second-mode
disturbances. Studies have also been performed using discrete suction strips
in order to approach a more ’realistic’ case where it is assumed that only
certain parts of a geometry are available for the implementation of control
devices. Masad & Nayfeh (1992) presented results using suction strips for
control of disturbances in subsonic boundary layers. They found that suction
strips should be placed just downstream of the first neutral point for an efficient
control of the most dangerous frequency!. However, no such conclusion can be
made if all frequencies are considered which is the case in a real experiment.
For further reading regarding disturbance control by means of steady suction
see the extensive review on numerical and experimental investigations by Joslin
(1998).

A different approach to control compared to modifying the mean flow, is to
aim the control efforts at the instability wave itself. This is usually called wave
cancellation or wave superposition. An advantage of this method is the small
amount of control that is needed, of order O(€?), in order to obtain consid-
erable reduction of a disturbance with amplitude of order O(e). The concept
of wave superposition has been used in a number of experimental investiga-
tions. Milling (1981) used an oscillating wire in water to both introduce and
cancel waves. Other investigations concerns elements of heating (Liepmann
et al. 1982), vibrating ribbons (Thomas 1983), acoustic waves introduced by
loudspeakers (Gedney 1983), and suction/blowing (Kozlov & Levchenko 1985).
A draw back of this method is that exact information about the amplitude and
phase of the disturbance is needed.

IThe frequency which first reach an N-factor which corresponds to laminar-turbulent tran-
sition is sometimes denoted ’the most dangerous frequency’.
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FIGURE 4.1. Disturbance control on a flat plate boundary
layer using a heating strip with a temperature of 1.5 times
the adiabatic temperature when no control is applied, located
at 720 < Re < 900. Left: Streamwise variation of the local
growth rate of a 2D disturbance with F' = 15 x 107°, for the
cases of zero control (solid), compared to the cases when the
heating strip is used and the plate downstream of the heating
strip is assumed insulated (dash-dot), and heat transfer occurs
(dash), M = 0.8, T, = 300 K, Pr = 0.72. Right: correspond-
ing N-factors.

4.2. Wall cooling

It was early recognized that uniformly distributed cooling has a damping effect
on viscous instabilities of boundary-layer flows at various Mach number, see
experiments by e. g. Diaconis et al. (1957) and Jack et al. (1957). Liepmann &
Fila (1947) showed that at low subsonic speeds the transition location on a flat
plate moves upstream as it is heated. The destabilizing effect of wall-heating
on boundary-layer disturbances is due to the increase of the viscosity of air
near the wall, which creates inflectional velocity profiles there. Cooling the
wall on the other hand, decrease the viscosity near the wall which results in
a thicker velocity profile and thus a more stable flow. Lees & Lin (1946) and
Mack (1984) used inviscid and viscous stability theory, respectively, and found
that subsonic air boundary layers can be completely stabilized by uniformly
distributed wall-cooling. Mack (1984) also showed that uniformly distributed
cooling has a destabilizing effect on the higher modes. The results by Mack
(1984) have also been confirmed in experiments for supersonic flows by Lysenko
& Maslov (1984). In the work by Masad et al. (1992) similar results were
found using the spatial stability equations for compressible flows. Cooling
has an effect on the compressible boundary layer similar to the one found
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in boundary layers subject to suction. As cooling is applied an additional
inflection point appear close to the surface which is not destabilizing the inviscid
disturbances. Masad et al. (1992) showed that the cooling level needed to
remove the general inflection point increases as the Mach number is increased.
They further showed that cooling is always stabilizing the first-mode waves
and destabilizing the second-mode waves. Several investigations have also been
performed with localized heat-transfer strips. It was found by Masad & Nayfeh
(1992) that a properly placed heating strip, close to the first neutral position,
has a stabilizing effect on first-mode disturbances. They further showed that a
cooling strip at the same location has a destabilizing effect on the first-modes.
This effect appear as the flow leaves the cooling strip it encounters a relatively
hotter surface downstream, which is destabilizing. The opposite occurs in the
case of heating strips. Similar results were found in the numerical investigation
by Lo et al. (1995) and experiments by Maestrello & Nagabushana (1989).
Our investigations showed that this stabilizing effect is found only when the
wall-temperature downstream of the strip is set to the adiabatic temperature
in the uncontrolled case, Tyq,. If the wall is insulated also downstream of the
heating strip, the wall-temperature will be larger than T,4,. That is due to the
fact that extra heat has been added to the flow as it passes the heating strip.
This higher wall-temperature will increase the instability of the flow. This is
presented in figure 4.1 and the details regarding these calculations are found in
paper 4.

4.3. Wall-shaping

Shaping the wall results in two different effects which affect the disturbance
instability. The first one is the creation of a pressure gradient and the second
one is the effect of surface curvature.

4.3.1. Pressure gradient

Modification of the pressure gradient can be made by changing either the ge-
ometry itself or surrounding conditions. The latter is usually made in wind
tunnels by placing a curved geometry above a flat plate. It was early found in
experiments for incompressible flows by Schubauer & Skramstad (1948) that a
favorable pressure gradient has a stabilizing effect on the boundary layer while
the opposite was found for adverse pressure gradients. Malik (1989) investi-
gated the effect of the pressure gradient on second-mode waves at M = 4.5. He
found that favorable pressure gradients stabilizes the second-mode waves and
the band of unstable disturbances moves to higher frequencies. A more thor-
ough investigation was performed by Zurigat et al. (1990) in which the pressure
gradient was generated assuming a power-law edge Mach-number distribution
(M, = ca™). They analyzed the effects on both the first and second-mode
waves at different Mach numbers. They showed that a favorable pressure gra-
dient has a stabilizing effect on both first and second-mode waves. For lower
Mach numbers (M = 2) oblique first-modes are more efficiently damped than
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FIGURE 4.2. Effect of including curvature terms in the PSE
on the disturbance growth. Envelope of envelopes of N-
factor curves for cross-flow (CF) and Tollmien-Schlichting (TS)
waves. (a) with curvature included; (b) without curvature in
the PSE. Traveling CF (Solid), stationary CF (dashed), 2D
TS (dotted) and 3D TS (dash-dotted). Mean flow over infi-
nite swept wing with leading edge sweep angle 1;,, = 30.2°,
Mach number M_ = 0.8 and temperature T, = 230 K.

two-dimensional ones. For higher Mach-numbers (M = 4 —8) it was shown for
2D second-mode waves that the damping effect of a favorable pressure gradient
decreases with increasing Mach number. For both disturbance types it was
shown that the maximum growth rate varies almost linearly with n.

4.3.2. Curvature

The effects of the curvature on the disturbance growth can roughly be divided
into two categories, i. e. those by concave surfaces and those by convex surfaces.
The interest here lies mainly in the case of convex surfaces as such geometries
have been analyzed in this thesis. It should however be mentioned that stabil-
ity analysis of boundary layer flows over concave surfaces has been the topic
of many investigations as it concerns the problem of so called Gortler vortices,
i. e. stationary counter-rotating vortices arising from centrifugal effects (see
e. g. Hall 1983; Spall & Malik 1989). The case of convex surfaces was stud-
ied by Masad & Malik (1994) for three-dimensional incompressible flows over
an infinite swept cylinder. They found that curvature is stabilizing both sta-
tionary and traveling disturbances. Including nonparallel terms, on the other
hand, is known to be destabilizing and will therefore have an opposite effect on
the disturbance growth compared to curvature. Masad & Malik (1994) found
however that the changes in disturbance growth in an analysis accounting for
both these effects will be controlled by the convex curvature part.
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FI1GURE 4.3. Curvature, s, of the wing analyzed in Figure 4.2
which is used to calculate the curvature radius 1/.

In the parabolized stability equations used in this thesis, (2.18), the scale
factors h; and corresponding derivatives m;; are all functions of the curvature .
An example on the effect of including curvature in (2.18) or not, is given here.
The latter is obtained by setting h1 = hs = 1, and corresponding derivatives
to zero. The case is the mean flow on the upper surface of an infinite swept
wing (see Pralits & Hanifi 2003). Here the envelope of envelopes (EoE) of
the N-factors for a large number of convectively unstable disturbances have
been computed both with and without curvature terms in the linear stability
equations. The results are given in Figure 4.2 where the horizontal axis shows
the arc-length of the surface divided by the chord length.

The mean flow pressure gradient is strong and negative upstream of s/c &
0.04 and weak and positive downstream of this position. Due to the inflec-
tion point in the velocity profile perpendicular to the inviscid streamline in
the region of a favorable pressure gradient, cross-flow (CF) waves are ampli-
fied. Further downstream, in the zero or weakly adverse pressure gradient
region, Tollmien-Schlichting type of waves are amplified. The curvature » of
the wing can be seen in Figure 4.3. Close to the leading edge the curvature is
large and then decreases rapidly downstream until approximately s/c = 0.05.
Downstream of this position the curvature is an order of magnitude smaller
compared to the leading edge. As the region of large curvature coalesce with
the region of favorable pressure gradient it is clear that the disturbance growth
of CF waves, here given by the N-factors, will be mostly affected by the pres-
ence of the curvature terms in the linear stability equations.



CHAPTER 5
Optimal design for disturbance control

The knowledge obtained from the analysis regarding disturbance control, which
was previously described, can be used in design of different active and passive
devices in order to affect the laminar portion of a geometry such as an aircraft
wing. Using suction and blowing, or the wall temperature for control purposes
can be considered as active devices. The term design here refers to how the mass
flux or temperature should be distributed along the surface. The knowledge
regarding the effect of the pressure distribution and curvature on disturbance
growth can also be related to the design of the geometry itself. For a rigid
body this is made once and can be regarded as a passive control device. A
straight forward design approach is, for a given number of design variables,
to perform a parameter study in order to find the “best” design. If we take
the example of design of a mass flux distribution, this means in practice to
test different control domains, mass flux amplitudes, distributions and further
more, for each case compute the effect on the disturbance growth. This can be
an extremely time-consuming approach if the number of degrees of freedom is
large. The word “best” is not objective and its meaning depends on the specific
case. For mass flux design it might be to decrease disturbance growth using
the least amount of suction power, while for wing design the best could be to
decrease disturbance growth while maintaining operational properties such as
given lift, and pitch-moment coefficients, and volume. The best solution from
a parameter analysis however does not rule out the possibility that an even
better solution might exist.

A different design approach is to define an optimization problem with an
objective function which includes the costs of the design that one wants to
minimize using certain control or design variables. Conditions which should be
satisfied while minimizing the objective function are introduced as constraints.
The advantage of the latter approach is that a number of different optimiza-
tion techniques such as e. g. gradient-based and generic algorithms exist which
depending on the problem can be used to efficiently compute an optimal so-
lution. Gradient-based algorithms are especially efficient when the number of
objective functions is small compared to the number of degrees of freedom.

5.1. Background

The work related to design of active and passive control devices for distur-
bance control and transition delay dates back several centuries, and a review
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is therefore not made here. Instead an attempt is made to cover representative
investigations where optimization techniques have been used for the purpose
of disturbance control.

5.1.1. Natural laminar flow

Design of a geometry such that the laminar portion is increased or maximized
is commonly denoted Natural Laminar Flow (NLF) design. In terms of practi-
cal implementations, NLF is probably the simplest approach. Once a feasible
geometry is found no additional devices such as e. g. suction systems, sensors
or actuators need to be mounted. One approach to NLF design is, in a first
step, to generate a pressure distribution (target) that delays transition, then,
in a second step, design a wing that results in a pressure distribution as close
as possible to the target. In addition constraints on e. g. lift, pitch, volume,
minimum thickness et cetera must be handled. Green & Whitesides (1996)
took an iterative approach which uses a target pressure-N-factor relationship
to compute the desired pressure distribution, and an inverse method to find
the geometry which satisfies the computed pressure distribution. The N-factor
method has also been used in multidisciplinary optimization problems of whole
aircraft configurations where aerodynamics is considered as one discipline. In
Lee et al. (1998), it was used to predict the onset of transition in order to deter-
mine where to turn on a chosen turbulence model in the Reynolds-Averaged-
Navier-Stokes equations, enabling calculation of the friction drag. In Manning
& Kroo (1999), a surface panel method was coupled with an approximative
boundary layer calculation, and stability analysis. Note however, that none of
these investigations explicitly calculates the sensitivity of a quantity obtained
from the stability analysis such as the N-factor or disturbance kinetic energy,
with respect to variations of the geometry. In paper 5, the sensitivity of the
disturbance kinetic energy with respect to the geometry is used for the purpose
of optimal NLF design.

5.1.2. Laminar flow control

Laminar flow control (LFC) is an active control technique, commonly using
steady suction, to maintain the laminar state of the flow beyond the chord
Reynolds number at which transition usually occurs. It is one of the few con-
trol techniques which has been attempted in flight tests. A combination of
NLF and LFC, where the active control is employed on a just a part of the
surface is called hybrid laminar flow control, HLFC. For an extensive review
of these techniques see Joslin (1998). Most investigations of HLFC concerns
suction but also wall-cooling have been used for control purposes. Balakumar
& Hall (1999) used an optimization procedure to compute the optimal suction
distribution such that the location of a target N-factor value was moved down-
stream. The theory was derived for two-dimensional incompressible flows and
the growth of the boundary layer was not taken into account. In Airiau et al.
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(2003), a similar problem was solved for the purpose of minimizing the distur-
bance kinetic energy, accounting for the non-parallel effects using the Prandtl
equations and the PSE for incompressible two-dimensional flows. The same
problem is extended to three-dimensional incompressible flows in paper 2, and
compressible flows on infinite swept wings in paper 3. Similar investigations
for the purpose of optimizing temperature distributions are, to the best of our
knowledge, not found in the literature. In Masad & Nayfeh (1992), a parameter
test was performed to find the “best” location for a predefined temperature dis-
tribution in order to reduce the N-factor of a given disturbance. In Gunzburger
et al. (1993) an optimal control problem using boundary controls for the incom-
pressible full Navier-Stokes equations was derived. An application to control by
heating and cooling was given with the wall heat flux as the control and a target
wall temperature as the objective. In paper 4, a problem is formulated for the
purpose of minimizing the disturbance kinetic energy by optimizing the wall
temperature distribution. In Hill (1997b) an inverse method was mentioned to
compute the optimal suction distributions, and cooling/heating distributions,
however no details were given there.

5.1.3. Control by blowing and suction

In a large number of investigations, different optimal control strategies in a tem-
poral frame work have been investigated. A recent thesis by Hogberg (2001)
on the topic of optimal control of boundary layer transition provides a good
overview of this field. The investigations considered here are performed for
spatially developing flows. In Hogberg & Henningson (2002), an extension to
spatially developing incompressible flows was made for previously developed
optimal feedback control through periodic blowing and suction at the wall.
Even though parallel flow assumptions are needed for their formulation, suc-
cessful results are shown for control of TS waves in Blasius flow and cross-flow
vortices in Falkner-Skan-Cooke flow. Cathalifaud & Luchini (2000) formulated
an optimal control problem for laminar incompressible flows over flat-, and
concave walls with optimal perturbations. They successfully minimized both
the disturbance kinetic energy at a terminal position, and as streamwise inte-
grated quantity, by optimizing distributions of blowing and suction. In Walther
et al. (2001) an optimal control problem was derived for two-dimensional in-
compressible flows with the focus on minimizing the disturbance kinetic energy
of TS waves. They accounted for the developing boundary layer using the
PSE. In both of the latter investigations, adjoint equations were used to obtain
sensitivities of the chosen objective function with respect to the control. A
global framework for feedback control of spanwise periodic disturbances, for
spatially developing flows, was presented by Cathalifaud & Bewley (2002). In
paper 1, we compute the sensitivity of the disturbance kinetic energy in a spa-
tially developing boundary layer flow, with respect to periodic forcing at the
wall and inside the boundary layer. The formulation is made using the PSE
for compressible flows and the sensitivities are computed using the adjoint of
the PSE. The sensitivity of the disturbance kinetic energy with respect to the



26 5. OPTIMAL DESIGN FOR DISTURBANCE CONTROL

wall normal velocity component of the perturbation is used in section 5.4.2 to
formulate an optimal control problem for cancellation of instability waves.

5.2. Gradient evaluation using adjoint equations

In gradient based optimization, there are different ways to compute the gra-
dients of interest. To discuss this we consider the following problem. Let the
state vector q satisfy the state equation

9q

7, TA4=0 alXoy)=qo, q(,0)=0, lmq(z,y)=0  (5.1)

where A is a matrix. Equation (5.1) is parabolic and solved by integration
between x = X, and = X;. We wish to find the initial value of q(X,,vy) = q,
such that the norm of q at some downstream position = X, defined as

|MN%:mbm>=/wmu@wF@. (5.2)
0

is maximized. This can be written as an optimization problem where the aim
is to maximize an objective function

J=Awmmymﬁw7 (5.3)

where the initial condition qg is the control. The gradient of the objective
function J with respect to the control q, can be defined through the directional
derivative as

j(QO + 35(10) - j(Qo)
s

0J = (VI (dg),q,) = lim (5.4)

A straight forward approach to compute the gradient of interest, V.7 (qy), is
to perturb each degree of freedom of the control and for each perturbation,
solve the state equations (5.1) and evaluate the objective function. A finite
difference approximation of the gradient can then be made from these results.
For a first order finite difference approximation, this is written

VI (q0); ~ J(qg + €q,€;) — T (ap) (5.5)

qu

where the vector e, has component ¢ equal to one and all other components zero,
and €q, is a small real-valued parameter. If we denote the number of degrees
of freedom M, then for a first order approximation of the gradient, the state
equations have to be solved M times, for a second order approximation 2M
times et cetera. If M is large then this procedure can be very time consuming.
Another approach which has been shown successful in different optimization
problems in fluid dynamics is to use adjoint equations. An example will be
given below. For a compact notation of the adjoint equations, we will use the
formal adjoint L* for the differential operator L defined by the relation

(u, Lv) = (L*u,v) + boundary terms, (5.6)
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where the inner product (-,-) is defined as

X, 0
(u,v) = / / u'v dz dy (5.7)
x, Jo

for R™-valued vectors u and v. Here, the superscript * stands for the adjoint
quantities and T for the transpose. The derivation of the adjoint equations
is made in the following steps: the first variation of equations (5.3) and (5.1)
gives

07 (qo) = 2/ q(X1,y)"0q(X1,y) dy, (5.8)
0
0dq .
Y—00

Then (5.9) is multiplied with the co-state or adjoint variable r and used in
the inner product given by (5.7). The right hand side of (5.6) is derived by
removing the derivatives from dq using partial integration

0dq

or > X1
(r. G Ave) = (g + ATwday + [ [T sad] a0

We now require r to satisfy the adjoint equation with the initial and boundary
conditions
o +A'r =0, r(X,,y)=2q(X;,y), r(z,00=0, lim r(z,y)=0.
ox Y—00

(5.11)
Equation (5.11) is integrated from = = X, to # = X, and the initial condition
for r at * = X, is chosen such that the remaining boundary terms can be
written

o0

/OOO r(Xo,y)" dq(Xy,y) dy. = 2/0 a(Xy, )" 0q(X,,y) dy = 6T (qo) (5.12)

Since the left hand side of (5.12) is equal to §.7, the gradient of J with respect
to qp is identified as

VI (qq) = r(Xp,y) (5.13)
Compared to the finite-difference approach, the gradient (5.13) is now evalu-
ated by solving the state equation (5.1) and the corresponding adjoint equation
(5.11) once, independent of the size of M. The right hand side of (5.6) can
be derived using either a continuous or discrete approach. A continuous ap-
proach means that the adjoint equations are derived from the continuous state
equation and then discretized. In the discrete approach, the adjoint equations
are derived directly from the discretized state equation. The gradient which
is later identified from the adjoint equations, should in the latter case have
an accuracy close to machine precision. The accuracy of the gradient derived
using the continuous approach increases as the resolution of the computational
domain is increased. This is well explained in Hogberg & Berggren (2000). The
continuous approach has been used through out the thesis except for the work
in paper 5 where the adjoint of the inviscid flow equations are derived using
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the discrete approach. The accuracy of the numerically calculated gradients is
discussed in papers 1, 2 and 5.

5.3. Outline of the current approach

In this section the optimal design problems considered in this thesis are out-
lined. Gradient-based optimization is used in all cases and the gradients of
interest are evaluated from the solution of the adjoint equations. The aim is
to use different control or design variables in order to achieve a decrease in
disturbance growth and therefore an increase in the laminar portion, thus a
decrease in friction drag.

5.3.1. Objective function

The objective function is given as the sum of the different costs of the state
which we want to minimize in order to achieve some desired goal. The costs,
or cost functions, can be given different weights depending on their respective
importance for the goal. In the analysis given here, the cost of friction drag is
not given as a measure of the shear stress. It is instead based on the idea that
an increase in the laminar portion of the body will result in a decrease of the
friction drag. This can also be seen as moving the position of laminar-turbulent
transition further downstream. The cost function is therefore a measure which
can be related to the transition position. One choice is to measure the kinetic
energy of a certain disturbance at a downstream position, say X 2 This can be
written as

, (5.14)

1 Zl +oo
E; = —/ / q'"Mq h,dx*da?
2 Z 0
0 IlzXf

where § = (p,4,0,w,T)" and M = diag(0,1,1,1,0) which means that the
disturbance kinetic energy is calculated from the disturbance velocity compo-
nents. If the position X 5 s chosen as the upper branch of the neutral curve,
then the measure can be related to the maximum value of the N-factor as

=Iny/=L (5.15)

where E, is the disturbance kinetic energy at the first neutral point. If in
addition, the value of the N-factor of the measured disturbance is the one
which first reaches the transition N-factor, then the position can be related
to the onset of laminar-turbulent transition. It is however not clear, a priori,
that such a measure will damp the chosen disturbance or other ones in the
whole unstable region, especially if different types of disturbances are present.
For Blasius flow, it has been shown that a cost function based on a single
TS wave is sufficient to successfully damp the growth of other TS waves (see
Pralits et al. 2002; Airiau et al. 2003). On a swept wing however, it is common
that both TS and cross-flow waves are present and moreover can be amplified
in different streamwise regions. An alternative is therefore to measure the
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kinetic energy as the streamwise integral over a defined domain. Using such an
approach several different disturbances, with respective maximum growth rate
at different positions, can be accounted for in one calculation. Here, the size of
K disturbances superimposed on the mean flow at an upstream position X,
is measured by their total kinetic energy as

K X Z, oo
1 me 1
Bo=Y 5 [ [ aiMamartastist, (5.16)
k=1 2)x . Z, JO

We now define the objective function as the sum of all the cost functions based
on the disturbance kinetic energy as

Jq=EEq+ (1= 8)Ey, (5.17)

where the parameter £ can be chosen between zero and one, depending on
the quantity we want to minimize. An alternative approach to decrease the
disturbance growth and thus increase the laminar portion of the wing was in-
vestigated in Airiau et al. (2003) to optimize the mean flow suction distribution
in a given domain. They minimized the streamwise integral of the shape factor,
which for 2D disturbances in a 2D boundary layer should result in a suppression
of disturbance amplification. Minimizing the shape factor is a more heuristic
approach based on the knowledge that in such flows the two-dimensional dist-
urbances are stabilized by any thinning of the boundary layer. Their results
showed that an optimal suction distribution based on minimizing the shape fac-
tor does have a damping effect on the disturbance growth. A negative aspect
of not explicitly minimizing a measure of the disturbances is that one cannot
know if the optimized control will have a damping effect on the disturbances.
This has to be calculated after wards. A cost function based on the streamwise
integral of the shape factor is here written as

Xme 1 Xme 51 1
Jo = Hishydz! = 5, (5.18)

ms ms

where both the displacement 1, and momentum-thickness d> are based on the
velocity component which is in the direction of the outer streamline. In paper
3 we present results which show that optimal suction distributions obtained
by minimizing expression (5.18) does not have a damping effect, but instead
amplifies disturbances in the case of swept wing flows.

5.3.2. Optimal design cases

With the objective functions defined, different optimal design cases can be out-
lined. We consider the flow over a body decomposed into three different parts:
a steady inviscid part provides a pressure distribution P for a given geometry
X, a steady mean flow Q is the solution for a given pressure distribution and
geometry, and the solution q emerging from the stability analysis calculated for
a given mean flow and geometry. From the latter, the objective function based
on the disturbance kinetic energy can be evaluated. If the objective function
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Design variables Euler BLE  PSE Obj. fcns. Gradients
Wy B— Q- a— T4 V()
Ty, Ty Ppb— Q— q— T4 Vg (), VJg(Tw)
Ty, Ty Ph— Q— jQ VJQ(mW)» VJQ(TW)
X P— Q- a-— T4 VJg(x)
X P— Q- Jq VIq (x)
X P — Jp VIp(x)

TABLE 5.1. Table of state equations involved in the possible
optimal design cases. The arrows indicates the order in which
the equations are solved, and P, Q, and q are the states ob-
tained by solving the Euler, BLE and PSE respectively. The
subscript 0 means that the solution is fixed during the opti-
mization procedure.

is based on the shape factor, only the inviscid and mean flow parts are consid-
ered. Three different types of control or design variables are used. In the first,
we consider unsteady forcing such as periodic blowing/suction at the wall, @,
for a fixed geometry. In this case, only the stability equations are affected by
the control as the inviscid flow and mean flow are both time-independent and
non-linear effects are not accounted for. As a second case we consider control
of disturbances by modifications of the mean flow on a fixed geometry. This
is made using either a mass flux distribution 7, or a wall temperature dis-
tribution 7,. Here both the mean flow and disturbances are affected by the
control, which means that an objective function can be based on either Q or
q. The last case considers optimal design by changing the geometry and will
affect all states, i. e. the inviscid flow, the mean flow, and the disturbances. It
is therefore possible to consider objective functions based on either of the three
states P, Q or q.

If we denote the objective functions based on the three different states
P, Q, and q as Jp, Jq, and Jg respectively, a chart of possible optimal
design problems can be made. This is shown in table 5.1. The solution of
the inviscid flow, mean flow and disturbances are here denoted Euler, BLE
and PSE, respectively. Depending on the design case, one or several states
will change during the optimization. The states which are not changed (kept
fixed) in respective case are given subscript 0. The different gradients required
to solve respective optimization problem are given in the column on the right
hand side of table 5.1.
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5.4. Optimal laminar flow control
5.4.1. Sensitivity analysis using periodic forcing

The concept of wave cancellation was discussed in section 4.1 and examples
were given of experimental results using different types of forcing, or actuators
such as heating plates, vibrating ribbons, and blowing and suction. Before
deciding which actuator to use in order to control the instability waves, it can
be of interest to investigate the sensitivity of different types of forcing ¢ on a
measure of the disturbance growth of a given disturbance. The latter is here
given by the objective function Jg, expression (5.17). A small variation of the
forcing 6C will cause a small variation of the objective function 0Jq and the
gradient qu(é ) express the sensitivity of Jg with respect to 5 . The different
forcing considered here are the disturbance velocity components iy, Uy, Wy
and temperature T, at the wall, and a momentum force S inside the boundary
layer as the model of a vibrating ribbons. When a low amplitude periodic
forcing such as blowing/suction at the wall is applied, only the linear stability
equations need to be considered, as neither the mean flow nor the inviscid
flow is affected if non-linear interaction of the disturbances are neglected. The
state equations solved here are the parabolized stability equations outlined in
section 2.4, which including the above mentioned periodic forcing are written

Lrq = 8, (5.19)
+o0 a4
-1 94 ; 3
—d = 0. 2
/0 qQ 5 rde 0 (5.20)

The forcing given at the wall are introduced as boundary conditions in (5.19).
The gradients of the objective function with respect to each forcing are derived
using adjoint equations. This is described in detail in paper 1 and the gradients
with respect to the wall forcing are

_ pD3(u*) . pD3(v*)
VI w = T A D, V5 w) = T =5
a(itw) ORe Ta(0w) ORe
. pp* ~ kD3 (6")
a(me) = 2 a(fv) = - 222
VT4 () 5 VIa(Tw) =~ 55, 7o
where © = €%, and with respect to the momentum forcing
o _ q* * * * * * *\T
VJq8) = ry where q" = (p*,u", vt w,0%)".

Here, the over bar denotes the complex conjugate and superscript * denote
adjoint variables. The latter satisfy the adjoint of the parabolized stability
equations (APSE), here given as

Lhq" = S% (5.21)

o [T 4OLp . i}
@/ q*Ha—ap q hihohs da® = f*, (5.22)
0
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Details regarding equations (5.21)—(5.22) are found in paper 1 for the case of
Jq = Jq(6 = 0). The adjoint equations shown here are derived from the
continuous state equations. An alternative is to first discretize the state equa-
tions and then derive the adjoint equations. It was concluded by Hoégberg &
Berggren (2000) that a continuous formulation is a good enough approximation
if control is performed on a problem with a dominating instability. This type
of analysis can be made with the PSE and a continuous approach is there-
fore used here. In order to verify the accuracy of the gradient, we compare
the gradients computed using the adjoint equations with those obtained using
a finite-difference approximation. In the latter, the gradient of the objective
function with respect to each forcing is approximated by a second-order accu-
rate central finite-difference scheme. To compare the gradients given by the
adjoint and finite-difference approaches let us consider the example of a wall
normal velocity perturbation di,, at 2® = 0. The variation of Jq with respect
to this wall perturbation is :
05 0J5
575 = a—g‘jawr + a—g‘j(swi

The subscripts r and ¢ denote the real and imaginary parts of a complex num-
ber. In the finite-difference approach, the variation of Jg is obtained by im-
posing the inhomogeneous boundary condition 1, = +¢ at o' = x.. Here, ¢
is a small number and index n refers to n-th streamwise position. Then, the
approximative gradients are calculated using a second-order accurate finite-
difference scheme. The expression for 75 in the adjoint approach, for a flat
plate geometry, is in discretized form given as

Z, N—1 1
04 = 2 > E(Vj«i(ww)sfmw" +e.c)hy dr?,
. =
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FIGURE 5.2. Modulus of the gradients (sensitivities) due to
2D and 3D wall forcing as a function of the Reynolds number
for a flat plate boundary layer at Mach number M = 0.7.
(a) |[VIg(tw)|, streamwise velocity component; (b) |V Jg(0w)|
spanwise velocity component; (¢) [V Jg(ww)| normal velocity
component; (d) |VJ4(Tw)| temperature component. The +
marks the first and second neutral point for each case.

where A, = (z},,; — =;,_1)/2 and c.c. is the complex conjugate. In the fol-

lowing, the quantity VJg(.),, is compared to those of the finite-difference
approach. The case is a flat plate boundary layer with free stream Mach num-
ber of 0.7, and the streamwise domain used here is Re € [250, 750]. The mod-
ulus ||(0Jg/ 01w, 0Tg/0w;)/Ay|, as a function of x), is shown in figure 5.1a
and is compared to |V Jg(ty),,| for different resolution of the streamwise step
AR. A good agreement is found between the approaches for a given AR, and
both values converge as AR is decreased. The relative error given in figure
5.1b is below half a percent for all cases and decreases as AR is decreased.
Sensitivity results for a flat plate boundary layer at Mach number M = 0.7
subject to two-, and three dimensional wall forcing by @, Uy, Wy and Tw can
be seen in figure 5.2. Here the modulus of each component have been plotted
as a function of the local Reynolds number. For all cases except the spanwise
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F1GURE 5.3. Flow chart for the case of minimizing the distur-
bance kinetic energy using the wall normal disturbance veloc-
ity at the wall wy,.

component, the largest sensitivity is obtained for two-dimensional wall forcing
and the maximum value occurs close to the first neutral point of analyzed dis-
turbance. It can also be seen that the magnitude of the wall normal velocity
component is about 15 times that of the streamwise component for this case
and the ratio is even larger compared to the spanwise velocity component and
the temperature. This implies that blowing/suction is the most efficient mean
of controlling instability waves. However, as shown in paper 1, the sensitivity
decreases with increasing Mach number.

5.4.2. Wave cancellation

In principle, any periodic forcing considered in section 5.4.1 can be optimized.
However, as an example we choose the wall normal velocity component because
it has been shown to give the highest sensitivity, and also because it is a good
model for periodic blowing/suction. In order to find the optimal solution for a
limited cost of the control, and also to bound the control amplitude we define
an objective function which balances the cost of the kinetic energy and the

control as
X1

Ja=Jq+ 12/ Dy |? Ry dat. (5.23)
Xo

The term [? serve as a penalty on the control such that {2 = 0 means unlimited
control and vice verse. The gradient of the objective function (5.23) with
respect to the control is given as

Va(tw) = VIg(0w) + 2 P (5.24)
As the optimization problem is defined for a given geometry and mean flow, the
only state equation which is updated in the optimization procedure is the PSE
(5.19)-(5.20). The optimization procedure can now be described considering the
chart given in figure 5.3 where k is the iteration number of the optimization
loop. An initial disturbance g, is superimposed on the mean flow at an initial
position Xy. The PSE is integrated from x = Xy to £ = X7 and the objective
function is evaluated. The adjoint equations, APSE are then integrated from
x = Xy to x = Xy. The gradient is evaluated from the solution of the APSE
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FI1GUuRE 5.4. Control of a two-dimensional wave with F' =
30 x 107% in a zero pressure gradient flat plate boundary
layer where M_ = 0. (a) energy for zero (solid) and optimal
(dashed) control, (b) the optimal suction/blowing distribution
given as |y (solid) and Real(wy) (dashed). B; and Bj-opt
mark the branch points for zero and optimal control

and the new boundary condition for the PSE is calculated using a chosen
optimization algorithm. In the next loop, the PSE is solved with a new wy,
followed by the APSE. The optimization loop is continued until the variation
of the objective function is less than a prescribed value. Results of the optimal
design problem described above are given in figure 5.4 for the case when J5 =
Jg(& = 0). Here we consider a flat plate boundary layer with free stream Mach
number M_ = 0 and zero pressure gradient. The computational domain in
the streamwise direction is Re = [350,1750]. A two-dimensional disturbance
with reduced frequency F = 30 x 107° is superimposed on the meanflow at
Re = 350. The control is imposed along the whole plate and the penalty has
value of [ = 10*. The objective function is evaluated at Re = 1750 which is
close to the second branch of the neutral curve, i. e. where the disturbance
kinetic energy is close to its maximum. In figure 5.4a the reduction in energy
has been plotted as the natural logarithm of the ratio between the square root
of optimal-, and initial disturbance kinetic energy, In \/E(a')/Ey(x!). Branch
1 and 2 of the uncontrolled case have been marked with vertical lines as By and
Bs, respectively. The downstream shift of branch one in the case of optimal
control is shown with a vertical line marked By — opt. In figure 5.4b the
optimal distribution of suction and blowing is plotted both as the real part
and absolute value. Here it is seen that the control acts most strongly in the
vicinity of the first neutral point and then decays rapidly both in the upstream
and downstream direction. Results showing that the disturbance kinetic energy
measured close to the second branch of the neutral curve is most sensitive to
periodic forcing close to the first branch of the neutral curve can be seen in
paper 1 for different Mach numbers.
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5.4.3. Hybrid laminar flow control

The motivation for using optimal control theory for the purpose of hybrid lam-
inar flow is that in many industrial applications (see Joslin 1998), the design
of e. g. suction systems rely on the experience of the engineers which may not
always give the largest delay of laminar-turbulent transition at a given suction
power. Design using steady forcing implies that given a fixed geometry, the
mean flow will change during the optimization procedure. The analysis here is
made using either the wall mass flux m,, = p, W,,, or the wall temperature T,
as design variables. This particular choice is made as both 7, and 7T, have
been investigated for the purpose of Hybrid Laminar Flow Control. As out-
lined in table 5.1, several different cases can be considered depending on which
combination of objective function and control variable that is used. Gradient
based optimization is used in all cases analyzed here and the gradients are
evaluated from the solution of adjoint equations. When the objective function
is evaluated from the solution of the mean flow, Jq, then only the BLE is used
in the optimization and the gradient of Jq with respect to the chosen control
variable is evaluated from the adjoint of the boundary layer equations (ABLE).
Minimization of Jg on the other hand, requires the solution of both the BLE
and PSE and the respective gradients are evaluated from the ABLE which in
turn is forced by the solution of the APSE. A summary on how to compute
the gradient for the different cases is given in table 5.2 where W* and T™ are
solutions of the ABLE. Details regarding respective equation are given in pa-
pers 3 and 4. Note that for the cases presented in table 5.2 the assumption is
made that the streamwise domain of the forcing and the objective function is
the same. If this is not the case, changes occur in the boundary conditions of
both the BLE and ABLE. This is covered in paper 3 and 4.

5.4.3.1. Limiting the control

In many optimization problems it is of interest to bound or limit the control,
and in such a way compute the optimal solution using the least effort. Other
arguments for bounding the control come from issues regarding validity of the
state equations or avoiding ill-posed problems. This can be made using e. g.
a regularization parameter such that the objective function express the sum
of the original measure, expression (5.17) or (5.18), and a parameter times a
defined measure of the control. An example was given in section 5.4.2 for the
case of optimizing periodic blowing/suction. As an example here, we consider
the case of optimization the wall mass flux to minimize the disturbance kinetic
energy. A new objective function can be written
~ Xl
Jq = Jq+ 12 m? hy dzt. (5.25)
Xo
The only difference compared to the equations given in table 5.2 appear in the
expression of the gradient which is now given as

Va(1y) = V(1) + 2 Pring.. (5.26)
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Des. Euler BLE PSE Obj. APSE ABLE Gradients
my FB— Q— q— jq Q- Q" — qu(mW) =Wy
e Py— Q— VA Q — Vi) =Wy
- . . k 0Ty
v Fh— Q— a— J3 a— Q — VJQ(TW) ~ RePr 023
. k0T
Iv FB— Q— JTq Q= VIq(Tw) = Re Pr 03

TABLE 5.2. Table of state and adjoint equations to evaluate
respective gradient in the optimal design cases using steady
forcing. The arrows indicates the order in which the equations
are solved. P, Q, and q are the states obtained by solving the
Euler, BLE and PSE respectively, and Q* and q* are solutions
of the ABLE and APSE respectively. The subscript 0 defines
that the solution is fixed during the optimization procedure.

If the regularization parameter [ is zero then the control is unbounded, and
when [ > 0 then it is bounded. In practice this means that as [ is increased, less
control effort is allowed, and possibly less decrease in the original state measure
is obtained. In some cases it is of interest not only to bound the control but
more specifically bound it at a certain value. One example is when the mass
flux is optimized for disturbance control purposes. The suction distribution
is commonly obtained by a system of pumps and pipes which uses a certain
amount of energy. It can therefore be of interest to find an optimal suction
distribution which uses a specified amount of energy E,, which for instance
can be written as
X1
Eo = m2 hy dat. (5.27)
Xo
In this case the problem is not regularized but instead constrained. As shown
in papers 3 and 4, this constraint can be fulfilled using a Lagrange multiplier
technique. Details on the derivations are found in the papers and the resulting
gradient expression is

V() = V(i) + 2 X 1, (5.28)

The constant regularization parameter [ in (5.26) has now been replaced by
an adjoint variable x*. This adjoint variable can be solved as follows: when
VJ (1) = 0 then 7, = —W2/(2x?) is the corresponding optimal mass flux
distribution and usually denoted optimality condition, m., is then substituted
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Euler BLE —— PSE

L ABLE - APSE

F1GURE 5.5. Optimization procedure using steady forcing.
Here, k denotes the iteration number, 1 is the control vari-
able, Jq and J are the objective functions evaluated from
the solutions of the BLE and PSE respectively.

into (5.27) and an expression for x* is evaluated as

1 R 1 :
X" = —/ Wefh dx . 5.29
s [, W (5.29)

It should be noted that using this approach does not mean that expression
(5.27) is satisfied in each iteration of the optimization procedure. The con-
straint on the control energy is derived assuming that V.J () = 0. There-
fore, as the optimization problem converge, i. e. V.J () goes to zero, also the
constraint on the control energy will converge.

5.4.3.2. Solution procedure

The optimization procedures for the different optimal design problems consid-
ered here can be described using the chart in figure 5.5. There, k& denotes
the iteration number, ¢ is the control variable, Jq and J; are the objective
functions evaluated from the solutions of the BLE and PSE respectively. We
start by considering the case of minimizing J for a single disturbance, i. e.
K=1if Jg includes expression (5.16). This case is presented figure 5.5 as the
large dotted rectangle. The optimization is performed for a given geometry
and inviscid solution in an iterative procedure. During each iteration step, we
perform successive calculations of the BLE and PSE from X, to X7; and APSE
and ABLE from X; to Xo. Then, a new control variable ¢**1 is computed
using the gradient evaluated from the solution of the ABLE, in a chosen opti-
mization algorithm. The calculations are repeated until the relative change in
the objective function is less than a prescribed value. If the objective function
includes expression (5.16) with K > 1 then instead of solving both state and
adjoint equations K times, we can utilize the fact that the ABLE, here written
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FI1GURE 5.6. Convergence history for the case of minimizing
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ing the wall temperature. (a) objective function vs. iteration
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erations, the arrow shows the direction of increasing iteration
number (c¢) control energy, given and calculated vs. iteration
number, (d) gradient norm normalized by its initial value vs.
iteration number.

as
1,Q =

are linear equations. In this case the gradient is evaluated as follows: the BLE
is solved once; the PSE and APSE are solved K times; the right hand side of
the ABLE, S}, is calculated as

S, (5.30)

Finally, the gradient is evaluated from a single calculation of the ABLE. The
case of minimizing Jq is computationally less expensive. This case is shown in
figure 5.5 as the smaller dotted rectangle. During each iteration step, successive
calculations are performed of the BLE from X, to X;; and ABLE from X to
Xo. The gradient evaluation and convergence is then as described above.
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5.4.3.3. Convergence

An example of the convergence history for an optimal design case is shown
in figure 5.6. The wall temperature distribution is optimized such that the
disturbance kinetic energy at a downstream position is minimized on a flat
plate with zero pressure gradient and a free stream Mach number M__ = 0.7.
A disturbance with reduced frequency F' = 50 x 1079 is superimposed on
the meanflow at Re = 500 and the objective function, given by expression
(5.14), is evaluated at Re = 935. The wall temperature distribution T, is
optimized between Re = 545 and Re = 935, and the convergence criteria is
set as (J4T — J¥)/JF < 107*. When control is applied, a deviation of the
wall temperature, AT, occur with respect to the case of zero control. The
constraint used here is the square of ATy, accounting for both heating and
cooling, integrated in the control domain. With the reference temperature
taken as the adiabatic wall temperature in the case of zero control T, dy> this is
written
Xece 2

fo /X (T = Tog, (,0)) " da’, (5.31)
Here, the start and end of the control domain are denoted X., and X, re-
spectively, and the value of - used in this example is 0.5. The optimization
algorithm used here is the L-BFGS-B! routine and convergence was reached
after 4 iterations. The objective function and the norm of the gradient, nor-
malized by its initial value, both as functions of the iteration number can be
seen in figures 5.6a and b, respectively. The objective function has reached a
plateau while the gradient norm is still decreasing indicates that the solution
is getting close to a local minimum. At the last iteration the relative difference
between the given and calculated control energy is 10™* (figure 5.6¢). If the
optimization is continued then finally it would reach a point where the gradi-
ent norm would no longer decrease. This might depend on the accuracy of the
gradient and/or the search algorithm used. The results from iteration 3 and 4
are not possible to distinguish from each other which can be seen in figure 5.6b,
and as efficiency is of importance when a large number of designs are evaluated,
the results here are considered converged.

5.4.3.4. HLFC for an industrial application

Optimization of the wall temperature or the mass flux distribution without
considering how it can implemented and used in a real case might solely be
of academic interest or serve as a reference case. This has been addressed in
paper 3 for the case of optimizing the mass flux distribution for the purpose of
disturbance control on infinite swept wings. The direct application of such an
analysis is a tool which could be used in design of HLFC systems. The mass

I The algorithm is the limited memory quasi-Newton method developed by Zhu et al. (1994).
It is based on a limited memory BFGS approximation of the Hessian matrix of the functional
f, and a gradient projection method is used to account for bounds on the data which makes
it suitable for large scale problems where only the gradient of f is available.
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FIGURE 5.7. Optimal suction design for minimization of Fq
including a T'S and a CF wave. The control energy is E. =
0.35 in all cases. Left: optimal static pressures for the case
of 7 pressure chambers, the continuous line shows the pres-
sure distribution on the wing. Right: Corresponding suction
distributions (thick lines) compared to an optimal suction dis-
tribution in a continuous domain (thin lines).

flux distributions on the porous surface of a wing in these systems is commonly
obtained using a number of pressure chambers. The surface velocity can be
expressed as a function of the surface porosity, hole geometry and the pressure
difference between the pressure distribution on the surface and static pressure
in the chambers. The relation used here written on dimensionless form is given
as

AP, = P,—P,
_ ﬁ ) P . 1 .
= my + Oy, Voo € [ X, X, |, j=1,,K, (532)

and is taken from Bieler & Preist (1992). It is based on measurements carried
out in the framework of the ELFIN (European Laminar Flow INvestigation)
program. The internal static pressure, start and end positions of chamber
number j is given by ch, Xcsj and Xcej, respectively, and the coefficients Cy
and C3 can be found in paper 3. If we use expression (5.32), then the design
variable is no longer 7, but instead ch, and the size and position of the
chambers for a given porous surface characterized by Cy and Cy. As expression
(5.32) is differentiable with respect to v, it is possible to formulate an optimal
design problem similar to the previous cases. We use the Lagrange multiplier
technique and expression (5.32) is used as an additional constraint. The BLE,
PSE, APSE and ABLE are used in the optimization procedure and the gradient
of the objective function is now evaluated with respect to ch. A comparison
can now be made between the case of optimizing the mass flux distribution,
m,,, in one continuous domain with the case of optimizing the static pressures
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FIGURE 5.8. Envelope of envelopes (EoE) of N-factor curves
for the cases of zero control (dotted) and the optimal pressure
chambers in figure 5.7 (solid). A comparison is made with the
EoE of Np-factor curves (dashed) obtained with the continu-
ous suction distribution in figure 5.7.

in a number of discrete pressure chambers, with the aim of minimizing the
disturbance kinetic energy. In the latter, r,, is indirectly optimized through the
relation (5.32). Results taken from paper 3 of such a comparison are presented
here for the case of minimizing the disturbance kinetic energy calculated as the
sum of a Tollmien-Schlichting (TS) and cross-flow (CF) wave. The mean flow
studied is the boundary layer on the upper side of a swept wing designed for
commercial aircraft. The continuous mass flux distribution is optimized in the
whole available control domain. A configuration of seven pressure chambers
are used for the comparison and the start of the first, and end of the last
pressure chamber are given by the end points of the available control domain.
In both the continuous and pressure chamber cases, the control energy (5.27)
is kept constant with a value of 0.35. The left hand side of figure 5.7, shows the
optimal static pressures for the case of 7 chambers. The pressure distribution
of the wing has been added for comparison in the plot. The largest values of
APj occur close to the leading edge and then decrease downstream. This is
most evident observing the close up made in each plot on the left hand side.
The corresponding suction distributions are shown on the right hand side of the
same figure. There a comparison is made with the case of optimizing the mass
flux in a continuous control domain. Both the continuous suction distribution
and the ones obtained from the optimal static pressures are larger in magnitude
upstream and then decrease rapidly and become almost constant downstream.
The effect on the disturbance growth is given in figure 5.8 by plotting the
envelope of envelopes (EoE) of the N-factor curves both for TS and CF waves,
for the cases of zero and the optimal suction distributions shown in figure 5.7.
The results using the continuous suction distribution can be seen as a reference
case of what best can be achieved. As further constraints are imposed using
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the pressure chambers, it is expected that less damping of the disturbances will
be achieved.

5.5. Shape optimization for natural laminar flow

The various possible optimal design cases which can be considered in the current
frame work, where outlined in table 5.1. In the cases of using the shape of the
geometry as design variables, it was shown that the objective function can be
based on either the inviscid, mean flow, or stability solution. Note, that in
addition, also combinations of the three can be used as an objective function,
see paper 5. An objective function based on the solution of the inviscid flow, Jp,
is commonly used in the case of shape optimization where the aim is to minimize
e. g. the pressure, or wave drag. References to optimization problems regarding
inviscid flows can be found in e. g. Jameson (1988). A design problem which
accounts for viscous flow effects can be formulated using either Jq, and/or
Jg as objective function. In particular the latter enables the possibility to
account for the physics related to laminar-turbulent transition. In the current
approach there are several physical approximations made. A discussion about
this is found in paper 5. The goal of the approach taken is to use an iterative
gradient-based optimization procedure with the aim of minimizing an objective
function based on a measure of the linear disturbance growth by optimizing the
shape of the geometry, such as a wing. As a decrease in disturbance growth
means a downstream shift of the laminar-turbulent transition location, and
thus an increase of the laminar portion of the surface, the approach taken here
can be seen as optimal design for natural laminar flow.

5.5.1. Problem formulation and gradients

We minimize the objective function based on the disturbance kinetic energy

q» expression (5.17), which depends explicitly on the solution of the stability
equations q and the mesh, here given by the nodal coordinates X. This is here
written as

J =7J(q,X), (5.33)
and is evaluated as follows:

1. The solution of the Euler equations for compressible flows (see paper 5)
provides the pressure distribution of a given geometry

2. The viscous mean flow is obtained by solving (2.5)-(2.8) for the given
geometry, and the pressure distribution from the Euler solution.

3. The parabolized stability equations (2.18)—(2.19) are solved for the ge-
ometry, and mean flow from the boundary layer analysis.

4. The objective function (5.33) is evaluated from the solution of the parab-
olized stability equations.

If w, Q, and q are the solutions of the three state equations given above, then
J can be considered to be a functional of X only and the objective function
is then denoted Jy(X). The nodal coordinates, X, are evaluated from the
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displacements, y, of the nodes on the airfoil by a mesh movement algorithm,
here denoted X = X(y). The displacements are controlled by the parameter
a,i. e. y =y(a). From these definitions we can now define

Iy (y) =Ix (X(y)), and J,(a)=J,(y(a)), (5.34)

which clearly shows that 7, (a) is the objective function depending only on the
control parameter a. As the gradient of 7, (a) with respect to a is used in the
optimization procedure, we show in paper 5 that V.7, can be evaluated from

va - vjy - vja ?

in the above mentioned order. The gradient of the objective function with
respect to the nodal coordinates V Jy is derived using adjoint equations and is
evaluated solving the APSE, ABLE and adjoint of the Euler equations (AEuler)
in the mentioned order.

5.5.2. Mesh displacements, parametrization and
geometrical constraints

All displacements are made with respect to a reference mesh, defined by its
vector of nodal coordinates X°. For a vector y* of shape displacements the
new grid is obtained as

X=X+ Ly~ (5.35)
Given the gradient VJx of a functional Jx of the nodal coordinates, the gradi-
ent of the functional J, (X) = Jx (X (y)) is obtained by the following matrix—
vector product

VI, =L'VIx. (5.36)
Smooth shapes, together with geometric constraints, are obtained taking the
vectors of displacements y that are the solutions of a minimization problem
(see Amoignon 2003) of the form

veRn 2 (5.37)
CTy =b,
where Ag is the stiffness matrix associated with the Laplace operator, M is
a mass matrix, C is the matrix whose rows are the gradients of the linear
constraints (in R™*™) and b is the vector of values imposed to the constraints
(in R™). The solution y to the above system can be seen as the vector of
displacements, which, according to the norm defined by the positive definite

matrix Ag, is the closest to the solution of the discretized Laplace equation
defined by

1
y = { min —vI'A,v — v M;a,

Asy = Msa7 (538)
and fulfills exactly the constraints
Ty =b. (5.39)

Such a parameterization implies that the controls are the vector a, right hand
side of equation (5.38), and the vector b, right hand side of the constraints,



5.5. SHAPE OPTIMIZATION FOR NATURAL LAMINAR FLOW 45

abtl_, gkl Xkt
— Euler

VI —VTE —VTk

L AEuler - ABLE - APSE

Y

BLE

Y

PSE

F1GURE 5.9. Flow chart for the case of minimizing the dis-
turbance kinetic energy using the parameter a to control the
shape of geometry.

relation (5.39). The gradients with respect to a and b, which are the control
variables in our method, can then be obtained by solving an adjoint problem
(see Amoignon 2003) of the form

AT —C v\ _ [ VI,
from which it holds that

VJo =My and VJ, = -\*. (5.41)

Note that V.7, in (5.40) is obtained by evaluating expression (5.36). All con-
straints considered so far are equality constraints, and b is therefore a vector
of constants. The only control parameter in this case is therefore a.

5.5.3. Solution procedure

A simple chart of the order in which the state and adjoint equations are solved
and gradients are evaluated in order to perform optimal NLF is given in fig-
ure 5.9. There, k denotes the iteration number and the procedure is as follows:

—_

For k = 1, we start with an initial Euler mesh X°

The Euler, BLE and PSE are solved in the given order

The objective function J k is evaluated

The adjoint equations, APSE, ABLE and AEuler are solved

The gradients VJ¥, VJ,) and VJ} are evaluated in the given order
A new control parameter a®**? is calculated? using the gradient V. 7*
If k > 1, check convergence: If [(J¥t1 — J%)/T*| < ¢, else? continue
A new mesh X**! is calculated from the new control parameter a*+!
Goto 2.

© XN AW

2In the computations shown in paper 5, the L-BFGS-B routine was used, normally requiring
several functional and gradient evaluations in order to build up the approximative Hessian
matrix.

3Several convergence criteria exist in the L-BFGS-B routine, (see Zhu et al. 1994)
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5.5.4. An optimal design case

An optimization case in which constraints are not imposed on operational prop-
erties such as lift, and pitch-moment coefficients might result in a design which
is not useful. Results are shown here for the case of minimizing an objective
function including both the disturbance kinetic energy, pressure drag C'p, and
in addition penalties on the deviations of the lift, and pitch-moment coefficients,
C; and C);, from the initial values. This is written

1 2 1 2

where the coefficients A;; and A, are used to normalize J and C, with respec-
tive values computed using the initial mesh. The coefficients A\; and \,, are
used to penalize the deviations of C} and C}; from respective values computed
on the initial mesh. The initial design is the RAE2822 airfoil and the flow
is characterized by a free stream Mach number of M_, = 0.734 and Reynolds
number of Re__ = 6.5x 10%. The disturbance used to evaluate J has a physical
frequency f* = 11 kHz and wave angle of 1, ~ 40° and is integrated from close
to the leading edge to half chord. As geometrical constraints we impose that
the volume should not deviate from its initial value and that a region around
the leading edge is kept fixed.

o Disturbance kinetic energy Wave drag
10 130
120
110
OD
< 100
S
. B\&@\%\E\S—B
80 :
70
0 2 4 6 8 10 12 14 16 0O 2 4 6 8 10 12 14 16
iteration iteration

F1GURE 5.10. Left: Disturbance kinetic energy. Right: wave
drag. Both as functions of the iteration number.

Results of the convergence history is shown in figures 5.10 and 5.11 for the
disturbance kinetic energy, pressure drag, lift, and pitch-moment coefficients
as functions of the iteration number. A reduction in the objective function
(5.42) is obtained from the first to the last iteration (see paper 5). During a
few iterations, however, it can be noted that the pressure drag increase while
the deviations of ', and C)ps decrease, figure 5.10. At the final iteration a
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FIGURE 5.11. Lift, (triangle-solid) and pitch-moment (circle-
solid) coefficients as functions of the iteration number. The
values at initial design are indicated at each step (solid).

reduction has been obtained in both disturbance kinetic energy and pressure
drag while C', and C)y; are kept within a few percent, figure 5.11.

A comparison between the pressure coefficients, and geometry for the initial
(solid) and last iteration (dash) obtained from the optimization can be seen in
figure 5.12. The largest change in the geometry occur in the region on the upper
side of the airfoil where J is evaluated. This can also be seen in the pressure
distributions. The relative small change on the lower side is caused in order to
satisfy the constant volume constraint. As the upper side of the final design
is thinner, and the part around the leading edge is fixed to approximately 4%
chord, an increase occur in the curvature of the airfoil around 10% chord. This
can be seen in the decrease in the pressure coefficient in that region.

The EoE of the N-factor curves for a large number of modes can be seen
in figure 5.13 for the initial and final design. In comparison with figure 5.12
we can note that the pressure gradient in the region where the disturbance
become unstable has change from an adverse to zero or weakly favorable. This
has a damping effect on the disturbance growth in the whole domain where J
is evaluated, which can be seen in figure 5.13. In order to estimate the change
in the total drag computations were performed solving the Reynolds Averaged
Navier Stokes equations on the initial and final design. The transition location
in these computations was estimated using the EoE curves computed using the
pressure distributions from the Euler solutions. The computations showed a
decrease in pressure drag of about 25%, viscous drag of about 23%, and total
drag of about 24%. In the approach taken here there are still improvements
to be made. This can for instance be seen looking at the region z/c ~ 0.4 to
x/c ~ 0.6 of the pressure distributions in figure 5.12 of the final design. The
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FIGURE 5.12. Left: Pressure coefficients for initial (solid), and
final design (dash) obtained from the optimization solving the
Euler equations. A comparison is made using the Reynolds
Averaged Navier Stokes Equtions to compute the flow of the
initial (dash-dot), and final design (dot). Right: initial (solid)
and final design (dash).
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FIGURE 5.13. Envelope of envelopes of N-factor curves. Lines
correspond to the cases shown in figure 5.12.

pressure gradient in this region is adverse indicating that separation occurs.
More results and discussions are found in paper 5.



CHAPTER 6
Summary & conclusions

The work presented in this thesis concerns the use of gradient-based optimiza-
tion techniques for the purpose of laminar flow control (LFC), and design of
wings for natural laminar flow (NLF). The goal of using this technique is to
reduce the viscous drag. Reduction of viscous drag can be seen as an in-
crease of the laminar portion of the wing, thus a delay of laminar-turbulent
transition. On wings in low free-stream turbulence environments, the latter is
usually caused by break down of small disturbances which grow as they prop-
agate down stream. The fluid flow has been divided into three different parts,
namely: an inviscid part providing the pressure distribution for a given geome-
try, a viscous mean flow which is computed given the pressure distribution and
geometry, and finally a linear stability analysis using the PSE providing the
growth rate of convectively unstable disturbances superimposed on the viscous
mean flow. The growth rate can been used to predict the transition location
using the so called eV-method. Here it is assumed that transition will occur at
the location where the total amplification of the disturbance, with respect to
the first streamwise position where the disturbance starts to grow, attains an
empirically determined value, whose logarithm is generally denoted by N.

Several optimization problems have been defined for the purpose of LFC
and NLF with the aim of minimizing an objective function based on measures
of, or related to, the growth of unstable disturbances. Here, different control
variables, means of control, have been used and the gradients of the objective
function with respect to the control has been derived using adjoint equations.
Especially the derivation of the adjoint of the PSE (APSE), and the adjoint
of the BLE (ABLE) for compressible flows have been of interest, and now
accomplished can be used in several applications. An existing optimization
routine has been used in most cases as the topic of this research does not
concern development of these routines.

The accuracy of the gradients evaluated from the solution of the adjoint
equations have been investigated by comparing them with those computed
by a finite-difference approximation. The tests have shown that an increased
accuracy can be achieved by increasing the spatial resolution of the discretized
equations. As the latter is known to cause numerical stability problems for
the PSE, a known method to overcome this problem has been used which also
alters the APSE and ABLE. A sensitivity analysis using the gradients of the
disturbance kinetic energy at the second neutral point with respect to periodic
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forcing show that control is most efficiently made in the vicinity of the first
neutral point. It was further shown that the disturbance kinetic energy is most
sensitive to control by means of periodic blowing and suction, and in general
the efficiency decreases with increasing Mach number.

Results of optimal steady suction distributions have been presented for
both incompressible and compressible flows. It has been shown that minimiz-
ing an objective function based on the disturbance kinetic energy of a single
disturbance results in a suction distribution which has a damping effect on a
large number of disturbances of the same type, e. g. (T'S) Tollmien-Schlichting-,
or (CF) cross-flow waves. On swept wings, a situation might occur when both
these types of waves exist simultaneously. For such cases it has been shown
that both types must be included in the objective function in order to obtain a
suction distribution which has a damping effect on other disturbances of these
two types. Results of optimal temperature distributions for disturbance control
have been presented for various Mach numbers. It has been shown that the effi-
ciency of the optimal control decreases when the wall temperature downstream
of the control domain is maintained at its original adiabatic value, compared
to the case when the wall there is insulated. It has also been shown that the
efficiency decreases with increasing Mach number.

A problem has been formulated to perform optimal NLF design, in which
the aim is to minimize a measure of the disturbance kinetic energy. Results have
been presented for cases where both the disturbance kinetic energy, and wave
drag have been reduced simultaneously while lift, and pitch-moment coefficients
as well as the volume have been maintained at desired values.

One of the goals with work presented here was to show that the derived
techniques can be used in realistic applications. This was addressed for the case
of optimal suction distributions in which the problem was also formulated using
discrete pressure chambers, and computations were made on an infinite swept
wing designed for commercial aircraft. Also the problem of optimal NLF design
was formulated such that airfoils in realistic flow conditions can be optimized.
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