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Abstract

Learning the sparse structure of a general

Markov network is a hard computational prob-

lem. One of the main difficulties is the compu-

tation of the generally intractable partition func-

tion. To circumvent this difficulty, we propose to

learn the network structure using an ensemble-of-

trees (ET) model. The ET model was first intro-

duced by Meilă and Jaakkola (2006), and it rep-

resents a multivariate distribution using a mixture

of all possible spanning trees. The advantage of

the ET model is that, although it needs to sum

over super-exponentially many trees, its partition

function as well as data likelihood can be com-

puted in a closed form. Furthermore, because the

ET model tends to represent a Markov network

using as small number of trees as possible, it pro-

vides a natural regularization for finding a sparse

network structure. Our simulation results show

that the proposed ET approach is able to accu-

rately recover the true Markov network connec-

tivity and outperform the state-of-art approaches

for both discrete and continuous random variable

networks when a small number of data samples is

available. Furthermore, we also demonstrate the

usage of the ET model for discovering the net-

work of words from blog posts.

1 Introduction

Markov networks concisely represent complex multivari-

ate distributions by exploiting the sparsity of direct depen-

dencies: each node is directly connected to only a small

subset of other nodes. For example, in a Markov network
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for modeling articulated objects, only neighboring parts are

assumed to have direct interaction; in a social network,

each individual directly interacts with only a small num-

ber of people in the network; in a gene network, a regula-

tory pathway involves only a small number of genes. Such

sparse structures are not only essential for enabling effec-

tive learning and inference, but also may be the primary

goal in knowledge discovery (for example, discovering the

gene regulatory pathway). While the structures of most

Markov networks are handcrafted, there has been increas-

ing interest in learning the sparse structure of a Markov

network from data.

One approach to Markov network structure learning is

to constrain search to low-treewidth (thin) Markov net-

works to enable tractable exact inference. Chow-Liu al-

gorithm (Chow & Liu, 1968) approximates a discrete prob-

ability distribution using a single spanning tree, and the op-

timal spanning tree can be learned from data in O(NM2)
where M is the number of variables, and N is the num-

ber of data samples. Since the single spanning tree model

is often too restrictive, Bach and Jordan (2001) proposed

learning thin networks via greedy addition of cliques. Re-

cently, several papers proposed more complex combina-

torial search over the space of treewidth-bounded struc-

tures with strong approximation guarantees (Narasimhan &

Bilmes, 2004; Srebro, 2001; Chechetka & Guestrin, 2007).

However, these algorithms scale exponentially with tree-

width and are not practical for many real-world domains

where treewidth tends to be large.

For continuous Markov networks, if the variables are as-

sumed to have a joint Gaussian distribution, the parti-

tion function has a closed-form regardless of the structure.

Banerjee et al. (2006) formulated the Gaussian Markov

network structure learning into a convex optimization prob-

lem with l1-norm sparsity regularization, and the resulting

optimization can be solved very efficiently (Friedman et al.,

2007).

Since low-treewidth and Gaussian models are fairly lim-

ited, there are attempts at addressing general Markov net-

works. Abbeel et al. (2006) provided an efficient algorithm
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with probability approximately correct (PAC) learnability

guarantees for factor graphs. Lee et al. (2007) proposed

to learn a sparse general log-linear model by optimizing an

l1-norm regularized log-likelihood. However, the difficulty

there is that the partition function can be computed only ap-

proximately and becomes very hard to compute as the net-

work becomes relatively dense. Wainwright et al. (2006)

proposed a pseudo-likelihood based scheme for learning

the sparse structure of a binary Markov network. To find

the neighbor set of a specific node, their approach estimates

an l1-norm regularized binary logistic regression model of

the node given the rest of the nodes and uses the non-zero

weights as indication of edges in the network. The advan-

tage of this approach is that it does not require computing

partition function of the Markov network, and the l1-norm

logistic regression can be solved efficiently. However, this

approach does not optimize global likelihood and its result

may not even be consistent with respect to the edges se-

lected by different nodes.

We propose to learn the structure of a general Markov net-

work using an ensemble of trees (ET) model. The ET model

was first introduced by Meilă and Jaakkola (2006), and

it approximates a Markov network using a mixture of all

possible (exponentially many) spanning trees of the net-

work. The key feature of the ET model is that although

it needs to sum over exponential many spanning trees, its

partition function as well as data likelihood has a closed

form. Surprisingly, we have not seen any work that uses

the ET model for Markov network structure learning. In

this paper, we simplify the ET model in a way such that

it is suitable for learning the structure of both discrete and

continuous Markov networks, and we develop an efficient

algorithm for solving the resulting optimization problem.

Besides having a tractable partition function, our proposed

ET model has some other advantages in comparison to the

existing methods for Markov network structure learning.

First, it is versatile to different Markov networks: discrete

or continuous, Gaussian or non-Gaussian, low or high tree

width, and so on. Second, since the ET model tends to fit

data using as small number of spanning trees as possible, it

provides a natural regularization mechanism for finding a

sparse representation of a Markov network. Hence there

are no regularization parameters to set in our ET model

learning in contrast to those methods that employ l1-norm

sparsity regularization. Our simulation results show that,

when only a small number of data samples is available,

the proposed ET approach provides significantly better per-

formance in recovering the structures of Gaussian Markov

networks and binary Markov networks, compared respec-

tively to the l1-norm Gaussian Markov network approach

by Banerjee et al. (2006) and the l1-norm regularized logis-

tic regression approach by Wainwright et al. (2006). Our

experimental results show that the ET approach is able to

recover a meaningful word network from blog posts.

2 Ensemble-of-trees (ET) model for learning

the sparse structure of a Markov network

We first introduce the notation that will be used throughout

this paper. The M × 1 vector X = [X1, X2, ..., XM ]T

denotes the nodes of a Markov network, and M is the total

number of nodes. We refer to nodes as Xu and Xv also as

u and v, respectively. The edge between nodes u and v is

denoted as euv. The vector x (M × 1 vector) represents a

realization of X . In a discrete Markov network, a node u
takes ru different values.

2.1 Previous work of ensemble of trees (ET) model

The ensemble of trees (ET) model was first introduced by

Meilă and Jaakkola (2006). It is a mixture of trees proba-

bilistic model, but the mixture is an ensemble of trees since

the mixture is over all possible (and super-exponentially

many) spanning trees of a Markov network. As such, the

probability of a data sample x in the ET model is

P (x) =
∑

T

P (T )P (x|T,θT ) (1)

where P (T ) denotes the probability of each spanning tree

T , θT are the parameters in the tree T , and the summation

is over all possible spanning trees. While the ET model

seems to be intractable at first glance, its data likelihood in

Eq. 1 has a closed form when it is parameterized appropri-

ately.

First, the ET model parameterizes the P (T ) in Eq. 1 as:

P (T ) =
1

Z

∏

euv∈T

βuv, (2)

where β = {βuv = βvu ≥ 0}u=1,2,...,M ;v=u+1,u+2,...,M

are parameters and Z =
∑

T

∏

euv∈T βuv is the partition

function that sums over all possible spanning trees. The

matrix tree theorem provides a powerful tool for comput-

ing the partition function when the β are binary variables

(βuv ∈ {0, 1}). In fact, in the binary case, the partition

function has a closed form

Z = det[Q(β)] (3)

where Q(β) [(M −1)× (M−1) matrix] is the first M −1
rows and columns of the Laplacian matrix L(β) (M ×M ),

namely

Luv =

{

−βuv if u 6= v
∑

k βuk if u = v.
(4)

Meilă and Jaakkola (2006) showed that the Eq. 3 for the

partition function also holds whenβ are not binary but non-

negative numbers. This result was referred as the general-

ized matrix tree theorem.

Second, the ET model assumes that the same edge in dif-

ferent trees shares the same θ parameters. In other words,
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θT = θ regardless of T . Since the parameters θ are

node distributions {θu}u=1,2,...,M and edge distributions

{θuv}u=1,2,...M ;v=1,2,...M , the probability of P (x|T,θ)
can be written as

P (x|T,θ) =
∏

euv∈T

θuv(xu, xv)

θu(xu)θv(xv)

∏

u

θu(xu). (5)

Note that we dropped the T index on θ since θT are the

same for all trees.

With the P (T ) and P (x|T,θ) in Eqs. 2 and 5, the data

likelihood in Eq. 1 can be written as

P (x) =
∑

T

1

Z

∏

euv∈T

βuv
θuv(xu, xv)

θu(xu)θv(xv)

∏

u

θu(xu)

=
1

Z
w0(x)

∑

T

∏

euv∈T

βuvwuv(x)

= w0(x)
det[Q(β ⊗ w(x))]

det[Q(β)]
(6)

where wuv(x) = θuv(xu,xv)
θu(xu)θv(xv) , w0(x) =

∏

u∈X θu(xu),

w(x) is the collection of wuv(xu, xv) using the same in-

dexing as β, ⊗ denotes element-wise multiplication, and

the last equality is because
∑

T

∏

uv∈T βuvwuv(x) =
det[Q(β⊗w(x))] due to the generalized matrix tree theo-

rem in Eq. 3.

With the closed form for data likelihood, the parameters

(β, θ) in the ET model can be estimated in a maximum -

likelihood (ML) fashion. For a discrete Markov network,

given N observed data {x(i)}N
i=1, Meilă and Jaakkola

(2006) suggested to find ML estimations by solving the fol-

lowing optimization problem:

min
θ,β

N log det[Q(β)] −
N

∑

i=1

log det[Q(β ⊗ w(i))]

S.T.

rv
∑

xv=1

θuv(xu, xv) = θu(xu),

ru
∑

xu=1

θu(xu) = 1,

u = 1, 2, ...,M ; v = u+ 1, u+ 2, ...,M ;

θ ≥ 0 (7)

where w
(i)
uv =

θuv(x(i)
u

,x(i)
v

)

θu(x
(i)
u )θv(x

(i)
v )

, and the constraints on θ are

necessary since they are node and edge distributions.

2.2 Ensemble of trees (ET) model for structure

learning

In this paper, we exploit the ET model for Markov network

structure learning. The ET model has two sets of parame-

ters: one set is structural parametersβ, and the other set are

the distribution parameters θ. Our primary interest is the

set of structural parameters. Intuitively, the parameter βuv

can be understood as the connectivity between nodes u and

v as in the matrix tree theorem where βuv is either 1 or 0
indicating whether the nodes u and v are connected or not.

More formally, it can be shown that βuv is closely related

to edge appearance probability ρuv =
∑

T P (euv ∈ T )
defined in (Wainwright et al., 2005) since

ρuv = 1 − det[Q(β̃)]

det[Q(β)]
= βuve

T
uv[L(β) +

1

M2
eeT ]−1euv

(8)

where β̃ is equal to β except that β̃uv = 0 , euv is anM×1
vector with its uth and vth elements being −1 and the rest

elements being zeros, and e is an M × 1 vector with its

elements being all ones. From Eq.8, we see that, if βuv =
0, edge euv appears in trees with zero probability (though

this does not mean u and v are conditionally independent

in the ET model).

Compared to the previous approaches (Lee et al., 2007) for

learning the structure of a general Markov network, the ET

model has some advantages. First, the objective function

in the ET model has a closed form and there is no need to

worry about intractable partition functions. Second, the ET

model tends to fit data using as small number of spanning

trees as possible. For example, in the extreme case where

there is only one data sample, the optimal solution is simply

a single spanning tree. This behavior is explained by Eq. 7,

where the det[Q(β)] term represents the number of span-

ning trees given β and it serves as a regularization mecha-

nism that penalizes complex networks. As such, when the

structural parameters β are learned in the ET model, they

are expected to be sparse in nature. Hence the ET model

does not require setting l1-norm sparsity regularization pa-

rameters in contrast to some existing methods.

Unfortunately, solving the optimization in Eq. 7 is still

not easy. The optimization is nonconvex with respect to

β and θ. Moreover, the optimization has a large num-

ber of optimization variables [M(M − 1)/2 for β and

(1
2

∑

uv:u6=v rurv + M ) for θ] as well as a big number of

constraints. This will be further complicated in the case of

continuous Markov network where the summations in the

constraints become integrations (Kirshner, 2008).

To simplify the ET model, we set the node parameters

θ with an plug-in estimators. First, since the parame-

ters θu(xu) (u = 1, 2, ...,M) are node distributions and

they have little to do with network structures, their opti-

mal setting can be estimated directly from data. In a dis-

crete Markov network, they can be computed by counting

θu(xu) = [
∑N

i=1 I(x
(i)
u , xu)]/N, xu = 1, 2, ...ru, where

I(·, ·) is the indicator function and x
(i)
u denotes the value

of the uth element in the ith data sample x(i); in a contin-

uous Markov network, the node distributions θu(xu) can

be estimated by fitting a one-dimensional Gaussian to the

data {x(i)
u }N

i=1. Second, our simplification of the ET model

goes one more step further, that is, we also estimate the

edge distributions θuv(xu, xv) directly from data without
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taking network structures into account. Similarly, in a dis-

crete Markov network, θuv(xu, xv) is computed by count-

ing; in a continuous Markov network, θuv is estimated

by fitting the data {[x(i)
u ;x

(i)
v ]}N

i=1 with a two-dimensional

Gaussian. The above choices dramatically simplify the ET

model since the optimization in Eq. 7 is now only with re-

spect to the structural parameters β. Nevertheless, as we

will demonstrate later in Section 3, the simplified ET model

is still powerful in recovering the structure of Markov net-

works.

Another issue in the optimization in Eq. 7 is that the struc-

tural parameters β need to be constrained. First, accord-

ing to the definition of the tree probability in Eq. 2, the

elements in β must be nonnegative. The nonnegative con-

straints lead to sparse solutions of β, similar to the non-

negativity regularization in the nonnegative matrix factor-

ization and the support vector machine. Second, we also

notice that the scaling of β does not change the objec-

tive function. This is because, if β̂ = cβ with c be-

ing a constant, log det[Q(β̂)] − log det[Q(β̂ ⊗ w(i))] =
log{cM−1 det[Q(β)]} − log{cM−1 det[Q(β ⊗ w(i))]} =
log det[Q(β)]−log det[Q(β⊗w(i))] whereM is the num-

ber of nodes in the network. Therefore, to eliminate the

scaling degeneracy in β solutions, we choose to impose a

normalization constraint on β, namely,
∑

uv,u6=v βuv = 1.

To summarize, the resulting optimization for the ET model

for network structure learning is:

min
β

N log det[Q(β)] −
N

∑

i=1

log det[Q(β ⊗ w(i))]

s.t. βuv ≥ 0 u, v = 1, . . . ,M, u 6= v
∑

u,v:u6=v

βuv = 1. (9)

It is worth noting that, Q(β) needs to be symmetric pos-

itive definite, but that is automatically guaranteed by the

way that Q(β) is constructed.

2.3 Optimization algorithm

Although we have greatly simplified the ET model and the

simplification has led to a relatively simple optimization

shown in Eq. 9, it is still not so easy to solve the result-

ing optimization because it is nonconvex (the objective is

a difference of convex functions) and traditional methods

for convex optimization may fail. For example, log-barrier

interior point methods are powerful approaches for solv-

ing constrained convex optimization, but they are not suit-

able for nonconvex optimization since their early centering

steps would generally shift solutions to the center of the do-

main of an optimization problem regardless of initial solu-

tions. Consequently, there is no guarantee that the interior

point method would yield a better solution than an initial

solution due to the nonconvex nature of the optimization.

Our choice here is a projected gradient descent (PGD) al-

gorithm (Bertsekas, 2003). As we shall show, the PGD al-

gorithm is guaranteed to converge to a local minimum near

an initial solution when its step sizes are selected properly.

The PGD algorithm is indeed efficient for the optimization

that we have in Eq. 9. In general, a PGD algorithm con-

sists of two steps in each update iteration. The first step is

to move a solution along the opposite of gradient direction

with a certain step size. For example, if the current solu-

tion estimate is β and the gradient is ∇β , then the first step

is to move to β̂ = β − α∇β where α is some nonneg-

ative scalar representing step size. Then, the second step

of the PGD algorithm is to find the point in the domain of

optimization that is closest to β̂. This point is then a new

β estimate. The second step is basically a projection step,

and that is why the algorithm is named projected gradient

descend. The PGD algorithm is particularly efficient when

an optimization has only element-wise bound constraints.

This is because, in this special case, the projection step is

simply coordinate-wise truncation (Bertsekas, 2003). Our

optimization in Eq. 9 indeed has element-wise nonnegative

constraints except the unit l1-norm constraint. Fortunately,

since scaling of β does not change the objective function

as explained in Section 2.2, the unit l1-norm constraint can

be treated separately. In other words, the unit l1-norm con-

straint can be enforced by normalizing β after each PGD

update, and the normalization should not change the con-

vergence property of the PGD algorithm.

Since the optimization in Eq. 9 has a closed form, it is easy

to compute its derivative with respect to β. Let f(β) be the

objective function, then the gradient of β is

(∇βf)uv = eT
uv{N [Q(β)]−1−

N
∑

i=1

w(i)
uv [Q(β⊗w(i))]−1}euv

(10)

when u 6= M and v 6= M with euv being an M × 1 vector

whose uth and vth elements are −1 and other elements are

zeros, and

(∇βf)uv = {N [Q(β)]−1 −
N

∑

i=1

w(i)
uv [Q(β ⊗ w(i))]−1}uu

(11)

when u < M and v = M , and (∇βf)vu = (∇βf)uv .

Given the derivative, the PGD update rule is

βnew
uv = [βold

uv − α(∇βf)uv]+ (12)

where (z)+ is a hinge function so that (z)+ = 0 if z < 0,

and (z)+ = z if z ≥ 0. The parameter α is the step size

determined by Armijo’s rule (Bertsekas, 2003), namely, it

is the largest value in the series {γm}+∞
m=0 that satisfies

f(βnew) − f(βold) ≤ η(βnew − βold)T∇βf (13)

where ∇βf is the vectorization of

{(∇βf)uv}u,v=1,2,...M, v 6=u, and typical settings for
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γ and η are γ = 0.5 and η = 0.01. The above Armijo’s

rule guarantees that each PGD iteration significantly (no

worse than linear) decreases the objective function until the

PGD algorithm converges. This excludes early stopping

in the PGD algorithm. Consequently, the algorithm is

guaranteed to monotonically converge to a local optimizer.

A more detailed convergence proof of the PGD algorithm

can be found in Chapter 2.3 in (Bertsekas, 2003).

After each PGD update, our algorithm normalizes β to

enforce the unit l1-norm constraint in the optimization in

Eq. 9. Since the normalization does not change the objec-

tive function, each iteration (a PGD update plus a normal-

ization) still guarantees a significant decrease of the objec-

tive function. As such, the resulting algorithm is guaran-

teed to monotonically converge to a local optimizer.

Besides the main optimization algorithm that finds a local

optimizer near an initial solution, how to find the initial so-

lution is also an important issue in nonconvex optimization.

The popular approach for choosing the initial solution is to

take some random initial solutions and select the one that

yields the best objective function after optimization. The

downside of this approach is that it needs to solve the opti-

mization many times. Here, we have another choice, that is,

we derive the initial solution by solving a convex optimiza-

tion whose objective function upper-bounds the objective

function in Eq. 9. To do that, we notice that det[Q(β)] =
∏M−1

u=1 (λQ)u with (λQ)u representing the uth eigenvalue

of Q(β). Then
∏M−1

u=1 (λQ)u ≤ ( 1
M−1

∑

u λQ)M−1 =

{ 1
M−1 Trace[Q(β)]}M−1 ≤ { 1

M−1Trace[L(β)]}M−1 =

( 2
M−1 )M−1 where the last equality is because the unit

l1-norm constrain on β and Luu =
∑

k 6=u βu,k for any

u ∈ X . Therefore, ignoring constant terms, we may solve

the following optimization to attain an initial solution for

initializing the optimization in Eq. 9:

min
β

−
N

∑

i=1

log det[Q(β ⊗ w(i))] (14)

S.T. βuv ≥ 0 u = 1, 2, ...,M, v = 1, 2, ...,M, u 6= v
∑

u,v:u6=v

βuv = 1.

This is a convex optimization problem, and it can solved

efficiently by many approaches; we use the PGD algorithm

for this problem as well.

3 Results

In this section, we employ both simulated examples and

real-world applications to test our proposed ET approach

for Markov network structure learning. In simulations, we

test the ET approach on both Gaussian Markov networks

and binary Markov networks. For Gaussian Markov net-

works, we compare the ET approach with the l1-norm reg-

ularized Gaussian Markov network approach (denoted as
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Figure 1: The comparison between our proposed ET approach
and the l1-norm regularized Gaussian Markov network approach
(l1GMN) (Banerjee et al., 2006) on recovering the sparse struc-
tures of simulated Gaussian Markov networks. The results are
evaluated by their Hamming distances to their respective ground
truth. We simulated four types of networks: Upper left, 50 nodes
with averagely 3 neighbors per node; Upper right, 50 nodes with
averagely 6 neighbors per node; Lower left, 200 nodes with aver-
agely 4 neighbors per node; Lower right, 200 nodes, 4 neighbors
per node on average, but the number of the neighbors to each node
has a power law distribution. Each result is averaged over five in-
dependent trials, which have the same neighboring statistics but
different Markov network structures.

l1GMN) by Banerjee et al. (2006); for binary Markov net-

work, the ET approach is compared with the l1-norm reg-

ularized logistic regression approach (denoted as l1LR) by

Wainwright et al. (2006). We also apply the ET model to a

real-world application, which is to discover a word network

from a number of blog posts.

3.1 Simulation results

3.1.1 Learning the sparse structure of a Gaussian

Markov network

In this simulation, we demonstrate the performance of the

proposed ET approach on finding the sparse structures of

Gaussian Markov networks. We assumed the Gaussian

Markov networks to have zero mean since the mean would

not affect our analysis. A zero-mean Gaussian Markov net-

work can be described as

P (x) =
1

(2π)M/2 det(Σ)−1/2
exp{−1

2
xT Σ−1x} (15)

where M denotes the number of nodes in the network, Σ
represents covariance matrix, and Σ−1 is the precision ma-

trix describing the structure of the network (for example, if

(Σ−1)uv = 0, then nodes u and v are independent condi-

tioned on the rest of nodes in the network).
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We simulated Gaussian Markov networks with four types

of sparse structures (or precision matrices): 1) 50 nodes

with averagely 3 neighbors per node, 2) 50 nodes with aver-

agely 6 neighbors per node, 3) 200 nodes with averagely 4

neighbors per node, and 4) 200 nodes with 4 neighbors per

node on average but the number of neighbors to each node

has a power law distribution. For each type of sparse struc-

ture, we randomly constructed 5 precision matrices (or in-

verse covariance matrices) for simulating Gaussian Markov

networks. For each precision matrix, the positions of its

nonzero elements were selected randomly with a constraint

of its neighboring statistics. Its off-diagonal nonzero el-

ements were sampled using s(0.1 + 0.2|n|) where s was

randomly drawn from {+1,−1} and n was drawn from a

zero-mean Gaussian with unit variance, and its diagonal

elements were assigned to assure the positive definiteness

of the precision matrix. Given the precision matrix for a

zero-mean Gaussian distribution, it is easy to sample data

from the distribution. For each 50-node Gaussian Markov

network, we drew 1000 data samples; for each 200-node

network, we drew 4000 data samples. Now, the goal here

is to see how well the ET approach recovers the sparse

structures of those precision matrices given different num-

bers of sampled data. We compare the performance of the

ET approach with the l1GMN approach (Banerjee et al.,

2006). For the l1GMN, its sparsity regularization param-

eter was determined by Eq.(3) in (Banerjee et al., 2006),

namely, λ(α) = (maxu>v σ̂uσ̂v) tN−2[α/(2M2)]√
n−2+t2

N−2
[α/(2M2)]

,

where tn−2[α/(2M
2)] denotes the (100 − α)% point of

Student’s t-distribution for N − 2 degrees of freedom, N
is the number of samples used for structure learning, σ̂u is

the square root of the empirical variance of u, and α was

set to be 0.05. It is worth noting that, to our experience,

setting the regularization parameter in this way provided

much better results than setting it using cross-validation.

Figure 1 illustrates the performance of the ET approach

in recovering the structures of different Gaussian Markov

networks in comparison with the l1GMN approach. The

performance is evaluated by Hamming distance, the num-

ber of disagreeing edges between an estimated network

and the ground truth. The results show that, although the

l1GMN approach tends to yield accurate estimates when

the number of samples is sufficiently big, the ET approach

consistently out-performs the l1GMN approach in different

Markov network structures when only a medium number

of data samples were used for structure learning.

Notably, the ET model is very general in the sense that it

did not use the knowledge that the Markov networks were

Gaussian. Therefore, we can expect the ET model to have

strong ability to go beyond Gaussian Markov networks be-

cause the model only needs to estimate up to second-order

joint distributions (for the marginals in Eq. 7), which can be

estimated fairly accurately from a medium amount of data

regardless of Gaussian or non-Gaussian distributions.

200 400 600 800 1000
0

20

40

60

80

200 400 600 800 1000
50

100

150

1000 2000 3000 4000
0

100

200

300

400

1000 2000 3000 4000
0

100

200

300

400

 

 

Number of samples Number of samples

Number of samples Number of samples

H
am

m
in

g
d
is

ta
n
ce

H
am

m
in

g
d
is

ta
n
ce

H
am

m
in

g
d
is

ta
n
ce

H
am

m
in

g
d
is

ta
n
ce

50 nodes, 3 neigh./node 50 nodes, 6 neigh./node

200 nodes, 4 neigh./node
200 nodes, 4 neigh./node
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l1LR AND

l1LR OR

ET

Figure 2: The performance comparison between our proposed
ET approach and the l1-norm regularized logistic regression
(l1LR) approach (Wainwright et al., 2006) for learning the sparse
structures of simulated Binary Markov networks. In the l1LR
approach, its results (sparse weights) can be combined by us-
ing logic AND (shown by down-triangle dash lines) or logic OR
(shown by right-triangle dot lines). The circle dash-dot lines de-
scribes the results of the ET approach. We simulated four types
of networks: Upper left, 50 nodes with averagely 3 neighbors
per node; Upper right, 50 nodes with averagely 6 neighbors per
node; Lower left, 200 nodes with averagely 4 neighbors per node;
Lower right, 200 nodes, 4 neighbors per node on average, but the
number of the neighbors to each node has a power law distribu-
tion. Each result is averaged over five independent trials, which
have the same neighboring statistics but different Markov network
structures.

3.1.2 Learning the sparse structure of a binary

Markov network

The ET model can also be applied for finding the sparse

structure of a discrete Markov network. Here, we use bi-

nary Markov networks as examples and compare the ET

approach with the l1LR approach et al. (Wainwright et al.,

2006) on network structure learning. We used the follow-

ing form for simulating a binary Markov network:

P (x) =
1

Z
exp{

∑

uv

θuvxuxv +
∑

u

ψuxu} (16)

where Z =
∑

x exp{∑uv θuvxuxv +
∑

u ψuxu} is the

partition function, x ∈ {1,−1}M , ψ are the coefficients

of linear terms, and θ are coefficients of quadratic terms

describing the structure of the network.

In simulating binary Markov networks, we employed the

same sparse structures that we had simulated for Gaus-

sian Markov networks. Given the sparse pattern of each

structure, we sampled the nonzero elements of θuv using

θuv = s(0.1 + 0.2n) where s was drawn randomly from
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{−1,+1} and n was uniformly distributed in [0, 1]. The

linear coefficients ψ were drawn in a similar way except

that they were all positive. Then given θ and ψ, we em-

ployed Gibbs sampling to draw samples from the distri-

bution. Similar as in the case of Gaussian Markov net-

works, we drew 1000 samples for each 50-node network

and 4000 samples for each 200-node network. For the

l1LR approach, the l1-norm sparsity regularization param-

eter (in Eq. 3 in (Wainwright et al., 2006)) was set to

be λ =
√

log(M)/N as proposed in (Wainwright et al.,

2006), where M is the number of nodes and N is the num-

ber of samples.

Figure 2 shows the performance comparison between our

proposed ET approach and the l1LR approach on recov-

ering the sparse structures of different binary Markov net-

works. In the l1LR approach, the solutions of individual lo-

gistic regressions may not be consistent to each other. For

example, let’s say, in one logistic regression where node i
is seen as the output, node j is associated with a nonzero

weight; however, in the logistic regression where node j
is the output, note i may not be associated with a nonzero

weight. As a result, the solutions of the l1LR approach are

combined by either logic AND or logic OR, and different

logics often yield different structure estimates. Figure 2

illustrates that the ET approach is able to achieve good

structure estimation with a relatively small number of data

samples. In contrast, the l1LR approach typically needs

much more data to get a good structure estimation. This

is because the l1LR employs a pseudo-likelihood paradigm

where the overall objective function is the sum of the log-

likelihood of individual logistic regressions and a pseudo-

likelihood approach typically is not efficient in terms of

data samples. In contrast, the ET approach is a maximum

likelihood estimation approach, albeit for a different model.

3.2 Finding word network from blog posts

We experimented with the ET model for learning a sparse

word network from blog data. more recently Internet blogs

have become a fastest-growing self-publishing media. Al-

though the current search engines are able to take return

popular webpages given some query, the information in

blogosphere is scattered and knowledge mining becomes

very challenging. An important task in blogosphere knowl-

edge mining is to learn the relations among different sub-

jects, described by words. The proposed ET model can be

applied to learn a sparse network of those words that de-

scribes their joint distribution.

In our experiments, we had about 18,000 blog posts span-

ning from January to March, 2008. According to the tf-idf

ranking of the vocabulary of the blogs, we selected 1000

words. Each post was represented by a 1000×1 binary vec-

tor whose ith (i =1, ..., 1000) element was the indicator of

whether the ith word appeared in that post.

Table 1 shows a part of learned word network. Such a word

network can be useful, for instance, for blog navigation.

For example, if an Internet user is interested in looking

at Apple company. Then, from the learned network, the

user will be offered the several aspects to look at: iPhone

(its product), Mac (its product), iPod (its product), iTunes

(its product), store (place to get an Apple product), Nasdaq

(about stock), Microsoft (its primary competitor), and so

on. If the user is further interested in Apples’ stock, he/she

will be further directed to look at analyst (probably what

analysts said about Apples’ stock), the stock’s expectation,

trend and portfolio, as well as Apple’s competitors like Mi-

crosoft and HP.

4 Discussion

We have described a ensemble-of-trees (ET) model for

learning the sparse structure of a general Markov network.

The advantage of the ET model is that its partition function

and data likelihood have closed forms. Based on the orig-

inal ET model introduced by Meilă and Jaakkola (2006),

we propose a much simplified form. Our simplification not

only is for easier optimization but also makes the ET model

suitable for learning the structure of both continuous and

discrete Markov networks. We also develop an efficient

algorithm for solving the resulting optimization, which un-

fortunately is non-convex. To address the initialization is-

sue for the non-convex optimization, we propose to solve a

convex upper-bound optimization problem.

We tested the proposed ET approach for recovering the

structures of Markov networks on both simulated examples

and real-world applications. In simulated examples, when

only a small number of data samples is available, the re-

sults showed that the ET approach outperforms the l1GMN

approach (Banerjee et al., 2006) on Gaussian Markov net-

works and the l1LR approach (Wainwright et al., 2006)

on binary Markov networks. Remarkably, in the case of

Gaussian Markov networks, the ET model does not use the

knowledge that the Markov networks were Gaussian. Our

proposed ET model is indeed versatile to different Markov

networks, Gaussian or non-Gaussian, continuous or dis-

crete, and so on. In a real-world application, we showed

that the ET model was able to learn a meaningful network

of 1000 words from blog posts. Since it is impossible to

show the whole learned 1000-word network in this paper,

we showed a small sub-network and the whole network is

available on our webpage.

As we have demonstrated, the ET approach is promising

for learning the sparse structure of a general Markov net-

work. Meanwhile, our ongoing and future work focuses

on further improving the ET model. First, the ET model

is still restrictive in representing relatively dense networks.

We found in our simulations that the ET approach often

yielded an overly sparse estimate of a dense network (with
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Table 1: A part of learned sparse word network from blog posts. The subnetwork is centered at ’apple’. In each column, the word in
the first row has connections to the rest of words in the same column, and they are ranked by their connectivity (described by β in the
ET model) to the first word.

apple iphone mac ipod itunes store nasdaq

iphone apple apple iphone apple shop newsletter

mac ipod os apple download retail e-mail

microsoft mobile pc touch music apple analyst

ipod device windows itunes ipod purchase blackberry

itunes phone macbook music amazon music expectation

store rumor user device podcast price trend

pc blackberry hardware song iphone download

user smartphone computer dvd library letter

device pc leopard stream item print

hardware gps desktop selling network

computer user safari amazon directory

macbook nokia pro storage responsibility

price store graphics backup hp

upgrade wireless vista package portfolio

mobile gadget demonstration

os app apple

leopard australia microsoft

nasdaq carrier exchange

safari samsung

maker touch

apps launch

smartphone

competitor

very low recalls on nonzero edges, though). We believe

this is because the ET model tends to use as small number

of spanning trees as possible due to the det[Q(β)] regu-

larization (representing the total number of spanning trees)

in the optimization in Eq. 7. We can potentially relax the

regularization to allow less sparse models. Second, the dis-

tributions represented by the ET models is very different

than Markov networks, and yet the sparsity patterns seem

to largely coincide. A challenge for future work is to estab-

lish a theoretical understanding of the relationship between

the sparsity patterns of the two types of models.
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