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Abstract  The aim of this article is to demonstrate the dummy variables for estimation seasonal effects in a time 
series, to use them as inputs in a regression model for obtaining quality predictions. Model parameters were 
estimated using the least square method. After fitting, special tests to determine, if the model is satisfactory, were 
employed. The application data were analyzed using the MATLAB computer program that performs these 
calculations. 
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1. Introduction 
If we analyze the evolution of time series, we are 

interested not only in the main development trend of the 
indicators, but also in the course and intensity of any 
periodic fluctuations, which these time series present. 
When working with time series, the data must be adjusted 
seasonally. The aim of seasonal adjustment is to uncover 
the underlying dynamics in the development of the 
investigated phenomena and allow a direct comparison of 
their development in different seasons within the year. 
There are many methods of seasonal adjustment and their 
classification is not easy, because in practice the 
techniques used are a combination of several methods. 
Often they apply different types of moving averages, 
which eliminate from the time series the components the 
frequency of which does not exceed the number of 
observations forming the moving average length. To 
eliminate seasonal component regression methods based 
on the theory of linear regression model are also used. In 
case, where the nature of the seasonal component may 
change, e.g. the Winters exponential smoothing is applied. 

2. Regression Approaches to the Seasonal 
Component of Time Series 

In the construction of the forecasts of seasonal time 
series, a regression model with artificial (dummy) variables 
with simultaneously estimated trend and seasonality 
parameters can be used. Artificial variable is used to quantify 
the effect of the respective period on the estimated value 
of the investigated variables. The trend component is 

modeled via suitable regression function, for example line, 
parabola, and so on. The seasonal component is expressed 
using artificial (zero unit) variables that assign a value to 
the time series unit in case it is found in the considered 
season and zero otherwise. 

Let us assume an additive time series model in which 
the value of the indicator yt in the t-period is given by the 
sum ,t t t ty T S ε= + + where Tt is the trend component, St 
is the seasonal component and εt is a random component. 
In the presence of free parameter (constant) in the model 
trend, in order to avoid multicollinearity, seasonality is 
modeled as a qualitative variable using the s – 1 of 
artificial variables, where s is the length of the season 
included in the time series. Furthermore, we assume that 
the time series has a linear trend and quarterly seasonality. 
The relevant regression model can then be formulated for 

1, 2, ,t n=   in the form of 

 0 1 2 2 3 3 4 4t t t t ty t d d dβ β α α α ε= + + + + + , (1) 
where the artificial variables are defined as vectors 
 

 ( )2 0, 1, 0, 0, 0, 1, 0, 0, ,td =   

 ( )3 0, 0, 1, 0, 0, 0, 1, 0, ,td =   

 ( )4 0, 0, 0, 1, 0, 0, 0, 1, ,td =   (2) 
 

of length of which is equal to n number of the time series 
of observations. 

Since the artificial variable attains the value of one in a 
particular observation, we declare that in this period, to 
the value generated from a linear trend we shall add the 
value of seasonal fluctuations, which is calculated compared 
to the base period, which is in this case the first quarter of 
the year.  
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The artificial variable ( )1 0, 0, 0, 0, 0, 0, 0, 0,td =  is 
a zero vector and the effect of the first quarter is included 
in the intercept β0 of the linear trend, which is interpreted 
in terms of the base level of the studied variables. 

Model (1) contains a trend, seasonal and random 
component. Model parameters can be estimated using the 
least square method. The estimated model will take the 
form of: 

 0 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ ˆˆ .t t t ty t d d dβ β α α α= + + + +  (3) 

The verification of the suitability of the regression 
model (1) is analogous to that in any other regression model. 
Particularly important is to test the heteroscedasticity and 
autocorrelation of the random component. 

The estimated regression model (3) can be used for the 
construction of point and interval forecasts. Forecasting 
requires us to choose the time variables in the horizon of 
h > 0 and for the seasonal variables, substitute the unit 
values of the respective seasons in the horizon h. 

In case of the regression model with artificial variables 
we shall adjust the estimated trend t̂T  and the seasonal 
factors jI , 1, 2, 3, 4j = , to the form of [1]:  

 0 1
ˆ ˆˆ ( ) ,tT a tβ β= + +  (4) 

 1 2 2 3 3 4 4ˆ ˆ ˆ, , , ,I a I a I a I aα α α= − = − = − = −  (5) 

where 

 2 3 4ˆ ˆ ˆ( ) 4a α α α= + +  (6) 

is the “average” of seasonal regression parameters. 
In an analogous manner we shall proceed in case of 

twelve month seasonality. 
Another regression method for eliminating seasonal 

component is based on the fact that this component is 
estimated by means of a suitably selected mathematical 
function. The most commonly used are trigonometric 
functions with the period length equal to the number of 
periods s in the year, or a fraction of this number. 

Provided that the trend of the considered time series is linear, 
the model may have e.g. this shape for 1, 2, ,t n=  : 

 0 1 2 3cos (2 ) sin (2 ) .t ty t t s t sβ β β π β π ε= + + + +  (7) 

Since it is a general linear regression model, estimates of 
the parameters may be obtained by the least square method.  

In case the coefficient of determinationR2for the stated 
model is too small, we can continue to add to the model 
further unit values in the form of the considered 
trigonometric functions, with a half, fourth, or even 
smaller period, e.g. 4 cos (4 ) ,t sβ π 5 sin (4 ) ,t sβ π etc. 
From the models listed we select the one for which we 
achieved, for example, the maximum value of the 
coefficient of determination and also which best meets the 
other criteria imposed on the linear regression model.  

3. The Application of Regression Models 
with artificial Variables and trigonometric 
Functions at Selected Time Series 

We have data available on the number of sold pieces of 
selected articles of a business company engaged in the 

Internet sales of automotive accessories for individual 
quarters of the year, during the period of 2008 − 2014. 

Figure 1 displays the time series presented in a form of 
plot via line chart. 

The presented graph makes clear, that the stated time 
series has in the respective period an increasing, 
approximately linear trend and quarterly seasonality. The 
proposed regression model with artificial variables will 
have the form of (1).  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
300

350

400

450

500

550

600

650

700

750

800

time t

nu
m

be
r o

f s
ol

d 
ar

tic
le

s 
y

 

Figure 1. The development of the number of articles sold in the period of 
2008-2014 

The model estimated by the least squares method is: 

 
2 3 4

308.5201 5.5424
197.8862 71.6295 299.3

ˆˆ

7
ˆ

28 .
t t t

t t t

y T S t
d d d

= + = +

+ + +
 (8) 

For two-sided 95% confidence intervals for regression 
coefficients applies, that:  

 0 298.7445 , 318. 7 ,295β ∈  

 1 5.0682 , 6.0 6 ,16β ∈  

 2 187.1461 , 208. 2 ,626α ∈  

 3 60.8580 , 82. 9 ,400α ∈  

 4 288.5493 , 310. 3 .196α ∈  

To test the statistical significance of individual 
coefficients of the regression model the t-tests were used, 
where we received the following result values of test 
statistics and p-values: 

[65.2874, 24.1790, 38.1151, 13.7565, 57.2181], 
[ 271.2863 10−⋅ , 187.4491 10−⋅ , 222.7269 10−⋅ , 

121.3820 10−⋅ , 262.6265 10−⋅ ]. 
Since p-values are in all cases below the significance 

level α = 0.05, all regression coefficients are considered 
statistically significant. The same result has also been 
provided by the confidence intervals for regression 
coefficients, since none of them contains zero value. 

Based on the resulting value of the coefficient of 
determination 2 0.9953R =  we can conclude that the 
model explained the variability of the number of units sold 
of selected articles to 99.53%. 

The least squares method provides unbiased point estimates 
of parameters of the linear regression model while meeting 
certain assumptions about the probability distribution of 
random errors εt, for 1, 2, ,t n=  , within the model.  
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We assume, that the random errorsεt [2,3]: 
•  have normal distribution, 
•  have zero mean values, i.e. ( ) 0tE ε = ; 
•  have constant variance (homoscedasticity), i.e. 

2( )tV ε σ= ; 
•  are not correlated to each other (in case of the 

normality of the distribution are independent), i.e. the 
covariance ( , ) 0i lK ε ε = for 
each ,i l≠ , 1, 2, ,i l n=  . 

The most important methods of regression model 
analysis include residual analysis. It is based on the 
assumption that the residuals et represent the point 
estimate of random errorsεt. The equation ˆt t te y y= −  
applies, i.e. (classical) residual is the difference of 
empirical and theoretical values. 

The assumptions, on which the model is based, are 
generally verified by simple graphs, respectively, using 
known statistical tests [4,5].  

In case of the graph displaying standardized residuals 
versus the theoretical values (see Figure 2), i.e. of a scatter 
plot ( )ˆ ,t S ty e applies, that the model is good if 

approximately 95% of residuals lies in the interval 
( )2 , 2− . Also residuals have to be randomly distributed 
around zero and the plot must not show any indication of 
a potential trend or pattern of development [2,6]. 
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Figure 2.The dependence of standardized residuals on the theoretical 
values 

The normality of the distribution of random errors we 
verified using the Anderson-Darling test of goodness-of-fit. 
On the significance level ofα = 0.05 we have tested the 
null hypothesis 0 0: ( ) ( )H F x F x= against the alternative 
hypothesis 1 0: ( ) ( )H F x F x≠ , where ( )F x is the 
distribution function of random selection (residuals) and 

0 ( )F x  is the distribution function of the normal 
distribution. We attained these results: Anderson-Darling 
statistics AD = 0.5801, p-value = 0.1217 > 0.05. Thus with 
a 95% reliability we can claim that random errors have 
a normal distribution. 

Further, we tested the null hypothesis H0: random 
errors are uncorrelated compared to the alternative 
hypothesis H1: random errors are correlated. We have 
applied the Durbin-Watson test on the significance level 
ofα = 0.05 with the following results: statistics 
DW = 2.6948, whilst the p-value = 0.1068 > 0.05. We 
therefore do not reject the hypothesis on the no correlation 
of the random errors. 

Based on these results it can be stated that model has 
good quality, and therefore it can be used to calculate 
extrapolations of the quarterly changes in the number of 
sold pieces of the selected articles of goods in the year 
2015. 

We shall use the equations (5) and (6). For the 
“average” of the seasonal regression parameters applies 
that 142.2221.a =  

For seasonal factors, we get the following results: 

 1 2

3 4

142.2221, 55.6641,
70.5926, 157.1507.

I I
I I
= − =
= − =

 (9) 

The presented results can be interpreted so as the 
average number of sold pieces of goods annually in the 
first quarter decreased by about 142 pieces, in the second 
quarter increased by about 56 pieces, in the third quarter 
decreased by about 71 pieces and in the fourth quarter 
increased by about 157 pieces compared to the trend. 

Based on the equation (4) we get for the trend estimate 
the relation:  

 ˆ 450.7422 5.5424 .tT t= +  (10) 

Figure 3 shows a plot of the stated time series and the 
estimated trend. 
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Figure 3. The plot of the stated time series together with the estimated 
trend 

The extrapolated values of the original time series for 
each quarter of the year 2015 can be obtained based on the 
basis of the estimated model (8), respectively, on the basis 
of the respective seasonal factors (9) and the estimated 
trend (10). 

The prediction for individual quarters of the year is as 
follows: 

 29 308.5201 5.5424 2ˆ 469.25009 ,y ⋅ == +  

or 29ˆ 450.7422 5.5424 29 142.2221 469.25,y = + ⋅ − =  

 30 308.5201 5.5424 30 197.88ˆ 672.67862 6,y ⋅ + == +  

or 30 30 2
ˆˆ 672.6786,y T I= + =  

 31 308.5201 5.5424 31 71.6295ˆ 551.9643,y ⋅ == + +  

or 31 31 3
ˆˆ ,y T I= +  

 32 308.5201 5.5424 32 299.37ˆ 785.228 5,y ⋅ == + +  

or 32 32 4
ˆŷ T I= + . 

Now follow the application of the linear regression model 
(7). The good model estimated by the least squares method is: 



121 Journal of Automation and Control  

 0 1 2 3 4
ˆ ˆ ˆ ˆ ˆˆ cos sin cos ,

2 2t
t ty t tπ πβ β β β β π= + + + +  (11) 

where 0 1 4
ˆ ˆ ˆ, , ,β β β  are unbiased estimators of the true 

regression coefficients β0, β1, β2, β3, β4.  
Least squares parameter estimates for this model are 

450.7422 5.5424 50.7433, 35.8147, 106.4β̂ ( , , ) .074 T= −  
The predictions for individual quarters of the year 2015 

are the same as in the case of application of the regression 
model with artificial variables: 29ˆ 469.25,y =  

30ˆ 672.6786,y =  31ˆ 551.9643,y =  32ˆ 785.25.y =  The 

coefficient of determination is in this case 2 0.9953R =  
too. 
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Figure 4.The plot of the measured data with the estimated trend (11) 
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Figure 5. The plot of the stated time series together with the estimated 
trend (11) and 95 % prediction interval 

Figure 4 presents a scatter diagram of the measured 
data with the least squares fitted trend (11). Figure 5 

shows more so the 95 % prediction interval for sold pieces 
of selected articles of a business company. 

4. Conclusion 
The current paper presents the analysis of time series 

with linear growing trend and additive seasonal component. 
To determine the seasonal component, a method based on 
the theory of linear regression model with artificial 
variables, i.e., variables that are discrete or qualitative in 
nature, so they cannot be directly quantified, was used. 
For eliminating seasonal component was used regression 
model with trigonometric functions too. 

The analysis of the seasonal component allows us to 
increase our knowledge about the patterns of behavior of a 
given effect, respectively phenomenon, and contribute to 
the construction of better forecasts of the considered time 
series.  
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