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Abstract

It is shown using numerical simulation that classica charged tachy ons have severd
features normally thought to be unique to quantum mechanics. Spin-like self-orbiting
helica motions are shown to exist & discrete vaues for the velocity of thetachyonin
Fey nman-Wheder dectrody namics and in normal causal dectrody namics more complex
closed orbits aso appear to exist.  Tunneling behavior of the classicd tachyon is
observed at classica turning points depending on the ange of incidence. The equations
of motion appear to be chaotic and effectively indeterministic when the tachy on crosses
its own past light cone. It is argued that sdlf-interacting tachy ons movingin atight helix
would behave causaly, and that they could be abasis for a hidden variable description of
quantum mechanics. A procedureis proposed which could determine the fine structure
constant.

PACS Numbers: 41.20.-q 14.80.-
1. Introduction

Arnold Sommerfdd first published the possibility of tachyonsin 1904 [1], a the same
time as theyoung Albert Einstein was negecting his chores in the Swiss patent officein
order to revolutionize theworld of physics. Tachyons captured someinterest in the
physics community in the 1960s and 70s [1-7], but they have since fallen somewhat from
fashion because direct experimenta evidence has not been found to support their
existence, and also because of concerns about causdity [8]. Arguments have been made
to counter the causdity objections [9], and theissueremainsin dispute. Thereare severd
reasons why tachyons are still of interest today, and in fact interest may beincressing.
First, many stringtheories have tachy ons occurring as some of the particles in the theory
[10], dthough they are generdly regarded as unphysica in thosetheories. Therearedso
severa recent papers that assert experimentd evidence that some neutrinos are tachy ons
[11,12]. Thereisanew and extensivere-anaysis of tachyon dynamics[13]. Thereis
much discussion in the physics literature in recent years of superluminal connections
implied by quantum mechanics and by the evanescent wave phenomenon of light optics



as well as quantum tunneling, dl indirect evidence of nonlocdity in nature. Theseand
other recent developments show that tachy ons are still atimely subject for investigation.

Tachyon trgectories can concelvably intersect their own past and future light cones [4],
and if they were charged they would experience an electromagnetic self-force that has no
andog for particles moving slower than light. It isthe exploration of this self-interaction
that is the subject of this paper. If atachyon were movingvery fast, then it could
intersect with its own light cone a alarge number of pointsin its own past or future. The
resulting theory looks to be extremely complex and fertile for investigation, having more
in common with amany body problem than with aclassicd singe particletrgectory
problem. Accordingtheanaysis of Ey and Hurst [5], charged tachy ons will not
experience alocd sdf force (thetypethat occurs in the Lorentz-Dirac Equation). Their
arguments rely on aregularization procedure that seems quite natura and reasonable.
Thetachyons will experience asdlf force when they cross their own past light coneas we
show here, and in this case they can radiate a least in the usua causa eectrody namics
with retarded potentias. In the Feynman-Wheder formulation of eectrody namics they
will not radiate.

Recami [6] has presented athorough andysis of the various possibilities for classica
equations of motion for tachyons. It is shown herethat in Feynman-Wheder action a a
distance eectrody namics these equations have many closed circular or helica orbits,
depending on the speed of thetachyon in the circular orbit. Some speeds give bound
orbits while others do not. The sdf-orbiting tachyon thus gppeears to be moving slower
than the speed of light on the average, and to have an intrinsic angular momentum. One
might intuitively expect that atachyon that is movingin acircle so fast as to seeits own
image —ie tointersect its own light cone—would be repdled from its own image since
like charges repd. Although thisis usually true, the force can sometimes become
attractive because magnetic and relativistic effects must be included which lead to net
attraction in some cases, depending on the speed of the orbit as numerica simulations
show.

First the Fey nman-Wheder form for Electrody namics is considered and it is shown that
helical solutions exist. Then causd eectrody namics is considered and the azimutha
forcethat causes the motion to be non-helicd is caculated. Theradia force for helica
motion in this caseis the same as for Fey nman-Wheder interaction. The caculations are
too complicated to perform andytically, and so numerical computations are presented.

2. Tachyon Equations of Motion

The equations of motion for classica tachy ons have been developed by many authors.
Themost commonly accepted form for the Tachy on equations of motion are (Recami[6],
in units where c = 1):
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Recami argues that the force equation could with equa plausibility be chosen to be (see
section 6'14 in Reference 6)
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wherein both of these equations the mass m, is positiveand red. Thetwo equations
differ by an overdl sign. These equations are completely different and have very
different solutions. For theremainder of this paper we shal useonly theformin
equation 1.

We shall first illustrate the solution for the time symmetric action at adistance

electrody namics of Fokker, Feynman, and Whedler [14-15]. Theslower than light
problem of ardativistic two-body bound state has been solved for this ty pe of interaction
[16] which lends encouragment toward looking for asolution in this context in the

present case.

3. Action-at-a-Distance Electrodynamics

When theforceis due soldly to dectromagnetic effects, one may write for equation 1 of
motion of the éectricaly charged tachyon:
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where q is the charge of the tachyon and
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and where
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wherethe currents J are dueto dl therelevant charges. The expression (5) is
symmetrica between the future and the past since the advanced and retarded conditions
enter with equal weights in the Fey nman-Wheder gpproach..



In (5) must beincluded the sdif interaction possibilities since the tachy on moves faster
than light and it can therefore interact through the retarded and advanced potentia with
itsown trgectory. Thusin (5), J includes not only the current density produced by dl
the other relevant particles, but dso that of the particular particle whose motion the
equation describes. Excluded from J, however, is the singular contribution arising from
the particle's present location, just as this is aso excluded in the slower than light case.

Next we consider an isolated electricaly charged tachyon. Theonly contributionsto J in
equation 5 is then from the particlé's own trgjectory intersectingits own light cone.

For any particle, tachyon or tardyon, which moves strictly forward in timewe may write
the contributionto J as

Im(x,t) = qch™d*(x - r(t)), bm—é%.) (R,i) ©)

The advanced and retarded potentias can be written

A 0 =g s g "
Let us usethenotation
R(xt) =x- x(t); RXt)=[R(x,t) ®)

So that R is the vector pointing from the source point on the particle trgectory to atest
point x. Then defining

Koo (X,1) :i(t + R(x.t )) =1F A} whereh= R(xt) 9)
Adv dt’ c R(xt")
we can write
Ret l l:l Ret é B l:l
F*=esf—p, 1 A =es— (10)
8 Rbs BKRHE=

whereb, K and R are evaluated at theretarded or advanced time as determined by the
case. Thegadient operator actingon any of these fields can be expressed in terms of the
R derivative
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Then we find the following expressions for eectric and magnetic fields andogous to the
slower than light case:
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Notice an interesting feature of equation 12. K as defined in equation 9 can be zero.
Whenever K vanishes, the dectric field in (12) can be singular even if R is not zero.
This singular behavior has no andoguein slower than light electrody namics. The
vanishing of K defines the Cerenkov cone, and singularities on this cone were also noted
in[5].

4, Circular Motion Solutions

We now look for solutions to the equations of motion (1) in the form of circular motion:
x(t) =rcos(?t); y()=rsin(?t); z=0 (14
and wherethe speed is superlumina

V=r?>c (15)

Thehdlica trgectory may instersect the lightcone of atestpoint on thetrgectory a a
number points asisillustrated in Figure 1. The number of intersections is afunction only
of the particles speed. We must sum the force contribution from al of these
intersection points. The points comein symmetricad pairs, each retarded point beingthe
reflection of the correspondng advanced point.

Depending on how fast thetachyon is moving, thetrgjectory will intersect the future and
past light cones symmetricdly at lesst a one point. Consider Figure 2 as we cdculatethe
fields at an arbitrary test point dongthetragetory which are dueto apair of light cone
intersections. Thetotd fidd a thetest point is gven by:
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For circular motion 3 points in the negetiveradia direction in Figure 2. Notice from
figure 2 and equation 9 that for this case of reflection pairs of intersecting points that

Kra = I<adv ° K (17)

Neither theretarded nor the advanced forceis in theradia direction. However, it is
straightforward to show that when one adds the contribution of apair of advanced and
retarded sy mmetrical intersection points, that the force acting on thetest point dueto this
contribution becomes aradial force. Schild [16] noted this samefact for slower than

light circular orbiting particles.

We have solved the force problem numericdly, and we find the following result for the
radid force acting on thetest point:

r
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where Z is adimensionless function depending only on b and where positive vaues of Z
correspond to attraction to the center of the helix. Naticein (122 that sincethe
accderation varies as Ur the dectric field will have an overdl 1/r® dependenceleadingto
(18). A plot of Z is presented in Figure3up to b = 20. Whenever Z is positivea
helical motion solution exists to (1). When Z is negative, ahdica solution exists for
equation (2).

The equations of motion become simply:
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Noticethat for certain values of b that Z becomes discontinuous in Figure 3. These
discontinuities occur when the Cerenkov cone from the source point intersects the test
point. Thenext section explains this behavior.

5. An Explanation Of Why Certain Discrete Velocities Lead To An
Attractive Force



The numerica simulations show singular discontinuous complex behavior in the radia
and azimutha forces when the velocity has certain discrete values. The occurrence of
these singularities can be understood by the following simple geometrica analysis.
Consider theretarded fields produced by the circular motion of (14). Theretardation
condition which determines thetimest' (sourcepoints) on thetrgectory that can intersect
with the position of the particle a timet (testpoint) is

[x(t)- x(t')=c(t- t'), wheret>t' (20)
Owingto thecircular form of the motion, this condition may be written as

. . 2 .
e - =c (- 1), ot (21)

further defining
R=2r/c and t =c(t-t')/r 22)

the null condition becomes

2-2cos(Rt) =t%t >0 (23)
Thelarger that b is the more solutions there areto this equation. Defining:
f(t,R)=2-2cos(Rt)- t*>, t >0 (24)

Then the null points are determined by the equation

f(t,R) =0t >0 (25)

Noticingthat thefollowing properties aretrue:

f'(t,R) » t2(R? - 1), forsmall t @7

It follows from these results that for b>1 thereis at least one solution for t which satisfies
the null condition. Now define:

N () = The number of solutionsto f = Ofor positivet (29)



This function starts off a 1 and increases discontinuously by jumps of two a every point
b a which f has asolution to the following two simultaneous equations:

f(t,R) =0 "&s _
1t

These are equivaent to:
j =Rt

2-2cos(j )-jsinj)=0

R=+f 7sin( )

(30)

(31
(32)
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Equation 32 is asinde transcendenta which can be solved easily by numerical means.
Table 1 showsthefirst 15 vaues of b:

4.603338848751701e+000
7.789705767492714e+000
1.094987986982622e+001
1.410169533046915e+001
1.724976556755881e+001

2.039583252184294e+001
2.354070189773618e+001
2.668479810180271e+001
2.982836607105987e+001
3.297155711433862e+001

3.611446976533017e+001
3.925717095448966e+001
4.239970774262564e+001
4.554211418676631e+001
4.868441554248154e+001

Tablel Sngular b values

Next it will be proven that at K, vanishes a these singular vaues where the number of
roots to the null equation changes discontinuously by increments of 2. This aso causes
the Forceto be singular in aneighborhood of these points. Thevedocity of the source-

point isgven by:

B (") =-r?sin(?t’);, B, =r?cos(?t")

and K from (9) is gven by

Kra(t, 1) =1- BE) X(X() - x(t)) () - x(t")

which can berewritten as
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Ko (tt') =1- bsin(j )/42- 2cos(j )

but a asingular null point we have also from abovethat:

2-2cos(j)-jsin()=0 (37)
and therefore

Kot t)=1- b.fsinG ) /Aff (38)

but aso at asingular null solution we have from above

R=.f 7sn( ) (29)

and therefore K, = 0 a asingular null solution.

Therefore, a the singular values of b, two roots to the null condition mergeinto one as
the singularity is approached from above. Below the singularity, the roots disappear
dtogether. Asthesingularity is approached, the two K, values both gpproach zero but
with opposite sign, and the forces due to each of these sourcepoints on the testpoint
gpproaches infinity, but again with opposite sign. The net force on thetestpoint is thus
the difference between two large numbers, and numerica results suggest that the
behavior of the net forcein aneighborhood of asingularity is afractal type of function of
theveocity b showing extremely complex behavior and changing sign many timesin a
very smdl interval. Three different computer programs were used to andyzethis
behavior. Thefirst two used 64 hit double precision varigbles, but it was found that this
was inadequate precision for this problem, athough they did show fractd behavior. The
third program used the extended precision capabilities of M athematica, and the results
obtained were stableto further increases in the working precision of the program. The
results presented in the singular neighborhood were done with aworking precision of 300
decimal places.

6. Summary of Numerical Results

The numerica caculations take atachy on which is constrained to move on an exact
circlewith constant speed, and they calculatethe radiative sdlf force on the particle. Both
Fey nman-Wheder dectrody namics and causal eectrody namics gve the same radia

force, but for Fey nman-Wheder eectrody namics the azimuthal forceis zero.

Thefirst generd feature that one can seefrom Figure 3 is that theradia forceis repulsive
for most velocities, and that it's magnitude is becoming stronger as the velocity tends to
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the speed of light or increases towards inifnity. There are discontinuities in the repulsive
force, and these occur at the discrete velocities of the previous section (see Table 1).

In the neighborhood of the discontinuities, the repulsiveforceis avery complex fracta-
likefunction of velocity asisillustrated in Figure 4 for thefirst singular velocity in
Tablel. Thesign of theforcein this neighborhood can be either repulsive or attractive,
and the magnitude can bevery large. Finer and finer sampling of the force shows even
more structure, like afracta curve.

The caculations were done with anumerica precision of 300 decimd places using

M athematica, and the results were tested for stability as the working precision was
increased and they were stable. The calculation was originaly coded using standard 64
bit floating point variables, but this leve of precision was insufficient to do the
cdculation since thereis asubtraction of two large numbers resultingin the net force.
This necessitated aswitch to M athematica. Thus it can be concluded that for specid
discrete velocities the tachy on experiences an atractive force (positive vaues of Z), but
this happens only in aneighborhood of the singular velocity vaues. In this neighborhood
theforce oscillates rapidly between attractive and repulsive asillustrated in Figure 4.

For causd eectrody namics the azimuthd forceis numerically found to be nonzero. The
ratio of the azimuthal to theradial forceis positivefor dl the points calculated as
illustrated in Figures 5 and 6. When theradia forceis attractive, the azimutha forceis
oppositein direction to the particle's velocity, and so it is tending to reduce the energy of
the particle and can beinterpreted as energy lost to radiation. But when the radia force
is repulsive, the azimuthal forceis in the same direction as the velocity and so it is
tendingto increase the kinetic energy of the particle. If weimagine asituation where
only the radius of the orbit is constrained but the velocity is freeto vary, we might get
some insight into this situation. Dueto the azimutha force the tachyon in this case
would gain energy, and it would consequently slow down until it reached one of the
singular velocities, and at that point the force would fluctuate between positive and
negetive vaues possibly trappingthe particles velocity at the singular vadue.

Obviously, helica motions may not bethe only confined motions of tachyonsin this
theory, but they are probably thesimplest. It's quite plausible that the tachy ons will
exhibit chaotic behavior in more general solutions. It's dso possible that the number of
times that the tachyon's world line crosses the light cone will be proven to be either an
invariant of the tachyon's motion or amonotonically increasing function of time. Thisis
because of the singular force that the tachy on will experience whenever two light cone
crossing points coaesce into asinge point which happens whenever the number of light-
cone crossings changes.
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Figure 1 A tachyon movingin ahelix and intersectingits own light cone
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intersection with the retarded light cone and the other the intersection point of the
advanced light cone.
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Figure 3 Coarsdly sampled Plot of Z(b) vs. b from 0to 21. Thediscontinuities occur at
the singularities in Table 1. Finer sampling reveds complex structure in aneighborhood

of thesesingular b vaues asillustrated in Figure 4.
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Figure 4 A findy sampled Plot of Z(b) vs. b in the neighborhood of the first singularity
showing positve values of Z correspondingto anet atractiveradial force for some values
of b.

7. The Causal Form for Electrodynamics

When considering the causa form for eectrody namics, the only change from the
Feynman-Wheder caseis tha theretarded potentids must be used in thefidd
expressions instead of the average between the retarded and advanced potentids. We
consider aparticlewhich is constrained to movein ahelix, and we caculated the
eectromagnetic forceon it. It can be shown that theradid forceisidentica to the

Fey nman-Wheder case but the azimutha forceis now nonzero. It is convenient to
express the azimutha forcein terms of aratio with theradia force. Figures 5 and 6 show
plots of the calculated azimuthal forces for two ranges of b. These plots show that the
sign of theratiois dways positive. When theradid forceis attractivein sign, the
azimutha forceis oppositein direction to the particles velocity. This apparently
represents radiative resctive force dueto energy lost to radiation. It should be noted that
it iswell established [6,13] that as atachyon loses kinetic energy, its speed increases.

Faximuthal = Fr e(rs) (40)
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We see from Figure 5 that as the velocity increases, the azimuthd force becomes smaller
as compared to theradid force. This means that in thelimit of infinite velocity the
tachy on will not radiste avay energy .
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Figure 5 Theratio of azimutha to radia forcewith causd (retarded) electrody namics.
Theradid forceis the same as for Fey nman-Wheder eectrody namics.
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Figure 6 Findly sampled ratio of Azimuthd to Radia force with Causa (retarded)
Electrody namics

8. Tunneling of Classical Tachyons
One can see quite easily that something like tunneling must occur for classica tachyons.
Consider such aparticle movingin one dimension towards aclassica turning point where

the kinetic energy would vanish. One can essily derivethekinetic energy of atachyon
from the momentum expression by using the fomula:

szov/\/m (40)

2

E, =P - (P xdt =~

482 -1

where E isthekinetic energy. Asthekinetic energy for the particle goproaches zero, its
velocity must approach infinity in the direction into the forbidden regon. Soin the next
instant the particle will move bey ond the classicd turning point, and thus tunnelingis
inevitable. We may illustrate this mathematicaly as follows. Consider integrating
equation 1 with the potentia energy and initid conditions shown in figure 7.

(41)
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Figure 7. Energy diagram for tachy on tunneling

at the classical turning point (CTP) the following limiting results are reached

Y limR=y¥ (42)

lim E, =0; lim P=mcC+—;
k xb CTP M |V| xb CTP

xp CTP

Attemptingto integrate the force equation (1) through the turning point leads to a
problem since the momemtum will become smaler in magnitude than mgc which is
impossiblefor atachyon. Thereforeif thetheory isto be seriously considered, some way
of handling classical turning points must befound. There gppearsto beonly oneway to
include such dlassical turning points in the tachy on theory. Thetachyon must begn to
travel backwards in time after passing through aturningpoint. Thisis suggested by the
fact that the velocity - beinginfinite a the classica turning point - can turn backwards in
timeat tha point without adiscontinuity. M oreover, it iswell known that Lorentz
transformations can make any point in atachyon trgectory haveinfinite velocity, and this
will in many cases causethetrgectory to reverse direction in time either before or after
the point wherethe velocity is infinite. Figure 8 illustrates the tunneling behavior in this
circumstance. Thetrgectory is asplice of theincident tachyon's motion forward in time,
asplice of backward time motion in the forbidden region, and again forward motion on
the other side of the barrier. Obviously, thistype of behavior gppears to violate causdity.
If thetachyon isinitialy movingvery fast, then thetraversa through the barrier will
occur essentialy instantaneously, and it will tunnel out the other side essentidly at the
sametimeit entered.

When thetachyon isincident on arepulsive potentid at an ande, tunneingmay or may
not occur depending on this ange and the other dy namica parameters of the motion.
Figure 8 illustrates this festure. If atachyon is movingin aheix and especidly if there
is some chaotic motion superimposed on the tachy on's helical motion, then the ange of
attack that the tachy on hits abarrier will be quite random and consequently the likelihood
of transmission or reflection will be governed by probabilistic laws, similar to quantum
mechanics.
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9. Ramifications

Theoretica conjectures are presented in the next few subsections. They present ideas
which are of ahypothetica naturethat serveto highlight the potentia of this subject.

9.1 Radiation and Radiative Reactive Forces

Theresults of the previous section show that when atachyon crosses its own ligthcone it
can experience aradiative force which causes its energy to change. This case was not
considered by Ey and Hurst [5] who showed that tachyon's do not experience the same
locdl radiative self-force as do brady ons (slower than light particles) in the Lorentz-Dirac
equation. Ey and Hurst concluded from this that tachy ons can never radiate. However,
the above result shows that this conclusion must be amended. Tachyons can still radiate
when they cross their own light cone. The Ey and Hurst result is still extremey
important becauseit shows that the classica equations of motion for tachy ons do not
have theradiative reaction term of the Lorentz-Dirac equation. As aconsegquence, the
Tachyon equation of motion does not appear to have the same problems with runaway
solutions as the Lorentz-Dirac equation for bradyons. It's interestingto notethat the
runaway solutions of the Lorentz-Dirac equation involve cosh and sinh functions of the
proper timefor thetime and one spatid coordinate [17]. Thisis mathematically
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equivaent to acircular motion which has been anayticdly continued to imaginary vaues
of proper time and where one space coordinate has become timdike as aresult of the
superlumind transformation. Tachyons may be considered to haveimagnary vaues of
proper time, and so perhaps thereis ageometrica relationship between the runaway
solutions of the Lorentz-Dirac equation and the helical motions that we have found here.
Perhaps the runaway solutions are actualy required for extended lorentz invariance
where superlumina boosts are dlowed [6,7]. Perhaps they arejust the helicd motions
that we are describing here, but viewed from a superlumina framein which the tachy on
is moving slower than light.

9.2 Causality

Tachyons, if they exist, may aways or dmost dway s be bound up in helical motions
similar to the solutions exhibited here or in other confined orbiting motions. Then they
would appear to be moving slower than light and to haveintrinsic angular momentum. If
this werethe case, then the tachy ons couldn't be used to send faster-than-light signds,
and so the causdity paradox would be simply resolved.

9.3 Relevance to hidden variable theories and stochastic models of quantum
mechanics

Theresults here are gpplicable in the hidden variable effort of quantum mechanics. The
hopethat hidden variables may betheway of nature continuesto attract prestigous
adherents such as Gerard t'Hooft [18]. When one survey s the field though, one finds that
despite great effort, asatisfactory derivation of quantum mechanics from a hidden
variable perspective still eludes researchers.

First in thelist of problems which must be overcome is Bdl's theorem [19-21] which
states that ahidden variable model must have nonlocality or superlumina connections
built into it. Bell's theoremis usudly thought to bethe most decisive objection to hidden
varigble models. Tachyons certainly provide for the possibility of nonlocdity. But then
the tachy on theory must somehow end up being causd. Tachyons bound up in helica
motions (or other more complex confined orbital motions) will be effectively causal.

It is along-standing problem to include spin into hidden variable models, particularly in a
relaivisticaly covariant way. Again, the helica motion of tachyonsis anaturd
candidate for spin. Infact, Recami and Sdesi [22] have recently suggested that classica
particles with spin may bethekey ingredient in finding an explanation of the quantum
mechanicd potentid as it gppears in Bohm's hidden variable theory [23 and references
therein]. The current theory isfully reativisticaly covariant, and an additional benefit is
that there are apparently no runaway solutions plaguing this theory asin the Lorentz-
Dirac equation for charged brady ons.

With the Fey nman-Whedler interaction form the tachy on doesn't radiate when it movesin
ahelix, but with the causd interaction form energy is lost by thetachyon to rediation if
theforceis attractive. If thetachyon has more complicated confined solutions, it is
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possible that radiationless states may someday befound. Radiation free states may have
very high velocities because as the tachy on radiates energy away its speed increases and
the energy loss for an orbiting tachy on decreases with speed (as can be surmised from
Figure5). It'svery likely, owingto the complex nonlinear equation of motion of the self-
interactingtachyon, that if the simple helica motions studied here are perturbed slightly
then the tachy ons will exhibit chaos and this could perhaps be amode of quantum
indeterminism.  Some numerical investigations of this possibility have been carried out
but results thus far areinconclusive. The singular forcerequires avery finetime
sampling and makes the caculations difficult.

A guantum mechanica wave might naturaly be visudized as the confined motion of a
tachyon which moves ergodicdly in ashort timeto fill out thewave. This confined
motion would be a superposition of helica motion with chaotic motion of the center of
the helix moving rapidly around the wave's region of support. The wave function could
collagpse dmost instantaneously in this picture because of the tachyon's great speed. Such
chaotic motion might provide the stochastic behavior in hidden varigble models like
stochastic quantum mechanics (Nelson[26], Davidson[ 27-28], and references therein) .
Indeed, tachy ons are much better suited for adescription of stochastic modds of thistype
than are brady ons because of the singular nature of the M arkov process used in these
models and their singular velocities. A singetachyon actsin someways like amany
body problem because of its ability to interact with its own past positions a possibly a
large number of points. Thisisanatura explanaion of wave-particle dudity. Inatwo
slit diffraction experiment for example, the tachy on would have the opportunity of going
through both slits many times. This avoids the usua arguments against the particle's
ability to "know whether or not the other slit was open” when it passes through one of the
slits.

Another approach to explorein looking for a hidden variable modd would beto postulate
the classica zero-point vacuum radiation mode of stochastic dectrody namics [24,25]
and then analy ze how the tachy on would diffuse in this background. The motion would
be random dueto the interaction with the background radiation, and aso could be chaotic
fromits own sdf-interaction.

The Aharanov-Bohm effect [29] is another perplexing phenomenon that needs to be
explained by hidden variable modds. Intheanalysis aboveit was noted that
singularities occur in thefied expressions when the Cerenkov cone from aretarded
source charge points to thetest point. These singularities have no analog for slower than
light particles. If the electrons in asolenoid were actualy tachyons movingin helices,
then they would produce agreat multitude of singular field points even outside the
solenoid. These might be hard to detect in most situations, as they might be randomly
oriented and quickly changingwith time and in most cases they might add up to zero net
force on moving particles outside the solenoid. But may be the Aharanov-Bohm
experiment is acase wherethe effect can be measured. Thepoint is tha the Cerenkov
singularity is amechanism for something red to penetrate the region of the solenoid and
affect aparticleoutside of it. Perhaps it can explain the Aharanov-Bohm effect.
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Thehelica solutions that we have found may behave when perturbed in someway's like
relativistic strings when their velocity tendsto infinity. A circular motion will map out a
helix in spacetime and if the velocity of thetachyon is very high, then the pitch of the
helix will be small, and the tachy on's worldline will look like acylindrica surface. Its
mechanical behavior may begn to resemblethat of ardativistic stringin this limit.

Another problem for ahidden variable theory is how oneisto interpret the double-valued
nature of the haf integra spin varigble. Perhaps thistoo has an interpretation in the
present theory. If one considers superlumina boosts added to the Lorentz group asis
donein the extended rdativity [6,7], then maybeit is possible to rotate through 360
degrees by doingit in the superlumindly boosted frame, and then come back to the
origina unboosted frame. In some circumstances the classica coordinates may not
return to their origind vaues in this case. Thereason is tha the expression for proper
time has asquareroot singularity in the velocity variable. Superlumind boosts may
involve an anaytic continuation in the proper time variable around a square root
singularity which could yield the double-vaued nature of spin in aclassicd abeit
tachyonic framework. The double-vaued nature of haf-integral spin might be aresult
of the double-vaued nature of the square root singularity for proper time when
andyticaly continuingit to superlumina frames. It's plausible that when thetachyon
circles around the axis of spin, then the spin is double-valued but when the helix itself
circles slowly around an axis, it generates asinge-vaued angular momentum anaogous
to orbital angular momentum in quantum mechanics. We defer consideration of this idea
to afuture publication.

So we have apossibleway around severd of the most disconcerting objections that have
been raised against hidden variable theories. Even it some of these conjectures prove
incorrect, they can serve as aguide for those who are seeking ahidden variable
description of quantum mechanics. If oneis so inclined, it's extremely difficult to resolve
even one of the above paradoxes in aclassicd theory. The present theory potentidly has
aresolution for dl of them. Thisistruly remarkable and unique. M oreover, from the
point of view of Occam's razor, the present tachy on theory is very economicd. It posits
only pointlike charged particles. What other explanation for the existence of spin could
bethis simplein ahidden variable theory based on classica physics?

It is plausible that chaos will be observed in amore genera solution to the tachyon
equations of motion. It's dso plausible that the number of times in the past that atachyon
intersects it's own light conewill turn out to be aconstant of the motion or a
monatonically increasing function of time, because in order for this number to change,

the tachy on must experience asingular force corresponding to K, vanishing as the
tachyon's trgectory becomes tangent to its own light cone.  If this weretrue the tachyon
could never straighten out and movein astraight line.

It is very likely that when one analy zes two or more tachyons, that circular solutions to
their motions will befound in which the group of tachyons movetogether in acircle.
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9.4 Can the Fine Structure Constant be Derived?

Edward Neson postulated that the interaction of the classica dectromagnetic field with
point charged particles may lead to chaotic behavior when treated correctly froma
mathematica point of view ([26] page 65). If the current theory exhibits chaos when the
helica motions of tachyons is perturbed, then it will be a confirmation of Nelson's
conjecture.  As Nelson points out, electromagnetism is the natura theory to look for a
chaos-based mode of quantum mechanics because the fine structure constant a is
dimensionless.

2

= % =7.29720" 10 * =1/(137.0388) (43)

If the mean radius of aperturbed helica motion could be calculated, then the angular
momentum of the orbiting tachy on could be equated to ether 7 or to 7/ 2 (it's not clear
which of these choices is correct) and this would yield anumber for a which could be
compared with the experimentd valuesin (43). It is not atrivid matter to find the mean
radius though as can be seen from Figure 4 which shows how sensitive the attractive
forceisto thevelocity of themotion. Table 1 shows that the current theory has dready
yielded anumber of dimensionless constants and that it is calculable. Nevertheess the
fine structure constant has thus far proved eusive.

Another attempt to derive the fine structure constant entirely within the context of
electromagnetismis the postulate that it is avaue which renders quantum-
eectrody namics finite [30,31,32]. This postulate has so far not been confirmed.

9.5 Multiple Tachyon Orbits

It seems certain that there will be helical orbiting solutions involving more than one
tachy on with al the tachy ons moving in the same circle with the same speed. The same
types of singularities will occur when thetestpoint is on the Cerenkov cone of the
sourcepoint as occur for asingetachyon. Thiswill happen at discrete eigenvaues, but
the values will be different than the ones found herefor asingetachyon. Quadlitatively
the same singular fracta-like force (Figure 4) will clearly be found for multiple tachyon
orbits, and this force could in some cases prevent the particles from escaping their orbits
just asit may prevent the singe tachy on from ever straightening out its orbit and flyingin
astraight line. It's natural then to try and seeif some variant of the quark mode could be
understood in this framework. The singular Cerenkov forceis anatura mechanismto
explain quark confinement.

10. Conclusion

The mathematical theory of sdf-interacting charged tachy ons is complex and intriguing.
Spin and tunneling emerges from the theory, and unusua singular forces act on tachyons
that have no analogin therest of classical physics. The singular forces occur when the
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testpoint lies on the Cerenkov cone of the source point. Perhaps auseful hidden variable
theory of quantum mechanics can be developed with charged classica tachyons as the
central agents. M any paradoxes or difficulties are conceptualy overcomeif tachyonsin
helical orbits could be the hidden varigble models for dementary particles. Charged

tachy ons may be masquerading as slower than light particles because they are movingin
tight helices that disguise their faster-than-light motion. These particles would appear to
have intrinsic angular momentum (spin) and magnetic moment, even though the actua
charged tachy on had no spin.

If atachyon moves in ahdix, then the center of the helix will transform as aslower than
light particle under Lorentz transformations, and thereforeit will dway s move forward in
time on the average no matter what frameit is viewed in. This could largely mitigete the
causdlity problem for tachy ons whereby they could be used to send signds backward in
timeasin the Tolman Paradox [8]. |If they movein tight helical motion, they can't easily
be used to signa backwards in time.

Perturbing the tachy on motion from a perfect helix will very likely lead to chaos, and a

careful analysis of this chaotic behavior in simulation may someday yield thefine
structure constant.
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