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Abstract

We present a method for developing viewpoint and illu-
mination invariant feature descriptors for scenes that ex-
hibit non-Lambertian reflection, for instance specularities
or transparency. Such descriptors cannot be constructed
from a single image; by observing many views from a mov-
ing vantage point and modeling image variation as a super-
position of (diffuse and specular) radiance layers, we iso-
late diffuse albedo which acts as the invariant descriptor.
In the process, we estimate the independent motion of such
layers and their mixing coefficients. We illustrate our ap-
proach on shiny objects where existing feature descriptors
fail to provide a stable signature for matching.

1. Introduction

Specularities are ubiquitous in natural and man-made en-
vironments. Most surfaces display some kind of specular-
ity, be it highlighting, reflectivity, transparency, or a com-
bination of many of these effects (consider floors, win-
dows, people, picture frames, and computer parts, to name
a few). Except under the most benign circumstances, such
surfaces violate the assumption made by nearly all meth-
ods for recognition, namely that they obey the Lambertian
reflectance model. This fact significantly complicates the
tasks of object recognition, robot navigation, stereo, and
any other systems which rely on finding correspondences
amongst regions of multiple images.

A popular and powerful technique used throughout the
literature on recognition, navigation, and reconstruction in-
volves the computation of functions on regions of images.
In the best case, these feature descriptors provide distinc-
tive signatures of locations in space which can be matched
reliably despite changes in the viewpoint of the camera. Re-
search on invariant descriptors has progressed tremendously
in recent years. A wide range of robust and accurate corre-
spondence techniques for Lambertian scenes are available
to facilitate higher-level vision-based tasks. A common pro-
cedure is to compute affine invariants, which are functions
of image regions that are insensitive to affine warpings. By
normalizing with respect to affine transformations, these
descriptors can match planar Lambertian surface patches

across wide viewpoint changes.

There are three common physical configurations for
which affine invariant descriptors fail: occlusions, highly
non-planar surfaces, and non-Lambertian reflectance. In the
first two cases, the descriptors, which are developed from a
single image, fail to accurately model the geometry of the
scene; for the latter case, they fail to model the photometry.
In this paper, we focus on non-Lambertian surfaces for the
cases of reflection and transparency.

1.1. Single Views are Not Enough

Current approaches compute affine-invariant feature de-
scriptors which approximate locally planar surfaces, and
then match these across images. Since features are extracted
from one image at a time, all such methods implicitly rely
on the assumption of Lambertian reflection. The applica-
tion of affine warping of an image neighborhood approxi-
mates the image of a viewpoint transformation of the cor-
responding plane in space. This is valid for a Lambertian
surface under fixed illumination, but insufficient otherwise.
The image of a surface displaying reflection or transparency
is a composite of the radiance of many surfaces in the scene,
each of which may have different depths and orientations.
A change in viewpoint, therefore, will induce changes in
the image which depend on the motions of more than one
surface.

While Lambertian reflection is a necessary condition for
single-view matching, it is not sufficient in the the presence
of varying illumination, as one can have diffuse shading ef-
fects [15], or directed and self-shadowing [2] that impede
the design of illumination invariants. Note that both diffuse
and specular albedo are viewpoint-invariant, but the latter
is difficult to estimate without a shape model [27], and re-
flectance and illumination can be factored out only in the
presence of stringent conditions.

We seek to overcome these limitations by incorporat-
ing multiple views of an image patch. We assume that
the scene exhibits a diffuse + specular reflectance model,
and that global illumination is constant during the extrac-
tion of each feature descriptor (it can change arbitrarily be-
tween instances that are submitted to the system for match-
ing). The feature learning process is an implicit multi-view
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Figure 1: Non-Lambertian Reflectance These otherwise
good features are corrupted by the motion of a specularity.

Figure 2: SIFT on Non-Lambertian Scenes These pla-
nar scenes display significant ambiguity in SIFT descriptor
matching. Many points, despite being detected by the SIFT
detector on both frames, are not matched or matched incor-
rectly due to the motion of the specularity in the scene.

reconstruction, whereby we assume that the surface is lo-
cally planar, and that image motion is affine. The image
is therefore an additive composite of two layers, mixed lin-
early, each of which undergoes interdependent (though un-
known) affine warping. We estimate the motion and albedo
of each layer, corresponding to the affine motion of the dif-
fuse albedo and the reflection of the light source relative to
the moving viewpoint.

Once the albedos of the two layers have been recovered,
an affine intensity-normalized version of each is warped to
a canonical configuration around a feature point selected
with standard techniques (refer to section 2). Since we
cannot know which layer represents the diffuse albedo and
which is specular, each constitutes a component of the in-
variant signature. During the matching phase, we compare

all combinations of the descriptors of each layer and declare
a successful match if at least one pair’s distance is below a
threshold.

2. Related Work

Feature descriptors for Lambertian scenes are well stud-
ied in the contexts of recognition, tracking, and naviga-
tion. Presently, there is a rich literature on affine invari-
ants, which are functions of image patches which do not
change with rotation, translation, scale, and skew transfor-
mations. The underlying assumptions made by all such
methods are that the patches come from planar surfaces, the
transformation of the image under a viewpoint change of
the camera is approximately affine, and that the surfaces
containing the patches are Lambertian. Typically, for small
patches in many environments these assumptions are valid.
[1,7, 17, 18, 21, 25] are a selection of some recent works
embodying this idea.

The most comprehensive affine invariant descriptor is
presented by Mikolajczyk and Schmid in [18]. It searches
an affine Gaussian scale space of three scale parameters
(see [16] for the details of affine Gaussian scale space the-
ory). An initial detection step uses a Harris corner detector
([10]) over multiple scales to find candidate points of in-
terest. An iterative procedure finds a refined position and
canonical scale and warping for each image neighborhood
around each interest point. The descriptor is a 12 dimen-
sion vector built from normalized Gaussian derivatives (up
to 4th order) of the rectified image neighborhood.

The scale invariant feature transform (SIFT) [17] is a
similarity-invariant interest point detector and descriptor,
which explicitly accounts for variability in translation, ro-
tation, and changes of scale. The system builds an isotropic
(one scale parameter) Gaussian scale-space pyramid and
finds the maxima and minima of neighborhoods in the pyra-
mid. These are assigned a canonical orientation and scale,
and a descriptor is built based on Edelman ef al [5]. The
128-element SIFT descriptor is produced by sampling the
gradients around interest points at their assigned scales and
binning them by orientation. [19] and [17] demonstrate the
effectiveness of this descriptor for a wide range of orienta-
tions, scales, and some 3D perspective variation. Ke and
Sukthankar modifiy this descriptor by generating a basis of
principal components of the gradient vectors [14]. They in-
crease the robustness of matching by comparing any two
gradient vectors’ projections onto this basis.

A powerful augmentation of the affine-invariant
paradigm is presented in [7], whereby existing descriptors
are used in conjunction with an image exploration tech-
nique to increase the proportion of correct matches. By
propagating geometric constraints in areas surrounding
candidate matches, the algorithm expands the regions of



correct correspondences and removes outliers. The affine
invariant descriptor from [26] is used in the experimental
system, along with the matching technique of [8] t
generate initial correspondences.

There is a similarly broad literature on the topics of trans
parent and reflective surfaces. Since our techniques involv
motion rather than polarization or change of focus (such a
[6], [20]), we concentrate here on prior research involvin
the separation of transparent and reflective motions.

In [3], Bergen et al study the problem of recovering tw
independent motions from three images. They assume a
image generation model whereby two layers combine ac
cording to some mixing (usually additive). The layers ca
have independent velocities. Given a rough estimate of on
component motion, they iteratively find both by alternatin
coarse-to-fine motion estimation for each component.

Darrell and Simoncelli in [4] develop a bank of spatic
temporal filters which give zero response when applied t
points on images displaying corresponding motions. The
generate many of these filters assuming that there are fey
independent image velocities at any point, test combina
tions of the filters, and select the set that showed the bes
performance (maximum “nulling”). Their results demon
strate the ability to separate foreground and backgroun
motions in image sequences.

Szeliski et al in [23] assume an image is composed of a
linear mixture of warped layers. Warping matrices operate
on the pixels of the component layers to approximate their
relative motions and the mixing coefficients. By observing
that no pixel in a component layer can be less than zero,
they develop a novel algorithm which alternatively tightens
upper and lower bounds on the layers while simultaneously
finding their motions.

Irani et al [11] use a model similar to [23] but process
images in a temporal fashion instead of in batch. In [13],
Ju et al seek to find optical flow in a robust manner by in-
corporating information from multiple adjacent regions. A
potential motion at a point will have a set of surrounding
inliers (surround points which move with the same motion)
and outliers (those which move with differing motions). In
their formulation, single motions are reinforced by inliers,
and two motions (due to transparency) are estimated in a by
analyzing the motion of outliers and separating these into
two layers, plus outliers of both.

3. Problem Formulation and Modeling

Consider a semi-reflective surface S, for example a painting
behind a glass frame or a glossy magazine. P is a generic
point on S with a tangent plane Tp and albedo py(P). A
second surface, denoted L, contains points P’ € L and
albedo ps(P’). S and L respectively represent the target
object and the portion of the scene reflected from .S toward

the camera. Likewise, pg(P) and ps(P’) constitute the dif-
fuse and specular components of the radiance at the point

Figure 3: Non-Lambertian Reflectance Model The semi-
reflective surface S contains point P, and the reflection
points P’ lie on the lighting surface L. Cy,Co, C3 are the
three camera views

An image I () is formed by a linear combination of two
layers, pqg(P) and ps(P’), where P’ is the point on L such
that a ray cast from the image coordinate x reflects off Tp
and intersects L. Under a change of viewpoint, a new image
at coordinate y, where y and x correspond to the same point
Pon S, I5(y) is a linear combination of pg(P) and ps(P"),
P" € L.

Our imaging model is therefore

L(z) = aipa(P)+ Bips(P))
Ly) = aspa(P)+ Baps(P,) (1)

where o; + (3; = 1 Vi. Note that in the above model (1) if
the surface is Lambertian, then 3; = 0 Vi. It is easy to see
why any single-view descriptor of a non-Lambertian scene
will fail: under a change in viewpoint, the second term of
the right-hand side changes. Thus, descriptors developed
from single views cannot be invariant even for simple non-
Lambertian scenes.

We assume that at each feature point in the scene, the
image of the neighborhood of P consists only of a superpo-
sition of the images of two planes, Tp and T’ps, which are
the tangent plane of S at P and the tangent plane of L at P’.
Under these conditions, a viewpoint transformation of the
scene can be represented with two affine transformations,
one for each layer. In principle, these affine transformations



are interdependent if the scene is fixed and only the camera

moves. In practice, however, since we do not know the mo-

tion of the camera or the geometry of the scene, we assume

that the camera observes independent motions of each layer.
Thus, our model simplifies to

a1pa(hai(z:)) + Brps(hsi(zi))
azpa(haz(yi)) + Baps(hsa(yi))  (2)

or, if written in terms of warped images J; and J,

Ty (a1 Ja(z)) + To(Brds(s))
Ts(a2da(yi)) + Ta(Bads(yi)).  (3)

For a quantized images of size m x n, we have mn equa-
tions and 2mn + 13 unknowns: two m x n sized images,
two 6-parameter affine transformations, and one scalar mix-
ing factor ; (3; = 1 — ;). We therefore need at least 3
images in order to recover all of the parameters.

On the discrete pixel grid, we can write this system of
equations as

I = TP @)
L T Ty J

I = L |, T=|Ty Ty ,P:[Jl]
I3 Ts Ts 2

where the mixing coefficients are rolled into the transfor-
mation matrices. As the motion of the layers is relative to
the first image, we take 77 = T5 = I,,x,. In order to find
the transformations 7', observe that

71 =0.

Since the form of 7" is known given the parameters of the
affine transformations, we can compute T+ via non-linear
minimization.

T = arg min |7+1)?
following which the layers can be computed as
P=T'T

where A" denotes the pseudoinverse of the matrix A.

The separation of the layers allows us to calculate affine-
invariant descriptors for each using standard techniques (re-
fer to section 2). Since we do not know a priori which layer
represents the diffuse surface (which is typically the object
of interest), we store both descriptors. During a matching
phase, the algorithm is run again on a new set of images,
new descriptors are extracted for the two layers, and all pair-
wise distances are computed. If one pair matches, a success-
ful correspondence is declared.

4. Experiments

Our experiments are in two parts. First, we test the layer
separation using real images but synthetic layer motions
and mixings. This allows us to measure the results of the
separation relative to ground truth. Following, we test our
algorithms on real data taken of a fixed scene from a mov-
ing camera. In both cases, the first step of our experimental
algorithm does a dominant-motion alignment using Lucas-
Kanade ([22, 24]) on a small patch. This allows us to con-
strain the search directions since one layer will have a small
motion after alignment.

4.1. Synthetic Motion

To demonstrate the ability of our system to accurately sep-
arate the component layers of composite images, we per-
formed experiments on real images mixed synthetically so
that ground truth is available for the layers and the motions.

Figure 4: Separation of layers for synthetic motion. The
top row left shows one of the input images, which was
mixed synthetically. The center column of the top row are
the original layers, and the right column the corresponding
inferred layers. The plots on the second and third compare
the original layers to the recovered layers, one plot for each.

4.2. Real Sequences

We demonstrate our algorithm on real image sequences,
showing both the extraction of the layers and the ability to
match between viewpoints. In the following experiment, the
target object is the painting "Meditative Rose” by Salvador
Dali, and the specular reflection is the box for Microsoft
Office. Our algorithm separates the layers for pre-selected
regions and matches based on SSD residuals.



Figure 5: Separation of layers for real motion. The top
row shows two of the original input images, taken from a
moving camera. The row shows the clipped input images
after tracking a feature (the ‘e’), and the bottom four images
the corresponding inferred layers, each column represent-
ing a layer, and each row derive from a separate sequence
of input images. The separated layers in first column on
the bottom can be matched using SSD to find correspon-
dence between the ‘e’ on various image sequences, despite
the specular motion.

5. Conclusion

We have presented an algorithm which can be used to
find correspondence amongst image sequences of non-
Lambertian scenes displaying reflection or transparency.
Multiple views of any image feature are required to perform
matching, since no single-view statistic is invariant under
non-Lambertian reflectivity. Our algorithm first separates
motion layers, reconstructs the albedos, and matches based
on these component layers.
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