
1

IP Router Architectures: An Overview

by

James Aweya

{Email: aweyaj@nortelnetworks.com; Tel: 1-613-763-6491; Fax: 1-613-763-5692}

Nortel Networks

Ottawa, Canada, K1Y 4H7

Abstract

In the emerging environment of high performance IP networks, it is expected that local

and campus area backbones, enterprise networks, and Internet Service Providers (ISPs)

will use multigigabit and terabit networking technologies where IP routers will be used not

only to interconnect backbone segments but also to act as points of attachments to high

performance wide area links. Special attention must be given to new powerful

architectures for routers in order to play that demanding role. In this paper, we identify

important trends in router design and outline some design issues facing the next generation

of routers. It is also observed that the achievement of high throughput IP routers is

possible if the critical tasks are identified and special purpose modules are properly

tailored to perform them.

1. Introduction

The popularity of the Internet has caused the traffic on the Internet to grow drastically

every year for the last several years. It has also spurred the emergence of many Internet

Service Providers (ISPs). To sustain growth, ISPs need to provide new differentiated

services, e.g., tiered service, support for multimedia applications, etc. The routers in the

ISPs’ networks play a critical role in providing these services. Internet Protocol (IP) traffic

on private enterprise networks has also been growing rapidly for some time. These

2

networks face significant bandwidth challenges as new application types, especially

desktop applications uniting voice, video, and data traffic need to be delivered on the

network infrastructure. This growth in IP traffic is beginning to stress the traditional

processor-based design of current-day routers and as a result has created new challenges

for router design.

Routers have traditionally been implemented purely in software. Because of the software

implementation, the performance of a router was limited by the performance of the

processor executing the protocol code. To achieve wire-speed routing, high-performance

processors together with large memories were required. This translated into higher cost.

Thus, while software-based wire-speed routing was possible at low-speeds, for example,

with 10 megabits per second (Mbps) ports, or with a relatively smaller number of 100

Mbps ports, the processing costs and architectural implications make it difficult to achieve

wire-speed routing at higher speeds using software-based processing.

Fortunately, many changes in technology (both networking and silicon) have changed the

landscape for implementing high-speed routers. Silicon capability has improved to the

point where highly complex systems can be built on a single integrated circuit (IC). The

use of 0.35 µm and smaller silicon geometries enables application specific integrated

circuit (ASIC) implementations of millions gate-equivalents. Embedded memory (SRAM,

DRAM) and microprocessors are available in addition to high-density logic. This makes it

possible to build single-chip, low-cost routing solutions that incorporate both hardware

and software as needed for best overall performance.

In this paper we investigate the evolution of IP router designs and highlight the major

performance issues affecting IP routers. The need to build fast IP routers is being

addressed in a variety of ways. We discuss these in various sections of the paper. We

discuss in detail the various router mechanisms needed for high-speed operation. In

particular, we examine the architectural constraints imposed by the various router design

alternatives. The scope of the discussion presented here does not cover more recent label

switching routing techniques such as IP Switching [1], the Cell Switching Router (CSR)

architecture [2], Tag Switching [3], and Multiprotocol Label Switching (MPLS), which is

3

a standardization effort underway at the Internet Engineering Task Force (IETF). The

discussion is limited to routing techniques as described in RFC 1812 [4].

In Section 2, we briefly review the basic functionalities in IP routers. The IETF’s

Requirements for IP Version 4 Routers [4] describes in great detail the set of protocol

standards that Internet Protocol version 4 (IPv4) routers need to conform to. Section 3

presents the design issues and trends that arise in IP routers. The most common switch

fabric technologies in use today are buses, shared memories, and crossbars. Section 4

presents an overview of these switch fabric technologies. The concluding remarks are

given in Section 5.

2. Basic IP Router Functionalities

Generally, routers consist of the following basic components: several network interfaces

to the attached networks, processing module(s), buffering module(s), and an internal

interconnection unit (or switch fabric). Typically, packets are received at an inbound

network interface, processed by the processing module and, possibly, stored in the

buffering module. Then, they are forwarded through the internal interconnection unit to

the outbound interface that transmits them on the next hop on the journey to their final

destination. The aggregate packet rate of all attached network interfaces needs to be

processed, buffered and relayed. Therefore, the processing and memory modules may be

replicated either fully or partially on the network interfaces to allow for concurrent

operations.

A generic architecture of an IP router is given in Figure 1. Figure 1a shows the basic

architecture of a typical router: the controller card (which holds the CPU), the router

backplane, and interface cards. The CPU in the router typically performs such functions as

path computations, routing table maintenance, and reachability propagation. It runs which

ever routing protocols is needed in the router. The interface cards consists of adapters that

perform inbound and outbound packet forwarding (and may even cache routing table

entries or have extensive packet processing capabilities). The router backplane is

responsible for transferring packets between the cards. The basic functionalities in an IP

4

router can be categorized as: route processing, packet forwarding, and router special

services. The two key functionalities are route processing (i.e., path computation, routing

table maintenance, and reachability propagation) and packet forwarding (see Figure 1b).

We discuss the three functionalities in more detail below.

Routing
Control

Forwarding

Router
Backplane

Interface Card

Controller Card

Routing
Table

 Topology &
Address

Exchange

Router

Packet
Forwarding

neighbour
nodes

neighbour
nodes

incoming data
packets

outgoing data
packets

destination address
lookup

Routing Table

route computations
& updates

a). Basic architecture. b). Routing components.

Figure 1. Generic architecture of a router.

• Route Processing:

 This includes routing table construction and maintenance using routing protocols (such

as RIP or OSPF) to learn about and create a view of the network’s topology [5][6][7].

Updates to the routing table can also be done through management action where routes

are added and deleted manually.

• Packet Forwarding:

 Typically, IP packet forwarding requires the following:

♦ IP Packet Validation: The router must check that the received packet is

properly formed for the protocol before it proceeds with protocol processing.

This involves checking the version number, checking the header length field

(also needed to determine whether any options are present in the packet), and

calculating the header checksum.

5

♦ Destination IP Address Parsing and Table Lookup: The router performs a

table lookup to determine the output port onto which to direct the packet and

the next hop to which to send the packet along this route. This is based on the

destination IP address in the received packet and the subnet mask(s) of the

associated table entries. The result of this lookup could imply:

• A local delivery (that is, the destination address is one of the router’s

local addresses and the packet is locally delivered).

• A unicast delivery to a single output port, either to a next-hop router or

to the ultimate destination station (in the case of a direct connection to

the destination network).

• A multicast delivery to a set of output ports that depends on the router’s

knowledge of multicast group membership.

 The router must also determine the mapping of the destination network address

to the data link address for the output port (address resolution or ARP). This

can be done either as a separate step or integrated as part of the routing lookup.

♦ Packet Lifetime Control: The router adjusts the time-to-live (TTL) field in the

packet used to prevent packets from circulating endlessly throughout the

internetwork. A packet being delivered to a local address within the router is

acceptable if it has any positive value of TTL. A packet being routed to output

ports has its TTL value decremented as appropriate and then is rechecked to

determine if it has any life before it is actually forwarded. A packet whose

lifetime is exceeded is discarded by the router (and may cause an error message

to be generated to the original sender).

♦ Checksum Calculation: The IP header checksum must be recalculated due to

the change in the TTL field. Fortunately, the checksum algorithm employed (a

16-bit one’s complement addition of the header fields) is both commutative and

associative, thereby allowing simple, differential recomputation. RFC 1071 [8]

6

contains implementation techniques for computing the IP checksum. Since a

router often changes only the TTL field (decrementing it by 1), a router can

incrementally update the checksum when it forwards a received packet, instead

of calculating the checksum over the entire IP header again. RFC 1141 [9]

describes an efficient way to do this.

 IP packets might also have to be fragmented to fit within the Maximum Transmission

Unit (MTU) specified for the outgoing network interface. Fragmentation, however, can

affect performance adversely [10] but now that IP MTU discovery is prevalent [11],

fragmentation should be rare.

• Special Services:

 Anything beyond core routing functions falls into this category: packet translation,

encapsulation, traffic prioritization, authentication, and access services such as packet

filtering for security/firewall purposes. In addition, routers possess network

management components (e.g., SNMP, Management Information Base (MIB), etc.).

2.1 Route Table Lookup

For a long time, the major performance bottleneck in IP routers has been the time it takes

to look up a route in the routing table. The problem is defined as that of searching through

a database (routing table) of destination prefixes and locating the longest prefix that

matches the destination address of a given packet. Longest prefix matching was

introduced as a consequence of the requirement for increasing the number of networks

addressed through Classless Inter-Domain Routing (CIDR) [12]. The CIDR technique is

used to summarize a block of class C addresses into a single routing table entry. This

consolidation results in a reduction in the number of separate routing table entries.

Given a packet, the router performs a routing table lookup, using the packet’s IP

destination address as key. This lookup returns the best-matching routing table entry,

which tells the router which interface to forward the packet out of and the IP address of

the packet’s next hop

7

The first approaches for longest prefix matching used radix trees or modified Patricia trees

[13][14] combined with hash tables, (Patricia stands for “Practical Algorithm to Retrieve

Information Coded in Alphanumeric”). These trees are binary trees, whereby the tree

traversal depends on a sequence of single-bit comparisons in the key, the destination IP

address. These lookup algorithms have complexity proportional to the number of address

bits which, for IPv4 is only 32. In the worst case it takes time proportional to the length of

the destination address to find the longest prefix match. Worse, the commonly used

Patricia algorithm may need to backtrack to find the longest match, leading to poor worst-

case performance. The performance of Patricia is somewhat data dependent. With a

particularly unfortunate collection of prefixes in the routing table, the lookup of certain

addresses can take as many as 32 bit comparisons, one for each bit of the destination IP

address.

Early implementations of routers, however, could not afford such expensive computations.

Thus, one way to speed up the routing table lookup is to try to avoid it entirely. The

routing table lookup provides the next hop for a given IP destination. Some routers cache

this IP destination-to-next-hop association in a separate database that is consulted (as the

front end to the routing table) before the routing table lookup. Finding a particular

destination in this database is easier because an exact match is done instead of the more

expensive best-match operation of the routing table. So, most routers relied on route

caches [15][16]. The route caching techniques rely on there being enough locality in the

traffic so that the cache hit rate is sufficiently high and the cost of a routing lookup is

amortized over several packets.

This front-end database might be organized as a hash table [17]. After the router has

forwarded several packets, if the router sees any of these destinations again (a cache hit),

their lookups will be very quick. Packets to new destinations will be slower, however,

because the cost of a failed hash lookup will have to be added to the normal routing table

lookup. Front-end caches to the routing table can work well at the edge of the Internet or

within organizations. However, cache schemes do not seem to work well in the Internet’s

core. The large number of packet destinations seen by the core routers can cause caches to

8

overflow or for their lookup to become slower than the routing table lookup itself. Cache

schemes are not really effective when the hash bucket size (the number of destinations that

hash to the same value) starts getting large. Also, the frequent routing changes seen in the

core routers can force them to invalidate their caches frequently, leading to a small number

of cache hits.

Typically, two types of packets arrive at a router: packets to be forwarded to another

network or packets destined to the router itself. Whether a packet to a router causes a

routing table reference depends on the router implementation. Some implementations may

speed up routing table lookups. One possibility is for the router to explicitly check each

incoming packet against a table of all of the router’s addresses to see if there is a match.

This explicit check means that the routing table is never consulted about packets destined

to the router. Another possibility is to use the routing table for all packets. Before the

packet is sent, the router checks if the packet is to its own address on the appropriate

network. If the packet is for the router, then it is never transmitted. The explicit check

after the routing table lookup requires checking a smaller number of router addresses at

the increased cost of a routing table lookup. New routing table lookup algorithms are still

being developed in attempts to build even faster routers. Recent examples are found in the

references [18][19][20][21][22][23].

The basic idea of one of the recent algorithms [18] is to create a small and compressed

data structure that represents large lookup tables using a small amount of memory. The

technique exploits the sparseness of actual entries in the space of all possible routing table

entries. This results in a lower number of memory accesses (to a fast memory) and hence

faster lookups. The proposal reduces the routing table to very efficient representation of a

binary tree such that the majority of the table can reside in the primary cache of the

processor, allowing route lookups at gigabit speeds. In addition, the algorithm does not

have to calculate expensive perfect hash functions, although updates to the routing table

are still not easy. Reference [19] proposes another approach for implementing the

compression and minimizing the complexity of updates.

9

The recent work of Waldvogel et al. [20] presents an alternative approach which reduces

the number of memory references rather than compact the routing table. The main idea is

to first create a perfect hash table of prefixes for each prefix length. A binary search

among all prefix lengths, using the hash tables for searches amongst prefixes of a

particular length, can find the longest prefix match for an N bit address in O(log N) steps.

Although the algorithm has very fast execution times, calculating perfect hashes can be

slow and can slow down updates.

Hardware based techniques for route lookup are also actively being investigated both in

research and commercial designs (e.g., [24][25][26][27]). Other designs of forwarding

engine have concentrated on IP packet header processing in hardware, to remove the

dependence upon caching, and to avoid the cost of high-speed processor. Designs based

upon content-addressable memory have been investigated [24], but such memory is too far

expensive to be applied to a large routing table. Hardware route lookup and forwarding is

also under active investigation in both research and commercial designs [25][26]. The

argument for a software-based implementation stresses flexibility. Hardware

implementations can generally achieve a higher performance at lower cost but are less

flexible.

3. IP Router Architectures

In the next sections, we examine important trends in IP router design and outline some

design issues facing the next generation of routers.

3.1 Bus-based Router Architectures with Single Processor

The first generation of IP router were based on software implementations on a single

general-purpose central processing unit (CPU). These routers consist of a general-purpose

processor and multiple interface cards interconnected through a shared bus as depicted in

Figure 2.

10

Line
Card

DMA

MAC

Line
Card

DMA

MAC

Line
Card

DMA

MAC

Route
Processor

(CPU)
Memory

Bus

Figure 2. Traditional bus-based router architecture.

Packets arriving at the interfaces are forwarded to the CPU which determines the next hop

address and sends them back to the appropriate outgoing interface(s). Data is usually

buffered in a centralized data memory [28][29], which leads to the disadvantage of having

the data cross the bus twice, making it the major system bottleneck. Packet processing and

node management software (including routing protocol operation, routing table

maintenance, routing table lookups, and other control and management protocols such as

ICMP, SNMP) are also implemented on the central processor. Unfortunately, this simple

architecture yields low performance for the following reasons:

• The central processor has to process all packets flowing through the router (as well as

those destined to it). This represents a serious processing bottleneck.

• Some major packet processing tasks in a router involve memory intensive operations

(e.g., table lookups) which limits the effectiveness of processor power upgrades in

boosting the router packet processing throughput. Routing table lookups and data

movements are the major consumer of processing cycles. The processing time of these

tasks does not decrease linearly if faster processors are used. This is because of the

sometimes dominating effect of memory access rate.

• Moving data from one interface to the other (either through main memory or not) is a

time consuming operation that often exceeds the packet header processing time. In

11

many cases, the computer input/output (I/O) bus quickly becomes a severe limiting

factor to overall router throughput.

Since routing table lookup is a time-consuming process of packet forwarding, some

traditional software-based routers cache the IP destination-to-next-hop association in a

separate database that is consulted as the front end to the routing table before the routing

table lookup [15]. Still, the performance of the traditional bus-based router depends

heavily on the throughput of the shared bus and on the forwarding speed of the central

processor. This architecture cannot scale to meet the increasing throughput requirements

of multigigabit network interface cards.

3.2 Bus-based Router Architectures with Multiple Processors

3.2.1 Architectures with Route Caching

For the second generation IP routers, improvement in the shared-bus router architecture

was introduced by distributing the packet forwarding operations. Distributing fast

processors and route caches, in addition to receive and transmit buffers, over the network

interface cards reduces the load on the system bus. Packets are therefore transmitted only

once over the shared bus. This reduces the number of bus copies and speeds up packet

forwarding by using a route cache of frequently seen addresses in the network interface as

shown in Figure 3. This architecture allows the network interface cards to process packets

locally some of the time.

12

DMA

MAC

Route
Cache

Memory

DMA

MAC

Route
Cache

Memory

DMA

MAC

Route
Cache

Memory

Route
Processor

(CPU)
Memory

Bus

cache
updates

Line
Card

Line
Card

Line
Card

Figure 3. Reducing the number of bus copies using a route cache in the network interface.

In this architecture, a router keeps a central master routing table and the satellite

processors in the network interfaces each keep only a modest cache of recently used

routes. If a route is not in a network interface processor’s cache, it would request the

relevant route from the central table. The route cache entries are traffic-driven in that the

first packet to a new destination is routed by the main CPU (or route processor) via the

central routing table information and as part of that forwarding operation, a route cache

entry for that destination is then added in the network interface. This allows subsequent

packet flows to the same destination network to be switched based on an efficient route

cache match. These entries are periodically aged out to keep the route cache current and

can be immediately invalidated if the network topology changes. At high-speeds, the

central routing table can easily become a bottleneck because the cost of retrieving a route

from the central table is many times more expensive than actually processing the packet

local in the network interface.

A major limitation of this architecture is that it has a traffic dependent throughput and also

the shared bus is still a bottleneck. The performance of this architecture can be improved

by enhancing each of the distributed network interface cards with larger memories and

complete forwarding tables. The decreasing cost of high bandwidth memories makes this

possible. However, the shared bus and the general purpose CPU in the slow data path can

neither scale to high capacity links nor provide traffic pattern independent throughput.

13

3.2.2 Architectures with Multiple Parallel Forwarding Engines

Another bus-based multiple processor router architecture is described in [30]. Multiple

forwarding engines are connected in parallel to achieve high packet processing rates as

shown in Figure 4. The network interface modules transmit and receive data from the links

at the required rates. As a packet comes in, the IP header is stripped by the control

circuitry, augmented with an identifying tag, and sent to a forwarding engine for validation

and routing. While the forwarding engine is performing the routing function, the remainder

of the packet is deposited in an input buffer in parallel. The forwarding engine determines

which outgoing link the packet should be transmitted on, and sends the updated header

fields to the appropriate destination interface module along with the tag information. The

packet is then moved from the buffer in the source interface module to a buffer in the

destination interface module and eventually transmitted on the outgoing link.

Network
Interface

Forwarding
Engine

Forwarding
Engine

Forwarding
Engine

Resource
Control

Forwarding
Engine Row Bus

Network
Interface

Network
Interface

Forwarding Engine
Column Bus

Data Bus

Control Bus

Figure 4. Bus-based router architecture with multiple parallel forwarding engines.

The forwarding engines can each work on different headers in parallel. The circuitry in the

interface modules peels the header off of each packet and assigns the headers to the

forwarding engines in a round-robin fashion. Since in some (real time) applications packet

order maintenance is an issue, the output control circuitry also goes round-robin,

guaranteeing that packets will then be sent out in the same order as they were received.

Better load-balancing may be achieved by having a more intelligent input interface which

14

assigns each header to the lightest loaded forwarding engine [30]. The output control

circuitry would then have to select the next forwarding engine to obtain a processed

header from by following the demultiplexing order followed at the input, so that order

preservation of packets is ensured. The forwarding engine returns a new header (or

multiple headers, if the packet is to be fragmented), along with routing information (i.e.,

the immediate destination of the packet). The route processor (controller) runs the routing

protocols and creates a forwarding table that is used by the forwarding engines.

The choice of this architecture was premised on the observation that it is highly unlikely

that all interfaces will be bottlenecked at the same time. Hence sharing of the forwarding

engines can increase the port density of the router. The forwarding engines are only

responsible for resolving next-hop addresses. Forwarding only IP headers to the

forwarding engines eliminates an unnecessary packet payload transfer over the bus. Packet

payloads are always directly transferred between the interface modules and they never go

to either the forwarding engines or the route processor unless they are specifically destined

to them.

3.3 Switch-based Router Architectures with Multiple Processors

To alleviate the bottlenecks of the second generation of IP routers, the third generation of

routers were designed with the shared bus replaced by a switch fabric. This provides

sufficient bandwidth for transmitting packets between interface cards and allows

throughput to be increased by several orders of magnitude. With the interconnection unit

between interface cards not the bottleneck, the new bottleneck is packet processing.

The multigigabit router (MGR) is an example of this architecture [31]. The design has

dedicated IP packet forwarding engines with route caches in them. The MGR consists of

multiple line cards (each supporting one or more network interfaces) and forwarding

engine cards, all connected to a high-speed (crossbar) switch as shown in Figure 5. The

design places forwarding engines on boards distinct from line cards. When a packet arrives

at a line card, its header is removed and passed through the switch to a forwarding engine.

The remainder of the packet remains on the inbound line card. The forwarding engine

15

reads the header to determine how to forward the packet and then updates the header and

sends the updated header and its forwarding instructions back to the inbound line card.

The inbound line card integrates the new header with the rest of the packet and sends the

entire packet to the outbound line card for transmission. The MGR, like most routers, also

has a control (and route) processor that provides basic management functions such as

generation of routing tables for the forwarding engines and link (up/down) management.

Each forwarding engine has a set of the forwarding tables (which are a summary of the

routing table data).

Route
Processor

Line
Card Forwarding

Engine

Switch
Fabric

Line
Card

Line
Card

Forwarding
Engine

Forwarding
Engine

Figure 5. Switch-based router architecture with multiple forwarding engines.

In the MGR, once headers reach the forwarding engine, they are placed in a request first-

in first-out (FIFO) queue for processing by the forwarding processor. The forwarding

process can be roughly described by the following three stages [31].

1. The first stage includes the following which are done in parallel:

• The forwarding engine does basic error checking to confirm that the header is

indeed from an IPv4 datagram;

• confirms that the packet and header lengths are reasonable;

• confirms that the IPv4 header has no options;

16

• computes the hash offset into the route cache and loads the route; and

• starts loading the next header.

2. In the second stage, the forwarding engine checks to see if the cached route matches

the destination of the datagram (a cache hit). If not, the forwarding engine carries out

an extended lookup of the forwarding table associated with it. In this case, the

processor searches the routing table for the correct route, and generates a version of

the route for the route cache. Since the forwarding table contains prefix routes and the

route cache is a cache of routes for particular destination, the processor has to convert

the forwarding table entry into an appropriate destination-specific cache entry. Then,

the forwarding engine checks the IP time-to-live (TTL) field and computes the updated

TTL and IP checksum, and determines if the datagram is for the router itself.

3. In the third stage the updated TTL and checksum are put in the IP header. The

necessary routing information is extracted from the forwarding table entry and the

updated IP header is written out along with link-layer information from the forwarding

table.

3.4 Limitation of IP Packet Forwarding based on Route Caching

Regardless of the type of interconnection unit used (bus, shared memory, crossbar, etc.), a

route cache can be used in conjunction with a (centralized) processing unit for IP packet

forwarding [15]. In this section, we examine the limitations of route caching techniques.

The route cache model creates the potential for cache misses which occur with “demand-

caching” schemes as described above. That is, if a route is not found in the forwarding

cache, the first packet(s) then looks to the routing table maintained by the CPU to

determine the outbound interface and then a cache entry is added for that destination. This

means when addresses are not found in the cache, the packet forwarding defaults to a

classical software-based route lookup (sometimes described as a “slow-path”). Since the

cache information is derived from the routing table, routing changes cause existing cache

entries to be invalidated and reestablished to reflect any topology changes. In networking

17

environments which frequently experience significant routing activity (such as in the

Internet) this can cause traffic to be forwarded via the main CPU (the slow path), as

opposed to via the route cache (the fast path).

In enterprise backbones or public networks, the combination of highly random traffic

patterns and frequent topology changes tends to eliminate any benefits from the route

cache, and performance is bounded by the speed of the software slow path which can be

many orders of magnitude lower than the caching fast path.

This demand-caching scheme, maintaining a very fast access subnet of the routing

topology information, is optimized for scenarios whereby the majority of the traffic flows

are associated with a subnet of destinations. However, given that traffic profiles at the

core of the Internet (and potentially within some large enterprise networks) do not follow

closely this model, a new forwarding paradigm is required that would eliminate the

increasing cache maintenance resulting from growing numbers of topologically dispersed

destinations and dynamic network changes.

The performance of a product using the route cache technique is influenced by the

following factors:

• how big the cache is,

• how the cache is maintained (the three most popular cache maintenance strategies are

random replacement, first-in-first-out (FIFO), and least recent use (LRU)), and

• what the performance of the slow path is, since at least some percentage of the traffic

will take the slow path in any application.

The main argument in favor of cache-based schemes is that a cache hit is at least less

expensive than a full route lookup (so a cache is valuable provided it achieves a modest hit

rate). Even with an increasing number of flows, it appears that packet bursts and temporal

correlation in the packet arrivals will continue to ensure that there is a strong chance that

two datagrams arriving close together will be headed for the same destination.

18

In current backbone routers, the number of flows that are active at a given interface can be

extremely high. Studies have shown that an OC-3 interface might have an average of

256,000 flows active concurrently [32]. It is observed in [33] that, for this many flows,

use of hardware caches is extremely difficult, especially if we consider the fact that a fully-

associative hardware cache is required. So caches of such size are most likely to be

implemented as hash tables since only hash tables can be scaled to these sizes. However,

the O(1) lookup time of a hash table is an average case result, and the worst-case

performance of a hash table can be poor since multiple headers might hash into the same

location. Due to the large number of flows that are simultaneously active in a router and

due to the fact that hash tables generally cannot guarantee good hashing under all arrival

patterns, the performance of cache based schemes is heavily traffic dependent. If a large

number of new flows arrive at the same time, the slow path of the router can be

overloaded, and it is possible that packet loss can occur due to the (slow path) processing

overload and not due to output link congestion.

Some architectures have been proposed that avoid the potential overload of continuous

cache churn (which results in a performance bottleneck) by instead using a forwarding

database in each network interface which mirrors the entire content of the IP routing table

maintained by the CPU (route processor), i.e., there is a one-to-one correspondence

between the forwarding database entries and routing table prefixes; therefore no need to

maintain a route cache [34][35][36]. By eliminating the route cache, the architecture fully

eliminates the slow path. This offers significant benefits in terms of performance,

scalability, network resilience and functionality, particularly in large complex networks

with dynamic flows. These architectures can best accommodate the changing network

dynamics and traffic characteristics resulting from increasing numbers of short flows

typically associated with Web-based applications and interactive type sessions.

3.5 Switch-based Router Architectures with Fully Distributed Processors

From the discussion in the preceeding sections, we find that the three main bottlenecks in

a router are: processing power, memory bandwidth, and internal bus bandwidth. These

three bottlenecks can be avoided by using a distributed switch based architecture with

19

properly designed network interfaces [34][35][36]. Since routers are mostly dedicated

systems not running any specific application tasks, off-loading processing to the network

interfaces reflects a proper approach to increase the overall router performance. A

successful step towards building high performance routers is to add some processing

power to each network interface in order to reduce the processing and memory

bottlenecks. General-purpose processors and/or dedicated VLSI components can be

applied. The third bottleneck (internal bus bandwidth) can be solved by using special

mechanisms where the internal bus is in effect a switch (e.g., shared memory, crossbar,

etc.) thus allowing simultaneous packet transfers between different pairs of network

interfaces. This arrangement must also allow for efficient multicast capabilities.

We investigate in this section, decentralized router architectures where each network

interface is equipped with appropriate processing power and buffer space. A generic

modular switch-based router architecture is shown in Figure 6.

Switch Fabric

Network
Interface

Network
Interface

Route
Processor

(CPU)

Switch Fabric Interface

Media-Specific Interface

Inbound
Processing

Local
Processing
Subsystem

Outbound
Processing MAC

Port
Processing

(Route
Resolution

Logic)

Queue
Manager

Memory

PHY

Network
Interface

a). Functional diagram [34][35][36]. b). Generic architecture.

Figure 6. A generic switch-based distributed router architecture.

Each network interface provides the processing power and the buffer space needed for

packet processing tasks related to all the packets flowing through it. Functional

20

components (inbound, outbound, and local processing elements) process the inbound,

outbound traffic and time-critical port processing tasks. They perform the processing of all

protocol functions (in addition to quality of service (QoS) processing functions) that lie in

the critical path of data flow. In order to provide QoS guarantees, a port may need to

classify packets into predefined service classes. Depending on router implementation, a

port may also need to run data-link level protocols or network-level protocols. The exact

features of the processing components depend on the functional partitioning and

implementation details. Concurrent operation among these components can be provided.

The network interfaces are interconnected via a high performance switch that enables

them to exchange data and control messages. In addition, a CPU is used to perform some

centralized tasks. As a result, the overall processing and buffering capacity is distributed

over the available interfaces and the CPU.

The Media-Specific Interface (MSI) performs all the functions of the physical layer and

the Media Access Control (MAC) sublayer (in the case of the IEEE 802 protocol model).

The Switch Fabric Interface (SFI) is responsible for preparing the packet for its journey

across the switch fabric. The SFI may prepend an internal routing tag containing port of

exit, the QoS priority, and drop priority, onto the packet.

To analyze the processing capabilities and to determine potential performance bottlenecks,

the functions and components of a router and, especially, of all its processing subsystems

have to be identified. Therefore, all protocols related to the task of a router need to be

considered. In an IP router, the IP protocol itself as well as additional protocols, such as

ICMP, ARP, RARP, BGP, etc. are required.

First, a distinction can be made between the processing tasks directly related to packets

being forwarded through the router and those related to packets destined to the router,

such as maintenance, management or error protocol data. Best performance can be

achieved when packets are handled by multiple heterogeneous processing elements, where

each element specializes in a specific operation. In such a configuration, special purpose

modules perform the time critical tasks in order to achieve high throughput and low

latency. Time critical tasks are the ones related to the regular data flow. The non-time

21

critical tasks are performed in general purpose processors (CPU). A number of

commercial routers follow this design approach (e.g.,

[33][37][38][39][40][41][42][43][44][45[46]).

3.5.1 Critical Data Path Processing (Fast Path)

The time critical processing tasks forms the critical path (sometimes called the fast path)

through a router and need to be highly optimized in order to achieve multigigabit rates.

These processing tasks comprise all protocols involved in the critical path (LLC, SNAP,

and IP) as well as ARP which can be processed in the network interface because it needs

direct access to the network, even though it is not time critical. The time critical tasks

mainly consist of header checking, and forwarding (and may include segmentation)

functions. These protocols directly affect the performance of an IP router in terms of the

number of packets that can be processed per second.

The router architecture should be optimized for those fast path functions that must be

performed in real time. Most high-speed routers implement this fast path in hardware.

Generally, the fast path of IP routing requires the following functions: IP packet

validation, destination address parsing and table lookup, packet lifetime control (TTL

update), and checksum calculation. The fast path may also be responsible for making

packet classifications for QoS control and access filtering. Flows can be identified based

on source IP address, destination IP address, TCP/UDP port numbers as well as IP Type

of Service (TOS) field. Classification can even be based on higher layer packet attributes.

3.5.2 Non-critical Data Path Processing (Slow Path)

Packets destined to a router, such as maintenance, management or error protocol data are

usually not time critical. However, they have to be integrated in an efficient way that does

not interfere with the packet processing and, thus, does not slow down the time-critical

path. Typical examples of these non-time critical processing tasks are error protocols

(e.g., ICMP), routing protocols (e.g., RIP, OSPF, BGP), and network management

protocols (e.g., SNMP). These processing tasks need to be centralized in a router node

and typically reside above the network or transport protocols.

22

LLC rx

SNAP rx

IP rx ARP IP tx

SNAP tx

LLC tx

ICMP, RIP,
OSPF, BGP,
SNMP, etc.

Network rx: receive
tx: transmit

Non-Time
Critical

Processing
(Slow Path)

Time
Critical

Processing
(Fast Path)

Switch
Fabric

Network
Interface

CPU

control packets

data packets

Figure 7. Example IEEE 802 protocol entities in an IP router [Adapted from 34].

As shown in Figure 7, only protocols in the forwarding path of a packet through the IP

router are implemented on the network interface itself. Other protocols such as routing

and network management protocols are implemented on the CPU. This way, the CPU

does not adversely affect performance because it is located out of the data path, where it

maintains route tables and determines the policies and resources used by the network

interfaces. As an example, the CPU subsystem can be attached to the switch fabric in the

same way as a regular network interface. In this case, the CPU subsystem is viewed by the

switch fabric as a regular network interface. It has, however, a completely different

internal architecture and function. This subsystem receives all non-critical protocol data

units and requests to process certain related protocol entities (ICMP, SNMP, TCP, UDP,

and the routing protocol entities RIP, OSPF, BGP, etc.). Any protocol data unit that

needs to be sent on any network by these protocol entities is sent to the proper network

interface, as if it was just another IP datagram relayed from another network.

The CPU subsystem can communicate with all other network interfaces through the

exchange of coded messages across the switch fabric (or on a separate control bus

[30][33]). IP datagrams generated by the CPU protocol entities are also coded in the same

format. They carry the IP address of the next hop. For that, the CPU needs to access its

23

individual routing table. This routing table can be the master table of the entire router. All

other routing tables in the network interfaces will be exact replicas (or summaries in

compressed table format) of the master table. Routing table updates in the network

interfaces can then be done by broadcasting (if the switch fabric is capable of that) or any

other suitable data push technique. Any update information (e.g., QoS policies, access

control policies, packet drop policies, etc.) originated in the CPU has to be broadcast to

all network interfaces. Such special data segments are received by the network interfaces

which takes care of the actual write operation in their forwarding tables. Updates to the

routing table in the CPU are done either by the various routing protocol entities or by

management action. This centralization is reasonable since routing changes are assumed to

happen infrequently and not particularly time critical. The CPU can also be configured to

handle any packet whose destination address cannot be found in the forwarding table in

the network interface card.

3.5.3 Fast Path or Slow Path?

It is not always obvious which router functions are to be implemented in the fast path or

slow path. Some router designers may choose to include the ARP processing in the fast

path instead of in the slow path of a router for performance reasons, and because ARP

needs direct access to the physical network. Other may argue for ARP implementation in

the slow path instead of the fast path. For example, in the ARP used for Ethernet, if a

router gets a datagram to an IP address whose Ethernet address it does not know, it is

supposed to send an ARP message and hold the datagram until it gets an ARP reply with

the necessary Ethernet address. When the ARP is implemented in the slow path,

datagrams for which the destination link layer address is unknown are passed to the CPU,

which does the ARP and, once it gets the ARP reply, forwards the datagram and

incorporates the link-layer address into future forwarding tables in the network interfaces.

There are other functions which router designers may argue to be not critical and are more

appropriate to be implemented in the slow path. IP packet fragmentation and reassembly,

source routing option, route recording option, timestamp option, and ICMP message

generation are examples of such functions. It can be argued that packets requiring these

24

functions are rare and can be handled in the slow path: a practical product does not need

to be able to perform “wire-speed” routing when infrequently used options are present in

the packet. Since such packets having such options comprise a small fraction of the total

traffic, they can be handled as exception conditions. As a result, such packets can be

handled by the CPU, i.e., the slow path. For IP packet headers with error, generally, the

CPU can instruct the inbound network interface to discard the errored datagram. In some

cases, the CPU will generate an ICMP message [34]. Alternatively, in the cache-based

scheme [31], templates of some common ICMP messages such as the TimeExceeded

message are kept in the forwarding engine and these can be combined with the IP header

to generate a valid ICMP message.

An IP packet can be fragmented by a router, that is, a single packet can arrive, thereby

resulting in multiple, smaller packets being transmitted onto the output ports. This

capability allows a router to forward packets between ports where the output is incapable

of carrying a packet of the desired length; that is, the MTU of the output port is less than

that of the input port. Fragmentation is good in the sense that it allows communication

between end systems connected through links with dissimilar MTUs. It is bad in that it

imposes a significant processing burden on the router, which must perform more work to

generate the resulting multiple output datagrams from the single input IP datagram. It is

also bad from a data throughput point of view because, when one fragment is lost, the

entire IP datagram must be retransmitted. The main arguments for implementing

fragmentation in the slow path is that IP packet fragmentation can be considered an

“exception condition”, outside of the fast path. Now that IP MTU discovery [11] is

prevalent, fragmentation should be rare.

Reassembly of fragments may be necessary for packets destined for entities within the

router itself. These fragments may have been generated either by other routers in the path

between the sender and the router in question or by the original sending end system itself.

Although fragment reassembly can be a resource-intensive process (both in CPU cycles

and memory), the number of packets sent to the router is normally quite low relative to

the number of packets being routed through. The number of fragmented packets destined

25

for the router is a small percentage of the total router traffic. Thus, the performance of the

router for packet reassembly is not critical and can be implemented in the slow path.

Figure 8 further categorizes the slow path router functions into two: those performed on a

packet-by-packet basis (that is, optional or exception conditions) and those performed as

background tasks.

- Fragmentation and reassembly
- Source routing option
- Route recording option
- Timestamp option
- ICMP message generation

- Routing protocols (RIP, OSPF,
 BGP, etc.)
- Network management (SNMP)
- Router configuration (BOOTP,
 DHCP, etc.)

Typical Router Slow Path Functions

Packet-by-Packet Operations Background Tasks

Figure 8. IP router slow-path functions.

3.5.4 Protocol Entities and IP Processing in the Distributed Router Architecture

The IP protocol is the most extensive entity in the packet processing path of an IP router

and, thus, IP processing typically determines the achievable performance of a router.

Therefore, a decomposition of IP that enables efficient multiprocessing is needed in the

distributed router architecture. An example of a typical functional partitioning in the

distributed router architecture is shown in Figure 9.

This distributed multiprocessing architecture, means that the various processing elements

can work in parallel on their own tasks with little dependence on the other processors in

the system. This architecture decouples the tasks associated with determining routes

through the network from the time-critical tasks associated with IP processing. The results

of this is an architecture with high levels of aggregate system performance and the ability

to scale to increasingly higher performance levels.

26

Switch Fabric

- Routing protocols (RIP, OSPF, BGP, etc)
- Error and maintenance protocols (ICMP,
 IGMP)
- Network management (SNMP)
- QoS policies (policy agent, RSVP, etc.)
- Applications (UDP, TCP, DHCP, etc.)
- * IP options processing
- * Packet fragmentation & reassembly
- * ARP

- IP header validation
- Route lookup &
 packet classification
- TTL update
- Checksum update

CPU

Network
Interface

Network
Interface

- IP header validation
- Route lookup &
 packet classification
- TTL update
- Checksum update

*Note: These functions are usually
implemented in the CPU (the slow
path), but nothing prevents a designer
from implementing them in the
network interface (the fast path).

Figure 9. An example functional partitioning in the distributed router architecture.

A high level diagram of a distributed router architecture is shown in Figure 10. Network

interface cards built with general-purpose processors and complex communication

protocols tend to be more expensive than those built using ASICs and simple

communication protocols. Choosing between ASICs and general-purpose processors for

an interface card is not straightforward. General-purpose processors tend to be more

expensive, but allow extensive port functionality. They are also available off-the-shelf, and

their price/performance ratio improves yearly [47]. ASICs are not only cheaper, but can

also provide operations that are specific to routing, such as traversing a Patricia tree.

Moreover, the lack of flexibility with ASICs can be overcome by implementing

functionality in the route processor (e.g., ARP, fragmentation and reassembly, IP options,

etc.).

27

Switch Fabric

MAC

PHY

Queue
Manager

Packet
Buffer

Port
Processing

(Route
Resolution

Logic)

 Forwarding
Table

MAC

PHY

Queue
Manager

Packet
Buffer

Port
Processing

(Route
Resolution

Logic)

 Forwarding
Table

CPURouting
Table

Updates for routes, QoS,
and access control policies

- Routing protocols (RIP, OSPF, etc.)
- Error and maintenance protocols
 (ICMP, IGMP,etc.)
- Network management (SNMP)
- QoS policies (e.g., policy agent, RSVP, etc.)
- Transport protocols & applications (UDP,
 TCP, BOOTP, FTP, etc.)
- Security/Firewall functions,
- etc.

- IP header validation, route lookup &
 packet classification, traffic shaping, etc.
- Priority queueing & packet scheduling
- Packet filtering, packet dropping, etc.
- etc.

Figure 10. A high level functional diagram of a distributed router architecture.

Some router designers often observe that the IPv4 specification is very stable and say

that it would be more cost effective to implement the forwarding engine in an ASIC. It

is argued that ASIC can reduce the complexity on each system board by combining a

number of functions into individual chips that are designed to perform at high speeds.

Other designers also observe that the Internet is constantly evolving in a subtle way that

require programmability and as such a fast processor is appropriate for the forwarding

engine.

The forwarding database in a network interface consists of several cross-linked tables

as illustrated in Figure 11. This database can include IP routes (unicast and multicast),

ARP tables, and packet filtering information for QoS and security/access control.

28

Route
Lookup

&
Packet

Classification

Packet
Scheduling

Unicast
Tables

Multicast
Tables

ARP
Tables

Priority Queues

IP packets
IP packets

Forwarding table
(several cross-linked
tables which can
include ARP tables)

CPU

Policy
rules

for QoS and
Filtering

Scheduling policies
(WRR, WFQ, etc.)

CPU determines
information for
forwarding table

Table
lookup

Figure 11. Forwarding database consisting of several cross-linked tables.

Now, let us take a generic shared memory router architecture and then trace the path of an

IP packet as it goes through an ingress port and out of an egress port. The IP packet

processing steps are shown in Figure 12.

Shared
Memory

Ingress
Port

System
Controller

Ingress
Port

Egress
Port

Egress
Port

packets

packets

packets

packets

84321

7

6

5

9

Figure 12. IP packet processing in a shared memory router architecture.

The IP packet processing steps are as follows:

1. IP Header Validation: As a packet enters an ingress port, the forwarding logic verifies

all Layer 3 information (header length, packet length, protocol version, checksum,

etc.).

29

2. Route Lookup and Header Processing: The router then performs an IP address lookup

using the packet’s destination address to determine the egress (or outbound) port, and

performs all IP forwarding operations (TTL decrement, header checksum, etc.).

3. Packet Classification: In addition to examining the Layer 3 information, the forwarding

engine examines Layer 4 and higher layer packet attributes relative to any QoS and

access control policies.

4. With the Layer 3 and higher layer attributes in hand, the forwarding engine performs

one or more parallel functions:

• associates the packet with the appropriate priority and the appropriate egress

port(s) (an internal routing tag provides the switch fabric with the appropriate

egress port information, the QoS priority queue the packet is to be stored in,

and the drop priority for congestion control),

• redirects the packet to a different (overridden) destination (ICMP redirect),

• drops the packet according to a congestion control policy (e.g., RED, WRED,

etc.), or a security policy, and

• performs the appropriate accounting functions (statistics collection, etc.).

5. The forwarding engine notifies the system controller that a packet has arrived.

6. The system controller reserves a memory location for the arriving packet.

7. Once the packet has been passed to the shared memory, the system controller signals

the appropriate egress port(s). For multicast traffic, multiple egress ports are signalled.

8. The egress port(s) extracts the packet from the known shared memory location using

any of a number of algorithms: Weighted Fair Queueing (WFQ), Weighted Round-

Robin (WRR), Strict Priority (SP), etc.

9. When the destination egress port(s) has retrieved the packet, it notifies the system

controller, and the memory location is made available for new traffic.

30

4. Typical Switch Fabrics of Routers

Switch fabric design is a very well studied area, especially in the context of ATM switches

[48][49] so in this section, we examine briefly the most common fabrics used in router

design. The switch fabric in a router is responsible for transferring packets between the

other functional blocks. In particular, it routes user packets from the input modules to the

appropriate output modules. The design of the switch fabric is complicated by other

requirements such as multicasting, fault tolerance, and loss and delay priorities. When

these requirements are considered, it becomes apparent that the switch fabric should have

additional functions, e.g., concentration, packet duplication for multicasting if required,

packet scheduling, packet discarding, and congestion monitoring and control.

Virtually all IP router designs are based on variations or combinations of the following

basic approaches: shared memory; shared medium; distributed output buffered; space

division (e.g., crossbar). Some important considerations for the switch fabric design are:

throughput, packet loss, packet delays, amount of buffering, and complexity of

implementation. For given input traffic, the switch fabric designs aim to maximize

throughput and minimize packet delays and losses. In addition, the total amount of

buffering should be minimal (to sustain the desired throughput without incurring excessive

delays) and implementation should be simple.

4.1 Shared Medium Switch Fabric

In a router, packets may be routed by means of a shared medium e.g., bus, ring, or dual

bus. The simplest switch fabric is the bus. Bus-based routers implement a monolithic

backplane comprising a single medium over which all inter-module traffic must flow. Data

is transmitted across the bus using Time Division Multiplexing (TDM), in which each

module is allocated a time slot in a continuously repeating transmission. However, a bus is

limited in capacity and by the arbitration overhead for sharing this critical resource. In a

typical shared memory bus architecture, all ports access a central memory pool via a

shared bus. An arbitration mechanism is used to control port access to the shared memory.

The challenge is that it is almost impossible to build a bus arbitration scheme fast enough

to provide nonblocking performance at multigigabit speeds.

31

Another example of a fabric using a time-division multiplexed (TDM) bus is shown in

Figure 13. Incoming packets are sequentially broadcast on the bus (in a round-robin

fashion). At each output, address filters examine the internal routing tag on each packet to

determine if the packet is destined for that output. The address filters passes the

appropriate packets through to the output buffers.

In
gr

es
s

P
or

ts

E
gr

es
s

P
or

ts

TDM
Bus

Figure 13. Shared medium bus: a TDM bus.

It is apparent that the bus must be capable of handling the total throughput. For

discussion, we assume a router with N input ports and N output ports, with all port speeds

equal to S (fixed size) packets per second. In this case, a packet time is defined as the time

required to receive or transmit an entire packet at the port speed, i.e., 1/S sec. If the bus

operates at a sufficiently high speed, at least NS packets/sec, then there are no conflicts for

bandwidth and all queueing occurs at the outputs. Naturally, if the bus speed is less than

NS packets/sec, some input queueing will probably be necessary.

The outputs are modular from each other, which has advantages in implementation and

reliability. The address filters and output buffers are straightforward to implement. Also,

the broadcast-and-select nature of this approach makes multicasting and broadcasting

natural. For these reasons, the bus type switch fabric has found a lot of implementation in

routers. However, the address filters and output buffers must operate at the speed of the

shared medium, which could be up to N times faster than the port speed. There is a

physical limit to the speed of the bus, address filters, and output buffers; these limit the

scalability of this approach to large sizes and high speeds. Either the size N or speed S can

be large, but there is a physical limitation on the product NS. As with the shared memory

32

approach (to be discussed next), this approach involves output queueing, which is capable

of the optimal throughput (compared to simple FIFO input queueing). However, the

output buffers are not shared, and hence this approach requires more total amount of

buffers than the shared memory fabric for the same packet loss rate.

4.2 Shared Memory Switch Fabric

A typical architecture of a shared memory fabric is shown in Figure 14. Incoming packets

are typically converted from a serial to parallel form which are then written sequentially

into a (dual port) random access memory. Their packet headers with internal routing tags

are typically delivered to a memory controller, which decides the order in which packets

are read out of the memory. The outgoing packets are demultiplexed to the outputs,

where they are converted from parallel to serial form. Functionally, this is an output

queueing approach, where the output buffers all physically belong to a common buffer

pool. The output buffered approach is attractive because it can achieve a normalized

throughput of one under a full load [50]. Sharing a common buffer pool has the advantage

of minimizing the amounts of buffers required to achieve a specified packet loss rate. The

main idea is that a central buffer is most capable of taking advantage of statistical sharing.

If the rate of traffic to one output port is high, it can draw upon more buffer space until

the common buffer pool is (partially or) completely filled.

Because the buffer space can be shared, this approach requires the minimum possible

amount of buffering and has the most flexibility to accommodate traffic dynamics, in the

sense that the shared memory can absorb large bursts directed to any output. For these

reasons it is a popular approach for router design (e.g., [37][40][42][43][45]).

33

In
gr

es
s

P
or

ts

E
gr

es
s

P
or

ts

Shared
Memory

System
Controller

Figure 14. A shared memory switch fabric.

Unfortunately, the approach has its disadvantages. As the packets must be written into and

read out from the memory one at a time, the shared memory must operate at the total

throughput rate. It must be capable of reading and writing a packet (assuming fixed size

packets) in every 1/NS sec, that is, N times faster than the port speed. As the access time

of random access memories is physically limited, this speed-up factor N limits the ability of

this approach to scale up to large sizes and fast speeds. Either the size N or speed S can be

large, but the memory access time imposes a limit on the product NS, which is the total

throughput. Moreover, the (centralized) memory controller must process (the routing tags

of) packets at the same rate as the memory. This might be difficult if, for instance, the

controller must handle multiple priority classes and complicated packet scheduling.

Multicasting and broadcasting in this approach will also increase the complexity of the

controller.

In shared memory switches, a single point of failure is invariably introduced in the design

because adding a redundant switch fabric to this design is so complex and expensive. As a

result, shared memory switch fabrics are best suited for small capacity systems.

4.3 Distributed Output Buffered Switch Fabric

The distributed output buffered approach is shown in Figure 15. Independent paths exist

between all N2 possible pairs of inputs and outputs. In this design, arriving packets are

broadcast on separate buses to all outputs. Address filters at each output determine if the

34

packets are destined for that output. Appropriate packets are passed through the address

filters to the output queues.

AF AF AF

1

2

N

AF AF AF

1 N

Address
Filters

Buffers

Buses

In
gr

es
s

Egress

Figure 15. A distributed output buffered switch fabric.

This approach offers many attractive features. Naturally there is no conflict among the N2

independent paths between inputs and outputs, and hence all queueing occurs at the

outputs. As stated earlier, output queueing achieves the optimal normalized throughput

compared to simple FIFO input queueing [50]. Like the shared medium approach, it is

also broadcast-and-select in nature and, therefore, multicasting is natural. The address

filters and output buffers are simple to implement. Unlike the shared medium approach,

the address filters and buffers need to operate only at the port speed. All of the hardware

can operate at the same speed. There is no speed-up factor to limit scalability in this

approach. For these reasons, this approach has been taken in some commercial router

designs (e.g., [41]).

Unfortunately, the quadratic N2 growth of buffers means that the size N must be limited

for practical reasons. However, in principle, there is no severe limitation on S. The port

speed S can be increased to the physical limits of the address filters and output buffers.

Hence, this approach might realize a high total throughput NS packets per second by

scaling up the port speed S. The Knockout switch was an early prototype that suggested a

trade-off to reduce the amount of buffers at the cost of higher packet loss [51]. Instead of

35

N buffers at each output, it was proposed to use only a fixed number L buffers at each

output (for a total of NL buffers which is linear in N), based on the observation that the

simultaneous arrival of more than L packets (cells) to any output was improbable. It was

argued that L = 8 is sufficient under uniform random traffic conditions to achieve a cell

loss rate of 106− for large N.

4.4 Space Division Switch Fabric: The Crossbar Switch

Optimal throughput and delay performance is obtained using output buffered switches. As

long as input port and output port is under-subscribed, 100% throughput is achieved.

Moreover, since upon arrival, the packets are immediately placed in the output buffers, it

is possible to better control the latency of the packet. This helps in providing QoS

guarantees. While this architecture appears to be especially convenient for providing QoS

guarantees, it has serious limitations: the output buffered switch memory speed must be

equal to at least the aggregate input speed across the switch. To achieve this, the switch

fabric must operate at a rate at least equal to the aggregate of all the input links connected

to the switch. However, increasing line rate (S) and increasing switch size (N) make it

extremely difficult to significantly speedup the switch fabric, and also build memories with

a bandwidth of order O(NS).

At multigigabit and terabit speeds it becomes difficult to build output buffered switches.

As a result some high-speed implementations are based on the input buffered switch

architecture. One of the most popular interconnection networks used for building input

buffered switches is the crossbar because of its (i) low cost, (ii) good scalability and (iii)

non-blocking properties. Crossbar switches have an architecture that, depending on the

implementation, can scale to very high bandwidths. Considerations of cost and complexity

are the primary constraints on the capacity of switches of this type. The crossbar switch

(see Figure 16) is a simple example of a space division fabric which can physically connect

any of the N inputs to any of the N outputs. An input buffered crossbar switch has the

crossbar fabric running at the link rate. In this architecture buffering occurs at the inputs,

and the speed of the memory does not need to exceed the speed of a single port. Given the

current state of technology, this architecture is widely considered to be substantially more

36

scalable than output buffered or shared memory switches. This has renewed interest in

switches with lower complexity (and cost) such as input buffered switches despite their

deficiencies. However, the crossbar architecture presents many technical challenges that

need to be overcome in order to provide bandwidth and delay guarantees. Examples of

commercial routers that use crossbar switch fabrics are [38][39][45].

We start with the issue of providing bandwidth guarantees in the crossbar architecture.

For the case when there is a single FIFO queue at each input, it has long been known that

a serious problem referred to as head-of-line (HOL) blocking [50] can substantially reduce

achievable throughput. In particular, the well-known results of [50] is that for uniform

random distribution of input traffic, the achievable throughput is only 58.6%. Moreover,

Li [52] has shown that the maximum throughput of the switch decreases monotonically

with increasing burst size. Considerable amount of work has been done in recent years to

build input buffered switches that match the performance of an output buffered switch.

One way of reducing the effect of HOL blocking is to increase the speed of the

input/output channel (i.e., the speedup of the switch fabric). Speedup is defined as the

ratio of the switch fabric bandwidth and the bandwidth of the input links. There have been

a number of studies such as [53][54] which showed that an input buffered crossbar switch

with a single FIFO at the input can achieve about 99% throughput under certain

assumptions on the input traffic statistics for speedup in the range of 4 - 5. A more recent

simulation study [55] suggested that speedup as low as 2 may be sufficient to obtain

performance comparable to that of output buffered switches.

37

Matrix
Controller

In
gr

es
s

P
or

ts

E
gr

es
s

P
or

ts

Port Connections
Control

Figure 16. A crossbar switch.

Another way of eliminating the HOL blocking is by changing the queueing structure at the

input. Instead of maintaining a single FIFO at the input, a separate queue per each output

can be maintained at each input. To eliminate HOL blocking, virtual output queues

(VOQs) were proposed at the inputs. However, since there could be contention at the

inputs and outputs, there is a necessity for an arbitration algorithm to schedule packets

between various inputs and outputs (equivalent to the matching problem for bipartite

graphs). It has been shown that an input buffered switch with VOQs can provide

asymptotic 100% throughput using a maximum matching algorithm [56]. However, the

complexity of the best known maximum match algorithm is too high for high speed

implementation. Moreover, under certain traffic conditions, maximum matching can lead

to starvation. Over the years, a number of maximal matching algorithms have been

proposed [57][58][59][60][61].

As stated above, increasing the speedup of the switch fabric can improve the performance

of an input buffered switch. However, when the switch fabric has a higher bandwidth than

the links, buffering is required at the outputs too. Thus a combination of input buffered

and output buffered switch is required, i.e., CIOB (Combined Input and Output Buffered).

The goal of most designs then is to find the minimum speedup required to match the

performance of an output buffered switch using a CIOB and VOQs. McKeown et al. [62]

shown that a CIOB switch with VOQs is always work conserving if speedup is greater

N/2. In a recent work, Prabhakar et al. [63] showed that a speed of 4 is sufficient to

38

emulate an output buffered switch (with an output FIFO) using a CIOB switch with

VOQs.

4.5 Other Issues in Router Switch Fabric Design

We have described above four typical design approaches for router switch fabrics.

Needless to say, endless variations of these designs can be imagined but the above are the

most common fabrics found in routers. There are other issues applicable to understanding

the trade-offs involved in any new design. We discuss some of these issues next.

4.5.1 Construction of Large Router Switch Fabrics

With regards to the construction of large switch fabrics, most of the four basic switch

fabric design approaches are capable of realizing routers of limited throughput. The shared

memory and shared medium approaches can achieve a throughput limited by memory

access time. The space division approach has no special constraints on throughput or size,

only physical factors do limit the maximum size in practice. There are physical limits to the

circuit density and number of input/output (I/O) pins. Interconnection complexity and

power dissipation become more difficult issues with fabric size. In addition, reliability and

repairability become difficult with size. Modifications to maximize the throughput of space

division fabrics to address HOL blocking increases the implementation complexity.

It is generally accepted that large router switch fabrics of 1 terabits per second (Tbps)

throughput or more cannot be realized simply by scaling up a fabric design in size and

speed. Instead, large fabrics must be constructed by interconnection of switch modules of

limited throughput. The small modules may be designed following any approach, and there

are various ways to interconnect them.

4.5.2 Fault Tolerance and Reliability

With the rapid growth of the Internet and the emergence of growing competition between

Internet Service Providers (ISPs), reliability has become an important issue for IP routers.

In addition, multigigabit routers will be deployed in the core of enterprise networks and

the Internet. Traffic from thousands of individual flows pass through the switch fabric at

39

any given time [32]. Thus, the robustness and overall availability of the switch fabric

becomes a critically important design parameter. As in any communication system, fault

tolerance is achieved by adding redundancy to the crucial components. In a router, one of

the most crucial components is the packet routing and buffering fabric. In addition to

redundancy, other considerations include detection of faults and isolation and recovery.

4.5.3 Multicasting

New applications or services are emerging that utilize multicast transport. These

applications include distribution of news, financial data, software, video, audio and multi-

person conferencing. These services or applications will require a router to multicast an

incoming packet to a number of selected outputs or broadcast it to all outputs.

Multicasting is inherently natural to the shared medium and distributed output-buffered

approaches. Both approaches consist of broadcasting incoming packets and selecting the

appropriate packets with address filters at the output buffers. For multicasting, an address

filter can recognize a set of multicast addresses as well as output port addresses. As a

result, multicasting is natural in these two broadcast-and-select approaches.

Multicasting is not natural to the shared memory approach but can be implemented with

additional control circuitry. A multicast packet may be duplicated before the memory or

read multiple times from the memory. The first approach obviously requires more memory

because multiple copies of the same packet are maintained in the memory. In the second

approach, a packet is read multiple times from the same memory location. The control

circuitry must keep the packet in memory until it has been read to all the output ports in

the multicast group.

Multicast in the space division fabrics is simple to implement but has some consequences.

For example, a crossbar switch (with input buffering) is naturally capable of broadcasting

one incoming packet to multiple outputs. However, this would aggravate the HOL

blocking at the input buffers. Approaches to alleviate the HOL blocking effect would

increase the complexity of buffer control. Other inefficient approaches in crossbar switches

require an input port to write out multiple copies of the packet to different output ports

40

one at a time. This does not support the one-to-many transfers required for multicasting as

in the shared bus architecture and the fully distributed output buffered architectures. The

usual concern about making multiple copies is that it reduces effective switch throughput.

Several approaches for handling multicasting in crossbar switches have been proposed

[64]. Generally, multicasting increases the complexity of space division fabrics.

4.5.4 Buffer Management and Quality of Service (QoS)

The prioritization of mission critical applications and the support of IP telephony and

video conferencing create the requirement for supporting QoS enforcement with the

switch fabric. These applications are sensitive to both absolute latency and latency

variations.

Beyond best-effort service, routers are beginning to offer a number of QoS or priority

classes. Priorities are used to indicate the preferential treatment of one traffic class over

another. The switch fabrics must handle these classes of traffic differently according to

their QoS requirements. In the output buffered switch fabric, for example, typically the

fabric will have multiple buffers at each output port and one buffer for each QoS traffic

class. The buffers may be physically separate or a physical buffer may be divided logically

into separate buffers.

Buffer management here refers to the discarding policy for the input of packets into the

buffers (e.g., Drop Tail, Drop-From-Front, Random Early Detection (RED), etc.), and the

scheduling policy for the output of packets from the buffers (e.g., strict priority, weighted

round-robin (WRR), weighted fair queueing (WFQ), etc.). Buffer management in the IP

router involves both dimensions of time (packet scheduling) and buffer space (packet

discarding). The IP traffic classes are distinguished in the time and space dimensions by

their packet delay and packet loss priorities. We therefore see that buffer management and

QoS support is an integral part of the switch fabric design.

5. Conclusions and Open Problems

IP provides an amazing degree of flexibility in building large and arbitrary complex

networks. Interworking routers capable of forwarding aggregate data rates in the

41

multigigabit and terabit per second range are required in emerging high performance

networking environments. This paper has presented an evaluation of typical approaches

proposed for designing high speed routers. We have focused primarily on the architectural

overview and the design of the components that have the highest effect on performance.

First, we have observed that high-speed routers need to have enough internal bandwidth

to move packets between its interfaces at multigigabit and terabit rates. The router design

should use a switched backplane. Until very recently, the standard router used a shared

bus rather than a switched backplane. While bus-based routers may have satisfied the early

needs of IP networks, emerging demands for high bandwidth, QoS delivery, multicast, and

high availability place the bus architecture at a significant disadvantage. For high speeds,

one really needs the parallelism of a switch with superior QoS, multicast, scalability, and

robustness properties. Second, routers need enough packet processing power to forward

several million packets per second (Mpps). Routing table lookups and data movements are

the major consumers of processing cycles. The processing time of these tasks does not

decrease linearly if faster processors are used. This is because of the sometimes

dominating effect of memory access rate.

Experience has shown that while an IP router must, in general, perform a myriad of

functions, in practice the vast majority of packets need only a few operations performed in

real-time. Thus, the performance critical functions can be implemented in hardware (the

fast path) and the remaining (necessary, but less time-critical) functions in software (the

slow path). IP contains many features and functions that are either rarely used or that can

be performed in the background of high-speed data forwarding (for example, routing

protocol operation and network management). The router architecture should be

optimized for those functions that must be performed in real-time, on a packet-by-packet

basis, for the majority of the packets. This creates an optimized routing solution that route

packets at high speed at a reasonable cost.

It has been observed in [47] that the cost of a router port depends on, 1) the amount and

kind of memory it uses, 2) its processing power, and 3) the complexity of the protocol

42

used for communication between the port and the route processor. This means the design

of a router involve trade-offs between performance, complexity, and cost.

Router ports built with general-purpose processors and complex communication protocols

tend to be more expensive than those built using ASICs and simple communication

protocols. Choosing between ASICs and general-purpose processors for an interface card

is not straightforward. General-purpose processors tend to be more expensive, but allow

extensive port functionality. They are also available off-the-shelf, and their

price/performance ratio improves yearly. ASICs are not only cheaper, but can also provide

operations that are specific to routing, such as traversing a Patricia tree. Moreover, the

lack of flexibility with ASICs can be overcome by implementing functionality in the route

processor.

The cost of a router port is also proportional to the type and size of memory on the port.

SRAMs offer faster access times, but are more expensive than DRAMs. Buffer memory is

another parameter that is difficult to size. In general, the rule of thumb is that a port

should have enough buffers to support at least one bandwidth-delay product worth of

packets, where the delay is the mean end-to-end delay and the bandwidth is the largest

bandwidth available to TCP connections traversing that router. This sizing allows TCP to

increase their transmission windows without excessive losses.

The cost of a router port is also determined by the complexity of the internal connections

between the control paths and the data paths in the port card. In some designs, a

centralized controller sends commands to each port through the switch fabric and the

port’s internal buffers. Careful engineering of the control protocol is necessary to reduce

the cost of the port control circuitry and also the loss of command packets which will

certainly need retransmission.

Significant advances have been made in router designs to address the most demanding

customer issues regarding high speed packet forwarding (e.g., route lookup algorithms,

high-speed switching cores and forwarding engines), low per-port cost, flexibility and

programmability, reliability, and ease of configuration. While these advances have been

43

made in the design of IP routers, some important open issues still remain to be resolved.

These include packet classification and resource provisioning, improved price/performance

router designs, “active networking” [65] and ease of configuration, reliability and fault

tolerance designs, and Internet billing/pricing. Extensive work is being carried out both in

the research community and industry to address these problems.

References

[1]. P. Newman, T. Lyon, and G. Minshall, “Flow Labelled IP: A Connectionless

Approach to ATM,” Proc IEEE Infocom’96, San Francisco, CA, March 1996, pp.

1251 - 1260.

[2]. Y. Katsube, K. Nagami, and H. Esaki, “Toshiba’s Router Architecture Extensions

for ATM: Overview,” IETF RFC 2098, April 1997.

[3]. Y. Rekhter, B. Davie, D. Katz, E. Rosen, and G. Swallow, “Cisco Systems’ Tag

Switching Architecture Overview,” IETF RFC 2105, Feb. 1997.

[4]. F. Baker, “Requirements for IP Version 4 Routers,” IETF RFC 1812, Jun. 1995.

[5]. W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA:

Addison-Wesley, 1994.

[6]. C. Huitema, Routing in the Internet, Prentice Hall, 1996.

[7]. J. Moy, OSPF: Anatomy of an Internet Routing Protocol, 1998.

[8]. R. Braden, D. Borman, and C. Partridge, “Computing the Internet Checksum,”

IETF RFC 1071, Sept. 1988.

[9]. T. Mallory and A. Kullberg, “Incremental Updating of the Internet Checksum,”

IETF RFC 1141, Jan. 1990.

[10]. C. A. Kent and J. C. Mogul, “Fragmentation Considered Harmful,” Computer

Commun. Rev., Vol. 17, No. 5, Aug. 1987, pp. 390 - 401.

44

[11]. J. Mogul and S. Deering, “Path MTU Discovery” IETF RFC 1191, April 1990.

[12]. V. Fuller et al. “Classless Inter-Domain Routing,” IETF RFC 1519, Jun. 1993.

[13]. K. Sklower, “A Tree-Based Packet Routing Table for Berkeley Unix,” USENIX,

Winter’91, Dallas, TX, 1991.

[14]. W. Doeringer, G. Karjoth, and M. Nassehi, “Routing on Longest-Matching

Prefixes,” IEEE/ACM Trans. on Networking, Vol. 4, No. 1, Feb. 1996, pp. 86 - 97.

[15]. D. C. Feldmeier, “Improving Gateway Performance with a Routing-Table Cache,”

Proc. IEEE Infocom’88, New Orleans, LI, Mar. 1988.

[16]. C. Partridge, “Locality and Route Caches,” NSF Workshop on Internet Statistics

Measurement and Analysis, San Diego, CA, Feb. 1996.

[17]. D. Knuth, The Art of Computer Programming, Vol. 3. Sorting and Searching,

Addison-Wesley, 1973.

[18]. M. Degermark, et al., “Small Forwarding Tables for Fast Routing Lookups,” Proc.

ACM SIGCOMM’97, Cannes, France, Sept. 1997.

[19]. H.-Y. Tzeng, “Longest Prefix Search Using Compressed Trees,” Proc.

Globecom’98, Sydney, Australia, Nov. 1998.

[20]. M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High Speed IP

Routing Lookup,” Proc. ACM SIGCOMM’97, Cannes, France, Sept. 1997.

[21]. V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix

Expansion,” Proc. ACM SIGMETRICS, May 1998.

[22]. S. Nilsson and G. Karlsson, “Fast Address Look-Up for Internet Routers,” Proc. of

IEEE Broadband Communications’98, April 1998.

[23]. E. Filippi, V. Innocenti, and V. Vercellone, “Address Lookup Solutions for Gigabit

Switch/Router,” Proc. Globecom’98, Sydney, Australia, Nov. 1998.

45

[24]. A. J. McAuley and P. Francis, “Fast Routing Table Lookup using CAMs,” Proc.

IEEE Infocom’93, San Francisco, CA, Mar. 1993, pp. 1382 - 1391.

[25]. T. B. Pei and C. Zukowski, “Putting Routing Tables in Silicon,” IEEE Network,

Vol. 6, Jan. 1992, pp. 42 - 50.

[26]. M. Zitterbart et al., “HeaRT: High Performance Routing Table Lookup,” 4th IEEE

Workshop on Architecture & Implementation of High Performance

Communications Subsystems, Thessaloniki, Greece, Jun. 1997.

[27]. P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory

Access Speeds,” Proc. IEEE Infocom’98, Mar. 1998.

[28]. S. F. Bryant and D. L. A. Brash, “The DECNIS 500/600 Multiprotocol

Bridge/Router and Gateway,” Digital Technical Journal, Vol. 5, No. 1, 1993.

[29]. P. Marimuthu, I. Viniotis, and T. L. Sheu, “A Parallel Router Architecture for High

Speed LAN Internetworking,” 17th IEEE Conf. on Local Computer Networks,

Minneapolis, Minnesota, Sept. 1992.

[30]. S. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski, “Towards a Gigabit IP

Router,” Journal of High Speed Networks, Vol. 1, No. 4, 1992.

[31]. C. Partridge et al., “A 50Gb/s IP Router,” IEEE/ACM Trans. on Networking, Vol.

6, No. 3, Jun 1998, pp. 237 - 248.

[32]. K. Thomson, G. J. Miller, and R. Wilder, “Wide-Area Traffic Patterns and

Characteristics,” IEEE Network, Dec. 1997.

[33]. V. P. Kumar, T. V. Lakshman, and D. Stiliadis, “Beyond Best Effort: Router

Architectures for the Differentiated Services of Tomorrow’s Internet,” IEEE

Commun. Mag., May 1998, pp. 152 - 164.

46

[34]. A Tantawy, O Koufopavlou, M. Zitterbart, and J. Abler, “On the Design of a

Multigigabit IP Router,” Journal of High Speed Networks, Vol. 3, 1994, pp. 209 -

232.

[35]. O Koufopavlou, A. Tantawy, and M. Zitterbart, “IP-Routing among Gigabit

Networks,” Interoperability in Broadband Networks, S. Rao (Ed.), IOS Press,

1994, pp. 282 - 289.

[36]. O Koufopavlou, A. Tantawy, and M. Zitterbart, “A Comparison of Gigabit Router

Architectures,” High Performance Networking, E. Fdida (Ed.), Elsevier Science B.

V. (North-Holland), 1994.

[37]. “Implementing the Routing Switch: How to Route at Switch Speeds and Switch

Costs”, White Paper, Bay Networks, 1997.

[38]. “Cisco 12000 Gigabit Switch Router,” White Paper, Cisco Systems, 1997.

[39]. “Performance Optimized Ethernet Switching,” Cajun White Paper #1, Lucent

Technologies.

[40]. “Internet Backbone Routers and Evolving Internet Design,” White Paper, Juniper

Networks, Sept. 1998.

[41]. “The Integrated Network Services Switch Architecture and Technology,” White

Paper, Berkeley Networks, 1997.

[42]. “Torrent IP9000 Gigabit Router,” White Paper, Torrent Networking Technologies,

1997.

[43]. “Wire-Speed IP Routing,” White Paper, Extreme Networks, 1997.

[44]. “PE-4884 Gigabit Routing Switch,” White Paper, Packet Engines, 1997.

[45]. “GRF 400 White Paper: A Practical IP Switch for Next-Generation Networks,”

White Paper, Ascend Communications, 1998.

47

[46]. “Rule Your Networks: An Overview of StreamProcessor Applications,” White

Paper, NEO Networks, 1997.

[47]. S. Keshav and R. Sharma, “Issues and Trends in Router Design,” IEEE Commun.

Mag., May 1998, pp. 144 - 151.

[48]. H. Ahmadi and W. Denzel, “A Survey of Modern High-Performance Switching

Techniques,” IEEE J. on Selected Areas in Commun., Vol. 7, Sept. 1989, pp. 1091

- 1103.

[49]. F. Tobagi, “Fast Packet Switch Architectures for Broadband Integrated Services

Digital Networks,” Proc. of the IEEE, Vol. 78, Jan. 1990, pp. 133 - 178.

[50]. M. Karol, M. Hluchyj, and S. Morgan, “Input Versus Output Queueing on a Space-

Division Packet Switch,” IEEE Trans. on Commun., Vol. COM-35, Dec. 1987, pp.

1337 - 1356.

[51]. Y.-S. Yeh, M. Hluchyj and A. S. Acampora, “The Knockout Switch: A Simple,

Modular Architecture for High-Performance Packet Switching,” IEEE J. on

Selected Areas in Commun. Vol. SAC-5, No. 8, Oct. 1987, pp. 1274 - 1282.

[52]. S.-Q. Li, “Performance of a Non-blocking Space-division Packet Switch with

Correlated Input Traffic,” Proc. IEEE Globecom’89, 1989, pp. 1754 - 1763.

[53]. C.-Y. Chang, A. J. Paulraj, and T. Kailath, “A Broadband Packet Switch

Architecture with Input and Output Queueing,” Proc. Globecom’94, 1994.

[54]. I. Iliadis, and W. Denzel, “Performance of Packet Switches with Input and Output

Queueing,” Proc. ICC’90, 1990.

[55]. R. Guerin and K. N. Sivarajan, “Delay and Throughput Performance of Speed-Up

Input-Queueing Packet Switches,” IBM Research Report RC 20892, Jun. 1997.

[56]. N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% Throughput in an

Input-Queued Switch,” Proc. IEEE Infocom’96, 1996, pp. 296 - 302.

48

[57]. T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High Speed Switch

Scheduling for Local Area Networks,” ACM Trans. on Computer Systems, Vol. 11,

No. 4, Nov. 1993, pp. 319 - 352.

[58]. D. Stiliadis and A. Verma, “Providing Bandwidth Guarantees in an Input-Buffered

Crossbar Switch,” Proc. IEEE Infocom’95, 1995, pp. 960 - 968.

[59]. N. McKeown, “Scheduling Algorithms for Input-Queued Cell Switches,” Ph.D.

Thesis, UC Berkeley, May 1995.

[60]. C. Lund, S. Phillips, and N. Reingold, “Fair Prioritized Scheduling in an Input-

Buffered Switch,” Proc. Broadband Communications, 1996.

[61]. A. Mekkittikul and N. McKeown, “A Practical Scheduling Algorithm to Achieve

100% Throughput in Input-Queued Switches,” Proc. IEEE Infocom’98, Mar. 1998.

[62]. N. McKeown, B. Prabhakar, and M. Zhu, “Matching Output Queueing with

Combined Input and Output Queueing,” Proc. 35th Annual Allerton Conf. on

Communications, Control and Computing, Oct. 1997.

[63]. B. Prabhakar and N. McKeown, “On the Speedup Required for Combined Input and

Output Queueing Switching,” Computer Systems Lab, Technical Report CSL-TR-

97-738, Stanford University.

[64]. N. McKeown, “Fast Switched Backplane for a Gigabit Switched Router,” Technical

Report, Dept. of Elect. Eng., Stanford University.

[65]. D. Tennenhouse, et al., “A Survey of Active Network Research,” IEEE Commun.

Mag., Jan. 1997.

