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• The three main reactor types developed thus far — batch, continuous-stirred-
tank, and plug-flow reactors — are useful for modeling many complex chem-
ical reactors.

• Up to this point we have neglected a careful treatment of the fluid flow pattern
within the reactor.

• In this chapter we explore some of the limits of this approach and develop
methods to address and overcome some of the more obvious limitations.
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Scope of problem

• The general topic of mixing, even in the restricted context of chemical reac-
tors, is an impossibly wide one to treat comprehensively.

• In this chapter, we will restrict ourselves to fluid-phase systems.

• One natural approach to describing mixing is to solve the equations of motion
of the fluid.

• In fluid systems, the type of fluid flow is obviously important, and we should
consider both laminar and turbulent flow, and various mechanisms of diffu-
sion (molecular diffusion, eddy diffusion).
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• Using fluid mechanics to describe all cases of interest is a difficult problem,
both from the modeling and computational perspectives. Rapid develop-
ments in computational fluid dynamics (CFD), however, make this approach
increasingly attractive [1].
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Residence-time distribution

• A second, classical approach to describing mixing is to use simple tests to
experimentally probe the system of interest.

• These empirical testing approaches do not use any of the structure of the
equations of motion, but they can provide some rough features of the mixing
taking place in the system under study.

• In this chapter we first develop this classical approach, and find out what
kinds of understanding it can provide.

• We also identify some of the limitations of this approach. Nauman and
Buffham provide a more in-depth treatment of many of the classical topics
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covered in this chapter, and provide many further citations to the research
literature [15].
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Convection and diffusion

• One might intuitively expect that to enhance mixing and reduce spatial vari-
ation in concentration, one should seek conditions that maximize the rate of
diffusion.

• Although this notion is correct for mixing on the finest length scales, it is
generally much more important in macroscopic scale processes to decrease
variations on the larger length scales.

• Mixing in this regime is enhanced primarily by improving the convection, and
diffusion plays only a small role.

• In simple terms, one does not expect to appreciably decrease the time re-
quired to mix the cream in one’s coffee by increasing the coffee temperature
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(enhanced diffusion); one instead turns a spoon a few times (enhanced con-
vection).

• On the finest length scales, mixing is accomplished readily for small
molecules by the random process of molecular diffusion; in fact, the ran-
dom molecular motions are the only effective mixing processes taking place
on the finest length scales.
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Residence-Time Distribution — Definition

• Consider an arbitrary reactor with single feed and effluent streams depicted
in the following figure
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• Without solving for the entire flow field, which might be quite complex, we
would like to characterize the flow pattern established in the reactor at steady
state.

• The residence-time distribution (RTD) of the reactor is one such characteriza-
tion or measure of the flow pattern.
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Gedanken Experiment

• Imagine we could slip some inert tracer molecules into the feed stream and
could query these molecules on their exit from the reactor as to how much
time they had spent in the reactor.

• We assume that we can add a small enough amount of tracer in the feed so
that we do not disturb the established flow pattern.

• Some of the tracer molecules might happen to move in a very direct path to
the exit; some molecules might spend a long time in a poorly mixed zone
before finally finding their way to the exit.

• Due to their random motions as well as convection with the established flow,
which itself might be turbulent, we would start recording a distribution of
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residence times and we would create the residence-time probability density
or residence-time distribution.

• If the reactor is at steady state, and after we had collected sufficient residence-
time statistics, we expect the residence-time distribution to also settle down
to a steady function.
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Probability density

Let p(θ) represent the probability density or residence-time distribution, and
P(θ) the integrated form so

p(θ)dθ, probability that a feed molecule spends time

θ to θ + dθ in the reactor (1)

P(θ), probability that a feed molecule spends time

zero to θ in the reactor (2)

The two versions of the probability function obviously contain the same in-
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formation and are related by

P(θ) =
∫ θ

0
p(θ′)dθ′, p(θ) = dP(θ)

dθ
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Measuring the RTD

• As a thought experiment to define the RTD, querying tracer molecules on
their exit from the reactor is a fine concept.

• But we plan to actually measure the RTD, so we require an implementable
experiment with actual measurements.

• We cannot measure the time spent by a particular tracer molecule in the re-
actor; to us, all tracer molecules are identical. We can measure concentration
of tracer molecules in the effluent, however, and that will prove sufficient to
measure the RTD.

• Imagine an experiment in which we measure the concentration of tracer in the
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feed and effluent streams over some time period, while the reactor maintains
a steady flow condition.

• From the definition of the RTD in the previous section, the effluent tracer
concentration at some time t is established by the combined exit of many
tracer molecules with many different residence times.
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Convolution integral

• The concentration of molecules that enter the reactor at time t′ and spend
time t − t′ in the reactor before exiting is given by cf(t′)p(t − t′)dt′.

• These molecules are the ones leaving the reactor at time t that establish
effluent concentration ce(t), so we have

ce(t) =
∫ t
−∞
cf(t′)p(t − t′)dt′ (3)

• The inlet and outlet concentrations are connected through this convolution
integral with the residence-time distribution.
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• If we conduct the experiment so that the feed tracer concentration is zero
before an initial time t = 0, then the integral reduces to

ce(t) =
∫ t

0
cf(t′)p(t − t′)dt′, cf(t) = 0, t ≤ 0 (4)
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Tracer concentrations to RTD

• Notice we can change the variable of integration in Equation 4 to establish an
equivalent representation

ce(t) =
∫ t

0
cf(t − t′)p(t′)dt′ (5)

which is sometimes a convenient form.

• This connection between the inlet and outlet concentrations, and the RTD,
allows us to determine the RTD by measuring only tracer concentrations.

• We next describe some of the convenient experiments to determine the RTD.
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Step response

• In the step-response experiment, at time zero we abruptly change the feed
tracer concentration from steady value c0 to steady value cf .

• For convenience we assume c0 = 0. Because the feed concentration is con-
stant at cf after time zero, we can take it outside the integral in Equation 5
and obtain

ce(t) = cf
∫ t

0
p(t′)dt′ = cfP(t)

• So for a step-response experiment, the effluent concentration versus time
provides immediately the integrated form of the residence-time distribution

P(θ) = ce(θ)/cf , step response (6)
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Pulse and impulse responses

• An impulse response is an idealized experiment, but is a useful concept. As
we will see it provides the RTD directly rather than in the integrated form.

• To motivate the impulse-response experiment, imagine we abruptly change
the inlet tracer concentration from zero to a large value and return it to zero
after a short time as sketched in the following figure.
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t

cf (t)

aδ(t)

area=a

0

• Such a test is called a pulse test. The pulse test is no more difficult to imple-
ment than the step test; it is merely two step changes in feed concentration
in rapid succession. In some ways it is a superior test to the step response,
because by returning the tracer concentration to zero, we use less tracer in
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the experiment and we cause less disruption of the normal operation of the
reactor.
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From pulse to impulse

• The impulse response is an idealized limit of the pulse response. Consider
a family of pulse tests of shorter and shorter duration ∆t, as sketched in the
figure.

• We maintain constant total tracer addition by spiking the feed with higher
and higher concentrations so that the product cf∆t = a is constant.

• The impulse response is the limit of this experiment as ∆t -→ 0. We call this

limiting feed concentration versus time function the delta function, aδ(t). It
is also called the Dirac delta function or an impulse, hence the name, impulse
response.
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Impulse response

• The constant a is the amplitude of the delta function.

• The main property of the delta function is that, because it is so narrowly
focused, it extracts the value of an integrand at a point in the interval of
integration,

∫∞
−∞
g(t)δ(t)dt = g(0), all g(t) (7)∫∞
−∞
δ(t)dt = 1, normalized (8)
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• So if we can approximate cf(t) = aδ(t), then we have from Equation 3

ce(t) = a
∫ t
−∞
δ(t′)p(t − t′)dt′ = ap(t)

• So for an experiment approximating an impulse, the effluent concentration
versus time provides the residence-time distribution directly

p(θ) = ce(θ)/a, impulse response (9)
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Continuous-Stirred-Tank Reactor (CSTR)

• We next examine again the well-stirred reactor.
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• Consider the following step-response experiment: a clear fluid with flowrate
Qf enters a well-stirred reactor of volume VR.

• At time zero we start adding a small flow of a tracer to the feed stream and
measure the tracer concentration in the effluent stream.

• We expect to see a continuous change in the concentration of the effluent
stream until, after a long time, it matches the concentration of the feed
stream.

27



Mass balance

• Assuming constant density, the differential equation governing the concen-
tration of dye in the reactor follows from Equation 4.38

dc
dt
= Qf
VR
(cf − c), c(0) = 0 (10)

in which c is the concentration of the dye in the reactor and effluent stream.

• In Chapter 4, we named the parameter VR/Qf the “mean residence time” and
gave it the symbol θ.

• For our purposes here, we have already reserved θ for the distribution of
reactor residence times, so we define τ = VR/Qf .
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Solution to mass balance is the RTD

We already derived the solution to Equation 10, where

c(t) = (1− e−t/τ)cf

so we have immediately
P(θ) = 1− e−θ/τ (11)

which upon differentiation gives

p(θ) = 1
τ
e−θ/τ, CSTR residence-time distribution (12)
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CSTR as a game of chance

• Imagine we divide the reactor into a number of volume elements.
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• At each time instant, some group of volume elements is withdrawn from the
reactor, and new volume elements enter from the feed stream.

• The well-mixed assumption is equivalent to the statement that all volume
elements are equally likely to be withdrawn from the reactor.

• One can view the mixing as quickly (instantaneously in the case of perfect
mixing) randomizing the locations of the volume elements so that each one
is equally likely to be nearest to the exit when the next element is withdrawn
in the effluent stream.
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The new TV show, Survivor

• We have n volume elements, each with volume Vn = VR/n.

• In time interval ∆t, a volume of Qf∆t leaves with the effluent stream.

• The number of elements leaving in the time interval is thereforeQf∆t/Vn out
of n, and the fraction of elements withdrawn is

f = Qf∆t
VR

= ∆t
τ

• Now consider the probability that a particular volume element is still in the re-
actor after i time intervals. The probability of removal is f , so the probability
of survival is 1− f .
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• After i trials, each of which is independent, the probability of survival is the
product (1 − f)i. Therefore the probability that an element has residence
(survival) time θ = i∆t is

p̃(θ) =
(

1− ∆t
τ

)θ/∆t
(13)
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The continuous time limit

• We now take the limit as ∆t → 0. Recall from calculus

lim
x→0
(1+ ax)1/x = ea

• Taking the limit and using this result in Equation 13 gives

p̃(θ) = e−θ/τ

which, after normalization, is again the residence-time distribution of the
CSTR.
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• The normalization constant is computed by integration

∫∞
0
p̃(θ)dθ =

∫∞
0
e−θ/τ dθ = τ

so the residence-time distribution is

p(θ) = 1
τ
e−θ/τ (14)

which is plotted in the next figure for a variety of mean residence times.
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Mean of the CSTR RTD

• We next compute the mean of this distribution. An integration by parts pro-
duces

θ =
∫∞

0
θ p(θ)dθ = 1

τ

∫∞
0
θe−θ/τ dθ

= 1
τ

[
−τθ e−θ/τ − (τ)2e−θ/τ

]∣∣∣∞
0

= τ

and we have established that the mean of the RTD for the CSTR is indeed
τ = VR/Qf .
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CSTR RTD — Summary

• We can therefore compactly write Equation 14 as

p(θ) = 1

θ
e−θ/θ (15)

• Notice the exponential distribution tells us that it is unlikely for a volume
element to remain in this reactor for long because at each instant there is a
constant probability that the element is withdrawn in the effluent.
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Plug-Flow Reactor (PFR) and Batch Reactor

• The simple flow pattern in the PFR produces a simple residence-time distri-
bution.

l0 z

c

z

t1 t2

z2 = vt2z1 = vt1
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• Consider a step test in which the reactor is initially free of tracer and we
increase the feed tracer concentration from zero to cf at time zero.
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Birds of a feather

• As shown in the figure, the tracer travels in a front that first reaches the
reactor exit at time t = l/v, in which v is the velocity of the axial flow and l
is the reactor length.

• From these physical considerations, we can write the reactor tracer concen-
tration immediately

c(t, z) =
{

0, z − vt > 0
cf , z − vt < 0

(16)

• For z − vt > 0, the tracer front has not reached location z at time t so the
tracer concentration is zero.
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• For z − vt < 0, the front has passed location z at time t and the tracer
concentration is equal to the feed value cf .
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The step function

• It is convenient to introduce the unit step or Heaviside function to summarize
this result.

• The Heaviside function is defined as follows

H(t) =
{

0, t < 0
1, t > 0

(17)

• Because we are armed with the delta function, we can even consider differen-
tiating this discontinuous function to obtain the relationship

dH(t)
dt

= δ(t) (18)
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Analysis of step test

• Equation 16 can then be summarized compactly by

c(t, z) = cfH(t − z/v)

so the effluent tracer concentration is given by

ce(t) = cfH(t − l/v) = cfH(t − VR/Qf) (19)

and the integrated from of the residence-time distribution is therefore

P(θ) = H(θ − VR/Qf) (20)
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• We can differentiate this result using Equation 18 to obtain

p(θ) = δ(θ − VR/Qf)

• In other words, all tracer molecules spend exactly the same time VR/Qf in the
reactor. The mean of this distribution is then also VR/Qf , which is verified
by using Equation 7

θ =
∫∞

0
θδ(θ − VR/Qf)dθ = VR/Qf

which shows that VR/Qf is the mean residence time for the PFR as well as the
CSTR, even though the residence-time distributions of these two reactors are
quite different.
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PFR RTD — Summary

• We can compactly summarize the RTD for the plug-flow reactor by

p(θ) = δ(θ − θ) PFR and

P(θ) = H(θ − θ) batch reactors
(21)

• Likewise, the RTD for a batch reactor is immediate. All material is charged to
the reactor at time t = 0 and remains in the reactor until the final batch time,
which we may call θ.

• Then Equations 21 also apply to the batch reactor.
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CSTRs in series

Consider dividing the volume of a single CSTR into n equal-sized CSTRs in
series

1 2 3 n
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If the single CSTR has volume VR and residence time τ = VR/Qf , each of the
CSTRs in series has volume VR/n and residence time τ/n.

If we solve for the effluent concentration after an impulse at time zero, we
can show

p(θ) =
(
n
τ

)n θn−1

(n− 1)!
e−nθ/τ (22)

48



CSTRs in series
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Notice the residence-time distribution becomes more narrowly focused at τ
as n increases. In fact Equation 22 for large n is another approximation for
δ(θ − τ).

49



Integrated form of CSTRs in series

If we integrate Equation 22 we obtain

P(θ) = γ(n,nθ/τ)
Γ(n)

(23)

You can perform integration by parts on Equation 22 to obtain a series repre-
sentation

P(θ) = 1−
(

1+ nθ/τ
1!

+ (nθ/τ)
2

2!
+ · · · + (nθ/τ)

n−1

(n− 1)!

)
e−nθ/τ (24)
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Integrated form of CSTRs in series

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

P(θ)

θ

n = 1
n = 2
n = 3
n = 5
n = 10
n = 25
n = 100

51



Dispersed Plug Flow

• Ideal plug flow may not be realized in many packed-bed reactors. We develop
next a model that allows for deviations from plug flow.

• In the PFR a change in the feed concentration travels as a perfect front.
But measurements in actual packed-bed reactors may show a fair amount
of spreading or dispersion as this front travels through the reactor.

l0 z

c

z

t1 t2

z2 = vt2z1 = vt1
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Dispersed Plug Flow

• The dispersed plug-flow model given in Equation 25 allows for this spreading
phenomenon.

• A diffusion-like term has been added to the mass balance. The coefficient,
Dl, is called the dispersion coefficient.

∂c
∂t︸︷︷︸

accumulation

= −v∂c
∂z︸ ︷︷ ︸

convection

+Dl
∂2c
∂z2︸ ︷︷ ︸

diffusion

(25)
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2nd derivative and boundary conditions

• Given diffusion in the tube, the inlet boundary condition is no longer just the
feed condition, c(0) = cf , that we used in the PFR.

• To derive the boundary condition at the inlet, we write a material balance
over a small region containing the entry point, and consider diffusion and
convection terms.

diffusion
−Dl ∂c∂z

∣∣∣
0+

c

0− 0+ z

convection vc|0−

convection
vc|0+
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Inlet boundary condition

diffusion
−Dl ∂c∂z

∣∣∣
0+

c

0− 0+ z

convection vc|0−

convection
vc|0+

vc|0− = vc|0+ −Dl
∂c
∂z

∣∣∣∣
0+

z = 0
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Danckwerts boundary conditions

• The diffusion term introduces a second-order derivative in Equation 25, so
we now require two boundary conditions.

• We specify a zero slope condition at the tube exit.

vc|0− = vc|0+ −Dl
∂c
∂z

∣∣∣∣
0+

z = 0

∂c
∂z
= 0 z = l (26)

• These two boundary conditions have become known as Danckwerts boundary
conditions [4], but they were derived at least 45 years prior to Danckwerts in
a classic paper by Langmuir [13].
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It is now convenient to introduce a coordinate moving with a scaled velocity

x = z − vt√
4Dlt

= z − t/τ√
4Dt/τ

(27)

in which

D = Dl
vl
= Dlτ
l2
, dimensionless dispersion number

Transforming variables from z and t in Equation 25 to x gives

d2c
dx2

+ 2x
dc
dx
= 0 (28)

Rather than use the Danckwerts boundary conditions, we can approximate the
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behavior with the following simplified boundary conditions

c = 1, x = −∞

c = 0, x = ∞ (29)

These boundary conditions correspond to stating that c = 0 for z, t values
corresponding to arbitrarily long times before the step change arrives, and that
c = 1, for z, t values corresponding to arbitrarily long times after the step
change has passed. See Exercise 8.10 for comparing the dispersed PFR RTD with
Danckwerts boundary conditions to the one we calculate here with the simplified
boundary conditions.

The solution to Equation 28 with boundary conditions listed in Equations 29
is

c(x) = 1/2
[

1− 2√
π

∫ x
0
e−t

2
dt
]

The integral can be expressed in terms of the error function, which is defined
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as

erf(x) = 2√
π

∫ x
0
e−t

2
dt (30)

Substituting in the original variables and setting z = 1 to obtain the response at
the reactor outlet as a function of time gives

c(z = 1, t) = 1/2
[

1− erf

(
1− t/τ√
4Dt/τ

)]
(31)

and we have calculated the integrated form of the RTD for the dispersed PFR
with simplified boundary conditions

P(θ) = 1/2
[

1− erf

(
1− θ/τ√
4Dθ/τ

)]
(32)

Equation 32 is plotted in Figure 1 for τ = 2 and various dispersion numbers D.
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Figure 1: P(θ) versus θ for plug flow with dispersion number D, τ = 2.
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We can differentiate Equation 32 to obtain the dispersed plug-flow RTD

p(θ) = 1
4τ
√
πD

1+ τ/θ√
θ/τ

exp

−( 1− θ/τ√
4Dθ/τ

)2
 (33)

This RTD is plotted in Figure 2.

The dispersion number, D, is related to another dimensionless group, the
mass-transfer analog of the inverse of the Péclet number,

Pe = vl
DA
,

1
Pe
= DA
vl

which measures the rate of diffusion compared to the rate of convection. The key
difference is the Péclet number contains the molecular diffusivity, DA, and the
dispersion number contains the effective axial dispersion coefficient, Dl. Leven-
spiel makes a compelling case that these two quantities have different origins
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and motivations and deserve different names. To further complicate matters,
the inverse of the Péclet number is often called the Bodenstein number in Euro-
pean literature. Weller [20] provides an interesting discussion of the history of
the literature on the Bodenstein number, which does not appear to have been
defined or used by Bodenstein, but was defined and used by Langmuir [13].
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Dispersed plug flow with reaction.

We modify Equation 25 for dispersed plug flow to account for chemical re-
action,

∂cj
∂t
= −v∂cj

∂z
+Djl

∂2cj
∂z2

+ Rj (34)

Danckwerts boundary conditions, as given in Equations 26, can be applied with-
out change.

Up to this point in the text, we have solved exclusively steady-state profiles
in tubular reactors. Obviously tubular reactors experience a start-up transient
like every other reactor, and this time-dependent behavior is also important and
interesting. Calculating the transient tubular-reactor behavior involves solving
the partial differential equation (PDE), Equation 34, rather than the usual ODE
for the steady-state profile. Appendix A describes the method we use for this
purpose, which is called orthogonal collocation.
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Example 8.1: Transient start-up of a PFR

Compute the transient behavior of the dispersed plug-flow reactor for the iso-
thermal, liquid-phase, second-order reaction

2A -→ B, r = kc2
A (35)

The reactor is initially filled with solvent. The kinetic and reactor parameters are
given in Table 1.

65



Parameter Value Units

k 0.5 L/mol·min
cAf 1 mol/L
DAl 0.01 m2/min
v 0.5 m/min
l 1 m

Table 1: Mass-transfer and kinetic parameters for Example 8.1.

Solution

The mass balance for component A is

∂cA
∂t
= −v∂cA

∂z
+DAl

∂2cA
∂z2

− 2kc2
A (36)
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The boundary conditions are

vcAf = vcA|0+ −DAl
∂cA
∂z

∣∣∣∣
0+
, z = 0 (37)

∂cA
∂z
= 0, z = l (38)

Finally, an initial condition is required

cA(z, t) = 0, t = 0
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Figure 3 shows the transient profiles. We see the reactor initially has zero A
concentration. The feed enters the reactor and the A concentration at the inlet
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rises rapidly. Component A is transported by convection and diffusion down
the reactor, and the reaction consumes the A as it goes. After about t = 2.5,
the concentration profile has reached its steady value. Given the low value of
dispersion in this problem, the steady-state profile is close to the steady-state
PFR profile for this problem. �
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Example — order matters

• Consider two arrangements of a PFR and CSTR of equal volume in series as
shown below

(A)

(B)

c0 c2

c0 c2

c1

c1

• What are the residence-time distributions for the two reactor systems? What
are the overall conversions for the two systems?
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Solution

• Consider a unit step test for the CSTR–PFR arrangement. The outlet concen-
tration for the CSTR is given by

c1(t) = 1− exp(−t/τ)

• That feed concentration to the PFR is then simply delayed by τ time units to
give for the CSTR–PFR arrangement.

p(θ) = (1− exp(−(t − τ)/τ))H(t − τ)
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Reverse order

• Next consider a unit step test into the PFR–CSTR arrangement. For this case
the intermediate stream is given by a delayed step input

c1(t) = H(t − τ)

• With this feed into the CSTR, the effluent is merely the CSTR response to a
unit step change after we shift the starting time of the step forward τ time
units,

c2(t) = (1− exp(−(t − τ)/τ))H(t − τ)

• so again for this case

p(θ) = (1− exp(−(t − τ)/τ))H(t − τ)
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• and the two residence-time distributions are equal.
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Conversion for the two arrangements

• The steady-state conversions for both arrangements are also simply calcu-
lated. For a single CSTR, the steady-state inlet and outlet concentrations are
related by

co/ci =
−1+

√
1+ 4kτci

2kτci
= C(ci)

• For a single PFR, the inlet and outlet concentrations are related by

co/ci =
1

1+ kτci
= P(ci)

• So we wish to compare P(C(c0)) for the CSTR–PFR case and C(P(c0)) for
PFR–CSTR case.
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• Because we are not even told kτc0, we check over a range of values.
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Outcome of the calculation

• The figure displays the result. We see that the conversions are not the same
and that the PFR–CSTR gives higher conversion (lower outlet concentration)
than the CSTR–PFR for all values of kτc0 for a second-order reaction.
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Limits of Reactor Mixing

We have seen in the previous section that complete knowledge of the reactor
residence-time distribution is insufficient to predict the reactor performance.
Although we have characterized completely the time tracer molecules spend in
the reactor, we have not characterized their surrounding environment in the re-
actor during this time.1 In the literature these two effects are sometimes termed
macromixing: the distribution of residence times of molecules moving with the
flow; and micromixing: the exchange of material between different volume el-
ements during their residence times. Although we may find it instructive to
separate these two phenomena in the simple reactor mixing models under dis-

1If someone were to characterize your learning in this course by measuring your hours spent in the classroom
(RTD), they would hopefully obtain a positive correlation between learning and residence time. But we would
naturally want to evaluate the environment inside the classroom during these hours if we were going to make
more accurate predictions of learning. We would want to know if the instructor was prepared for lecture and
saying reasonable things, if the students were attentive or asleep, and so on.
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cussion, in actual reactors this separation may be unrealistic. Accurate predic-
tion of reactor performance may require solution or approximate solution of the
equations of motion for the fluid, including material transport due to diffusion.

In defense of the simple mixing models, however, they do provide another
important insight. We can determine the limits of achievable mixing consistent
with a measured reactor residence-time distribution. These mixing limits do
provide some insight into the limits of achievable reactor performance, although
this connection remains an active area of research as discussed in section .
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Complete Segregation

Imagine we know a reactor RTD, p(θ), either through direct measurement
in a tracer experiment or solution of the equations of motion or some other
means. We know from Example that this constraint does not tell us the complete
state of mixing in the reactor. We define next the two extreme limits of mixing
consistent with the given RTD. These ideas were laid out in influential papers
by Danckwerts and Zwietering. The first limit is called complete segregation; it
is the limit of no mixing between volume elements. We can realize this limit by
considering the ideal reactor depicted in Figure 4.
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p(θ)

θ
Figure 4: Completely segregated flow as a plug-flow reactor with side exits;
outlet flows adjusted to achieve given RTD.

As we progress down the plug-flow reactor, the residence time θ of the ma-
terial reaching that location increases. We can imagine withdrawing from the
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reactor at each location or θ a fraction of the flow corresponding to the required
RTD value p(θ), although this might be difficult to achieve in practice. A PFR
with this removal rate then has the specified RTD. No material in two volume el-
ements with different residence times is ever exchanged because the plug flow
has zero backmixing. This last point is perhaps more clear if we redraw the
reactor configuration as an equivalent bank of PFRs of different lengths without
side exits, as in Figure 5.A [19].
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A

B

C

Figure 5: Alternate representation of completely segregated flow (A), maximum
mixed flow (B), and an intermediate mixing pattern (C).

Each tube has a single θ value according to its length. We feed the frac-
tion p(θ) of the total flow into each tube of residence time θ so as to achieve
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the given RTD for the composite reactor system. This reactor system is called
completely segregated because there is no exchange of material between the
various tubes. Each tube acts as its own private reactor that processes material
for a given amount of time and then discharges it to be mixed with the other
reactors at the exit.

It is a simple matter to predict the behavior of this completely segregated
reactor. We assume a single reaction and constant density throughout the fol-
lowing discussion. Each tube of specified length or volume V can be assigned
a residence time according to θ = V/Q. Let c(θ) represent the concentration
of a reactant in a volume element that has spent time θ in the reactor. Because
the reactor is segregated, each tube satisfies the constant density PFR equation,
Equation 4.112,

dc
dθ
= R(c), c(0) = cf (39)

The concentration of the effluent stream is then simply computed by multiplying
the concentration of each tube by the fraction of the total feed passing through
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that tube

cs =
∫∞

0
p(θ)c(θ)dθ (40)

in which c(θ) comes from the solution of Equations 39. It is often convenient
to remove the explicit integration required by Equation 40. Let cs(θ) represent
the effect of combining streams with residence times less than or equal to θ, so

cs(θ) =
∫ θ

0
p(θ)c(θ)dθ

From this definition it is clear that cs(θ) satisfies the following differential equa-
tion and initial condition

dcs
dθ
= p(θ)c(θ), cs(0) = 0

and the reactor effluent concentration is the limit of cs(θ) as θ -→ ∞. We can

combine the two differential equations for convenient numerical solution of the
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segregated case

dc
dθ
= R(c) c(0) = cf

dcs
dθ
= p(θ)c(θ) cs(0) = 0

(41)

Notice that this is an initial-value problem, but, in general, we require the so-
lution at θ = ∞ to determine the effluent concentration of the reactor. Dif-
ferential equations on semi-infinite domains are termed singular, and require
some care in their numerical treatment as we discuss next. On the other hand,
if the residence-time distribution is zero beyond some maximum residence
time, θmax, then it is straightforward to integrate the initial-value problem on
0 ≤ θ ≤ θmax.
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Numerical solution.

We can solve Equation 41 as an initial-value problem as written with an ODE
solver. Because of the semi-infinite domain, we would need to check the solution
for a sequence of increasingly large θ values and terminate the ODE solver when
the value of cs(θ) stops changing. Alternatively, we can map the semi-infinite
domain onto a finite domain and let the ODE solver do the work for us. Many
transformations are possible, such as z = exp(−θ), but experience suggests a
strongly decreasing function like the exponential causes the right-hand side to
go to infinity at z = 1, and we simply exchange one singularity for another. A
more gentle transformation and its inverse are

z = θ
1+ θ, θ = z

1− z
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Using this change of variable, we rewrite the derivative as

dc
dθ
= dc
dz
dz
dθ
= (1− z)2dc

dz

Using this result, we transform Equation 41 to

dc
dz
= R(c)
(1− z)2 c(0) = cf

dcs
dz
= p(z/(1− z)) c

(1− z)2 cs(0) = 0
(42)

Most modern ODE solvers allow the user to specify critical stopping values.
These are values of the variable of integration beyond which the ODE solver
will not step. We would specify z = 1 as a critical value because the right-hand
side is not defined past z = 1. At the value z = 1, we would specify the right-
hand sides are zero because the reaction will have equilibrated at z = 1, θ = ∞
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so R(c) = 0, and p(θ) = 0 at θ = ∞. Again, some care with must be taken
because the denominators are also going to zero. If the ODE solver terminates
successfully, that usually indicates the transformation was successful. It is use-
ful to plot c(z) to make sure the z = 1 end does not exhibit some unusual
behavior.
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p(θ)

θ
Figure 6: Maximum mixed flow as a plug-flow reactor with side entrances; inlet
flows adjusted to achieve a given RTD.
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Maximum Mixedness

We realize the opposite mixing limit, maximum mixedness, by reversing the
flow in the segregated reactor as shown in Figure 6 [21]. The feed stream is
distributed along the length of the PFR and injected at the appropriate rate at
various side entrances corresponding to different θ “locations” to achieve the
required RTD. Notice that because the flow has been reversed compared to the
segregated case, the θ locations increase from zero at the exit of the tube to
large values at the entrance to the tube. We allow an infinitely long tube if we
wish to allow RTDs such as the CSTR defined on a semi-infinite domain. Reactors
with these specified sidestream addition policies are conceptually important in
understanding recent research on achievable reactor performance as discussed
in Section .

91



λ+∆λ
c(λ+∆λ)

λ
c(λ)

∞

cf

R

0

Figure 7: Volume element in the state of maximum mixedness.

Consider the equivalent representation of maximum mixedness in Figure 5.B.
The shading means that the material at these locations is completely mixed
with the material from the other tubes at these same locations [19]. Notice that
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we have aligned the exits of the tubes in Figure 5. Therefore when we mix
material between tubes, we are mixing material not with common time spent in
the reactor but rather with a common time-to-go λ. Indeed, the mixing process
at a given location is mixing material with different times spent in the reactor.
It is not possible to mix material with different times-to-go without changing
their exit times for the following reason. If we mix two groups of molecules
with different times-to-go, λ1, λ2, the mixture must later be separated again so
that the molecules may exit the reactor at the specified times λ1 and λ2. Such
a separation is not possible because molecules are not distinguishable based
on their times-to-go in the reactor. We face the equivalent problem if we mix
two identical, pure-component gases initially on opposite sides of a partition.
After mixing, we have no process to separate them again based on their initial
locations because the molecules are identical. Such a separation process would
violate the second law of thermodynamics.

We next derive the differential equation that governs the maximum mixed-
ness reactor [21]. Consider an expanded view of the reactor in a state of maxi-
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mum mixedness shown in Figure 5.B. As depicted in Figure 7, feed with flowrate
Qp(θ)dθ is added to each tube having residence time θ to achieve the desired
RTD. So if we consider a volume element to be a mixed section of the composite
reactor between times-to-go λ and λ+∆λ, the material balance for this element
consists of the following terms:

entering at λ+∆λ: Q
(∫∞
λ+∆λ

p(λ′)dλ′
)
c(λ+∆λ) (43)

leaving at λ: Q
(∫∞
λ
p(λ′)dλ′

)
c(λ) (44)

feed addition: Q
(
p(λ)∆λ

)
cf (45)

production: Q
(∫∞
λ
p(λ′)dλ′

)
∆λ︸ ︷︷ ︸

volume of reactor element

R(c(λ))︸ ︷︷ ︸
rate per volume

(46)

Considering the reactor is at steady state, we set the accumulation to zero and
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obtain

c(λ+∆λ)
∫∞
λ+∆λ

p(λ′)dλ′ − c(λ)
∫∞
λ
p(λ′)dλ′ + cfp(λ)∆λ+

R(c)∆λ
∫∞
λ
p(λ′)dλ′ = 0

We can combine the first two integral terms and divide by ∆λ to obtain

c(λ+∆λ)− c(λ)
∆λ

∫∞
λ+∆λ

p(λ′)dλ′ − c(λ)p(λ)+ cfp(λ)+

R(c)
∫∞
λ
p(λ′)dλ′ = 0

Taking the limit as ∆λ→ 0 and rearranging gives

dc
dλ
= p(λ)∫∞

λ p(λ′)dλ′
(
c(λ)− cf

)
− R(c)
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Equivalently we can express the integral in terms of the integrated form of the
RTD and write

dc
dλ
= p(λ)

1− P(λ)
(
c(λ)− cf

)
− R(c) (47)

We wish to calculate the reactor effluent concentration, which is given by c(λ)
at λ = 0. As in the segregated reactor case, this first-order differential equation
is singular; we wish to integrate from λ = ∞, the entrance to the longest tube,
to the combined tube exits at λ = 0. A boundary condition is required at λ = ∞.
For c to remain bounded as λ -→ ∞, we stipulate the boundary condition

dc
dλ
= 0, λ = ∞

Provided we know the limit p(λ)/(1−P(λ)) as λ -→ ∞, we can solve Equation 47

directly for the boundary condition on c at λ = ∞; we call this value c∞. Note
that c∞ ≠ cf .
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Numerical solution.

We wish to transform the λ ∈ (∞,0) interval into z ∈ (0,1). The analogous
transformation to the segregated reactor is

z = 1
1+ λ, λ = 1− z

z

The derivative becomes
dc
dλ
= dc
dz
dz
dλ
= −z2dc

dz
in which the minus sign arises because we are changing the direction when
integrating in the transformed z variable. Equation 47 then becomes

dc
dz
= − 1

z2

[
p((1− z)/z)

1− P((1− z)/z)
(
c − cf

)
− R(c)

]
c(0) = c∞ (48)
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and we integrate from z = 0 to z = 1. Again, a critical stopping value should be
set at z = 1 to avoid an undefined right-hand side. We set the right-hand side
to zero at z = 0 because we determined the value of c∞ such that the bracketed
term in Equation 48 was zero. Again, care should be exercised at z = 0 because
the denominator goes to zero at z = 0(λ = ∞). Plotting c(z) and examining the
z = 0 end for unusual behavior is recommended.

Example 8.2: Two CSTRs in series

We illustrate the results of these sections with an example taken from Zwieter-
ing [21].

Given the RTD of two equal-sized CSTRs in series for a single, second-order,
irreversible reaction, compute the reactor effluent concentration for the follow-
ing cases: segregated flow, maximum mixedness and two ideal CSTRs.
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Solution

The residence-time distribution for two CSTRs in series is given by Equations 22
and 24 for n = 2,

p(θ) = 4θ
τ2
e−2θ/τ

1− P(θ) = (1+ 2θ/τ)e−2θ/τ

in which τ = VR/Qf and VR is the total volume of the CSTRs. The balance for
the maximum mixedness case becomes

dc
dλ
= 4λ
τ(τ + 2λ)

(c − cf)+ kc2

99



Defining dimensionless variables, c = c/c0 and λ = λ/τ, the equation becomes

dc
dλ
= 4λ

2λ+ 1
(c − 1)+Kc2 (49)

in which K = kc0τ. Notice that all the physical constants of the reactor combine
into the single dimensionless constant K. If we apply the zero slope condition
at λ = ∞, we obtain the quadratic equation

2(c∞ − 1)+Kc2
∞ = 0

which can be solved for c∞. Again we have an equation on a semi-infinite inter-
val, which we can transform via

z = 1

1+ λ
, λ = 1− z

z
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in which λ ∈ (∞,0) is transformed to z ∈ (0,1). The transformed derivative
satisfies

dc
dλ
= dc
dz
dz
dλ
= −z2dc

dz

so the final differential equation is

dc
dz
= − 1

z2

[
4(1− z)/z

2(1− z)/z + 1
(c − 1)+Kc2

]
c(0) = c∞

The effluent of the maximum mixed reactor is given by the solution c(z) at
z = 1. Figure 8 displays the solution to this differential equation for a range of
K values.
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Figure 8: Dimensionless effluent concentration c = c/c0 versus dimensionless
rate constant K = kτc0 for second-order reaction; the RTD for all cases is given
by 2 CSTRs in series.
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Intermediate conditions of mixing.

Weinstein and Adler [19] also proposed an interesting general conceptual
mixing model by allowing a general mixing pattern between the various tubes
as depicted in Figure 5.C.

The segregated reactor depicted in Figure 4 and Figure 5.A is sometimes
referred to as late mixing or mixing as late as possible. The material remains
segregated until it reaches the common exit where the segregated streams are
finally mixed in the reactor effluent. The situation depicted by the maximum
mixedness reactor of Figure 6 and Figure 5.B is sometimes called early mixing.
The material is mixed at the earliest possible times as it travels down the tubes;
no segregated streams remain to be combined at the reactor exit.

Consider again the two reactors in Example . The conceptual mixing pattern
is sketched in Figure 9.
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A

B

Figure 9: CSTR followed by PFR (A) and PFR followed by CSTR (B) as examples
of complete and partial mixing; RTDs for the two configurations are equal.

The reactors have identical RTDs. Comparing these two reactor configura-
tions, the reactor with the CSTR preceding the PFR is in the condition of maxi-
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mum mixedness because the CSTR is the condition of maximum mixedness and
the feed to the PFR is therefore well mixed, so the different portions of the RTD
in the PFR section have identical compositions, and could be considered well
mixed or segregated. The PFR preceding the CSTR is not in the condition of
maximum mixedness, nor is it segregated. As shown in Figure 9, it displays an
intermediate state of mixing, similar to case C in Figure 5. We show in Section
that because the reaction rate is second order, complete mixing gives the lowest
conversion possible consistent with the given RTD. This conclusion is consistent
with the calculation performed in Example in which the CSTR–PFR arrangement
had lower conversion than the PFR–CSTR.
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Mass Transfer and Limits of Reactor Mixing
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VR

Q1 cAf

cBf
Q2

cA
cB

Q1 +Q2

A fluid A particles

Figure 10: Adding two liquid-phase feed streams to a stirred tank; the stirrer is
modeled as shearing the liquid A feed stream into small, uniformly sized par-
ticles of A and randomly distributing them in the continuous phase containing
B.
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Consider the following physical picture to help in our understanding of seg-
regated flow and maximum mixedness. Figure 10 shows the classic situation
in which we mix two liquid-phase feed streams in a stirred tank for the second-
order reaction

A+ B -→ C (50)

We model the action of the stirrer as shearing the fluid A stream into small,
uniformly sized “particles” of component A dispersed in the continuous phase
containing component B dissolved in a solvent. The size of the A “particles” is
one measure of how well the stirrer is working. This physical picture, although
idealized, is motivated by several types of real reactors, such as suspension and
emulsion polymerization reactors. Ottino provides a well-illustrated discussion
of the detailed results of fluid shear [16, pp.1–17]. We assume these “particles”
of component A move rapidly about the reactor with the fluid flow. We therefore
have an ideal CSTR residence-time distribution; if we inject tracer with the A
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stream or the B stream, we would see the classic step response for the CSTR. In
other words, the macromixing is excellent, and determining the residence-time
distribution would not indicate anything except an ideally mixed reactor.

Parameter Value Units

k 1 L/mol·min
kmA 1.67× 10−4 cm/min
kmB 1.67× 10−4 cm/min
α = Q1/Q2 1
cAf 1 mol/L
cBf 1 mol/L
θ = VR/(Q1 +Q2) 10 min

Table 2: Mass-transfer and kinetic parameters for micromixing problem.

Now we model the micromixing. Let the mass transfer between the particles
and the continuous phase be described by a mass-transfer coefficient, so the
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mass balance for components A and B inside the particles is given by

V
dcA
dθ

= kmA(cA − cA)S − kcAcBV cA(0) = cAf

V
dcB
dθ

= kmB(cB − cB)S − kcAcBV cB(0) = 0 (51)

in which θ is the time the particle has been in the reactor, V and S are the particle
volume and area, respectively, and kmA and kmB are the A and B mass-transfer
coefficients. The variables cA and cB are the continuous-phase concentrations
of A and B. The initial conditions follow from the fact that the particles are
initially formed from the pure A feed stream. Only as θ increases do they have
time to communicate with the continuous phase. To determine the A and B
concentrations in the continuous phase, we write the overall, steady-state mass
balances for both components
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0 = Q1cAf −Q1

∫∞
0
cA(θ)p(θ)dθ −Q2cA −

VR
1+α

[
α
∫∞

0
kcAcBp(θ)dθ + kcAcB

]
0 = Q2cBf −Q1

∫∞
0
cB(θ)p(θ)dθ −Q2cB −

VR
1+α

[
α
∫∞

0
kcAcBp(θ)dθ + kcAcB

]
(52)

We use orthogonal collocation on z = θ/(1 + θ) to solve Equations 51 simul-
taneously with Equations 52 [18]. Orthogonal collocation is described briefly in
Appendix A. The kinetic and mass-transfer parameters are given in Table 2 We
compute the total A and B concentration in the effluent by summing over both
particle and continuous phases

cAt =
α

1+α

∫∞
0
cA(θ)p(θ)dθ +

1
1+αcA

cBt =
α

1+α

∫∞
0
cB(θ)p(θ)dθ +

1
1+αcB
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We next study the effect of particle size. Figure 11 shows cA(θ) for particle sizes
ranging from 0.1 µm to 1.0 cm. We see that if the stirrer is able to produce A
particles of 1.0 µm or less, then the reactor is essentially in the state of max-
imum mixedness, or, equivalently, operates as an ideally mixed CSTR. At the
other extreme, if the A particles are larger than about 1.0 mm, then the reactor
operates essentially as a segregated-flow reactor. Segregated flow essentially
reduces the reaction rate to zero because the A and B species cannot come into
contact.
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Figure 11: Total concentration of A in the reactor effluent versus particle size.
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Figure 12: Particle concentrations of A and B versus particle age for three dif-
ferent-sized particles.

Figure 12 provides a detailed look inside the particles for r = 1, 10 and
100 µm. For r = 1 µm, the A and B concentrations in the particles rapidly
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change from the feed values to the continuous phase values as they spend time
in the reactor. This equilibration with the continuous phase is rapid because the
particles are small, the total surface area and rate of mass transfer are therefore
large. This case is close to maximum mixedness. For r = 100 µm, the particles
are 100 times larger, and the total surface area and rate of mass transfer are
small. Therefore, these particles remain at the inlet feed conditions for a large
time. They are washed out of the reactor before they can produce hardly any
reaction rate. This case corresponds to essentially complete segregation.

Summarizing, this example is instructive for two reasons. First the residence-
time distribution corresponds to a perfect CSTR regardless of particle size.
Residence-time distribution measures the reactor macromixing, which is excel-
lent. The particle size governs the micromixing. Small particles have large
mass-transfer rates and equilibrate with the continuous phase and the particles
in the reactor with different ages leading to the case of maximum mixedness.
Large particles have small mass-transfer rates and do not exchange much ma-
terial with the continuous phase nor therefore with particles of other ages. This
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case corresponds to segregated flow, which leads to essentially zero rate of re-
action. Particles of intermediate size then describe the reactors in intermediate
states of mixing.
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Limits of Reactor Performance
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A Single Convex (Concave) Reaction Rate

f(x) concave

xx

convexf(x)

Figure 13: Differentiable convex and concave functions.
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To generalize the results of Examples and 8.2, we define convex and concave
functions. As presented in the introductory calculus course, the simplest version
pertains to functions having at least two derivatives. In that case, a function is
convex (concave upward) if its second derivative is everywhere greater than or
equal to zero. A function is concave (concave downward) if its second derivative
is everywhere less than or equal to zero, as shown in Figure 13

d2f(x)
dx

≥ 0, f convex

d2f(x)
dx

≤ 0, f concave

For example, the nth-order reaction-rate expression r = cn, is convex if n ≥ 1
and concave if n ≤ 1. Note that first-order rate functions are both convex and
concave.

The general result for the single reaction is
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Given a single reaction with convex (concave) reaction rate expression,
the highest (lowest) conversion for a given RTD is achieved by the seg-
regated reactor and the lowest (highest) conversion is achieved by the
maximally mixed reactor.
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VA VB

cA cB

mix

αcA + (1−α)cB

VA + VB
Figure 14: Two volume elements before and after mixing.

This nonobvious result is a significant generalization of the numerical Ex-
amples and 8.2, and Exercise 8.6, and requires justification. The argument
presented next first appeared in Chauhan et al. [3]; Nauman and Buffham [15]
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also provide a detailed discussion.
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Step 1.

To start, consider the two volume elements shown in Figure 14. Note that in
this discussion cA and cB represent concentration of the same reactant species
in volume elements or tubes A and B. When the volume elements are segregated
the total reaction rate rs is simply

rs = r(cA)VA + r(cB)VB

so that the segregated rate per volume is

rs = αr(cA)+ (1−α)r(cB), 0 ≤ α ≤ 1

in which α is the volume fraction of element A

α = VA
VA + VB

123



On the other hand, if we mix the contents, the concentration is

cm =
cAVA + cBVB
VA + VB

= αcA + (1−α)cB

The total reaction rate per volume after mixing is therefore

rm = r(cm)
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Figure 15: Convex rate expression and the effect of mixing; rate of the mean
(rm) is less than the mean of the rate (rs).

As shown in Figure 15, for all cA, cB andα, if we mix the two volume elements,
we lower the overall reaction rate. The opposite conclusion applies if we have a
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concave rate expression. The rate of the mean rm is less than the mean of the
rate rs for convex reactions, or

r(αcA + (1−α)cB) ≤ αr(cA)+ (1−α)r(cB), all cA, cB,0 ≤ α ≤ 1

This result is the key to understanding what happens in the general reactor. In
fact, this statement can be taken as the definition of convexity (Exercise 8.13).
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Step 2.

Now consider two tubes as shown in Figure 16, which we may choose to mix
or maintain segregated as material proceeds down their lengths.
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QA +QB

mix feed

αcA0 + (1−α)cB0

cB0

QB

QA

cA0

Figure 16: Two tubes before and after mixing the entering feed; averaging the
two segregated tubes produces cs; the mixed feed tube produces cm.

Again assume a single reaction takes place and the reaction-rate expression
is a convex function of a single reactant species. Without loss of generality
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assume the stoichiometric coefficient for the limiting species is negative one.
For constant density, the material balances for the segregated tubes are

dcA
dθ

= −r(cA), cA(0) = cA0

dcB
dθ

= −r(cB), cB(0) = cB0

in which θ = V/Qf . We can track the mean concentration for the segregated
case cs by simply summing the molar flows for tubes A and B divided by the
total flow

cs = αcA + (1−α)cB (53)

in which α is now the flowrate fraction in tube A

α = QA
QA +QB

We also can write a differential equation for cs by simply differentiating Equa-

129



tion 53

dcs
dθ
= − [αr(cA)+ (1−α)r(cB)] , cs(0) = αcA0 + (1−α)cB0 (54)

Consider now the mixed case. If the tubes are mixed at some point, which
we may call θ = 0, then the material balance for the concentration after that
point is

dcm
dθ

= −r(cm), cm(0) = αcA0 + (1−α)cB0 (55)

Our goal now is to show cm ≥ cs for all reactor positions, θ, and all feed con-
centrations and flowrates, cA0, cB0 and α. We know at θ = 0

dcm
dθ

= − [r(αcA0 + (1−α)cB0)] ≥ − [αr(cA)+ (1−α)r(cB)] =
dcs
dθ

If the initial derivatives have this relationship we know, for at least some small
distance down the tube, cm ≥ cs as shown in Figure 17.
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Figure 17: Mean segregated and mixed concentrations versus θ; curves crossing
at θ1 is a contradiction.

How do we know, however, that the curves do not cross each other at some
later time? Assume this crossing can happen as shown in Figure 17, and we
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establish a contradiction. Let θ1 be the first such crossing time. At θ1, cA and
cB have some well-defined values and cs = αcA + (1 − α)cB. We have assumed
that cm = cs at θ1 so the differential equation for cm, Equation 55, gives

dcm
dθ

= − [r(αcA + (1−α)cB)] , θ = θ1

The differential equation for cs still applies and Equation 54 gives

dcs
dθ
= − [αr(cA)+ (1−α)r(cB)] , θ = θ1

Comparing the right-hand sides of these two differential equations and using
the convexity of r(c), we conclude

dcm
dθ

≥ dcs
dθ
, θ = θ1

But this relationship contradicts the assumption that the cs and cm curves cross
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each other. Therefore there can be no time θ1 at which the curves cross and we
conclude

cm(θ) ≥ cs(θ), all θ

This argument and result apply equally well for all cA0, cB0 and α.
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Step 3.

Finally, consider a segregated reactor with arbitrary residence-time distribu-
tion as depicted in Figure 5.C. We select any pair of tubes, mix them, make the
same argument that we made in Step 2, and replace the segregated tubes with
mixed tubes that achieve lower conversion than the original system. We con-
tinue in this fashion, and after we pairwise mix all the segregated tubes with
mixed tubes, we achieve the reactor of maximum mixedness in Figure 5.B. and
the lowest possible conversion. Note this pairing and mixing procedure does
not affect the RTD.
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The General Case

One might expect that the limits of reactor mixing determine directly the lim-
its of reactor performance for more general kinetic schemes as well as the single
convex or concave rate expression of the last section. Unfortunately nature is
more subtle. We present next an example that dispels this notion, and then
discuss what is known about the limits of reactor performance. This example is
based on one presented by Glasser, Hildebrandt and Godorr [8]. Levenspiel [14]
shows how to find the optimal reactor configuration for this type of example.

Example 8.3: Optimal is neither segregated nor maximally mixed

Consider the rate expression

r(c) = c
1+ 5c2

+ 0.05c (56)
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which is plotted in Figure 18.
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Figure 18: Reaction rate versus concentration of limiting reactant; rate expres-
sion is neither convex nor concave.

For a feed concentration of 5, find the combination of CSTRs and PFRs that
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achieve 95% conversion with the smallest total reactor volume. Determine the
RTD for this reactor configuration. What conversion is achieved in a segregated
reactor with this RTD? What conversion is achieved in a maximally mixed reactor
with this RTD?

Solution

As we mentioned in Chapter 4, the smallest volume can be achieved with a series
combination of CSTRs and PFRs. First we plot the inverse of the rate as shown
in Figure 19.
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Figure 19: Inverse of reaction rate versus concentration; optimal sequence to
achieve 95% conversion is PFR–CSTR–PFR.

Then we find any minima in the inverse rate function and construct CSTRs
from those values until we intersect the inverse rate curve. In the remaining
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sections of the curve where the inverse rate is a decreasing function of con-
centration, we use PFRs. Examining the plotted 1/r function in Figure 19, we
see the optimal configuration is a PFR–CSTR–PFR; this configuration is sketched
in Figure 19. We can calculate the sizes of the reactors as follows. We know
from the problem statement that c0 = 5, c3 = 0.25. We next find the point
where dr(c)/dc = 0. Notice these are also the places where d(1/r(c))/dc = 0.
Setting the derivative of Equation 56 to zero gives a quadratic equation with two
roots: 0.501 and 1.83. We choose the one corresponding to the minimum in
1/r , which gives

c2 = 0.501, 1/r(c2) = 4.045

Next we find the concentration c1 such that 1/r(c1) = 1/r(c2). This results in
a cubic equation, which we solve numerically. Then the residence time is given
by θ2 = 1/r(c2)(c1 − c2) which gives

c1 = 3.94, θ2 = 13.9
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To size the PFRs we simply use the PFR design equation and obtain

θ1 = −
∫ c1

c0

1
r(c)

dc = 3.95, θ3 = −
∫ c3

c2

1
r(c)

dc = 1.07

These results are displayed in Figure 19. Because we have a series of CSTRs and
PFRs, we can write the RTD immediately

p(θ) = 1
θ2

exp
[
−θ − (θ1 + θ3)

θ2

]
H(θ − (θ1 + θ3))

which is plotted in Figure 20.
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Figure 20: Residence-time distribution for the optimal reactor configuration.

With the RTD in hand, we can compute both the maximally mixed, Equa-
tion 48, and segregated, Equation 42, reactor cases. The results of those two
calculations are summarized in the following table
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Reactor Conversion

optimal 0.95
segregated 0.68
maximally mixed 0.75

We see that these two mixing limits do not bound the performance of the actual
reactor sequence with the given RTD. In fact, they are off by more than 20%.
Even with a single reaction, if the rate expression is neither convex nor concave,
we cannot bound the performance of an actual reactor between the segregated
and maximally mixed mixing limits. �
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The attainable region.

The primary use of the classical mixing models, such as the segregated reac-
tor and the maximally mixed reactor, is to build insight into the effects of mixing
on reactor behavior under the constraint of a fixed, and presumably measurable,
RTD. As we have seen in Example 8.3, however, if we are mainly interested in de-
termining bounds on achievable reactor states (conversions, yields, etc.), these
simple mixing models are insufficient. In this section we would like to provide
a brief overview of what is known about finding sharp bounds on reactor per-
formance. The general problem can be defined in this way.

Given a feed stream of known composition and a set of chemical reactions
with known rate expressions, determine the set of all possible steady-state
species concentrations that can be achieved by any combination of chem-
ical reactors.
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This set was proposed by Horn almost 40 years ago and named the attainable
region [10]. Because the set is defined for all possible reactor combinations,
it seems conceptually difficult to formulate a procedure by which we can cal-
culate this set. We should also note that by considering all reactor combina-
tions, we are also considering all possible residence-time distributions, which
is a considerable generalization from the single RTD that was considered in the
mixing discussion in previous sections. In spite of the seeming difficulty in find-
ing the attainable region, excellent, recent research progress has been made.
Feinberg provides a nice summary overview of the history and many recent de-
velopments [5].

Glasser and Hildebrandt revived recent interest in this problem [9, 8]. Fein-
berg and Hildebrandt [7] characterized the boundary of the attainable region,
which is of importance because it bounds the possible steady-state concentra-
tions. They showed, for example, that the extreme points of the attainable
region boundary are made up entirely of plug-flow reactor trajectories. They
also showed that combinations of PFRs, CSTRs, and what are called differen-
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tial side-stream reactors (PFRs with addition of feed along the side of the tube),
provide the means to find all of the attainable region extreme points.

In addition to properties and conceptual characterization of the attainable
region, researchers have proposed computational procedures to approximate
the attainable region and solve reactor synthesis problems. Some of these are
based on proposing a superstructure of reactor types and numbers, and op-
timizing an objective function among the possible reactors [11]. Because
the superstructure does not enumerate all possibilities, the solution may not
be close to the true attainable region. A person skilled in reactor design may
be able to choose reactor numbers and types well and overcome this general
difficulty on specific reaction networks of interest.

Some computational methods are based on finding the boundary of the at-
tainable region using the reactor types that characterize the attainable region
extreme points. Hybrid methods involving superstructures and geometric con-
siderations have also been proposed [12].
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Manousiouthakis has recently proposed an infinite dimensional state-space
approach (IDEAS) that requires only PFRs, CSTRS and mixing. The advantage
of this approach is that one solves only convex, linear optimization problems.
The disadvantage is the problems are infinite dimensional and require a finite
dimensional approximation for calculation. A full analysis of the convergence
properties of the finite dimensional approximation is not yet available, but the
approach shows promise on numerical examples [2].

If we wish to allow separation as well as chemical reaction, and almost all
industrial designs would fall into this category, then the problem switches from
a pure reactor synthesis problem to a reactor-separator synthesis problem. The
CSTR equivalence principle of Chapter 4 is an example of the strikingly simple
and general results that recently have been achieved for the reactor-separator
synthesis problem [6].

Forecasting is always risky business, but given the rapid pace of recent
progress, it seems likely that new and highly useful results on pure reactor and
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reactor-separator synthesis problems will be forthcoming. These ideas and re-
sults may have immediate industrial impact, and certainly fall within the scope
of the course in reactor analysis and design.
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Examples in Which Mixing is Critical

Returning to the topic of mixing, we would like to close the chapter by pre-
senting a few more chemical mechanisms for which reactor mixing can play a
critical role.
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Mixing two liquid-phase streams in a stirred tank

• A classic mixing problem arises when we must bring two liquid-phase feed
streams together to perform the second-order reaction

A+ B
k1-→ C (57)

in the presence of the undesirable side reaction

A
k2-→ D (58)

• If the rate of the second degradation reaction is fast compared to the rate
of mixing of the two feed streams, we can anticipate problems. To under-
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stand what happens in this situation, consider the mixing model depicted in
Figure 21.
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A simple mixing model

Q1
cAf

Q2
cBf

cBf
Q2 VR

VR1

VR2

cA
cB

Q1 +Q2

Q1 +Q2

cA
cB

Qr

cAf
Q1

Figure 21: Imperfect mixing (top reactor) leads to formation of an A-rich zone,
which is modeled as a small CSTR feeding a second CSTR (bottom two reactors).
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Modeling the imperfect mixing

• Component A is assumed to be the limiting reactant. It is added at a low
flowrate to a CSTR that contains an excess of reactant B.

• In the top figure we depict the ideal-mixing case in which the rate of mixing is
arbitrarily fast compared to the rate of either reaction. But this ideal mixing
may be impossible to achieve if the reaction rates are reasonably large.

• So in the bottom figure, we model the formation of an A-rich zone near the
feed entry point. This small CSTR exchanges mass with a larger reactor that
contains the excess of reactant B.

• We can vary the recycle flowrate between the two CSTRs, Qr , to vary the
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degree of mixing. For large Qr , we expect the two-reactor mixing model to
approach the single, ideally mixed CSTR.
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Conversion and yield

• As discussed in Chapter 4, the conversion and yield are the usual quantities
of interest in competing parallel reactions of the type given in Reactions 57
and 58.

• We assume the density of this liquid-phase system is constant, and define the
overall conversion of reactant A and yield of desired product C as follows:

xA =
Q1cAf − (Q1 +Q2)cA

Q1cAf
yC =

(Q1 +Q2)cC
Q1cAf − (Q1 +Q2)cA
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Compare conversions and yields and check the RTD

• Given the parameters and rate constants in Table 3, calculate xA and yC
versusQr for the two-reactor mixing model shown in Figure 21, and compare
the result to the single, well-mixed reactor.

• Then calculate the residence-time distribution P(θ) for tracer injected with
the A feed stream for the two models. Discuss whether or not the residence-
time distribution is a reliable indicator for problems with yield in the imper-
fectly mixed reactor.
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Problem parameters

Parameter Value Units

k1 1 min−1

k2 2 L/mol·min
n 2
θ1 = VR1/Q2 1 min
θ2 = VR2/Q2 2 min
θ = VR/Q2

= θ1 + θ2 3 min
α = Q1/Q2 0.1
ρ = Qr/Q2 varies

Table 3: Reactor and kinetic parameters for feed-mixing example.
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Solution — single-reactor model

The steady-state mass balance for the single, well-mixed CSTR is

0 = Q1cAf − (Q1 +Q2)cA − (k1cAcB + k2cnA)VR

0 = Q2cBf − (Q1 +Q2)cB − k1cAcBVR

Defining the following parameters

α = Q1

Q2
θ = VR

Q2
ρ = Qr

Q2

allows us to write these as

0 = αcAf − (1+α)cA − (k1cAcB + k2cnA)θ

0 = cBf − (1+α)cB − k1cAcBθ
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Single-reactor model

We can solve numerically the two equations for the two unknowns cA, cB.

The concentration of C in the outflow is determined from the change in the
concentration of B,

(Q1 +Q2)cC = Q2cBf − (Q1 +Q2)cB

Using this relationship and the defined parameters gives for conversion and
yield,

xA =
αcAf − (1+α)cA

αcAf
yC =

cBf − (1+α)cB
αcAf − (1+α)cA
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Solution — two-reactor model

For the two-reactor system, we write mass balances for each reactor. Let
cA1, cA2, cB1, cB2 be the unknown A and B concentrations in the two-reactors,
respectively.

The mass balances are

Reactor 1:

0 = Q1cAf − (Q1 +Qr)cA1 +QrcA2 − (k1cA1cB1 + k2c2
A1)VR1

0 = −(Q1 +Qr)cB1 +QrcB2 − k1cA1cB1VR1
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Reactor 2:

0 = (Q1 +Qr)cA1 −QrcA2 − (Q1 +Q2)cA2 − (k1cA2cB2 + k2c2
A2)VR2

0 = Q2cBf + (Q1 +Qr)cB1 −QrcB2 − (Q1 +Q2)cB2 − (k1cA2cB2)VR2

We can summarize this case using the previously defined variables as four
equations in four unknowns

0 = αcAf − (α+ ρ)cA1 + ρcA2 − (k1cA1cB1 + k2c2
A1)θ1

0 = −(α+ ρ)cB1 + ρcB2 − k1cA1cB1θ1

0 = (α+ ρ)cA1 − ρcA2 − (1+α)cA2 − (k1cA2cB2 + k2c2
A2)θ2

0 = cBf + (α+ ρ)cB1 − ρcB2 − (1+α)cB2 − (k1cA2cB2θ2
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Conversion — OK

• The conversion is not adversely affected by the poor mixing. In fact, the
conversion in the two-reactor system is higher than the single, well-mixed
reactor.
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Figure 22: Conversion of reactant A for single, ideal CSTR, and as a function of
internal flowrate, ρ = Qr/Q2, in a 2-CSTR mixing model.
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Yield — Definitely not OK

• Notice, however, that at low values of Qr , which corresponds to poor mixing
at the feed location, the yield changes from more than 90% to less than 15%.

• Low yield is a qualitatively different problem than low conversion. If the con-
version is low, we can design a separation system to remove the unreacted A
and recycle it, or use it as feed in a second reactor.

• With low yield, however, the A has been irreversibly converted to an undesired
product D. The raw material is lost and cannot be recovered.

• It is important to diagnose the low yield as a reactor mixing problem, and fix
the problem at the reactor. A yield loss cannot be recovered by downstream
processing.
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Figure 23: Yield of desired product C for single, ideal CSTR, and as a function
of internal flowrate, ρ = Qr/Q2, in a 2-CSTR mixing model.
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Solution — residence-time distribution

• Next we compute the outcome of injecting a unit step change in a tracer in
the A feed stream.

• We solve the transient CSTR balances and calculate the tracer concentration
at the outlet.

• Because the tracer does not take part in any reactions, this can be done ana-
lytically or numerically. The result is shown in Figure 24.
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Figure 24: Step response for single, ideal CSTR, and 2-CSTR mixing model with
ρ = 0,1.
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RTD diagnoses the problem well

• We see the familiar single-CSTR step response.

• For the two-reactor mixing model, when ρ = 0, which corresponds to the
poorest mixing and lowest yield, the step test does reliably indicate the poor
mixing.

At the end of this chapter and also in Chapter 9 we show how to use this step
response to determine the best value of ρ to model the mixing.

• When ρ is reasonably large, Qr = Q2, and the single CSTR and two-reactor
cases have similar yields and step responses.

• Notice in all three step responses, the tracer concentration reaches only cIs =
0.091 = α/(1+α) because we inject tracer in only one of the two feed streams.

167



Example summary

• This example is one of the classic sets of reactions in which mixing has a
significant impact on the reactor performance and the product yield.

• It deserves careful study because it builds intuition and leads us to ask good
questions when confronted with more complex cases.

• For example, Villa et al. [17] discuss similar issues that arise in more complex
polymerization reaction engineering problems.
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Example 8.4: Maximizing yield in dispersed plug flow

Consider the following two liquid-phase reactions in which B is the desired prod-
uct

A
k1-→ B, r1 = k1cA (59)

2B
k2-→ C, r2 = k2c2

B (60)

The second reaction can represent the first step in a polymerization process of
species B, which is undesirable in this case.

Because the second reaction is second order in B, it is desirable to keep the
average B concentration in the reactor low, to avoid yield losses, but achieve
high B concentration near the reactor exit to maximize the production rate. In-
tuitively the CSTR is a bad choice, because it maintains the same B concentration
everywhere in the reactor. A PFR should offer higher yield. The B concentration
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is low near the tube entrance, and increases to its maximum value at the tube
exit if we choose the right length or residence time. If we make the tube too
long, however, the B is largely converted to C and the yield is again low. In this
case, yield is adversely affected by mixing.

Calculate the steady-state conversion of A and yield of B versus PFR length for
the kinetic and reactor parameters in Table 4. What is an appropriate reactor
length to maximize yield of B? Study the effect of dispersion. Approximately
how large can the dispersion number be before the advantages of the PFR over
the CSTR are lost?
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Parameter Value Units

k1 1 min−1

k2 1 L/mol·min
cAf 1 mol/L
cBf 0
v 1 m/min
l 0.5 m
Dl varies m2/min

Table 4: Parameters for the dispersed PFR example.
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Solution

The steady-state mass balances for components A and B are

v
dcA
dz
−Dl

d2cA
dz2

= RA (61)

v
dcB
dz
−Dl

d2cB
dz2

= RB (62)

in which

RA = −k1cA, RB = k1cA − 2k2c2
B

and we have assumed the dispersion numbers of both species are the same,
DAl = DBl = Dl. Because the fluid is a liquid, we assume the velocity is constant.
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We use Danckwerts boundary conditions for both species

vcjf = vcj(0)−Dl
dcA
dz
(0), z = 0 (63)

dcj
dz
= 0, z = l (64)

j = (A, B). Given the concentrations, and because the flowrate is constant, the
conversion and yield are

xA =
cAf − cA
cAf

yB =
cB

cAf − cA
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Figure 25: Conversion of reactant A versus reactor length for different disper-
sion numbers.
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Figure 26: Yield of desired product B versus reactor length for different disper-
sion numbers.

Figures 25 and 26 show the conversion of A and yield of B versus tube length
for a tube designed to maximize the yield of B. A tube length of about 0.5 m
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is appropriate. As the length increases above this value, the conversion of A
increases, but the yield of B drops rapidly, defeating the main purpose of using a
PFR. For the kinetic parameters chosen, the CSTR yield can be improved by about
8% with a PFR. As shown in Figure 25, the high-dispersion PFR is essentially a
CSTR, and achieves yB = 0.79. The PFR with D = 0.001 achieves yB = 0.87. We
see that the dispersion number must be kept less than about 0.1 to maintain
this advantage in yield. �
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Summary

• In this chapter we generalized the two flow assumptions of the idealized re-
actor models: the perfect mixing assumption of the batch reactor and CSTR,
and the plug-flow assumption of the PFR.

• We defined the residence-time distribution (RTD) of a reactor, and showed
how to measure the RTD with simple tracer experiments such as the step
test, pulse test and (idealized) impulse test.

• The RTD gives a rough measure of the flow pattern in the reactor, but it
does not determine completely the reactor performance. Indeed, reactors
with different flow patterns, and therefore different performances, may have
identical RTDs.
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RTD for ideal reactors

• We showed the CSTR has an exponential RTD. The derivation of the RTD of
the CSTR also illustrated the following general principle: given an event with
constant probability of occurrence, the time until the next occurrence of the
event is distributed as a decreasing exponential function. This principle was
used, for example, to choose the time of the next reaction in the stochastic
simulations of Chapter 4.

• The residence-time distribution of the PFR was shown to be arbitrarily sharp
because all molecules spend identical times in the PFR. We introduced the
delta function to describe this arbitrarily narrow RTD.

• We added a dispersion term to the PFR equations to model the spread of the
RTD observed in actual tubular reactors. Introducing the dispersion term’s
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second derivative necessitates new boundary conditions different from the
PFR’s. These are called Danckwerts boundary conditions.

• We computed the full, transient behavior of the dispersed plug-flow model,
and displayed the evolution of the concentration profile after a step change
in the feed concentration.
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Reactor mixing limits

• We then examined the limits of reactor mixing consistent with a given RTD.
The two limits are segregated flow and maximum mixedness.

• We showed how a physical process such as mass transfer between a con-
tinuous phase and a particle phase can approach segregated flow for large
particles (small mass-transfer rates) and can approach maximum mixedness
for small particles (high mass-transfer rates).

• We also showed that the mixing limits bound the possible reactor behavior
for the case of a single, convex reaction-rate expression.

• For more general reaction networks, however, the mixing limits do not bound
the reactor performance. For the general reaction network, recent research
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on the attainable region has started to shed light on the possible reactor
performance.
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Some examples

• Next we discussed two contrasting cases in which mixing plays a critical role.
In the mixing of two liquid reactants, we showed that formation of a poorly
mixed zone can lead to significant yield losses.

• By contrast, for the kinetics of the second example, good mixing leads to
yield losses; in this example the reactor should be designed to approach
segregated flow.

• Finally, the recent progress in the area of computational fluid dynamics (CFD)
gives us reason to believe that direct solution of the equations of motion for
the fluid will be a tractable approach for designing reactors and evaluating
their performance [1].
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• It seems reasonable to expect the classical RTD methods and simple flow
models to complement the computationally intensive CFD methods. CFD
methods may be used to validate simpler mixing models. These validated,
simple mixing models may continue to play important roles in reactor analy-
sis, design and optimization.
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Notation

ce effluent concentration in RTD measurement

cf feed concentration

cj concentration of species j
cm concentration in a maximally mixed flow model

cs concentration in a segregated flow model

c∞ concentration boundary condition in maximum mixedness model

D dimensionless dispersion number, D = Dlτ/l2

DA molecular diffusivity

Djl dispersion coefficient for species j
Dl dispersion coefficient

erf(x) error function, Equation 30

H(x) Heaviside or unit step function, Equation 17

kmj mass-transfer coefficient
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l tubular reactor length

n number of CSTRs in a mixing model

p(θ) probability that a molecule spends time θ to θ + dθ in reactor, RTD

P(θ) probability that a molecule spends time zero to θ in the reactor, integrated form

of the RTD

Pe Péclet number, Pe = vl/DA
Q volumetric flowrate

Qf feed volumetric flowrate

r particle radius in mixing model

r reaction rate of (single) reaction

Rj production rate of species j
v fluid axial velocity

VR reactor volume

xj molar conversion of component j
yj yield of species j
z reactor length variable

γ(n,x) incomplete gamma function of order n and argument x
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Γ(n) gamma function of n
δ(x) delta or impulse function, Equations 7 and 18

θ residence time of tracer molecule in reactor

θ mean residence time, θ =
∫ θ
0 θ′p(θ′)dθ′

λ time-to-go before molecule exits reactor

τ VR/Qf
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Bodenstein and Damköhler. Chem. Eng. Ed., 28:262–264, 1994.

190



[21] T. N. Zwietering. The degree of mixing in continuous flow systems. Chem.
Eng. Sci., 11:1–15, 1959.

191


