VSIPL+++: Serial and Parallel Performance

Mark Mitchell

Jeffrey Oldham

Nathan Sidwell
CodeSourcery, LLC

May 22, 2003

1 Introduction

The VSIPL (the Vector, Signal, and Image Processing Library) specification
defines a portable, C programming language interface to use in linear algebra
and signal-processing applications. The VSIPL standard has been implemented
by a variety of vendors. VSIPL’s portable interface provides developers the
ability to write code once and reuse it in multiple environments.

At HPEC 2002, we presented an overview of VSIPL++, a C++ specification
designed to perform the same types of computations as VSIPL. The primary
goals for VSIPL++ are improved serial performance relative to VSIPL, support
for multi-processor systems, extensibility, and simpler syntax.

The serial VSIPL++ specification is virtually complete. By HPEC 2003,
we expect to have a successful implementation of the specification. We antic-
ipate that the performance of the VSIPL++ reference implementation will be
superior to that of VSIPL for some applications. By HPEC 2003, the refer-
ence implementation of VSIPL++ will contain preliminary support for parallel
systems.

Our presentation will compare the performance of VSIPL++ with VSIPL,
and demonstrate the VSIPL++ support for parallel computation. We will also
discuss VSIPL++4 implementation strategies, including the use of an exist-
ing VSIPL implementation, a native C++ implementation using expression-
templates, and a hybrid approach that allows an implementor to incrementally
reimplement portions of VSIPL++ to achieve higher performance.

2 Performance Comparisons

VSIPL++ can be implemented on either uni-processor or multi-processor hard-
ware. As a first step, we are implementing VSIPL++ using an existing C
VSIPL library. While this implementation is straightforward, the performance
is of course limited by the performance of the underlying VSIPL implementa-
tion. We also have a preliminary implementation of some portions of VSIPL++



using a high-performance expression-template technique. By HPEC 2003, we
plan to have a partial parallel implementation of VSIPL++.

We are using a simple FIR-filter and narrowband beamforming applica-
tion as a benchmark. These computations are fundamental to many signal-
processing applications. We plan to present performance comparisons between
VSIPL, VSIPL++ built atop VSIPL, VSIPL++ using expression templates,
and VSIPL++ using multiple processors.

3 Parallel Computation Model

VSIPL++ uses a Single Program Multiple Data (SPMD) model when perform-
ing parallel computations. The VSIPL+4 model divides rectangular arrays of
data (known as “blocks”) into sections using combinations of block and cyclic
data distributions. We will explain the VSIPL++ model, and demonstrate
how a very simple distribution model can accommodate systems ranging from
small embedded systems to large systems with thousands of nodes. We will also
explain how a wide variety of distribution policies can be implemented atop
the simple distribution model provided by VSIPL++. Finally, we will explain
how the VSIPL++ parallelism model provides support for fault-tolerance via
dynamic reallocation of processors.



