Theory and Formal Methods 1994: Proceedings of the Second Imperial College Department
of Computing Workshop on Theory and Formal Methods, Imperial College Press, 1995.

AN INTERNAL LANGUAGE FOR INTERACTION

CATEGORIES

ROY CROLE
Department of Mathematics and Computer Science,
Unwversity of Leicester

E-mail: rle3@mecs.le.ac.uk

SIMON GAY RAJAGOPAL NAGARAJAN
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, United Kingdom
E-mail: {sjg3,rn4}@doc.ic.ac.uk

ABSTRACT

We use the techniques of categorical logic to obtain a formal connection be-
tween interaction categories (*-autonomous categories with certain additional
structure) and typed process theories (simplified versions of certain typed pro-
cess calculi). The connection is similar in nature to that between cartesian
closed categories and the simply typed A-calculus. Interaction categories are
the natural models of process theories. Furthermore, from any process theory
we can construct an interaction category which is universal among models of the
theory, and from any interaction category we can construct a process theory;
these constructions are mutually inverse.

1 Introduction

It has been known for some years that formal systems of various kinds corre-
spond to certain flavours of categorical structure. The first person to observe
this phenomenon seems to have been Lawvere, who formulated a connection
between certain kinds of algebraic theories and categories with finite products.
Since Lawvere’s original insight, there has been much progress in understanding

the connections between category theory and formal systems. Expositions can
be found in [6, 11, 12, 13, 14]; there are many other references—these few will
be of particular interest to Computer Scientists.

The precise way in which such correspondences can be realised has been per-
fected during the last decade or so. In most cases the following rather general
procedures can be formulated with great precision. Given a formal system
(logic, type theory, etc.) a category-theoretic structure can be manufactured.
Conversely, given a specified category-theoretic structure, this gives information
from which to build a formal system. These two processes are mutually inverse.
If one builds a formal system from the category, and then a category from the
resulting formal system, this latter category will be equivalent to the original.
A similar game can be played by starting with the formal system; in this case
one obtains an equivalence of formal systems which will be given by mutually
inverse theory translations.

In this paper we describe a particular instance of a correspondence between a
variety of category (an interaction category [1, 3]) and a formal system for equa-
tional reasoning in which the individuals of the intensional object level equality
judgements are processes. The formal system contains a number of constructs
for building larger processes from elementary processes, using operations (such
as cut, tensor and par) mainly derived from linear logic [9]. There are two fun-
damental object level judgements. First, processes-in-context specify a process
together with a list of its communicating ports. Second, there are judgements
of equality between processes. Apart from the fact that individuals are to be
thought of as processes, the underlying principles of the work described here are
identical to those of the correspondence between categories with finite products
and algebraic theories.

2 An Equational Theory of Typed Processes

2.1 A Syntax for Typed Processes

In this section we introduce some syntax which will be used to write down an
equational theory of typed processes. The syntax is a restricted version of the
typed process calculus studied in [7, 8]. A general exposition of the techniques
of categorical type theory can be found in [6]. We begin by defining a notion of
signature for such a theory. A signature Sg (for a process theory) is specified
by the following data:

e A collection of ground types. From this, the collection of types is specified
by the grammar

ac=1|L|yv|a®alagalat]|oa

in which v is any ground type. We write Type for the collection of all
types.

o A collection of process symbols, each of which has a sorting consisting of
a finite list of types. This is written P : aq,..., a,.

We now wish to define a collection of so-called raw processes, which will play
an analogous role to the raw terms of a type theory. These raw processes will
involve a number of variable binding operations, and to simplify the definitions
of substitution and a-equivalence, we will employ the theory of arities and
expressions as a metalanguage. Thus our raw processes will in fact arise as
a-equivalence classes of expressions in a certain simply typed lambda calculus
for which there is a standard definition of substitution. For us, such a theory of
expressions will have two ground-arities, namely PROC and NAME. The arities
are the simple types over the ground-arities, that is

a ::= NAME | PROC | a = a.

The collection of constants for the metalanguage will consist of symbols which
should be thought of as constructors for raw processes. Given a signature Sg¢,
the constants and their arities are given by

e If P is a process symbol of arity n, there is a constant of arity NAME" =

PROC,
o] of arity NAME? = PROC,

e - of arity (NAME = PROC) = (NAME = PROC) = PROC,

e ® of arity (NAME = PROC) = (NAME = PROC) = NAME = PROC,
e 5 of arity (NAME = NAME = PROC) = NAME = PROC,

e unit of arity NAME = PROC,

e bottom of arity NAME = PROC = PROC,

e O of arity PROC = PROC,

Rec of arity (NAME = NAME = PROC) = (NAME = NAME = PROC) =
NAME = NAME = PROC.

This data can be used as a signature for a simply typed lambda calculus which
will constitute the metalanguage of arities and expressions. We take a set Var®
of variables for each arity a, and then the raw ezpressions are given by

en=za"|cleelae

with z* € Var® for any arity a, and c is any constant. Well formed expressions
of arity a will be written ¢ : a; they are formed by the usual rules of the

simply typed lambda calculus [10]. There are of course sets Fap“ & {e|e:a}
of well-formed expressions of arity a. Multiple applications will be written
e1(ez,...,€y). There is the usual notion of a-equivalence =,C FEap® x Fap“
on expressions of arity a, free and bound variables, and the usual definition
of substitution of an expression for free occurrences of a variable in another
expression. We write fv(e) for the free variables of the expression e.

The set RProc of raw processes is defined to be the set of expressions of arity
PROC up to a-equivalence, that is

RProc & ExptROC) =
We will not distinguish notationally between an expression P € E:EpPROC and
the a-equivalence in RProc which it represents. Note that substitution in the
metalanguage gives us a function

RProc x VarNAME oy NAME _ - ppe

written (P, z,y) — Plx/y]. We shall refer to variables in the set VarNAME 45
names. We use syntactic sugar to write down raw processes. For example, take
P,Q € RProc and z.y,z € Var™ME Then we have @(x.P,y.Q,z) € RProc,
and this raw process will be written P @2V ().

A process-in-context consists of a raw process P and a context I', usually written
P T, where I is a finite set of pairs (z,«a) € VarNME o Types which will
be written 1 : aq,...,x, : a,. A proved process is a “well-formed” process-in-
context; the collection of proved processes is generated by the rules in Figure 1.
The proved process P - x1 : ay,...,x, : a, should be thought of as a statement
that the process P has an interface consisting of n ports of types aq,..., a,,
which are labelled for reference by the names xq, ..., z,.

Lemma 1 The rules for generating proved processes are well-defined. If P+

Ty Qp,...,T, ¢ Qy is a proved process, then the names x; are distinct and
fU(P) g {xlv N '7:Cn}'
Proof: ~ To see that the rules are well defined one needs to observe that if

different choices of a-representatives for raw processes in the hypotheses are

4

chosen, the same raw process in the conclusion results. But this is immediate
from the congruence rules for a-equivalence.

The second part of the lemma is by rule induction. O

Lemma 2 If PF T,z : A is a proved process and y does not occur in P then
PlYz)F T,y : A is also a proved process.

Proof: By induction on the derivation of P+ I',z : A. O

2.2 FEquational Theories

Our aim is to set up an equational theory of typed processes. To this effect, we
shall define an equation-in-context to be a judgement of the form P =@ F I" in
which necessarily P+ T" and () - T" are proved processes. A process theory Th def
(Sg, Ar) consists of a signature Sg together with a collection Av of equations-
in-context. The theorems of the theory 7h are equations-in-context which are
generated by the rules in Figures 2, 3 and 4.

Lemma 3 The rules for generating theorems are well-defined, that is, the con-
clusions are indeed equations-in-context.

Proof: ~ We need to show that if P = @) - I is a theorem, then both P F I' and
Q) F I' are proved processes. This is by induction on the proof of P = Q F I'.(O

The rules for proving equality fall into several classes. First are the expected
rules of equational reasoning and substitution. The structural equations ex-
press associativity and commutativity of @, » and Cut, and also associativities
between these operators. These equations arise from the fact that a process con-
figuration is a two- or three-dimensional structure which is being written down
in a one-dimensional syntax. The cut elimination equations corresponds to re-
moving a cut between ports of various types. It is important to note that proof
net reduction steps (cut elimination steps), which correspond to S-reductions
in the A-calculus, become part of equality in our theory. The identity equations
express functoriality of the type constructors. In addition to the rules in Fig-
ures 2, 3 and 4 there is a congruence rule, such as the following rule for cut, for
each metalanguage constant.

Congruence for Cut
P=PFT,z2:a Q=Q FA z:at
P.,P=Q.QFTA

Process Symbols

P:ag,...,«ap

Process Symbol
Plzy,...,xn) Farion,. oo a0 ap

Structural Rules

Prl,z:a QFaz:at A

Axiom Cut

]Lyl—l::oﬁ,y:oz P.QFT,A

Multiplicative Rules

PFIz:a QFy:6,A PFT.z:a,y:p
Tensor Par
PRVQFED z:a®B,A DIV (PYFT 2z a0
Unit Rules
PET
——— Unit Bottom
unit, Fax [bottom,(P) I,z : L
Delay Rule
PET
—— Delay
oPtF ol
where O(z1 : a1,...,&n 1 @) = &1 : Oy, ..., Ty : Oay,

Recursion Rule
PFaz:aty: o« QFu:0B8 v:0
Rec] 2" (P,Q) F z: at,w: B

Recursion

Figure 1: Proved Processes Generated by a Process Signature.

Equational Reasoning

PET P=QFT P=Q*FT Q=RFT
P=PFT Q=PFT P=RFT
Substitution

P=PFTl,z:a
PlWz] = P'[Wz]F T u: «

Commutativity of Cut
PFETz:« QFz:at A
P;Q=Q;PFTA

Associativity of Tensor
PFT,z: « QrFy:0,Au:~ RFv:6,0
(P Q) ot RePer Qo R FDzia6 A w1060

Associativity of Cut
PFET,z:« QFz:at,Ay:p RFy:p-0
(PiQ)Z;R:Pi(QZ'/R)FF,A,G)

Associativity of Par
Prlz:ay:B,u:vy,v:6
DIV oguw(P)) = w9t Y(P))F Lz ag f,w:ym b

Structural Tensor-Cut
PFT,z:a QFy:8,Au:y RFu:y-,0
(PRIVQ), R=PRI(Q,RFlz:a®p3,A,0

Figure 2: Theorems Generated by a Process Theory

Structural Par-Tensor

PrTl.z:a,y:fB,u:~y QFAv:0
DIV P)RL Q=P Ry Q)F T Alz:an f,w:y®06

Structural Par-Cut
PrT,z:ay:Bu:~y QFAu:~*t
97 (P)aQ=97"P,Q)FTAz:anf3

Cut Elimination Equations
PFT,z:a QFy:8,A RFO,z:at,y:p*
(P2 Q) e " (R)=P:(R;Q)FT,A0

PFDz:«
P;l,,=PlY:]FTy:«a

QFT
bottom, (@) ; unit, = Q F T

QFT,z: At RFy: A A
(0Q) ; (OR) = O(Q ; R) F oI',0A

Tensor-Par Identity

DIV (L @ Lyy) = L b 2 at o ,BL,'w a®p

Unit-Bottom Identity

bottom,(unit,) = I, , Fax: Liy: [

Unit Delay Identity

Oly=1I Fa: At y: A

Figure 3: Theorems Generated by a Process Theory, continued

Recursion Equations
QrFz:At,y:0A RFu:0B*v:B
QLf] - (ORec(Q, R) o R /a] = Reckt *(Q[fe], RIW)) F @ : A%, 0+ B
QU]+ (0S) iy R{w/u] = S[2/s] %]
S = Rec)!™"(Q,R) F 2 At w: B

Figure 4: Theorems Generated by a Process Theory, continued

3 Categorical Semantics

We now define the semantics of a process theory in a suitably structured cate-
gory C. One example of a suitable category is SProc [1, 3], Abramsky’s category
of synchronous processes; another is ASProc [2, 4], his category of asynchronous
processes. Abstractly, C should be a *-autonomous category [5] with a monoidal
endofunctor O which is self-dual and has the Unique Fixed Point Property
(UFPP). The UFPP says that for any objects A and B of C, and morphisms
f:A— OA, g: OB — B, there is a unique morphism & : A — B such that
this diagram commutes.

S

A OA
h Oh
B oB

9

For the rest of this paper, we will call such a category an interaction category.
We have not specified all of the structure of interaction categories such as SProe,
but in the present paper it is sufficient to consider just the O functor and the

UFPP.

We also define two operations, * and ~, on morphisms such that if f: A — B
andg:]—>AgB,thenf:]—>ALgBaLndlfz:AL — B satisfying f = f
and § = g. These can be defined using canonical isomorphisms arising from the

s-autonomous structure. For example, f def A(unitl; f). These operations will
be useful for moving types back and forth across arrows.

Let F': C — D be a functor between two interaction categories. We call F' an
interaction functor if it has the following properties:

9

Now

F'is a strict symmetric monoidal functor (which means being a symmetric
monoidal functor with the following isomorphism):

ja-d

F(A@B) = FA@FB

F should have

~/

F(AT) (FA),
which, along with the previous isomorphism, implies

F(A» B)

FA» FB.

F' should preserve the closed structure, i.e. if f is the morphism defined

by

F(APA,B)

F(A* 9 B)® FA = F((A* 9 B)® A) FB
then A(f): F(A*% B) — (FA)L 5 F'B should be an isomorphism, where

F' preserves O:

~

F(O(A)) = O(FA).

F' should preserve the UFPP, i.e. if h is the morphism defined by applying
the UFPP to f and ¢ in C then Fh is the morphism determined by
applying the UFPP to F f and Fg in D.

we are ready to give a categorical semantics for our process theory. A

structure in C for a process signature Sg is specified by the following data:

For each ground type « of Sg, an object [v] of C. The operation v — [v]
is then extended inductively to all types by

def

[] & 1
[L] ¥ L
['] £ [a]*

[e] ® [4]
' o] 151

! Ofa].

o
o]

o
o]

|
|
|
]] def
|
|

10

e For each process symbol P : ay,...,a, amorphism [P] : [— [as]9.. .9
[e,] in C.

We then define, for each proved process () - I' generated by Sg, a morphism
[QFT] : I — [I] in C, where, if T = 2y : a1,...,2n : ap, then [I] &

[ai] % ... 9 [an]. The definition of [@ t I'] is by induction on the derivation
of QFT.

Process Symbol If P:oay...an [Plz1...20) F 2101, 2, 0 0] = [P].

Axiom [I,,Fz:aty:q] o A(unitlpyy) : 1 — [e]" 5 [o] where unitlp,g :
I ® [a] — [«].

Cut For the Cut rule, the interpretation of P, Q) = I', A is defined by

1 1o 1 IEOL 1y oy & (ol 5 12])
[P:QFT,A] [T (el & [o]*) 2 [A]
idpry ® A‘p w idjag
[0, A1 — [5 [A] —> [T]5 L s [A]

where regroup is a canonical morphism in any *-autonomous category.

Tensor The interpretation of @Y(P,Q)F I',z: a ® #,A is defined by
[PFT.z:a]®@[QFy:B,A]

ey ([T] % [o]) ® (18] = [AD)
[P 22 Q] regrloup
[T,z:a®p,A] - [T] % ([a] ® [8]) = [A

Par Applying the Par rule does not change the interpretation of a process:
Dee¥(P)FT,z:anB]=[PFT,z:a,y: d].

11

Unit [Junit,Fz:[]=id;: 1 — I.

Bottom [bottom,(P)F I',z: L] is defined by

I [PFT]]
[bottom,(P) T,z : 1] ~
[T,z : L] [T]» L

Delay The interpretation of OQ F =1 : Oay,...,z, : Oa, is defined by

/ monunit ol o]

O([Ai]»g .. .9 [A])

[oQ] ~

OfA1] g ... O[A.] [x1:0Ay, ..., x, : OA,]

Recursion From the hypotheses of the rule we have

7 [PEa:aty:0q] [o]* 5 Ofa]

and

PRI LAY e P S

From these morphisms, we can canonically construct f : [a] — Ofa] and

g : O[B] — [B]. Applying the UFPP gives h : [a] — [3]. Then

[Rec?¥**(P,Q) I 2 :at,w:] % A(unitl; h) : T — [a]* 2 []-
We can now define the notion of a model of a process theory in an interaction
category. First, we define satisfaction of equations-in-context. If we are given
a process theory 7h and a structure M of the underlying S¢ in an interaction
category C, then M satisfies an equation-in-context P = Q F T'if [P+ T] =
[@FT] in C. A model of Th in C is a structure M for Sg in C which satisfies

the axioms in Az.

Proposition 4 If a structure M for Sg in C satisfies the axioms in Ax, then
it satisfies the theorems of Th.

Proof: By induction on the rules for generating theorems. O

12

4 Classifying Category of a Typed Process Theory

4.1 Definition of the Classifying Category

Let 7h be a process theory, C and D interaction categories, M a model of 7h
in C and F : C — D an interaction functor. Then there is a model £, M of Th
in D, defined as follows.

On ground types ~ of the signature Sg of Th, [y]rm e F([v]m). Now note

that for each type « there is a canonical isomorphism [a]pmm = F([a]m). If
P :ay,...q, is a process symbol of 7h then these canonical isomorphisms are

used to define [P]p,m-

~ F[P
I FI HMF

([ea]m g - - o9 [en]m)

[Plrm ~

lealmm s - [an]mm = - Flalm g -9 Flon]u

Given a process theory Th, the classifying category of the theory is an interaction
category Cl(7Th) with the following universal property. For any other interaction
category C and model M of 7h in C, there exists a unique (up to isomorphism)
interaction functor F': CI(Th) — C such that

M
Th c
G
UF
CI(Th)

commutes, by which we mean that F,G = M.

4.2 Syntactic Construction of CI(Th) and its Generic Model

Given a typed process theory 7h over a signature Sg there is a syntactic inter-
action category Cl(7Th), defined as follows.

e The objects of CI(7Th) are the types of Sg.
e A morphism A — B in CI(7Th) is an equivalence class of proved processes

Q F z:AYy:B

13

where Q F z: AL,y : Band RF u: AL, v : B are equivalent if and only if
Q = R[*u, Y] b x : AL,y : B is a theorem of Th. The equivalence class
of QF x: Aty : Bis denoted by (Q F z : A*,y: B).

e The identity morphism on A is (I, F z: At y: A): A — A.

e Composition is defined by (Q F 2z : A,y : B);(RFu: B+ v:(C) =
(Q; RYu,?'lo] Fx: AL v': C): A — C. where v' is a fresh name.

Lemma 5 Composition ts well defined.

Proof: ~ Suppose we have Q' F 2’ : ALy’ : B and R' + v’ : BL,v' : C with
Q = Q'[*[Yy']F x: Aty : B and R = R'[Wu/][v'] F u: Bt v : C provable.
Then we need to prove Q ; R[Uu] = (Q';, R'[Y/u])[*/z']vv’ F z : AX v : C. The

following calculation establishes this, using observations about substitution and
which names occur in which processes.

RHS

Il
Q

(QI[Z/y/] Z Rl[yl/ul7 'U’”/'U’][Z/y/])[x/:lj/7 'U”/'U///]
(Q) 2 Rz /u!, o o) a0 "
Q=122 : Rz /u' " v

o @y 2] Rly/u, 0" o]
Q'ly/y'x/a'); Rlufu!, 0/ ly/u,o"f2]

= Q, Rly/u.v"v)

= LHS

Proposition 6 CI(7h) is a category.

Proof: This essentially follows from the cut-elimination equation for the iden-
tity axiom, and the associativity of cut. The formal proof uses these equations
and some manipulation of substitutions. O

There is a *-autonomous structure on CI(7h). The bifunctor @ is defined as
follows.

e On objects, by the syntactic ® on types.

e On morphisms, if (QFz: At y:C): A— Cand (RFu: B+ v:D):
B — D then

(Q)@(R) ¥ (5" (Q@%' R F z: Aty B w:C@D): A@B — C®D.
Lemma 7 ® s well defined on morphisms.

Proof: Follows from properties of substitutions. O

14

Proposition 8 ® is a bifunctor.

Proof: Follows from the Tensor-Par cut elimination equation and the Tensor-
Par identity equation. O

The canonical isomorphisms describing the symmetric monoidal structure are
defined as follows.

e unitlh: 7@ A — Ais (92" (bottom,(I.,)) Fu: Ly At y: A).

o unitr: A® I — Ais (g2%(bottom, (I, ,)) F u: Aty L y: A).

o unitl™ : A= T®Ais (unit, @Y L, Fx: At u: 1 ® A).

e umitr' A — AR Tis (I, @%7 unit, k2 : At u: AR).

e symm: AQ@B — B Ais (95" (I, @ L) Fw: At g Bz : BR A).

e assoc: AR (BRC) — (A@B)®@Cis (93" (o)™ (Tue @5Y Ly) @07 1y, 2))
s: At (BteCh),q: (A® B)® ().

o assoc ' : (A®B)RC — A@(BRC)is (20" (91" (1u Q07 (1, @Y7 1y,,))) F
s: (At Bhyw Ctqg: A (B O).

All the necessary equations among the canonical isomorphisms, including the
coherence conditions and naturality, follow from the cut elimination and identity
equations.

The definition of negation is as follows.

e On objects, by the syntactic (—)L.

e On morphisms, (—)L of (QFax:Aty:B):A— Bis(Qry: Bt z:
At): Bt — At. Note that this is exactly the same process, but its ports
are taken in the opposite order.

For the closed structure:

e Given f : A®@ B — C, weneed A(f): A — Bt C. If fis (QF z:
At Bty :C): A® B — C then A(f) is (@;U’y((]uw @ Iy.) s Q) F u:
At p: Bt (C): A— Bt (.

e We need Ap : A® (At B) — B. Tt is (957 (Ip, @Y L,,) F w :
At 9 (A®@ BY),v: B: A® (At B) — B.

15

All the necessary properties of abstraction and application follow from cut-
elimination and structural equations.

We can define a unit delay functor O on CI(7h) as follows.

e On objects, we use the syntactic O.

e On morphisms, O(Q F z : AL,y : B)is (OQ F x: OAt,y : OB) : 0A —
OB.

Functoriality follows from the O cut-elimination and identity equations.
Proposition 9 O has the UFPP.

Proof: 1 f:A—0OAis(QFx:Aty:0A)and g:0B — Bis (RF u:
OB*,v: B) then h: A— Bis (Rec; """ (Q,R) F 2z : A*,w: B).

The facts that f;Oh;g = h and h is the unique such morphism follow from the
recursion equations. O

The canonical morphism « : [— OI is (bottom,(Ounit,) -z : L,y : OF).
The natural transformation (component) 3: 0A ® OB — O(A ® B) is

(97 %(O(Loy @ Tun)) - w: OAL 59 OBL, 2 : 0(A® BY)).

These make O a monoidal endofunctor on CI(Th).

For (OA)L =~ O(A*1), the types are syntactically equivalent, so the isomorphism
is just the identity on OA.

There is a structure G for the signature Sg¢ of the theory 7h in CI(7Th) defined
by

e For a ground type v of Sg,
7] =~
e For a process symbol P : oy ...«, of Sqg,
[P] = (bottom,(sZt " (P(x1,...,2,))) Fy: Liziarg...9a,):
I — Jaq] ... [ad],
where 59717 is an abbreviation for n — 1 applications of a binary »g.

Proposition 10 G satisfies the azioms of Th and so is a model of the theory
in the category Cl(Th).

16

Proof: It () = RF I'is an axiom of 7h, where I' =z, : Ay ...z, : A,, then

[@F I'] = (bottom, (ol (Q))Fy:L,z: Aiwg ... A,)

and

[RE I'] = (bottom, (9" (R))Fy:L,z: Aiwg...09 A,).

These morphisms are equal, because the congruence equations imply that

(bottom, (97" ((Q))) = (bottom, (507" (R))Fy: L,z : Aig...9 A,)
is a theorem of 7h. O
We can now show that the category CI(7h) and the model G of Th in CI(7Th)

do indeed constitute a classifying category for the process theory.

Theorem 11 If Th is a typed process theory and M is a model of Th in an
interaction category C, then there is a unique interaction functor F : Cl(Th) —
C such that the diagram

commutes, that s, F,G = M.
Proof:

We define the functor F' : CI(Th) — C. On objects, F(«a) & [a]a and on a
morphism @ : a — 3 in Cl(Th), F(Q) = def Q : [e]ar — [B]ar-
If a is a type of Th,

[olre € F(lale) =F(a) < [a]u

If P:aj...«, is a process symbol of 7Th,

Q

ef

[Plre = F([[P]]G)
[Plc)

([Ple
= [P]c; parunitl

= [P]ar; parunitl™?; parunitl
= [Pl

17

O

where parunitl : L9 A — A and paruniti™! : A — L A. We also use the fact
that when ¢ : I — L B, §g: I — B and hence g = g; parunitl.

F' is well defined because C soundly models 7h. Functoriality is proved using
the *-autonomous structure of C. F' is an interaction functor and preserves
everything.

5 Deriving a Theory from a Category

Given an interaction category C we can define a process theory 7h(C) =

(59(C), Az (C)).
e The ground types of Sg(C) are the objects of C.

e We denote the syntactic type constructors in 7h(C) by ®, % and so on.
Thus if A and B are objects of C, Sg(C) has a ground type A® B as well
as a compound type A ®@ B.

e For each morphism P : I — ay9...9a, in C, Sg(C) has a process symbol
P:oj...«ap.

e Additionally, for each type a of Sg(C) there are process symbols I, :
ot [a] and J, : [a] ", @ where [—] is defined below.

There is a canonical structure M of S¢(C) in C defined by

[v] = ~ (v any ground type of Sgc)
286 = [o]o[d] e
[P] = P
[[I]] = A(unitl[[a]])
[J] = A(unitlyy)
The axioms of Th(C) are the equations-in-context which are generated from

S¢g(C) and which are satisfied by the canonical structure M. Thus it is imme-
diate that M is indeed a model of 7h(C) in C.

6 Categorical Logic Correspondence

Theorem 12 There is an equivalence Eq : Cl(Th(C)) ~ C in which the functor
Eq arises from the universal property of the generic model of Th(C) in CI(Th)
applied to the canonical model of Th(C) in C.

18

Proof: ~ We define a functor Fg~' : C — CI(Th(C)) by setting Fg~'(A) Lt 4
on objects A of C, and Eq~'(P) o (P + ALY, B) : where P : A — Bis a

morphism of C.

Note that [P] : I — A% B in C, and hence P is a process symbol in the
signature Sg(C).

It is a routine but lengthy exercise to verify that the functors K¢ and Fq¢=! give
rise to an equivalence of interaction categories. d

7 Conclusions and Future Work

We have established a precise correspondence between interaction categories
and a process theory in the same mould as the correspondence between, say,
cartesian closed categories and typed A-calculus.

The situation is rather simplified—made interesting and different from previous
accounts by the *-autonomous structure and the unit delay functor. Future
work would involve extending this work to cover the full process calculus, for
example, as in [7, 8] and more of the categorical structure of Interaction Cate-
gories. We need to include a treatment of non-deterministic sum and prefixing
constructions on the process calculus side and products and exponentials among
the categorical aspects. Our account does not distinguish between synchrony
and asynchrony, and such a general approach may not be possible once we
incorporate additional constructs.

Acknowledgements

Roy Crole was funded by an EPSRC Postdoctoral Fellowship; Simon Gay by
an EPSRC Studentship and the EU Basic Research Project 9102 (COORDI-
NATION); and Rajagopal Nagarajan by the EU Basic Research Project 6454
(CONFER).

Lindsay Errington and Samson Abramsky made several useful comments on a
draft of this paper.

References

[1] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and founda-
tions of typed concurrent programming. In M. Broy, editor, Deductive Program
Design: Proceedings of the 1994 Marktoberdorf International Summer School,

19

[13]

[14]

NATO ASI Series F: Computer and Systems Sciences. Springer-Verlag, 1995.
Also available as theory/papers/Abramsky/marktoberdorf.ps.gz via anony-
mous ftp to theory.doc.ic.ac.uk.

S. Abramsky, S. J. Gay, and R. Nagarajan. Specification structures and
propositions-as-types for concurrency. In G. Birtwistle and F. Moller, editors,
Logics for Concurrency: Structure vs. Aultomata—Proceedings of the VIIILh
Banff Higher Order Workshop, Lecture Notes in Computer Science. Springer-
Verlag, 1995. To appear.

S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn, S. J.
Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Proceedings of
the First Imperial College Department of Computing Workshop on Theory and
Formal Methods, pages 57-70. Springer-Verlag Workshops in Computer Science,
1993.

S. Abramsky. Interaction Categories and communicating sequential processes.
In A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare,
pages 1-15. Prentice Hall International, 1994.

M. Barr. x-Autonomous Categories, volume 752 of Lecture Notes in Mathematics.
Springer-Verlag, 1979.

R. L. Crole. Categories for Types. Cambridge University Press, 1994.

S. J. Gay. Linear Types for Communicating Processes. PhD thesis, University of
London, 1995. Available as theory/papers/Gay/thesis.ps.gz via anonymous
ftp to theory.doc.ic.ac.uk.

S. J. Gay and R. Nagarajan. A typed calculus of synchronous processes. In
Proceedings, Tenth Annual IFEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1995. To appear.

J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1-102, 1987.

J. R. Hindley and J. P. Seldin. Introduction to combinators and A-calculus.
Cambridge University Press, 1986.

J. Lambek. From lambda calculus to cartesian closed categories. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: FEssays on Combinatory Logic,
Lambda Calculus and Formalism, pages 363-402. Academic Press, London, 1980.

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cam-
bridge Studies in Advanced Mathematics Vol. 7. Cambridge University Press,
1986.

C. McLarty. Elementary Categories, Elementary Toposes, volume 21 of Ozford
Logic Guides. Oxford University Press, 1991.

A. M. Pitts. Polymorphism is set theoretic, constructively. In D. H. Pitt,
A. Poigné, and D. E. Rydeheard, editors, Category Theory and Computer Sci-
ence, Proc. Fdinburgh 1987, volume 283 of Lecture Notes in Computer Science,
pages 12-39. Springer-Verlag, Berlin, 1987.

20

