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Abstract

This brief article is intended to introduce the reader to the field of algebraic set theory,
in which models of set theory of a new and fascinating kind are determined alge-
braically. The method is quite robust, applying to various classical, intuitionistic, and
constructive set theories. Under this scheme some familiar set theoretic properties are
related to algebraic ones, while others result from logical constraints. Conventional
elementary set theories are complete with respect to algebraic models, which arise
in a variety of ways, including topologically, type-theoretically, and through variation.
Many previous results from topos theory involving realizability, permutation, and sheaf
models of set theory are subsumed, and the prospects for further such unification seem
bright.

1 Introduction

Algebraic set theory (AST) is a new approach to the construction of models of set theory,
invented by André Joyal and Ieke Moerdijk and first presented in detail in [25]. It promises
to be a flexible and powerful tool for the investigation of classical and intuitionistic systems
of elementary set theory, bringing to bear a new insight into the models of such systems.
Indeed, it has already proven to be a quite robust framework, applying to the study of
classical, intuitionistic, bounded, and predicative systems, and subsuming some previously
unrelated techniques. The new insight taken as a starting point in AST is that models of set
theory are in fact algebras for a suitably presented algebraic theory, and that many familiar
set theoretic conditions (such as well-foundedness) are thereby related to familiar algebraic
ones (such as freeness).

AST is currently the focus of active research by several authors, and new methods are
being developed for the construction and organization of models of various different systems,
as well as for relating this approach with other, more traditional ones. Some recent results
are mentioned here; however, the aim is not to provide a survey of the current state of
research (for which the field is not yet ripe), but to introduce the reader to its most basic
concepts, methods, and results. The list of references includes some works not cited in the
text and should serve as a guide to the literature, which the reader will hopefully find more
accessible in virtue of this brief introduction.

∗Dedicated to Saunders Mac Lane, 1909–2005
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Like the original presentation by Joyal & Moerdijk, much of the research in AST involves a
fairly heavy use of category theory. Whether this is really essential to the algebraic approach
to set theory could be debated; but just as in other “algebraic” fields like algebraic geometry,
topology, and number theory, the convenience of functorial methods is irresistible and has
strongly influenced the development of the subject.

1.1 Free algebras

By way of introduction, we begin by considering some free algebras of different kinds.

• The free group on one generator {1} is, of course, the additive group of integers Z,
and the free monoid (semi-group with unit) on {1} is the natural numbers N. The
structure (N, s : N → N), where s(n) = n + 1, can also be described as the free
“successor algebra” on one generator {0}, where a successor algebra is defined to be
an object X equipped with an (arbitrary) endomorphism e : X → X. Explicitly, this
means that given any such structure (X, e) and element x0 ∈ X there is a unique
“successor algebra homomorphism” f : N→ X, i.e. a function with f ◦ s = e ◦ f , such
that f(0) = x0, as indicated in the following commutative diagram.

1
0

- N
s

- N

X

f

?

.................

e
-

x0
-

X

f

?

.................

This is an “algebraic” way of expressing the familiar recursion property of the natural
numbers.

• The free sup-lattice (join semi-lattice) on a set X is the set Pfin(X) of all finite subsets
of X, with unions as joins, and the free complete sup-lattice is the full powerset PX.
In each case, the “insertion of generators” is the singleton mapping x 7→ {x}. This
means that given any complete sup-lattice L and any function f : X → L, there is a
unique join-preserving function f̄ : PX → L with f̄{x} = f(x), as in:

X
{−}

- PX

L

f̄

?

.................

f
-

Namely, one can set f̄(U) =
∨

x∈U f(x).
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• Now let us combine the foregoing kinds of algebras, and define a ZF-algebra (cf. [25])
to be a complete sup-lattice A equipped with a successor operation s : A → A, i.e.
an arbitrary endomorphism. A simple example is a powerset PX equipped with the
identity function 1PX : PX → PX. Of course, this example is not free.

Fact 1. There are no free ZF-algebras.

For suppose that s : A→ A were the free ZF-algebra on e.g. the empty set ∅, and consider
the diagram:

(1)

A
{−}

- PA

A

s̄

?

.................

s
-

where s̄ is the unique extension of s to PA, determined by the fact that A is a complete
sup-lattice and PA is the free one on (the underlying set of) A. If A were now also a free
ZF-algebra, then one could use that fact to construct an inverse to s̄ (which the reader can
do as an exercise; see [25, II.1.2] for the solution).

On the other hand, if we allow also “large ZF-algebras” — ones with a proper class of
elements — then there is indeed a free one, and it is quite familiar:

Fact 2. The class V of all sets is the free ZF-algebra (on ∅), when equipped with the singleton
operation a 7→ {a} as successor s : V → V , and taking unions as joins.

Note that, as before, joins are required only for set-sized collections of elements, so that
such unions do indeed exist. This distinction of size plays an essential role in the theory.

Given the free ZF-algebra V , one can recover the membership relation among sets just
from the ZF-algebra structure by setting,

(2) a ε b iff s(a) ≤ b.

The following then results solely from the fact that V is the free ZF-algebra:

Fact 3 ([25]). Let (V, s) be the free ZF-algebra. With membership defined as in (2) above,
(V, ε) then models Zermelo-Fraenkel set theory,

(V, ε) |= ZF.

As things have been presented here, this last fact is hardly surprising: we began with V
as the class of all sets, so of course it satisfies the axioms of set theory! The real point, first
proved by Joyal & Moerdijk, is that the characterization of a structure (V, s) as a “free ZF-
algebra” already suffices to ensure that it is a model of set theory — just as the description
of N as a free successor algebra already implies the recursion property, and the usual Peano
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postulates, as first shown by F.W. Lawvere. The first task of AST, then, is to develop a
framework in which to exhibit this fact without trivializing it. Providing such a framework is
one of the main achievements of [25], which includes a penetrating axiomatic analysis of the
requisite notion of “smallness”. For the purposes of this introduction, a simplified version
due to [37] will be employed; it has the advantage of being somewhat more easily accessible,
if less flexible and general, than the standard formulation.

1.2 A Framework for AST

The notion of a “class category” permits both the definition of ZF-algebras and related
structures, on the one hand, and the interpretation of the first-order logic of elementary
set theory, on the other. As will be specified precisely in section 2 below, such a category
involves four interrelated ingredients:

(C) A Heyting category C of “classes”.

(S) A subcategory S ↪→ C of “sets”.

(P) A “powerclass” functor P : C → C of subsets.

(U) A “universe” U which is a free algebra for P .

The classes in C admit the interpretation of first-order logic; the sets S capture an abstract
notion of “smallness” of some classes; the powerclass PC of a class C is the class of all
subsets A � C; and this restriction on P to subsets (as opposed to subclasses) permits the
assumption of a universe U which, as a free algebra, has an isomorphism i : PU ∼= U . We
can then model set theory in U by “telescoping” the sequence U,PU,PPU, . . . of elements,
sets of elements, sets of sets, etc., back into U via the successive isos · · · ∼= PPU ∼= PU ∼= U .
Specifically, for elements a, b of U , we let a ε b if and only if a ∈ i−1(b), where the relation ∈
on U ×PU is given. This is much like Dana Scott’s model of the untyped λ-calculus in the
typed calculus using a reflexive object D, with an iso DD ∼= D.

AST thus separates two distinct aspects of set theory in a novel way: the limitative
aspect is captured by an abstract notion of “smallness”, while the elementary membership
relation is determined algebraically. The second aspect depends on the first in a uniform way,
so that by changing the underlying, abstract notion of smallness, different set theories can
result by the same algebraic method. Of course, various algebraic conditions also correspond
to different set theoretic properties. Some recent research in AST [5, 6, 7, 9] has been devoted
to investigating this distinction.

Before proceeding, let us say a few words about the relation of our framework to the
ZF-algebras mentioned above. The present approach replaces that notion by the technical
one of an algebra for the endofunctor P : C → C, which is simply an object C equipped with
a map PC → C. Algebras for endofunctors are used extensively in programming semantics,
and have some simple and convenient properties, which motivate this change. In particular,
P-algebras also give logically interesting models of set theory. At the same time, however,
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the free algebras for these different kinds of structures coincide, as stated in the following
result of Bénabou and Jidbladze, cited in [25].

Theorem. The assignment s 7→ s̄ indicated in diagram (1) above establishes an isomorphism
between the free ZF-algebras and the free P-algebras.

For the respective free algebras on ∅, the inverse operation takes the free P-algebra u : PU →
U to the ZF-algebra given by the composite

U
{−}

- PU
u

- U

where, note, U is a complete sup-lattice, because u : P(U) ∼= U by “Lambek’s lemma” (in
a free algebra for an endofunctor the structure map is an iso).

The following three sections develop some of the basic concepts and results, indicate the
scope of the theory, and mention some of the current research areas. The notion of a class
category is defined in section 2; it provides the general axiomatic framework for AST. In
section 3 it is shown how to interpret set theory in such a category, using the universe U .
The elementary set theory of such universes can be completely axiomatized in a familiar
form, as is briefly indicated. Finally, section 4 is devoted to some brief remarks intended to
convey to the reader the scope of the current theory, it’s range of applications and potential
significance.

Acknowledgments. Several people are to be thanked for advising me on the writing
of this outline, and in matters related to AST in general. These include Carsten Butz,
Henrik Forssell, André Joyal, Bill Lawvere, Ieke Moerdijk, Ivar Rummelhoff, Dana Scott,
Alex Simpson, Thomas Streicher, and Michael Warren. I would especially like to thank
Francis Borceaux, Akihiro Kanamori, and Peter Johnstone for facilitating this paper. Some
of the impetus for at least my own interest in AST came from Saunders Mac Lane, who
for many years urged a reconciliation between conventional logical approaches to set theory
and abstract ones using categories, such as topos theory (see e.g. [29]). I consider AST the
attainment of that goal.

2 A category of classes

Roughly speaking, the notion of a category of classes is intended to relate to the Gödel-
Bernays-von Neumann theory of classes as topos theory does to elementary set theory: the
objects of the respective categories are the (first-order) objects of the respective elementary
theories, and the morphisms are the functional relations between them. There is some
flexibility in the specific character of this background category; for instance, whether it is
assumed to have function classes DC , quotients of equivalence relations, etc. The formulation
chosen here is sufficient for interpreting first-order logic.1

1This formulation is also used in [37], other choices are made in [6, 25] and elsewhere.
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Definition 1. A category C of classes is, first of all, a Heyting category, i.e. it is assumed to
satisfy the following conditions:

(C1) C has all finite limits, including in particular a terminal class 1, binary products C×D,
and equalizers for all parallel pairs f, g : C ⇒ D (and thus all pullbacks, etc.)

(C2) C has kernel quotients, i.e. for every arrow f : C → D, the kernel pair k1, k2 : K ⇒ C
(the pullback of f against itself) has a coequalizer q : C → Q.

K
k1 -

k2

- C
q

-- Q

D

f

?

Moreover, regular epimorphisms (which always arise as kernel quotients) are required
to be preserved by pullbacks.

(C3) C has all finite coproducts, including specifically an initial class 0 and binary coprod-
ucts C + D. Moreover, these coproducts are required to be disjoint and stable under
pullbacks.

(C4) C has dual images, i.e. for every arrow f : C → D, the pullback functor on subobjects
f ∗ : Sub(D) → Sub(C) has a right adjoint f∗ : Sub(C) → Sub(D). Thus for any
U ≤ C and V ≤ D, we have:

f ∗V ≤ U iff V ≤ f∗U.

Conditions (C1) and (C2) (usually called “regularity”) imply that every equivalence
relation of the form x ∼ y iff f(x) = f(y) has a quotient, and thus that every arrow
f : C → D has an image factorization C � im(f) � D. Thus in addition to the right
adjoint assumed in (C4), the pullback functor f ∗ : Sub(D)→ Sub(C) also has a left adjoint,

f! : Sub(C)→ Sub(D),

for which:
f!U ≤ V iff U ≤ f ∗V.

These adjoints f! and f∗ are used to interpret existential and universal quantification, re-
spectively (see e.g. [30]). Indeed, it follows that such categories have the following logical
character.

Proposition 2. In a Heyting category C, each subobject poset Sub(C) is a Heyting algebra,
and for every arrow f : C → D the pullback functor f ∗ : Sub(D) → Sub(C) has both
right and left adjoints satisfying the Beck-Chevally condition of stability under pullbacks. In
particular, C therefore models intuitionistic, first-order logic with equality.
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2.1 Small maps

Let C be a Heyting category. Regarding the objects of C as classes, we next axiomatize a
notion of “smallness” by specifying which arrows f : B → A between classes are “small”,
with the intention that these are the maps such that all the fibers f−1(a) ⊆ B, for all a ∈ A,
are sets. This allows us to think of a small map as an indexed family of sets (Ba)a∈A where
Ba = f−1(a).

Definition 3. A system of small maps on C is a collection S of arrows of C satisfying the
following conditions:

(S1) S ↪→ C is a subcategory with the same objects as C. Thus every identity map 1C :
C → C is small, and the composite g ◦ f : A → C of any two small maps f : A → B
and g : B → C is again small.

(S2) The pullback of a small map along any map is small. Thus in an arbitrary pullback
diagram,

C ′ - C

D′

f ′

?
- D

f

?

f ′ is small if f is small.

(S3) Every monomorphism m : C � D is small.

(S4) If f ◦ e is small and e is a regular epimorphism, then f is small.

A
e

-- B

C

f

?

f ◦ e
-

(S5) Copairs of small maps are small. Thus if f : A→ C and g : B → C are small, then so
is [f, g] : A+B → C.

Condition (S2) says that smallness is a property of the fibers of a map, while (S3),
(S4) and (S5) ensure that the small maps are closed under the basic operations on classes:
products and equalizers, coproducts and kernel quotients. Condition (S3) proves to be quite
strong, implying full separation of subsets; see remark 4 below. Note that (S1) implies in
particular that if A → 1 and B → A are small, then B → 1 is small. A set theoretic proof
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of this statement involves showing that the union of the family (Ba)a∈A is a set, which uses
the Axiom of Replacement.

Formally, the small maps behave somewhat like monomorphisms. More suggestively, if
one thinks of a mono f : A � B as a map with fibers f−1(b) lying in 2 = {∅, 1}, then the
small maps result informally from replacing 2 by the class of all sets.

2.2 Powerclasses

Let C be a Heyting category of “classes” and suppose we have specified a system S of small
maps on C. We will say that a class A is small if A→ 1 is a small map; a relation R � C×D
is small if its second projection R � C × D → D is a small map; and a subclass A � C
is small if the class A is small. We refer to the small classes as sets. Note that the small
maps and the small relations are mutually determined via their graphs and projections. The
powerclass axiom is stated in terms of relations, but it essentially says that every class C
has a powerclass PC of subsets, which is small if C is:

(P1) Every class C has a powerclass : an object PC with a small relation ∈C � C × PC
such that, for any class X and any small relation R � C ×X, there is a unique arrow
ρ : X → PC such that the following is a pullback diagram:

R - ∈C

C ×X
?

?

1C × ρ
- C × PC

?

?

(P2) The internal subset relation ⊆C � PC × PC is a small relation.

Condition (P1) is of course much like the universal mapping property of powerobjects
familiar from topos theory, only adjusted for small relations. It says that membership ∈C �
C × PC is the universal small relation on C; informally, this means that any small relation
cRx (i.e. one such that Rx = {c | cRx} is always a set), can be written as c ∈C ρ(x) for a
unique ρ : X → PC, namely ρ(x) = Rx.

The subset relation ⊆C � PC ×PC mentioned in (P2) can be constructed logically as:

⊆C = [[(y, z) : PC × PC | ∀x : C. x ∈ y ⇒ x ∈ z ]]

Here we use the canonical interpretation [[ − ]] of first-order logic in C, interpreting the atomic
formula x ∈ y as membership,

[[(x, y) : C × PC | x ∈ y ]] = ∈C � C × PC,

and then interpreting arbitrary first-order formulas inductively, using the Heyting structure
of C, as usual (see [22] or [30] for details). Informally, the smallness of this relation thus
means that the powerclass {y | y ⊆C z} of a set z is always a set; so this is a powerset axiom.
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Remark 4. As might be expected, the combination of (P2) and (S3) is quite powerful; in fact
(as shown in [37]) axioms (C3), (C4), (S4), and (S5) are then all redundant! However, one
can also consider situations without powersets, or in which only certain monos are assumed
to be small, and then the additional axioms are significant (see section 4 for some examples).

2.3 Universes and Infinity

The powerclass operation C 7→ PC extends to a functor P : C → C, for which we can consider
the algebras (in the sense of algebras for an endofunctor, see [4]), which are simply pairs (A,α)
with α : PA→ A. Such an algebra can be regarded as a way of “labelling” subsets S � A
by elements α(S) of A. A homomorphism of such algebras h : (A,α) → (B, β) is simply a
map h : A → B that preserves the “algebra structure” in the sense that h ◦ α = β ◦ P(h)
(and thus respecting the “labelling” of subsets). The free P-algebra FC on a class C is
a P-algebra f : P(FC) → FC with a map η : C → FC having the expected universal
mapping property with respect to P-algebras (namely, given any algebra (A,α) and map
g : C → A, there is a unique homomorphism g : (FC, f) → (A,α) with g ◦ η = g). It is
a consequence of a well-known result of Lambek’s that for a free algebra these two maps f
and η yield an isomorphism,

P(FC) + C ∼= FC

and so in particular, every element of the free algebra FC is either (the unique label of) a
subset of FC or (associated uniquely to) an element of C. In this way, FC can be regarded
as the collection of all elements of C, sets of elements of C, sets of elements and sets, ... .

Let us call such a free P-algebra for a given class C the universe on C, written V (C),
while the free one V (0) will be called the (initial) universe and written simply V . As already
explained in the introduction, universes are essentially the same as free ZF-algebras. For
present purposes, we shall simply assume that such universes exist in C.2

(U) For every class C, the free P-algebra V (C) exists.

Conditions for the existence of universes are considered in [25, 37] and elsewhere in the
literature. One particularly interesting such condition used in the context of predicative
theories is the existence of inductive types, or so-called “W-types”, see [32, 19, 43].

Like universes, infinite sets are related to the existence of free algebras for a certain
definable endofunctor (see [37] for the general relation). A category of classes C will be said
to have an infinite set if there is a small object I that is “Dedekind infinite” in the sense
that there is a monomorphism I + 1 � I. This condition is equivalent to requiring that
the subcategory SC of sets has a natural numbers object (as described in section 1 above),
which is a free algebra for the functor X 7→ X + 1. We shall require our categories of classes
to have an infinite set so that the elementary set theories considered in the next section will
satisfy an axiom of infinity.

(I) There is an infinite set I + 1 � I.

2It should be emphasized that this terminology and axiom are not standard, but are being employed
merely to simplify the exposition.
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2.4 Class categories

Summarizing, a Heyting category with a system of small maps, powerclasses, universes, and
an infinite set will be called briefly a class category.3

A motivating example (albeit without an infinite set) takes the category of all sets and
functions as the classes, and finiteness as the notion of smallness, so that a function f : B →
A is a small map just if all of the fibers f−1(a) are finite sets. The powerclasses are the
“finite powersets” Pfin(X), and the universe V is the set of all hereditarily finite sets. In
place of finiteness, one can also take sets of cardinality less than some inaccessible cardinal
number for another example (cf. [25]). An example of a different sort is provided by the
syntactic categories used to prove completeness in subsection 3.3 below, and the categories
of ideals of sets mentioned in section 4 are different still.

3 Algebraic models of set theory

The elementary set theory of a universe V in a class category can be completely axiomatized
in a surprisingly familiar way: it is essentially conventional Zermelo-Frankel set theory (in
its intuitionistic form unless the class category is assumed to be boolean). This fact provides
a remarkable confirmation of the “naturalness” of the ZF axioms, considering that nothing
obviously like them went into the formulation of AST.

We first indicate how to interpret set theory in a class category and then discuss complete-
ness. In the next section, some special set-theoretic conditions and corresponding algebraic
models can then be considered.

3.1 The set theory iZF

Many of the naturally arising models of AST (like sheaf and realizability models) satisfy
intuitionistic rather than classical logic (which is one of the fascinating aspects of categorical
logic). It is therefore convenient to formulate the axiomatic set theory for that more general
setting. This also permits algebraic models of constructive and predicative set theories (see
section 4 below).

Let us write iZF for intuitionistic ZF, an elementary set theory formulated in standard
intuitionistic predicate logic with the following familiar axioms:4 Extensionality, Infinity,
Pairing, Union, Powerset, Separation, Replacement, ε-Induction. The latter is an intuition-
istic version of Foundation, which is stated as follows:

(ε-Ind) ∀x.((∀y ε x. ϕ(y))→ ϕ(x))→ ∀x. ϕ(x)

As mentioned in the introduction, many other systems of set theory can also be considered.
Some of these are indicated in section 4 below.

3Again, this terminology is not entirely standard. The particular choice of axioms is roughly that used
in [37].

4Friedman’s IZF presented in [15] is essentially the same system, but with an axiom of (strong) Collection
instead of Replacement (cf. [35]); this change is considered in section 4 below.
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3.2 Algebraic soundness

Let C be a class category as defined in subsection 2.4 above. Remarkably, the universe V in
C is then a model of iZF in the logic of C, in the following sense. The basic relation x ε y of
membership is interpreted as the following relation on V :

[[x, y |x ε y]] = ∈V � V × PV ∼= V × V

where the indicated iso is (a product with) the canonical one PV ∼= V resulting from V
being free, and ∈V � V ×PV is the universal small relation on V . Then, using the Heyting
structure of C, we inductively determine an interpretation for any set-theoretic formula ϕ
with free variables x1, . . . , xn = x̄,

[[x̄ |ϕ]] � V n.

Finally validity in C is defined by:

V |=C ϕ iff [[x̄ |ϕ]] = V n.

This standard specification of categorical validity (cf. [22]) generalizes conventional (i.e.
Tarski-style) semantics for first-order logic from the category of sets, where both notions
are defined and agree, to arbitrary Heyting categories, where conventional, element-based
semantics need not be well-defined.

The proof of the following result is then a direct verification.5

Proposition 5. Under this interpretation, all of the axioms of iZF are valid in the universe
V in any class category C,

(V, ε) |=C iZF .

Such an interpretation of iZF in a class category will be called an algebraic model.

As usual, one can also formulate set theory with “urelements” or “atoms”; such systems
are modeled by the universes V (C), with C serving as the class of atoms; see [25]. We also
note that classical ZF is modelled if the class category C is Boolean (for every subobject
A � C there is a subobject B � C such that A+B ∼= C).

3.3 Algebraic completeness

The particular approach to AST taken here is motivated in part by the remarkable ease with
which one can show that iZF is also complete with respect to algebraic models.6

Theorem 6. If a formula ϕ in the language of set theory holds in every algebraic model,
then it is provable in the set theory iZF.

5This was shown first (for a slightly different theory) in [25].
6This was first done in [37]
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In fact, there is even a “free” class category C0 with the property that, for any formula ϕ,

(V, ε) |=C0 ϕ implies iZF ` ϕ.

The class category C0 consists of the formally definable classes over the theory iZF, together
with the definable, provably functional relations between them as morphisms. Category the-
orists know C0 as the syntactic category of the first-order theory iZF, a standard construction
due to Joyal, the details of which can be found e.g. in [22, D1.4]. We give a sketch for the
sake of the illuminating specification of the class category structure.

The category C0 consists of the following data:7

• The objects {x1, . . . , xn |ϕ} are formulas ϕ in a context of variables x1, . . . , xn, identified
under renaming of variables (“α-equivalence”).

• The arrows [x, y | ρ] : {x |ϕ} → {y |ψ} are equivalence classes of formulas in context
{x, y | ρ} that are provably functional relations in iZF:

ρ(x, y) ` ϕ(x) ∧ ψ(y)

ϕ(x) ` ∃!y.ρ(x, y)

Two such relations ρ and ρ′ are identified if ` ρ↔ ρ′.

• The identity arrow on {x |ϕ} is

[x, y |x = y ∧ ϕ(x)] : {x |ϕ(x)} → {y |ϕ(y)}.

The composite of two arrows,

[x, y | ρ] : {x |ϕ(x)} → {y |ψ(y)}
[y, z |σ] : {y |ψ(y)} → {z |ϑ(z)}

is their relational product:

[x, z | ∃y. ρ(x, y) ∧ σ(y, z)] : {x |ϕ(y)} → {z |ϑ(z)}.

• The small maps are those arrows [x, y | ρ] : {x |ϕ} → {y |ψ} such that

ψ(y) ` Sx. ρ(x, y),

where we have used the “set-many quantifier” Sx. ϑ as a convenient abbreviation for
the formula:

∃z. ∀x. x ε z ↔ ϑ.

7Some liberties are taken here with the notation, see [6] for a syntactically precise treatment.
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• The powerclasses are defined in the expected way:

P{x |ϕ} = {y | ∀x. x ε y → ϕ}.

• The universe is simply:
V = {x |x = x}.

Completeness follows immediately from the fact that validity in this model agrees with
provability. Although the idea of the proof is quite simple and natural, its content is hardly
trivial; for instance, just to show that the composite of two small maps is again small, the
axioms of Replacement and Union are required, and the verification using ε-induction that
V is the free P-algebra is a technical argument of some subtlety (cf.[26]).

4 Further topics

We conclude by briefly mentioning a few topics of interest which appear in a new light under
the approach of AST.

Bounded separation. One conception of set theory, which may be called “limitation of
size,” holds that any class smaller than a set is a set. This idea is captured by the separation
axiom of ZF. In some weaker systems, only certain subclasses of a set are again sets, allowing
for conceptions of “set” motivated not only by limitation of size, but also by e.g. definability
or (lack of) complexity. A familiar such weakening known as “bounded” (or ∆0) separation
asserts that subclasses that are logically definable by formulas with bounded quantifiers are
sets:

(∆0 Separation) ∃y∀z. z ε y ↔ z ε x ∧ ϕ(z)

The scheme is asserted only for so-called ∆0-formulas ϕ, in which all quantifiers are of the
form ∀x ε a and ∃y ε b (abbreviating ∀x. x ε a→ and ∃y. y ε b∧, as usual).

Models of the system iZF0 with bounded instead of full separation result from modifying
the AST axioms by replacing the axiom (S3) that every monomorphism m : C � D is small,
by the “small diagonal” condition asserting that all “diagonal” maps

〈1C , 1C〉 : C � C × C

are small. In this context, the small diagonal condition says that the identity relation on
a set defines a subset, so that e.g. singletons are sets. It is formally similar, however, to
familiar conditions from other settings (e.g. a topological space is Hausdorff if and only if
its diagonal is closed, and a related condition on schemes is familiar to algebraic geometers).
See [6] for further details.
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Classical set theory. Another very simple logical variation is the use of classical logic in
place of intuitionistic logic. If the category of classes is Boolean then the universe V will
model the classical law EM of excluded middle, in addition to iZF. But since iZF + EM =
ZF, the universe V will then be a model of classical ZF, as was already mentioned.

Note that the bounded theory iZF0 is also classically equivalent to its unbounded coun-
terpart, iZF0 + EM = ZF, since (full) separation follows classically from replacement (alge-
braically: since coproduct inclusions are small, Booleaness implies (S3), and therefore full
separation). An interesting intermediate system resulting from adding EM only for formulas
that define sets is modeled in a class category with a boolean subcategory of sets. Such class
categories occur naturally as “ideal completions”, in the sense discussed below, of Boolean
toposes — much as Boolean spaces are the Stone spaces of Boolean algebras.

Ideal models. The category Idl(E) of all ideals on a topos E is the completion of E under
certain colimits, called “ideals”, and such categories provide an important example of a
class category with small diagonals, as discussed above (these are studied in [6, 7]). The
construction can be used to show that every topos occurs as the category of sets in such a
class category, and thus models a certain weak set theory (roughly iZF0 with atoms). Indeed,
such ideal completions are typical, in the sense that every class category with small diagonals
has a (structure preserving) embedding into one consisting of ideals (cf. [6]). It follows from
this, for instance, that iZF0 is logically complete with respect to algebraic models in toposes
equipped with their ideal class category structure, and thus that it is conservative over
intuitionistic higher-order logic.

Collection. In intuitionistic set theory, certain stronger set theoretic conditions are some-
times useful to compensate for the weaker logic. One such axiom (due to H. Friedman) is
the condition known as (strong) Collection. This strengthening of Replacement is used in
intuitionistic set theories such as IZF and CZF (see [2, 25, 6]). Formally, the axiom scheme
of Collection is stated,

(Coll) (∀xεa.∃y. ϕ)→ ∃b. ((∀xεa.∃yεb. ϕ) ∧ (∀yεb.∃xεa. ϕ))

It says that for any total relation R from a set A to the universe, there is a set B contained
in the range of R such that the restriction of R to A×B is still total. It is remarkable that,
in AST, this condition says that the powerclass functor P : C → C on the category of classes
preserves regular epimorphisms ([25]). Ideal models, for instance, can be seen to always have
this property.

Realizability. In [26] it is shown that McCarty’s realizability interpretation of IZF [31]
can be recovered from an algebraic model, namely one resulting from a natural class category
structure in Hyland’s “effective topos” [21] based on Kleene realizability. This result provides
a striking example of the sort of conceptual unification made possible by AST; applying
uniform methods in different settings recovers various prior results as special cases. A similar
situation obtains with respect to Fourman’s sheaf models [13], which are derived in the same
way from a natural class category structure in categories of sheaves, as shown in [17].
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Ordinals. In [25] the system of ordinals is derived as a variation of AST, in which the
successor map s : V → V of a ZF-algebra is required to be monotone. Combining this
approach with the method of varying the underlying notion of smallness provides a way
of developing theories of ordinals in the corresponding settings of classical, intuitionistic
and bounded set theories. Similarly, a predicative system of ordinals can be defined in the
underlying class category for predicative set theory, in virtue of the following.

Predicativity. By a predicative set theory we mean simply one without the powerset ax-
iom, but such systems often restrict other set-forming operations as well, such as using
∆0-separation. Many such systems have been considered, and algebraic models have re-
cently been given for some of them. For instance, in [32, 33] and more recently [17, 43] it is
shown how to model Aczel’s constructive set theory CZF (see [2]) using a free ZF-algebra in
a setting with suitable small maps, motivated by type theoretic constructivity. An analogue
of the result cited above concerning higher-order logic, toposes, and ideal models of iZF0 was
conducted in [9], relating constructive type theory, locally cartesian closed pretoposes, and
predicative set theory.

A distinctive aspect of predicative AST as developed in [32, 33] is the treatment of induc-
tive definitions via sets of well-founded trees or “W-types”, originating in the type theory
of Martin-Löf. This approach provides a flexible way of handling (generalized) polynomial
functors P (X) =

∑
a∈AX

Ba and their algebras, which can then be used to construct the
powerclasses and ZF-algebras rather than taking these as axiomatic. The recent work [43]
has extended and improved on these results, particularly in connection with predicative
algebraic set theory.

Sheaves and forcing. Early research on topos theory and set theory [41, 11, 13, 14, 10, 36]
clearly displayed the sheaf-theoretic aspect of forcing, but it suffered from the inherent dif-
ficulty of interpreting set theory in the resulting sheaf toposes. AST provides a framework
that is more amenable to sheaf-theoretic forcing by providing a proper interpretation of
elementary set theory, without sacrificing the “structural” character that permits its preser-
vation under formation of sheaves. The first examples of models of AST in [25] included
sheaf models, and the main result of the ambitious work [33] was to demonstrate closure
under the formation of sheaf categories for a predicative form of AST. Some current research
is devoted to providing a systematic sheaf-theoretic treatment of forcing (subsuming also
permutation models): the case of presheaves was recently treated in [45]; constructions of
sheaf models for certain special cases have also recently been given in [43, 18]. And research
continues into this promising application of AST, unifying two profound ideas from far-flung
branches of mathematics: Grothendieck’s theory of sheaves and Cohen’s method of forcing.
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