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Abstract 
Log-gamma distribution is the extension of gamma distribution which is more flexible, versatile and provides a 
great fit to some skewed and censored data. Objective: In this paper we introduce a solution to closed forms of 
its survival function of the model which shows the suitability and flexibility towards modelling real life data. 
Methods: alternatively, Bayesian estimation by MCMC simulation using the Random-walk Metropolis algorithm 
was applied, using AIC and BIC comparison makes it the smallest and great choice for fitting the survival 
models and simulations by Markov Chain Monte Carlo Methods. Findings/conclusion: It shows that this 
procedure and methods are better option in modelling Bayesian regression and survival/reliability analysis 
integrations in applied statistics, which based on the comparison criterion log-gamma model have the least 
values. However, the results of the censored data have been clarified with the simulation results.  
Keywords: bayesian analysis, censored data, Laplace approximation, log-gamma distribution, simulation, 
survival analysis 
1. Introduction 
Bayesian method approach is applied to model censored Survival data analysis its increasingly active research in 
the last few decades in response to a more refined statistical tools to analysed complex data structures and 
parameters (Lindley & Smith, 1994). This method is applied to the log-gamma model analytically simulates the 
model parameters which approximates generally by obtaining the posterior summaries of the density parameters 
using “LaplacesDemon” package in R software. 
The shorthand X~log-gamma (a,b) is used to indicate that the random variable. The Log-gamma distribution 
(Consul & Jain, 1971) is defined in the following way having a probability density function (PDF) given as: 

                        (1) 
Survival function is given as: 

                             (2) 

Corresponding the reliability function: 

                            (3) 

f (t ,a,b)= e(at )e−(et/a) a(b)Γ(b) 
−1

S(t ,a,b)=1− F(t ,a,b)
R(t ,a,b)= Γ(a,t /b)
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The hazard function which is the ratio of the PDF and the survival function is written as: 

݄ሺݐ, ܽ, ܾሻ = ௙ሺ௧,௔,௕ሻௌሺ௧,௔,௕ሻ = ௘ሺೌ೟ሻ௘షሺ೐೟/ೌሻ∗ሾ௔ሺ್ሻ௰ሺ௕ሻሿଵିிሺ௧,௔,௕ሻ    
                       (4) 

The likelihood of the log-Gamma survival model is given by:  ݅ܮ = ∏ ,݅ݐሺݎ݌ ሻ݅ߜ = ∏ ሾ݂ሺݐ, ܽ, ܾሻሿఋ௜ሾܵሺݐ, ܽ, ܾሻሿଵିఋ௜௡௜ୀଵ 	௡௜ୀଵ ݅ܮ (5)                       = ∏ ,݅ݐሺݎ݌ ሻ݅ߜ = ∏ ሾ݁ሺ௔௧ሻ݁ିሺ௘௧/௔ሻ ∗ ሾܽሺ௕ሻ߁ሺܾሻሿሿఋ௜ሾ1 − ,ݐሺܨ ܽ, ܾሻሿଵିఋ௜௡௜ୀଵ௡௜ୀଵ                (6) 

Where "a" is the shape parameter and "b" is the scale parameter, and they are all positive greater than zero 
(Consul & Jain, 1971; Bilal, Khan, Hasan & Khan, 2003; Lindley & Smith, 1994). The corresponding likelihood 
function for right censored data as where δi is a censoring indicator variable which takes value 1 if it’s observed 
while censored for and otherwise. To evaluate characteristics of posterior summaries of the model is actually an 
intricate case (Koul, Susarla &Van, 1981; Lawless, 2003). Our main objective in this work is to show and 
illustrate the fitting of Log-gamma model in R programming code which will be used to approximate the 
posterior probabilities with the Laplace method and simulation in R (Consul & Jain, 1971; Lindley & Smith, 
1994; Kalbfleisch & Prentice, 2002). Log-Gamma distribution is the extension of Gamma distribution which is 
more flexible, versatile and provides a great fit to some skewed and censored data. In this paper we introduce a 
solution to closed forms of its survival function of the model which shows the suitability of its flexibility by 
Bayesian estimation of the MCMC simulation using the Random-Walk. Metropolis algorithm was applied. 
However, the results of the censored data have been clarified with the simulation results.  

 
Figure 1. 

 
Figure 2. 
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In this paper, an attempt has been made to the stated objectives below: 
(1) To apply a Bayesian analysis model for specifying the prior and likelihood functions. 
(2) To developed an R programming code which will be used to approximate the posterior probabilities with the 
Laplace method and simulation.  
(3) To provide a plots and tables for representation of the posterior results. 
2. Related Work 
According to authors like (Akhtar & Khan, 2014), they proposed an R package for coding and solving high 
dimensional Bayesian analysis models for modelling real life and censored survival data. They also stated that 
the Laplace approximation is an attractive numerical approximation and will continue to develop and suggest 
new methods. In 2003, authors (Khan & Khan, 2013), proposed a procedure and a LaplacesDemon code for 
solving a Laplace approximation based on Gamma model where the made mention and stated that this procedure 
generally solves high dimensional attributes and intricate datasets in real life. They also attempted to present a 
clear true value for the marginal posterior contrary to the asymptotic theory by the frequentist approach. Recently, 
authors (Bilal, Khan, Hasan & Khan, 2003; Khan & Bhat, 2002; Khan & Khan, 2013), introduces a procedure 
and present some useful codes where they consider a right censoring in survival regression modelling using 
Bayesian approach with Laplace method estimating the parameters of the Weibull model and they point out that 
a survival data are not symmetric in nature but are generally positive skewed following the Weibull properties as 
very few models violate this wide usage flexible model. Also, authors like (R Development Core Team, 2012; 
Sheila & Khan, 2013; Schwarz, 1978; Roberts & Rosenthal, 2009; Polson & Scott, 2012; Miller, 1997; Miller, 
1976) explain and contribute their quota on how their method estimate some models with censored data in 
Bayesian survival analysis.  
3. Laplace’s Approximation 
According to (Statistic at, 2013) Bayesian methods depend on non-informative prior models which provides 
same output with the non-Bayesian procedures. The limit to where a non-informative prior model is validate to 
be an objective rely on the available in the data provide, as the sample size n increases, for the prior distribution 
on posterior decreases (Tierney, Kass & Kadana, 1989). The recent most suitable method for evaluating density 
functions integrals involved in the posterior densities which was computed by Bayes’ theorem shown as: 

                        (7) 

Where, is called the evidence or marginal likelihood. It has been pioneered and 

examined by “Pierre-Simon, marquis de Laplace in 1806” (Khan & Bhat, 2002) is called the Laplace 
transformation. (Buckley & James, 1979, Khan & Bhat, 2002) This function is noted by denoting w (θ) be any 
positive unimodal function with mode. By expanding the w(θ) using a second-order Taylor series about θ̂ will be 
given as: 

                       
 

                         (8) 

By taking the exponent of both sides of equation (9), we obtained: 

                   (9) 

 

Though, if w(θ) = P(y|θ)π(θ), then (9) above will be the mode in the obtaining the posterior results by LP method: 

 

π(ϑ | y)= P( y |ϑ)π(ϑ)(P( y))−1 α P( y |ϑ)π(ϑ)
		P( y)= P( y |ϑ )π(ϑ)dϑ

logw(ϑ)≈ logw(ϑ∧ )− (ϑ −ϑ
∧ )'V(ϑ −ϑ

∧ )2
Vij = − δ 2

δ iϑδ jϑ
logw(ϑ)









ϑ=ϑ

w(ϑ)≈w(ϑ∧ )exp12((ϑ −ϑ
∧ )'V(ϑ −ϑ

∧ ))dϑ

ϑ | y N(ϑ ,V −1)
w(ϑ)= P( y |ϑ )π(ϑ )
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Also by integration of (9), it clearly gives us: 

                (10) 

The above equation (10) is a non-negative function is called a Laplace’s method. In this work, we develop the 
LaplacesDemon code algorithm using R software by Laplace Approximation function (Akhtar & Khan, 2014; 
Bernardo, Degroot & Valencia, 1980; Collet, 1994; Kimber, 1990).  
 
3.1 Half-Cauchy Prior Distribution 
The half-Cauchy density function with one scale parameter “a” alpha is given by: ݂ሺݐ, ܽሻ = ଶݐሺߨ2ܽ + ܽଶሻ ,ݐ					, ܽ ൐ 0 

 

 
Figure 3. 

 
It is weakly informative prior distribution for a scale parameter. Otherwise, ”a” stands for alpha is recommended 
to be set to be just a little larger than the expected standard deviation, as a weakly informative prior distribution 
on a standard deviation parameter. Value, The half-Cauchy distribution does not has mean and variance, but its 
mode is equal to 0 having the” a=25”as a default. (Akhtar, 2014; Bernardo, 1980; Bilal, Khan, Hasan & Khan, 
2003) Suggested, the uniform prior distribution, where its compulsory in estimation but half-Cauchy is a better 
option used as a non-informative prior (Polson & Scott) showing its graph below as follows. 
4. Bayesian Analysis: Simulation with Laplace’s Demon 
Based on some reviews in the area of approximating a Laplace distribution in the literature which has a very 
effective response for decades and also, in recent years based on Log-gamma estimation of parameters using 
different approach like Bayes estimate, MLE, Lindley, Newton Raphson’s method of optimization etc. (Akhtar, 
2014; Bilal, Khan, Hasan & Khan, 2003; Khan & Bhat, 2002; Khan & Khan, 2013). Actually to find the 
posterior results summaries of such functions with their mean and variances, it is a very intricate case to 
handle, more especially when more covariate were involved as incorporate variables. In such cases, we use the 
Bayesian frame-work approach using the Metropolis-Hastings sampling algorithm in MCMC methods to solve 
and find the posterior result. 
As an alternative method to solve intricate integrals using simulation technique by direct method of simulation 
suggested by (Buckley & James, 1979, Kimber, 1990), in intricate purposes where by MCMC methods is used.  
5. Application of Censored Data 
The Log-gamma distribution as a parametric family is however used in censored survival modelling, with two 
parameters, shape and scale parameter. We analyze a data from (R Development Core Team, 2012), known as the 
leukaemia data having 23 observations with three (3) variables of observation namely: time, status and group (R 
Development Core Team, 2012). 
T ∼ Lgamma(a,b), where a,b > 0 

w(ϑ)≈ w(ϑ∧ )exp12((ϑ −ϑ
∧ )'V(ϑ −ϑ

∧ ))dϑ = w(ϑ∧ )det(V /2π )
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The codes are as follows: 
Failure-time < −C(9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45) 
Censor < −C (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, Re P (1, 5), 0, Re P (1, 6)) 
M < −23 
K < −1 
P < −matrix (1, N-Row = M, N-column = K) 
T < −log (failure-time) 
Monames < − C(”Lpa”,”Sha pe”). 
Parnames < − As. Parm-Names (List (beta = Rep (0, L), logsp = 0)). 
My-Dataset < −List (Q = Q, N= N, P = P, Monames =Monames, Parnames = Parnames, Censor =Censor, 
T=T). 
Initial-values < −C (Re P (0, Q), Log (L)) 
6. Model Specification 
The Log-gamma model with two parameters alpha and beta is also has almost same properties with the 
original gamma model stated as its suit the continuous and skewed data having a Weibull model property 
which is one of its sub-model and also fits a wide range failure-time data quite well. On the other side, it has a 
very good relationship with its sub-models and also enhances the use of its advantages in-terms of the 
identically independently distributed (iid) for some exponential variables in inferential statistics (Collet, 1997; 
Koul, Susarla & Van, 1981).  
Model <− function (parm, data) 
{ 
”Parameters”  
beta<− param [1: dataQ] 
shape<- exp (Param[dataQ + 1]) 
”Log-prior ” 
beta-prior < −Sum (dnormv(beta, 0, 1500, Log = True )) shape-prior < −dhalf-Cauchy (Shape, 25, Log = 
True)  
Scalee < −exp(Tcrosss Pr(datax,T(beta))) 
”Log-likelihood” 
Ll>Sum (dlgamma(data-T, shape, scale = scale, 1, Log = True )) 
”Log-Posterior” 
LP < −LL+ sum (beta-prior) + shape-prior 
Model-Out < −listing (LP = LP, Dev = −2 ∗ LL, Monitor = c(LP, shape), 
T-Hat = rlgamma(23, shape, scale = scale, 1), param = param) 
Return (Model-out) 
} 
Init-values < −Giv (Model, My-data, N = 1500) 
”Fitting the LP” 
M1 <−Lp(Model, Initial-values, My-Data, Iterations = 15000) 
Print (M1). 
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Figure 4. 
In Figure 4, they clearly shows the plots of posterior densities of the parameters: beta, log-shape deviance and LP 
for the Log-gamma model of the survival regression fitting the distribution using Laplace approximation and 
LaplacesDemon which evidence shows from the plots that Laplace approximation is excellently resemble the 
model. 
 
Table1. Asymptotic modal estimates for Standard Deviations of the Log-Gamma Parameters. 

Parameter Modal value Standard Dev. Lower Bound Upper Bound 
Betas  -0.166 0.144 -0.454 0.122 
Log-Shape 1.238 0.054 1.130 1.347 

 

 
Figure 5. 

 
Figure 5 shows the beta of the shape parameter in the figure for the censoring mechanism. 
7. A Simulation Study 
We initiate the use Random walk to simulate from the summary and the density of the target population by the 
proposing the following R codes as follows (Akhtar & Khan, 2014; Bernardo, Degroot & Valencia, 1980; Collet, 
1994; Kimber, 1990). 
Init-values < −As.Init-values (M1) 
”Fitting LaplacesDemon” 
M2 < − “LaplacesDemon” (“Model, Mydataa, Init-values”) 
 
7.1 Bayesian Fit for the LaplacesDemon Method 
LaplacesDemon package can be used for Bayesian and Non-Bayesian. This function Laplace Approximation 
maximizes the posterior (Buckley & James, 1979; Khan & Bhat, 2002; Khan & Khan, 2013; Kalbfleisch & 
Prentice, 2002; Tierney, Kass & Kadane, 1989). LaplacesDemon is an implementation of Markov chain Monte 
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Carlo tools. To use these functions specifying of a model, is probably the main idea with the prior of model 
parameters and data or simulation. 
 

 
Figure 6. 

 
In Figure 6, based on simulation results, the plots of posterior densities of the parameters: Deviance Shape and LP 
for the Log-gamma model of the survival regression fitting the distribution using Laplace approximation and 
Laplace Demon which evidence shows from the plots that Laplace approximation is excellently resemble the model 
showing the LP relatively goes a bit left-skewed but the shape and deviance were quite great this prove that the 
mean square error and Bias estimate are relatively small which a very good result. 
 
Talbe 2. Posterior Mean Summaries for the Parameter Estimated By Simulation Using the Sampling Technique 

Parameter Modal value StandardD MCSE ESS LowerB Median UpperB 
Betas  -0.113 0.153 0.005 1000 -0.380 -0.129 0.192 
Log-Shape 1.238 0.059 0.002 1000 1.113 1.238 1.348 
Deviance 62.776 2.128 0.067 1000 60.070 62.070 67.907 
L.P -40.601 1.064 0.034 1000 -43.166 -40.246 -39.525 
Shape 3.458 0.203 0.006 1000 3.045 3.449 3.848 

 
Table 2 (above) and Table 3(below) shows the simulation results summaries for the Log-gamma model where the 
matrices sampling and resampling algorithm LP approximation for effective sample size, and LB, Median, U B 
are 2.5%, 50%, 97.5% quantiles, respectively. 
 
Table 3. Posterior Mean Summaries for the Parameter Estimated By Simulation Using the Sampling Technique 
and Stationary Samples 

Parameter Mode SD MCSE ESS LB Median UB 
Beta  -0.122 0.150 0.005 882.4950 -0.396 -0.129 0.186 
Log-shape 1.236 0.059 0.003 629.579 1.106 1.236 1.348 
Deviance 62.714 2.146 0.089 742.106 60.641 62.037 68.706 
L.P -40.571 1.073 0.044 751.234 -43.572 -40.230 -39.534 
Shape 3.447 0.202 0.009 630.256 3.024 3.443 3.934 

 
8. Akaike’s Information Criterion (AIC) And Bayesian Information Criterion (BIC) 
Akaike (1974) suggested and introduced a suitable vast criterion (AIC) with some assumptions attached:  
(a) A parametric distribution encompasses a true model.  
(b) Its estimate using MLE and other methods, where the least value becomes the best model for selection 
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(Akaike, 1974), which is given given by: ܥܫܣ = 2k − 2 lnሺLሻ	                                 (12) 
Schwarz (1978) also proposed the BIC criterion following some assumptions that render great impact to 
statistical methodology as: 
(a) It has a constant independent prior vague. 
(b) It checks the efficiency and complexity of the parameterized model in terms of intricacy. 
(c) BIC [21], has a very close relation to AIC [2], in terms of model selection. 
The Bayesian Information Criterion is formally defined as ܥܫܤ = −2lnܮ + ݇ lnሺ݊ሻ		෣෣                               (13) 
Where, 
L= the likelihood function of the estimated model.  
x= the observe dataset. 
n= the number of samples. 
k= the number of free parameters to be estimated. 
 
Talbe 4. Comparison of Parametric sub-models with Log-gamma based on (AIC and BIC) 

MODEL AIC BIC 
Log-Gamma 42.140 41.134
Gamma 42.559 42.167
Weibull 43.246 44.789

 
The above table 4 shows the result of comparison between the sub models which indicates the Log-gamma 
model is having the smallest value among them clearly not prove to be the best model but based on the survival 
data used it makes it superior and better fit.  
9. Conclusion 
In this research we proposed an Rcode base on simulating and estimating censored survival data and initiate the use 
of R package Laplace’s Demon (Khan & Bhat, 2002) that makes a great impact in Bayesian statistical inference. 
The log-gamma distribution was used as a Bayesian model to fit the censored data and simulation, where by 
important techniques were used like: Asymptotic approximation and direct simulation were implemented using 
the R package LaplacesDemon (Khan & Bhat, 2002). Also, the simulation results shows that the Mean square error 
of log-gamma model is least compare to other sub-models like (Weibull and gamma models) as well as the AIC and 
BIC with (42.140 and 41.134) making it the smallest and great choice for fitting the survival models and 
simulations by Markov Chain Monte Carlo Methods. It shows that this procedure and methods are better option in 
modelling Bayesian regression and survival/reliability analysis integrations in applied statistics (Lindley & Smith, 
1994; Koul, Susarla &Van, 1981). 
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